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Abstract

Let G be a connected graph, n the order of G, and f (resp. t) the maximum order of an induced
forest (resp. tree) in G. We show that f − t is at most n−

⌈

2
√
n− 1

⌉

. In the special case where n is of
the form a2 +1 for some even integer a ≥ 4, f − t is at most n−

⌈

2
√
n− 1

⌉

− 1. We also prove that these
bounds are tight. In addition, letting α denote the stability number of G, we show that α− t is at most
n+ 1−

⌈

2
√
2n

⌉

; this bound is also tight.

Key Words: induced forest, induced tree, stability number, extremal graph theory.

Résumé

Soit G un graphe connexe, n l’ordre de G, et f (resp. t) l’ordre maximum d’une forêt induite (resp.
d’un arbre induit) dans G. Dans le présent article nous montrons que la différence f − t est au plus égale
à n−

⌈

2
√
n− 1

⌉

. Dans le cas où n est de la forme a2 + 1 pour un entier pair a au moins égal à 4, f − t

est au plus égale à n−
⌈

2
√
n− 1

⌉

− 1. Nous prouvons aussi que ces bornes sont les meilleures possibles
pour un graphe G d’ordre n. De plus, si α dénote le nombre de stabilité de G, nous montrons que la
différence α− t est au plus n+ 1−

⌈

2
√
2n

⌉

; cette borne aussi est la meilleure possible.

Mots clés : forêt induite, arbre induit, nombre de stabilité, théorie des graphes extrémaux.
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1 Introduction

In this article we study the relationships between three invariants of undirected graphs, namely, the maximum
order of an induced forest, the stability number, and the maximum order of an induced tree. Although bounds

on invariants such as these have been studied for a long time by graph theorists, the past few years have

seen a surge of interest in the systematic study of linear relations (or other kinds of relations) between graph

invariants. We focus our attention on the difference between the maximum order of an induced forest and

the maximum order of an induced tree, give an upper bound on this difference, and prove that it is tight. A
similar but simpler proof allows us to bound the difference between the stability number and the maximum

order of an induced tree; in this case also we show that the bound is tight. In the rest of this section we review

the relevant literature and recall some definitions. Section 2 contains our results on forests and Section 3

those on stable sets. We conclude in Section 4.

We now survey published work relevant to the present article. Erdős, Saks, and Sòs [4] addressed the
problem of finding maximum induced trees in graphs. In particular, they proved that any graph G with n

vertices and m edges contains an induced tree of order at least 2n/(m−n+3). Zheng and Lu [6] considered

maximum induced forests and proved that in any cubic, connected, and triangle-free graph G, there is an

induced forest of order at least n − ⌈n/3⌉ (provided n, the order of G, is at least 8). Alon, Mubayi, and
Thomas [1] investigated the relationship between the order of an induced forest in a connected graph G,

the stability number of G (denoted by α), and its maximum degree (denoted by ∆). They proved that a

connected graph G of order n contains an induced forest of order at least α+ (n− α)/(∆− 1)2.

DeLaViña and Waller [3] also studied bounds on the orders of an induced tree and an induced forest,

respectively. Among other results, they showed that any connected graph G contains an induced tree of order
at least (α + 1)/γ (where γ denotes the domination number of G) and an induced forest of order at least

g + f1 − 1 (where g denotes the girth of G and f1 the number of vertices of degree 1 in G). Recently, Fox,

Loh, and Sudakov [5] proved that any connected triangle-free graph G of order n contains an induced tree of

order at least
√
n. The authors also discuss the difference between the order of an induced forest and that of

an induced tree, showing that the order of a largest guaranteed induced forest in a Kr-free graph grows in a
polynomial fashion while the order of a largest guaranteed induced tree grows in a logarithmic fashion.

Let G = (V,E) be a finite undirected graph, where V is the set of vertices of G and E its set of edges.

The cardinality of V is also called the order of G and will be denoted by n. Two vertices u and v are said

to be adjacent if {u, v} (also denoted by uv or vu) belongs to E; u and v are called the ends of uv. A graph

G is said to be complete if any two of its vertices are adjacent. For any subset U of V , the subgraph of G
induced by U is the graph H = (U,E(U)), where E(U) consists of those edges of G with both ends in U . A

clique in G is a complete induced subgraph of G.

Given two vertices u and v of G, a simple path (or path) of length ℓ between u and v is a sequence

(u0 = u, u1, . . . , uℓ = v) of distinct vertices such that uiui+1 is an edge of G for all i ∈ {0, 1, . . . , ℓ−1}. A cycle

C is a sequence (u0, u1, . . . , uℓ−1) of distinct vertices such that uiui+1 is an edge of G for all i ∈ {0, 1, . . . ℓ−1}
(where the addition is modulo ℓ). We say that G is connected if for any pair {u, v} of vertices of G, there is

a path between u and v.

