Benchmarking DFO algorithms

MTH8418

S. Le Digabel, Polytechnique Montréal

Winter 2020

(v2)

Plan

Introduction and problems

Tables and convergence graph

Performance and data profiles

References

Introduction and problems

Tables and convergence graph

Performance and data profiles

References

Introduction

- How to measure the performance of an algorithm?
- How to compare algorithms amongst themselves?
- How to identify groups of problems?
- Are we interested in the final solution only, or in the progression of the algorithms?

How to benchmark DFO algorithms

- Performance indicators:
 - Typically: Value of f and number of blackbox evaluations
 - Special measures for robustness, multiobjective optimization, etc.
- In the DFO context, CPU time is rarely relevant since the number of evaluations is a perfect machine-independent criterion
- However, CPU time is useful for:
 - Blackboxes with variable complexity
 - Parallelism

. . .

How to find problems

- We want to achieve reproducibility. However most blackbox applications are proprietary and/or cannot be shared easily. There is not yet a universal and accepted collection of such problems.
- Typically, algorithms are tested on a mixture of analytic problems and real-life applications.
- When testing on real applications, it is necessary to use many instances, for example by changing the parameters of the applications, or by using several starting solutions.

A realistic blackbox for benchmarking

STYRENE problem [Audet et al., 2008]

8 variables, 11 constraints, one evaluation \simeq 1s, \simeq 20% of failures

Collections of analytic problems

The usual analytic collections are:

- The Hock and Schittkowski set [Hock and Schittkowski, 1981]
- The Lukšan and Vlček set [Lukšan and Vlček, 2000]
- Problems used in [Moré and Wild, 2009]. Core of 22 unconstrained CUTEst problems reformulated as 212 instances (smooth, nonsmooth, and noisy)
- CUTEst, the latest evolution of the CUTE and CUTEr collections [Gould et al., 2015]

The COCO platform

Isolated problems such as ROSENBROCK or GRIEWANK

Introduction and problems

Tables and convergence graph

Performance and data profiles

References

Tables of numerical results

- Useful to summarize instance characteristics
- Give the exact values for each execution of Solver s on Problem p
- Problem: becomes difficult to read (too much information)

Table example

Table 6 Pooling Test Problems from the Literature

Example	Parameters			Solution			CPU time (sec)			Error (%)			
	nsp	k _{max}	nt	Exact	MSLP	MALT	VNS	MSLP	MALT	VNS	MSLP	MALT	VNS
Flow mode	el												
AST1 AST2 AST3	1,000 1,500 1,000	10 10 10	1 1 1	549.803 549.803 561.048	276.661 284.186 255.846	532.901 535.617 397.441	545.27 543.909 412.145	2.20 9.18 18.71	2.45 5.21 4.96	2.81 5.68 5.34	49.68 48.31 54.35	3.07 2.58 29.09	0.82
BT4 BT5	5 10	0 15	0 2	45 350	39.6970 327.016	45 324.077	45 350	0.02	0.01	0.01	11.78 6.57	0 7.41	0
F2	120	10	1	110	100	107.869	110	0.07	0.44	0.57	9.09	1.94	0
H1 H2 H3	5 5 5	0 0 3	0 0 1	40 60 75	40 60 60.7332	40 60 70	40 60 75	0.02 0.02 0.02	0.01 0.01 0.01	0.01 0.01 0.03	0 0 19.02	0 0 6.67	000
RT1 RT2	5 5	0 5	0 1	4,136.22 4,391.83	126.913	4,136.22 4,330.78	4,136.22 4,391.83	1.34 0.04	0.04 0.47	0.04 0.60	96.93	0 1.39	0
GP1	50	5	1	60.5	28.732	35	46	0.01	0.04	0.08	52.51	42.15	23.97
Proportion	n model												
AST1 AST2 AST3 AST4	1,000 1,500 1,000 230	10 10 10 0	1 1 1 0	549.803 549.803 561.048 877.649	544.307 548.407 551.081	532.901 535.617 397.441 876.206	533.783 542.54 558.835 876.206	1.14 3.04 4.98 1.19	2.38 4.97 4.98 1.21	2.61 5.37 5.93 1.55	1 0.25 1.68	3.07 2.58 29.09 0.16	2.91 1.32 0.3 0.16
BT4 BT5	5 10	0 15	0	45 350	39.7019 292.532	45 323.12	45 350	0.01	0.02	0.02	11.77 16.42	0 7.68	0
F2	120	0	0	110	110	110	110	0.15	0.49	0.49	0	0	0
H1 H2 H3	5 5 5	0 0 3	0 0 1	40 60 75	40 60 69.9934	40 60 70	40 60 75	0.02 0.02 0.02	0.01 0.01 0.01	0.01 0.01 0.02	0 0 6.68	0 0 6.67	000
RT1 RT2	5 5	0 5	0 1	4,136.22 4,391.83	3,061.03 4,391.02	4,136.22 4,330.77	4,136.22 4,391.82	0.07 0.04	0.03 0.58	0.03 0.72	25.99 0.02	0 1.39	0

