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Introduction

I How to measure the performance of an algorithm?

I How to compare algorithms amongst themselves?

I How to identify groups of problems?

I Are we interested in the final solution only, or in the
progression of the algorithms?

MTH8418: Benchmarking DFO 4/36



Introduction and problems Tables and convergence graph Performance and data profiles References

How to benchmark DFO algorithms

I Performance indicators:
I Typically: Value of f and number of blackbox evaluations

I Special measures for robustness, multiobjective optimization,
etc.

I In the DFO context, CPU time is rarely relevant since the
number of evaluations is a perfect machine-independent
criterion

I However, CPU time is useful for:
I Blackboxes with variable complexity
I Parallelism
I . . .
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How to find problems

I We want to achieve reproducibility. However most blackbox
applications are proprietary and/or cannot be shared easily.
There is not yet a universal and accepted collection of such
problems.

I Typically, algorithms are tested on a mixture of analytic
problems and real-life applications.

I When testing on real applications, it is necessary to use many
instances, for example by changing the parameters of the
applications, or by using several starting solutions.
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A realistic blackbox for benchmarking

STYRENE problem [Audet et al., 2008]

8 variables, 11 constraints, one evaluation ' 1s, '20% of failures
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Collections of analytic problems

The usual analytic collections are:

I The Hock and Schittkowski set [Hock and Schittkowski, 1981]

I The Lukšan and Vlček set [Lukšan and Vlček, 2000]

I Problems used in [Moré and Wild, 2009]. Core of 22
unconstrained CUTEst problems reformulated as 212
instances (smooth, nonsmooth, and noisy)

I CUTEst, the latest evolution of the CUTE and CUTEr
collections [Gould et al., 2015]

I The COCO platform

I Isolated problems such as ROSENBROCK or GRIEWANK
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Tables of numerical results

I Useful to summarize instance characteristics

I Give the exact values for each execution of Solver s on
Problem p

I Problem: becomes difficult to read (too much information)
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Table example

MTH8418: Benchmarking DFO 11/36



Introduction and problems Tables and convergence graph Performance and data profiles References

Convergence graph

I Provides a picture of the convergence of one or several
methods for one given instance of a problem

I Represents only the successes or all evaluations

I Horizontal steps between two f values

I Problem: Only for one instance. Does not allow to draw any
general conclusion
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Convergence graph example (1)
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Convergence graph example (2)
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From [Gramacy et al., 2015]
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Convergence + trajectory plots for 2D examples

From [Audet and Hare, 2017]
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Performance and data profiles
I Introduced by [Dolan and Moré, 2002, Moré and Wild, 2009]

I Graphical and straightforward way of comparing methods on
sets of problems

I Relative comparison of the methods

I Moré and Wild give the MATLAB tools to draw profiles at
http://www.mcs.anl.gov/~more/dfo/

I We consider:
I Unconstrained problems

I Single-objective problems

I Deterministic instances and algorithms

I No parallelism
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Profiles: Original version from the M&W paper

I P: set of problems or instances

I S: set of solvers, or algorithms, or methods

I Performance measure tp,s > 0 available for each p ∈ P and
s ∈ S. Typically the number of evaluations required to satisfy
a convergence test

I Small values of the performance measure are preferable

I Performance ratio for problem p ∈ P and solver s ∈ S:

rp,s =
tp,s

min{tp,a : a ∈ S}
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Convergence test (1/2)

I One possible convergence test is, for the candidate solution x:

f(x0)− f(x) ≥ (1− τ)(f(x0)− fL)

I Where:
I τ > 0: tolerance
I x0: unique and feasible starting point
I fL: smallest value of f obtained by any solver within a given

budget of evaluations, for each p ∈ P
I It requires that the reduction f(x0)− f(x) achieved by x be

at least 1− τ times the best possible reduction f(x0)− fL
I τ represents the percentage decrease from f(x0). As it

decreases, the accuracy of f(x) as an approximation to fL
increases
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Convergence test (2/2)

I Example 1: Values of f(x0) and of f after 100 evaluations,
for 3 algorithms on 2 problems:

Pb 1 Pb 2

f(x0) 10 -703.57

f Algo. 1 0.01 -1,907.47
f Algo. 2 1.2 -3,964.20
f Algo. 3 0 -3,682.12

For τ = 0.1, when does the convergence test pass?