If G is not connected, its vertex set can be partitioned into connected components, i.e., maximal induced

subgraphs that are connected. A graph G is a tree if it is connected and has exactly |V |−1 edges. A graph G

is a forest if every one of its connected components is a tree. A subset S of V is said to be stable if it induces
a subgraph with no edges. The stability number of G (denoted by α(G) or α) is the maximum cardinality of

a stable set in G. We refer the reader to Bondy and Murty [2] for any concept not defined here.

2 Forests and trees

Let G be an undirected graph and f (resp. t) the maximum order of an induced forest (resp. tree) in G. In

order to find an upper bound for f − t, we must first investigate the relationship between an induced forest
F (not necessarily of maximum order) and induced trees in G. In what follows we use F to denote either the
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induced subgraph of G or the vertex set of that subgraph. The following lemma is useful for bounding the

difference between f and t. It is actually very similar to the claim proved in the conclusion of the article of

Fox, Loh, and Sudakov [5]. The main differences between our lemma and the claim are that we consider a
forest instead of a tree and the complement of the forest includes a single vertex.

Lemma 2.1 Let G = (V,E) be a connected graph and assume that F = V \{u} induces a forest for some

vertex u of G. Then there exists an induced tree T in G containing u and whose order is at least 1+
⌈

|F |
2

⌉

=

1 +
⌈

|V |−1

2

⌉

.

Proof. Let the components of F be denoted by V1, . . . , Vp. Because G is connected, each of the Vi (for
i ∈ {1, . . . , p}) contains at least one neighbour of u. In what follows we call the neighbours of u black

vertices ; the other vertices in V \{u} are white vertices. Let ti be the number of black vertices in Vi; we

denote these vertices by ui1, . . . , uiti , for i ∈ {1, . . . , p}.

For each component Vi we construct a subset of vertices V ′
i as follows. For j = 2, . . . , ti, let eij denote the

last edge on the path between ui1 and uij . The removal of Ei = {ei2, . . . , eiti} from the subgraph induced
by Vi produces ti trees denoted respectively by Ti1, . . . , Titi , each of which containing one black vertex (i.e.,

uij belongs to Tij). Let Xij denote the vertex set of Tij . We contract all the edges of all the trees Tij . This

amounts to creating a new graph Hi with ti vertices vi1, . . . , viti , where vij represents the set Xij . In Hi

there is an edge between vij and vik (for some k 6= j) if and only if eij has one end in Xik or eik has one end
in Xij .

The graph Hi is a tree because the contraction operation cannot create any cycle in an acyclic graph. If

we consider |Xij | to be the weight of wij (for every j), it is obvious that the sum of the weights of the wij

equals |Vi|. The graph Hi being bipartite, its vertex set can be partitioned into two stable sets Si1 and Si2.

Without loss of generality, we assume that
∑

vij∈Si1
|Xij | is at least |Vi|

2
. We then define V ′

i as
⋃

vij∈Si1
Xij .

It follows from our construction that the subgraph of G induced by V ′
i is a forest, each connected component

of which contains exactly one black vertex.

Let T be the union of {u} and all the V ′
i , for i = 1, . . . , p. We claim that T induces a tree satisfying the

conclusion of the lemma. Indeed, adding vertex u and the edges uuij (for i = 1, . . . , p and vij ∈ Si1) to the

subgraph induced by the V ′
i produces a connected graph without any cycle, i.e., a tree. Moreover, the choice

of V ′
i implies that

|T | = 1 +

p
∑

i=1

|V ′
i | ≥ 1 +

p
∑

i=1

|Vi|
2

= 1 +
|V | − 1

2
.

Since |T | is an integer, this completes the proof of the lemma.

The construction used in the proof of Lemma 2.1 is illustrated in Figure 1. Graph G appears in 1.a,

vertex u being represented by a square while the vertices of F are the black and white circles. The forest

F induced by V \{u} has four connected components and the edges with bold lines are those in the sets Ei.

The graphs H1, . . . , H4 are displayed in 1.b along with the respective bipartitions of their vertex sets. The

vertices in the sets S11, . . . , S41 are displayed in black while those in the sets S12, . . . , S42 are in grey. The
final tree T is displayed in 1.c.