Convergence graph

- Provides a picture of the convergence of one or several methods for one given instance of a problem
- Represents only the successes or all evaluations
- Horizontal steps between two f values
- Problem: Only for one instance. Does not allow to draw any general conclusion

Convergence graph example (1)

MTH8418: Benchmarking DFO

Convergence graph example (2)

From [Gramacy et al., 2015]

Convergence + trajectory plots for 2D examples

From [Audet and Hare, 2017]

Introduction and problems

Tables and convergence graph

Performance and data profiles

References

- Introduced by [Dolan and Moré, 2002, Moré and Wild, 2009]
- Graphical and straightforward way of comparing methods on sets of problems
- Relative comparison of the methods
- Moré and Wild give the MATLAB tools to draw profiles at http://www.mcs.anl.gov/~more/dfo/
- ► We consider:
 - Unconstrained problems
 - Single-objective problems
 - Deterministic instances and algorithms
 - No parallelism

Profiles: Original version from the M&W paper

- P: set of problems or instances
- \blacktriangleright S: set of solvers, or algorithms, or methods
- Performance measure $t_{p,s} > 0$ available for each $p \in \mathcal{P}$ and $s \in \mathcal{S}$. Typically the number of evaluations required to satisfy a convergence test
- Small values of the performance measure are preferable
- Performance ratio for problem $p \in \mathcal{P}$ and solver $s \in \mathcal{S}$:

$$r_{p,s} = \frac{t_{p,s}}{\min\{t_{p,a} : a \in \mathcal{S}\}}$$

Convergence test (1/2)

• One possible convergence test is, for the candidate solution *x*:

$$f(x_0) - f(x) \ge (1 - \tau)(f(x_0) - f_L)$$

Where:

- \triangleright $\tau > 0$: tolerance
- ► x₀: unique and feasible starting point
- f_L : smallest value of f obtained by any solver within a given budget of evaluations, for each $p \in \mathcal{P}$
- It requires that the reduction f(x₀) − f(x) achieved by x be at least 1 − τ times the best possible reduction f(x₀) − f_L

Convergence test (2/2)

► **Example 1**: Values of $f(x_0)$ and of f after 100 evaluations, for 3 algorithms on 2 problems:

	Pb 1	Pb 2
$f(x_0)$	10	-703.57
f Algo. 1	0.01	-1,907.47
f Algo. 2	1.2	-3,964.20
f Algo. 3	0	-3,682.12

For $\tau = 0.1$, when does the convergence test pass?

• Other convergence tests include the relative error between f(x) and f_L . For example $\frac{f(x)-f_L}{|f_L|} \leq \tau$ if $f_L \neq 0$

Performance profiles

- ▶ The best solver $s^* \in S$ for a particular problem $p \in P$ attains the lower bound $r_{p,s^*} = 1$
- $t_{p,s} = r_{p,s} = \infty$ when s fails to satisfy the convergence test on p
- The performance profile of s is the fraction of problems where the performance ratio is at most α:

$$\rho_s(\alpha) = \frac{1}{|\mathcal{P}|} \mathsf{size}\{p \in \mathcal{P} : r_{p,s} \le \alpha\}$$

- It is the probability distribution for the ratio r_{p,s}
- $\rho_s(1)$ is the fraction of problems for which s performs the best
- For α sufficiently large, ρ_s(α) is the fraction of problems solved by s
- Solvers with high values for ρ_s are preferable

Performance profiles: Example

Accurate view of the performance for $\tau=10^{-3}.$ Taken from [Moré and Wild, 2009]

Example 2

Draw the performance profiles for the following table:

$t_{p,s}$	Pb 1	Pb 2
Algo. 1	35	∞
Algo. 2	∞	1,200
Algo. 3	112	500

 $t_{p,s}$ represents the number of evaluations for which the convergence test succeeded, for a given value of τ

Data profiles

- We are interested in the percentage of problems that can be solved, for a given tolerance τ with a variable budget of evaluations
- The data profile of Solver s is

$$d_s(\kappa) = \frac{1}{|\mathcal{P}|} \mathsf{size} \left\{ p \in \mathcal{P} : \frac{t_{p,s}}{n_p + 1} \le \kappa \right\},$$

where n_p is the number of variables in Problem p

- lt represents the percentage of problems that can be solved with κ groups of $n_p + 1$ function evaluations, or simplex gradient estimates
- n_p + 1 is the number of evaluations needed to compute a one-sided finite-difference estimate of the gradient

Data profiles: Example

Example 3

Draw the data profiles for the following table.