I Other convergence tests include the relative error between
f(x) and fL. For example f(x)−fL

|fL| ≤ τ if fL 6= 0
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Performance profiles
I The best solver s∗ ∈ S for a particular problem p ∈ P attains

the lower bound rp,s∗ = 1

I tp,s = rp,s =∞ when s fails to satisfy the convergence test
on p

I The performance profile of s is the fraction of problems where
the performance ratio is at most α:

ρs(α) =
1

|P|
size{p ∈ P : rp,s ≤ α}

I It is the probability distribution for the ratio rp,s
I ρs(1) is the fraction of problems for which s performs the best
I For α sufficiently large, ρs(α) is the fraction of problems

solved by s
I Solvers with high values for ρs are preferable
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Performance profiles: Example

Accurate view of the performance for τ = 10−3. Taken
from [Moré and Wild, 2009]
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Example 2

Draw the performance profiles for the following table:

tp,s Pb 1 Pb 2

Algo. 1 35 ∞
Algo. 2 ∞ 1,200
Algo. 3 112 500

tp,s represents the number of evaluations for which the
convergence test succeeded, for a given value of τ
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Data profiles
I We are interested in the percentage of problems that can be

solved, for a given tolerance τ with a variable budget of
evaluations

I The data profile of Solver s is

ds(κ) =
1

|P|
size

{
p ∈ P :

tp,s
np + 1

≤ κ
}
,

where np is the number of variables in Problem p

I It represents the percentage of problems that can be solved
with κ groups of np + 1 function evaluations, or simplex
gradient estimates

I np + 1 is the number of evaluations needed to compute a
one-sided finite-difference estimate of the gradient

MTH8418: Benchmarking DFO 24/36



Introduction and problems Tables and convergence graph Performance and data profiles References

Data profiles: Example

Taken from [Moré and Wild, 2009]
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Example 3

Draw the data profiles for the following table.

tp,s Pb 1 Pb 2

Algo. 1 35 ∞
Algo. 2 ∞ 1,200
Algo. 3 112 500

tp,s represents the number of evaluations for which the
convergence test succeeded, for a given value of τ . Problem 1 has
2 variables and Problem 2 has 9 variables
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Simplified performance profiles

I Consider only the final solutions. The stopping criteria must
be the same for all the algorithms (i.e. same budget of
evaluations)

I x-axis: tolerance τ

I y-axis: percentage of problems solved given the τ tolerance

I “solved” must be defined

I At τ = 0:
I We see the methods that gave the best solutions

I The performance values may sum up to a value < 100%
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Simplified performance profiles: Example
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Simplified data profiles
I We consider the entire history of all executions: We focus on

the convergence

I The tolerance τ is fixed

I x-axis: Convergence measure: Number of evaluations or
number of simplex gradients when the problems have different
dimensions

I y-axis: Percentage of problems solved given the τ tolerance

I For x = 0, we should have y = 0

I For x = xmax, we should observe the same values on the
performance profiles, at τ

I Equivalent to the original version. Only the presentation
differs
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Simplified data profiles: Example
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Extensions

I How to extend performance and data profiles
I To the constrained case?

I With parallelism?

I With stochastic algorithms?

I Several choices have to be taken. This is the subject of
Homework #1 for the constrained case

I Accuracy profiles [Audet and Hare, 2017] for the robustness
and quality of the final solution
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References

I Performance and data
profiles [Dolan and Moré, 2002, Moré and Wild, 2009]

I Test problems [Hock and Schittkowski, 1981,
Lukšan and Vlček, 2000, Moré and Wild, 2009,
Gould et al., 2015]

I Some benchmark papers [Whitley et al., 2006,
Fowler et al., 2008, Moré and Wild, 2009,
Rios and Sahinidis, 2013, Martelli and Amaldi, 2014]
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