To prepare for the main ingredient of the proof, Lemma 2.2, we introduce some definitions and a system

of inequalities. Let G be a connected graph and F any induced forest in G. We let K denote the complement

of F (i.e., V \F ). For any pair {u, v} of vertices in K, we choose a shortest path (Puv) between u and v. Note

that this path may contain vertices that are in F , since K need not induce a connected graph. For a vertex
w in F , we denote by Cw the connected component of F that contains w, and by Sw the attachment set of

w, i.e.,

{u ∈ K | ∃w′ such that uw′ ∈ E and w′ ∈ Cw}.
Thus Sw is the set of vertices in K that are adjacent to at least one vertex in the component Cw. For any u

in Sw, we say that w is attached to u. For an illustration, consider the graph in Figure 2, where the vertices
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Figure 1: Illustration of Lemma 2.1.

in F are represented by circles and those in K = {a, b, c, d} by squares. F has three connected components.

The attachment set of every white (resp. grey, black) vertex is {b} (resp. {a, c}, {b, c, d}).

a

b c

d

Figure 2: Illustration of attachment sets.

For any non empty subset S of K, we define xS as the number of vertices w in F verifying Sw = S.

We consider the xS as variables appearing in a system of linear inequalities, the system (SLI), and we also

introduce the variable Z. We describe two groups of constraints in the system (SLI). The first group contains

|K| constraints, each indexed by a vertex in K. The constraint corresponding to vertex u ∈ K is
∑

S contains u

xS ≤ Z + 2.

Note that the left-hand side of this inequality represents the number of vertices w in F that are attached
to u. The second group contains |K|(|K| − 1)/2 constraints, each indexed by a pair of vertices in K. The

constraint corresponding to the pair {u, v} is
∑

S∩Puv={u}

xS +
∑

S∩Puv={v}

xS ≤ Z.

The left-hand side of this inequality represents the number of vertices w in F that are attached to u but no
other vertex of Puv or are attached to v but no other vertex of Puv.

The system (SLI) consists of the two groups of constraints described above and the following constraint,
stating that every vertex in F has a unique attachment set.

∑

S

xS = |F |

The sum is taken over all non empty subsets S of K.

Lemma 2.2 For any connected graph G of order n, any forest F in G, and any value Z satisfying the system

(SLI), the relation Z ≥ 2(|F | − 2)/(n+1− |F |) holds. Moreover, if Z = 2(|F | − 2)/(n+1− |F |) holds, then
every constraint in (SLI) is satisfied at equality.

Proof. We claim that each variable xS appears in at least |K| = n − |F | inequality constraints of (SLI).

More precisely, it appears exactly |S| times (one time for each vertex in S) in an inequality of the first group
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and at least |K|− |S| times in an inequality of the second group. Indeed, if u is any vertex in K\S, we choose
a vertex v in S that minimizes the length of Puv. Then the variable xS appears in the inequality constraint

corresponding to the pair {u, v}, because the intersection of S and Puv equals {v}. Hence, for any u in K\S,
there is at least one constraint in the second group where xS appears.

Thus if we add all the inequality constraints in the first and second groups, we obtain an inequality whose

left-hand side is at least (n− |F |)∑S xS and right-hand side equals

(n− |F |)(Z + 2) +
(n− |F |)(n− |F | − 1)

2
Z.

Since the equality
∑

S xS = |F | holds, we obtain

(n− |F |)|F | ≤ (n− |F |)(Z + 2) +
(n− |F |)(n− |F | − 1)

2
Z,

which yields

Z ≥ 2(|F | − 2)

n+ 1− |F | .

The second part of the lemma follows easily from the above derivation.

Theorem 2.3 For any connected graph G of order n and any forest F in G, there exists an induced tree in

G whose order is at least equal to
⌈ |F | − 2

n+ 1− |F |

⌉

+ 2.

Proof. Let us denote by Zmin the smallest value of Z for which all the constraints of (SLI) are satisfied.

Then there is at least one “tight” constraint in which Zmin appears.

1. If this constraint belongs to the first group, there is a vertex u in K such that Zmin + 2 vertices in F

are attached to u. By Lemma 2.1, there exists a tree in G whose order is at least 1+ ⌈(Zmin + 2) /2⌉ =
2 + ⌈(Zmin/2)⌉.

2. If this constraint belongs to the second group, there is a pair of vertices {u, v} such that Zmin vertices
in F are attached to u but no other vertex of Puv or to v but no other vertex of Puv. Let C1 (resp.