$t_{p,s}$	Pb 1	Pb 2
Algo. 1	35	∞
Algo. 2	∞	1,200
Algo. 3	112	500

 $t_{p,s}$ represents the number of evaluations for which the convergence test succeeded, for a given value of τ . Problem 1 has 2 variables and Problem 2 has 9 variables

Simplified performance profiles

- Consider only the final solutions. The stopping criteria must be the same for all the algorithms (i.e. same budget of evaluations)
- \blacktriangleright x-axis: tolerance τ
- y-axis: percentage of problems solved given the τ tolerance
- "solved" must be defined
- At $\tau = 0$:
 - We see the methods that gave the best solutions
 - The performance values may sum up to a value < 100%

Simplified performance profiles: Example

Simplified data profiles

- We consider the entire history of all executions: We focus on the convergence
- The tolerance τ is fixed
- x-axis: Convergence measure: Number of evaluations or number of simplex gradients when the problems have different dimensions
- > y-axis: Percentage of problems *solved* given the τ tolerance
- For x = 0, we should have y = 0
- For $x = x_{max}$, we should observe the same values on the performance profiles, at τ
- Equivalent to the original version. Only the presentation differs

Simplified data profiles: Example

Extensions

How to extend performance and data profiles

- To the constrained case?
- With parallelism?
- With stochastic algorithms?
- Several choices have to be taken. This is the subject of Homework #1 for the constrained case
- Accuracy profiles [Audet and Hare, 2017] for the robustness and quality of the final solution

Introduction and problems

Tables and convergence graph

Performance and data profiles

References

References

- Performance and data profiles [Dolan and Moré, 2002, Moré and Wild, 2009]
- Test problems [Hock and Schittkowski, 1981, Lukšan and Vlček, 2000, Moré and Wild, 2009, Gould et al., 2015]
- Some benchmark papers [Whitley et al., 2006, Fowler et al., 2008, Moré and Wild, 2009, Rios and Sahinidis, 2013, Martelli and Amaldi, 2014]

References I

Audet, C., Béchard, V., and Le Digabel, S. (2008). Nonsmooth optimization through Mesh Adaptive Direct Search and Variable Neighborhood Search.

Audet, C. and Hare, W. (2017).

Journal of Global Optimization, 41(2):299-318.

Derivative-Free and Blackbox Optimization. Springer Series in Operations Research and Financial Engineering. Springer International Publishing, Berlin.

Dolan, E. and Moré, J. (2002).

Benchmarking optimization software with performance profiles. *Mathematical Programming*, 91(2):201–213.

Fowler, K., Reese, J., Kees, C., Dennis Jr., J., Kelley, C., Miller, C., Audet, C., Booker, A., Couture, G.,

Darwin, R., Farthing, M., Finkel, D., Gablonsky, J., Gray, G., and Kolda, T. (2008). Comparison of derivative-free optimization methods for groundwater supply and hydraulic capture community problems.

Advances in Water Resources, 31(5):743-757.

Gould, N., Orban, D., and Toint, P. (2015).

CUTEst: a Constrained and Unconstrained Testing Environment with safe threads for mathematical optimization.

Computational Optimization and Applications, 60(3):545-557. Code available at http://ccpforge.cse.rl.ac.uk/gf/project/cutest/wiki.

References II

Gramacy, R., Gray, G., Le Digabel, S., Lee, H., Ranjan, P., Wells, G., and Wild, S. (2015). Modeling an Augmented Lagrangian for Improved Blackbox Constrained Optimization. To appear in *Technometrics* (with discussion).

Hock, W. and Schittkowski, K. (1981).

Test Examples for Nonlinear Programming Codes, volume 187 of Lecture Notes in Economics and Mathematical Systems. Springer Verlag, Berlin, Germany.

Lukšan, L. and Vlček, J. (2000).

Test problems for nonsmooth unconstrained and linearly constrained optimization. Technical Report V-798, ICS AS CR.

Martelli, E. and Amaldi, E. (2014).

PGS-COM: A hybrid method for constrained non-smooth black-box optimization problems: Brief review, novel algorithm and comparative evaluation.

Computers and Chemical Engineering, 63:108-139.

Moré, J. and Wild, S. (2009).

Benchmarking derivative-free optimization algorithms. SIAM Journal on Optimization, 20(1):172-191. Test problems and results available at http://www.mcs.anl.gov/~more/dfo/.

References III

Rios, L. and Sahinidis, N. (2013).

Derivative-free optimization: a review of algorithms and comparison of software implementations. *Journal of Global Optimization*, 56(3):1247–1293.

Whitley, D., Lunacek, M., and Sokolov, A. (2006).

Comparing the Niches of CMA-ES, CHC and Pattern Search Using Diverse Benchmarks. In Parallel Problem Solving from Nature - PPSN IX, volume 4193/2006 of Lecture Notes in Computer Science, pages 988–997. Springer Berlin / Heidelberg.