C2) denote the set of vertices in F that are attached to u (resp. v) but no other vertex of Puv. By

Lemma 2.1 again, the subgraph induced by C1 ∪ {u} contains a tree T1 of order at least 1 + ⌈|C1|/2⌉
and the subgraph induced by C2 ∪ {v} a tree T2 of order at least 1 + ⌈|C2|/2⌉. By construction there

is no edge joining any vertex in C1 to any vertex in Puv (except u) and no edge joining any vertex in
C2 to any vertex in Puv (except v). Hence the union of T1, T2, and Puv is an induced tree, of order at

least 2 + ⌈|C1|/2⌉+ ⌈|C2|/2⌉ ≥ 2 + ⌈(|C1|+ |C2|)/2⌉ ≥ 2 + ⌈|Zmin|/2⌉.

We conclude that G always contains an induced tree whose order is at least equal to
⌈

Zmin

2

⌉

+ 2 ≥
⌈ |F | − 2

n+ 1− |F |

⌉

+ 2,

where the inequality follows from Lemma 2.2.

Corollary 2.4 The relation f − t ≤ n−
⌈

2
√
n− 1

⌉

holds for any connected graph G of order n.

Proof. Assume that F is a forest of maximal order, i.e., of order f . The previous theorem implies that

f − t ≤ f − f − 2

n+ 1− f
− 2,

and the maximum value of the right-hand side can be derived by studying an equation in f . Indeed, the

derivative of the right-hand side with respect to f equals

1− (n− 1)

(n+ 1− f)2
.
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The only value of f not exceeding n for which the derivative equals 0 is n + 1 −
√
n− 1, which maximizes

the value of f − (f − 2)/(n + 1 − f) since this function is concave. Substituting n + 1 −
√
n− 1 for f in

f − (f − 2)/(n+ 1− f)− 2 yields
f − t ≤ n− 2

√
n− 1.

The corollary follows by observing that f − t is an integer.

Theorem 2.5 Let G be a connected graph of order n, where n is of the form a2 + 1 for some even positive

integer a ≥ 4. Then we have f − t ≤ n−
⌈

2
√
n− 1

⌉

− 1.

Proof. Let b denote n− a− f (note that b may be a negative integer). Then we have

f − t ≤ f − f − 2

n+ 1− f
− 2 = n− a− b−

⌈

a2 − a− b− 1

a+ b+ 1

⌉

− 2

= n− a− b−
⌈

(a− b− 2)(a+ b+ 1) + (b + 1)2

a+ b+ 1

⌉

− 2

= n− 2a−
⌈

(b+ 1)2

a+ b+ 1

⌉

.

Thus if b does not equal −1, the relation f − t ≤ n − 2a − 1 = n − 2
√
n− 1 − 1 holds and the theorem is

proved.

Assume that b equals −1 (which implies that (f − 2)/(n+ 1− f) equals a− 1). We know from the proof

of Theorem 2.3 that G contains a tree of order ⌈Zmin/2⌉+2. If Zmin > 2(f − 2)/(n− f +1) holds, we obtain

⌈Zmin/2⌉+ 2 > (f − 2)/(n− f + 1)+ 2 = a+ 1, which implies that G contains a tree of order at least a+ 2.

Hence f − t is at most (n− a+ 1)− (a+ 2) = n− 2a− 1, i.e., at most n− 2
√
n− 1− 1.

Finally assume that b = −1 holds and Zmin equals 2(f − 2)/(n − f + 1) = 2(a − 1). Since a is at least

4, n− f is at least 3. Therefore the second group of inequalities in the system (SLI) is not empty, and by

Lemma 2.2, every inequality in both groups is satisfied at equality. Let {u, v} be a pair of vertices in K such

that Puv ∩K equals {u, v}. Let Fu (resp. Fv) denote the set of vertices in F that are attached to u but not

v (resp. v but not u), and Fuv the set of vertices in F that are attached to u and v. Then we have

|Fu|+ |Fuv| = Zmin + 2, |Fv|+ |Fuv| = Zmin + 2, |Fu|+ |Fv| = Zmin,

which implies that |Fu| = |Fv| = Zmin/2 and |Fuv| = (Zmin + 4)/2 hold. By Lemma 2.1 again, G contains

an induced tree that includes u, v, ⌈Zmin/4⌉ vertices in Fu, and ⌈Zmin/4⌉ vertices in Fv. Therefore we have

f − t ≤ (n− a+ 1)−
(

2 + 2

⌈

Zmin

4

⌉)

= (n− a+ 1)−
(

2 + 2

⌈

a− 1

2

⌉)

.

Since a is even, the relations

f − t ≤ (n− a+ 1)− (2 + a) = n− 2a− 1 = n− 2
√
n− 1− 1

hold. This completes the proof of the theorem.

We now prove that the above bounds are tight. Note that 0 is a trivial lower bound for f − t.

Theorem 2.6 Let n be an integer at least equal to 2. If n is of the form a2 + 1 for some a with a even and

a ≥ 4, there exists a connected graph of order n for which f − t = n−
⌈

2
√
n− 1

⌉

− 1 holds. Otherwise, there

exists a connected graph of order n for which f − t = n−
⌈

2
√
n− 1

⌉

holds.

Proof. Let a denote
⌊√

n− 1
⌋

. We describe a construction assuming that the value of f is known and

smaller than n; we will give below the precise relation between f and a. We define a graph G whose vertex

set includes n − f vertices u1, u2, . . . , un−f and the vertices of a forest whose connected components are
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P1, P2, . . . , Pn+1−f . The set {u1, u2, . . . , un−f} induces a clique that is disjoint from the forest, and each

component of the forest (i.e., each Pi) is a path. Each vertex of Pi (for 1 ≤ i ≤ n− f) is joined by an edge

to the vertex ui. Each vertex of Pn+1−f is joined by an edge to every vertex in {u1, u2, . . . , un−f}.

We now address the question of the cardinality of the Pi. Let q denote the largest even integer such that

q(n+ 1− f) ≤ f − 2 holds.

q = 2

⌊

f − 2

2(n+ 1− f)

⌋

Let r denote f − 2− q(n+1− f). By definition of q, r is strictly smaller than 2(n+1− f). In the first round

we allocate q vertices to each of P1, P2, . . . , Pn−f and q + 2 vertices to Pn+1−f . In the second round we add

2 vertices to P1, P2, . . . , P⌊r/2⌋ and the last vertex (if r is odd) to P⌈r/2⌉. Let |Pi| denote the order of Pi and

si the number of vertices included into Pi during the second round. Clearly |Pn+1−f | − |Pi| is at most 2 for
any i = 1, 2, . . . , n− f , and if |P1|− |P2| is greater than 0, every |Pi| for i = 3, 4, . . . , n− f is equal to |P1|− 1

or |P1| − 2.

We now observe that f is the maximum cardinality of a forest in G. Indeed, Pn+1−f contains at least two
vertices and the union of these vertices and {u1, u2, . . . , un−f} induces a clique in G. Since a forest cannot

contain more than 2 vertices of a clique, we conclude that a forest in G is of order at most f . We now consider

the value of t. A maximum induced tree in G must be contained in

• the subgraph induced by Pn+1−f , Pi (for some i ≤ n− f), and ui, or

• the subgraph induced by Pi and Pj (for i < j ≤ n− f) and ui and uj,

• the subgraph induced by Pn+1−f .

We have |P1| ≥ |P2| ≥ |Pi| ≥ |Pn+1−f |−2 for any i in {3, . . . , n−f}. Thus when f < n−1 holds, a maximum

induced tree in the subgraph induced by P1, P2, and {u1, u2} is of maximal order among all the induced

trees of G, and its order equals

⌈(|P1|+ |P2|)/2⌉+ 2 = q + ⌈(s1 + s2)/2⌉+ 2.

When f = n− 1 holds, the vertex set of G is the union of Pn+1−f , P1, and u1, and the order of its maximum

induced tree is given by the same formula as above, since

⌈(|P1|+ |Pn+1−f |)/2⌉+ 1 = q + 1 + ⌈(s1 + s2)/2⌉+ 1.

Let us define b by the relation n − 1 = a2 + b. Recall that a denotes
⌊√

n− 1
⌋

, so that b is comprised
between 0 and 2a. One easily verifies that

⌈

2
√
n− 1

⌉

equals 2a when b = 0 holds, 2a+ 1 when b belongs to

{1, 2, . . . , a}, and 2a+ 2 when b belongs to {a+ 1, a+ 2, . . . , 2a}. We first consider the case where a is even.

1. If 0 ≤ b ≤ a+2 holds, we choose f to be n+1− a. Then f − 2 equals a2+ b− a and n+1− f equals a.

(a) If 0 ≤ b ≤ a− 1 holds, then we have q = a− 2 and r = a+ b. If a ≥ 4 or b ≥ 1 holds, then we have

s1 + s2 ≥ 3 and thus f − t = (n+ 1− a)− (a− 2 + 2 + 2) = n− 2a− 1. If a = 2 and b = 0 hold,

then we have s1 = 2 and s2 = 0 and we obtain f − t = (n+ 1− a)− (a− 2 + 1 + 2) = n− 2a.

(b) If b = a holds, then we have q = a and r = s1 = s2 = 0. Therefore f−t equals (n+1−a)−(a+2) =

n− 2a− 1.

(c) If b = a+ 1 or b = a+ 2 holds, then we have q = a and r = b− a, which means that r equals 1 or
2. Hence s1 equals 1 or 2 and s2 equals 0. We obtain f − t = (n+1−a)− (a+1+2) = n− 2a− 2.

2. If a ≥ 4 and a+ 3 ≤ b ≤ 2a hold, we choose f to be n− a. Then we have f − 2 = a2 + b + 1− a− 2,

n+1− f = a+1, q = a− 2, and r = b+1 ≥ a+4. Hence both s1 and s2 are equal to 2 and we obtain
f − t = (n− a)− (a− 2 + 2 + 2) = n− 2a− 2.

We conclude that in all subcases, f − t equals n−
⌈

2
√
n− 1

⌉

, except when n− 1 = a2 and a ≥ 4 hold and a

is even. In this special case, we have f − t = n−
⌈

2
√
n− 1

⌉

− 1.

We now consider the case where a is odd and at least 3.
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1. If 0 ≤ b ≤ 2 or a+ 1 ≤ b ≤ 2a holds, we choose f to be n+ 1 − a. Then f − 2 equals a2 + b − a and

n+ 1− f equals a.

(a) If b equals 0, then q = a−1 and r = s1 = s2 = 0 hold. Therefore f−t equals (n+1−a)−(a−1+2) =

n− 2a.

(b) If b equals 1 or 2, then q = a − 1 and r = b hold and thus s1 equals 1 or 2 and s2 equals 0.

Therefore f − t equals (n+ 1− a)− (a− 1 + 1 + 2) = n− 2a− 1.

(c) If a + 1 ≤ b ≤ 2a− 1 holds, then we have q = a − 1 and r = b and thus s1 = s2 = 2. Therefore

f − t = (n+ 1− a)− (a− 1 + 2 + 2) = n− 2a− 2 holds.

(d) If b = 2a holds, then we have q = a+ 1 and r = s1 = s2 = 0. Therefore f − t equals (n+ 1− a)−
(a+ 1+ 2) = n− 2a− 2.

2. If 3 ≤ b ≤ a holds, we choose f to be n− a. Then f − 2 equals a2+ b− a− 1 and n+1− f equals a+1.

(a) If 3 ≤ b ≤ a− 1 holds, then we have q = a− 3 and r = a+ b+ 2 and thus s1 = s2 = 2. Therefore
f − t equals (n− a)− (a− 3 + 2 + 2) = n− 2a− 1.

(b) If b = a, then q = a− 1 and r = s1 = s2 = 0. We obtain f − t = (n− a)− (a− 1+2) = n− 2a− 1.

We conclude that in all subcases, f − t equals n−
⌈

2
√
n− 1

⌉

.

To complete the proof, we observe that if a = 1 holds, n must be comprised between 2 and 4. It is easy

to verify that f − t = n−
⌈

2
√
n− 1

⌉

= 0 holds for all graphs of order n in {2, 3, 4}, and the theorem holds

in that case also.

An extremal graph with n = 22 is displayed in Figure 3. In that case, we have a =
⌊√

22− 1
⌋

= 4,

and thus b = n − 1 − a2 = 5 holds. Since a is even and b equals a + 1, we have f = n + 1 − a = 19 and

f − t = n − 2a − 2 = 12. The subgraph induced by the black vertices is a tree of maximum order (i.e., of

order 7).

Figure 3: Extremal graph for n = 22.

Let lf denote the maximum order of an induced linear forest, i.e., a forest in which every connected

component is a path (possibly of length 0). We note that “forest” can be replaced by “linear forest” in the
previous theorems; indeed the forest introduced at the beginning of the proof of Theorem 2.6 is linear.

Corollary 2.7 Let n be an integer at least equal to 2. If n is of the form a2 + 1 for some a with a even and

a ≥ 4, the relation lf − t ≤ n −
⌈

2
√
n− 1

⌉

− 1 holds for any connected graph of order n and this bound is

tight. Otherwise, the relation lf − t ≤ n−
⌈

2
√
n− 1

⌉

holds for any connected graph of order n and the bound

is again tight.

3 Stable sets and trees

In this section we study the difference between α, the stability number of the graph G, and t, the maximum

order of an induced subtree of G. We prove theorems similar to those of the previous section; indeed, the
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proofs of these theorems follow the same lines as in Section 2. Let G be a connected graph of order n, A any

stable set in G, and K = V \A the complement of A. As in Section 2, we choose a shortest path Puv between

u and v for any pair {u, v} of vertices in K. For any non empty subset S of K, we define xS as the number
of vertices w in A whose set of neighbours is S (note that a vertex w in A does not have any neighbour in

A).

As before, we also introduce the variable Z and a system of constraints denoted by (SLI). For each

u ∈ K the system (SLI) includes the constraint

∑

S contains u

xS ≤ Z + 1.

The left-hand side of this constraint is actually the number of vertices in A that are adjacent to u. For each

pair {u, v} of vertices in K, (SLI) includes the constraint

∑

S∩Puv={u}

xS +
∑

S∩Puv={v}

xS ≤ Z.

The left-hand side of this inequality represents the number of vertices in A that are adjacent to u but no

other vertex of Puv or to v but no other vertex of Puv. Finally, the system (SLI) includes the constraint

∑

S

xS = |A|,

where the sum is taken over all non empty subsets S of K.

Lemma 3.1 For any connected graph G of order n, any stable set A in G, and any value Z satisfying the

system (SLI), the relation Z ≥ 2(|A| − 1)/(n+ 1− |A|) holds.

Proof. As in the proof of Lemma 2.2, we observe that each variable xS appears exactly |S| times (one time

for each vertex in S) in an inequality of the first group and at least|K| − |S| times in an inequality of the
second group. Adding all the inequalities in the first and second groups, we obtain an inequality whose

left-hand side is at least (n− |A|)∑S xS and right-hand side equals

(n− |A|)(Z + 1) +
(n− |A|)(n− |A| − 1)

2
Z.

Since we also have
∑

S xS = |A|, the relation

(n− |A|)|A| ≤ (n− |A|)(Z + 1) +
(n− |A|)(n− |A| − 1)

2
Z,

holds, yielding

Z ≥ 2(|A| − 1)

n+ 1− |A| .

Theorem 3.2 For any connected graph G of order n and any stable set A of G, there exists an induced tree

in G whose order is at least equal to
⌈

2(|A| − 1)

n+ 1− |A|

⌉

+ 2.

Proof. Let us denote by Zmin the smallest value of Z for which all the constraints of (SLI) are satisfied.

Then there is at least one “tight” constraint in which Zmin appears.

1. If this constraint belongs to the first group, there is a vertex u in K such that Zmin + 1 vertices in A

are adjacent to u. Hence there exists a tree in G whose order is at least Zmin + 2.
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2. If this constraint belongs to the second group, there is a pair of vertices {u, v} such that Zmin vertices

in F are adjacent to u but no other vertex of Puv or to v but no other vertex of Puv. Let C1 (resp. C2)

denote the set of vertices in A that are adjacent to u (resp. v) but no other vertex of Puv. Hence there
exists a tree in G consisting of the vertices of Puv and Zmin other vertices. The order of this tree is at

least Zmin + 2.

The statement of the theorem follows from this case analysis and Lemma 3.1.

Corollary 3.3 The relation α− t ≤ n−
⌈

2
√
2n

⌉

+ 1 holds for any connected graph G of order n.

Proof. Let A be a stable set of maximal cardinality, i.e., of cardinality α. Theorem 3.2 implies that

α− t ≤ α− 2(α− 1)

n+ 1− α
− 2.

The derivative of the right-hand side of this inequality with respect to α is

1− 2n

(n+ 1− α)2
.

The only value of α not exceeding n for which the derivative equals 0 is n + 1 −
√
2n, which maximizes

the value of α − 2(α − 1)/(n + 1 − α) − 2 since this function is concave. Replacing α by n + 1 −
√
2n in

α− 2(α− 1)/(n+ 1− α)− 2 yields

α− t ≤ n− 2
√
2n+ 1.

The corollary follows by observing that α− t is an integer.

We now prove that the above bound is tight.

Theorem 3.4 Let n be an integer at least equal to 2. There exists a connected graph of order n for which

α− t = n−
⌈

2
√
2n

⌉

+ 1 holds.

Proof. We first observe that if n is comprised between 2 and 5, the star of order n verifies α − t = −1 =
n −

⌈

2
√
2n

⌉

+ 1. In what follows we thus assume that n is at least 6 and α at most n − 2 (the precise

value of α will be given below). We now describe the construction of a graph G = (V,E) of order n

including a stable set A of cardinality α. The complement of A, V \A = {v1, v2, . . . , vn−α}, is a clique

of cardinality n − α. The set A is partitioned into n + 1 − α subsets C1, C2, . . . , Cn−α, Cn+1−α such that
|Cn+1−α| ≥ |C1| ≥ |C2| ≥ · · · ≥ |Cn−α| and |Cn+1−α| − |Cn−α| ≤ 1. This implies that

|Cn+1−α| =
⌈

α

n+ 1− α

⌉

and |Cn−α| =
⌊

α

n+ 1− α

⌋

.

For 1 ≤ i ≤ n − α, there is an edge between vi and each vertex in Ci. Also there is an edge between any
vertex in Cn+1−α and any vertex in the clique V \A. We observe that the union of V \A and any singleton

{u} with u ∈ Cn+1−α induces a clique. Since a stable set of G has at most one member in any clique, its

cardinality is at most |V | − (|V | − |A|+1)+ 1 = α. We conclude that α is indeed the stability number of G.

Also t clearly equals n1 + n2 + 2, where ni = |Ci| for i = 1, 2.

We define b as
⌊√

2n
⌋

and c as 2n− b2, which implies that 0 <= c <= 2b holds and b is at least 2. Let q

and r be such that α = q(n + 1 − α) + r and 0 <= r < n + 1 − α hold. We observe that
⌈

2
√
2n

⌉

equals 2b
if c equals 0, 2b+ 1 if 1 ≤ c ≤ b, and 2b + 2 if b + 1 ≤ c ≤ 2b. Note also that b and c always have the same

parity (i.e., either b and c are both even or they are both odd).

We now consider five cases.

1. If b is even and c equals 0, we choose the value n + 1 − b for α. Then n + 1 − α equals b, q equals
b/2− 1 and r equals 1. Then n1 + n2 + 2 equals 2q+ 2 = b and α− t equals n− 2b+ 1, which is equal

to n−
⌈

2
√
2n

⌉

+ 1 in this case.
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2. If b is even and 2 <= c <= b holds, we choose the value n− b for α. Then n+ 1 − α equals b+ 1 and

there are two subcases:

• q = b/2− 2 and r = (c+ b)/2 + 2 if c is smaller than b − 2, and

• q = b/2− 1 and r = (c− b)/2 + 1 if c equals b− 2 or b.

In both cases, n1+n2+2 is equal to b and thus α−t = n−2b = n−(2b+1)+1 is equal to n−
⌈

2
√
2n

⌉

+1.

3. If b is even and b+ 2 <= c <= 2b holds, we choose the value n+ 1− b for α. Then n+ 1− α equals b
and there are two subcases again:

• q = b/2− 1 and r = c/2 + 1 if c is smaller than 2b− 2, and

• q = b/2 and r = c/2− b+ 1 if c equals 2b− 2 or 2b.

In both cases, n1 + n2 + 2 is equal to b+ 2 and thus α− t = (n+ 1− b)− (b+ 2) = n− (2b+ 2) + 1 is
equal to n−

⌈

2
√
2n

⌉

+ 1.

4. If b is odd and 1 <= c <= b holds, we choose the value n+ 1 − b for α. Then n+ 1− α equals b and

there are two subcases:

• q = (b − 3)/2 and r = (c+ b)/2 + 1 if c is smaller than b− 2, and

• q = (b − 1)/2 and r = (c− b)/2 + 1 if c equals b− 2 or b.

In both cases, n1 + n2 + 2 is equal to b+ 1 and thus α− t = (n+ 1− b)− (b+ 1) = n− (2b+ 1) + 1 is

equal to n−
⌈

2
√
2n

⌉

+ 1.

5. If b is odd and b + 2 <= c <= 2b − 1 holds, we choose the value n − b for α. Then n + 1 − α equals

b+ 1 and there are two subcases:

• q = (b − 3)/2 and r = (c+ 3)/2 if c is smaller than 2b− 1, and

• q = (b − 1)/2 and r = 0 if c equals 2b− 1.

In both cases, n1 +n2 +2 is equal to b+1 and thus α− t = (n− b)− (b+1) = n− (2b+2)+ 1 is equal

to n−
⌈

2
√
2n

⌉

+ 1.

This completes the proof of the theorem.

An extremal graph with n = 12 is displayed in Figure 4. In that case we have b = 4, c = 8, α = 9, and
t = 6. The subgraph induced by the black vertices is a tree of maximum order.

Figure 4: Extremal graph for n = 12.

4 Conclusion

In this article we have investigated the difference between the maximum order of an induced forest and that

of an induced tree, on one hand, and the difference between the stability number and the maximum order of

an induced tree, on the other. In light of the work by Fox, Loh, and Sudakov [5], it would be interesting to

extend our results by finding bounds for f − t and α− t in certain families of graphs, for instance triangle-free
graphs or, more generally, Kr-free graphs. Note that the extremal graphs presented in this article contain

triangles, and that forbidding triangles will likely make the construction of extremal graphs challenging.
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