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Context: Blackbox Optimization (BBO)

min
x∈X

f(x) s.t. x ∈ Ω = {x ∈ X : cj(x) ≤ 0, j = 1, 2, . . . ,m}

X is a n-dimensional space and the evaluations of f and the cj ’s are provided by a
blackbox:

- -
x ∈ X
n inputs

f(x), cj(x), j = 1, 2, . . . ,m

m+ 1 outputs

▶ Each call to the blackbox may be time-expensive and time-heterogeneous
▶ The evaluation can fail
▶ Sometimes f(x) ̸= f(x)
▶ Derivatives are not available and cannot be approximated

BBO: Parallel versions of MADS 4/30
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Heterogeneous blackboxes

time

bb(x1)

bb(x2)

▶ Numerical methods may take longer to converge close to an optimal point: This
occurs with the solar problem [Andrés-Thió et al., 2024]

▶ CPU-time related functions [Abramson et al., 2012]

▶ This may have great impact for parallel methods

BBO: Parallel versions of MADS 5/30
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Motivation
Different ways of parallelizing BBO:

▶ Parallelize the blackbox

▶ Parallelize the algorithm: Subject of this work

▶ Hybrid solution: Share processes between the blackbox and the algorithm

▶ With multiple available processes, it is also possible to construct large lists of trial
points

Parallelize MADS: 4 methods:

▶ pMADS-S

▶ pMADS-A

▶ COOP-MADS

▶ PSD-MADS

BBO: Parallel versions of MADS 6/30
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MADS [Audet and Dennis, Jr., 2006]

Updates

search on the mesh Mk to improve xk

(surrogates, LHS, VNS, Nelder-Mead, etc.)

Search

xk=0

fail

local search on Mk around xk

Poll

success fail

refine Mkcoarsen Mk

k ← k + 1
success

a stopping criteria
is satisfied ?

termination

no

yes

return xk

end

or
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[0] Initializations (x0, δ0 )
[1] Iteration k

[1.1] Search
select a finite number of mesh points
evaluate candidates opportunistically

[1.2] Poll (if Search failed)
construct poll set Pk = {xk + δkd : d ∈ Dk}
sort(Pk)
evaluate candidates opportunistically

[2] Updates
if success

xk+1 ← success point
increase δk

else
xk+1 ← xk

decrease δk

k ← k + 1, stop or go to [1]
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MADS illustration with n = 2: Poll step

δk = ∆k = 1 δk is the mesh size parameter

∆k is the frame size parameter

we keep δk < ∆k typically with ∆k =
√
δk

and δk+1 ← δk × 4 (success)

or δk+1 ← δk/4 (fail)r
xk

r
t1

r
t2

r
�

�
�

�
��

t3

poll trial points={t1, t2, t3}
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MADS illustration with n = 2: Poll step

δk = ∆k = 1
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xk
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t3

poll trial points={t1, t2, t3}

δk+1 = 1/4
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t6
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MADS illustration with n = 2: Poll step

δk = ∆k = 1
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NOMAD (Nonlinear Optimization with MADS)
▶ C++ implementation of the MADS algorithm [Audet and Dennis, Jr., 2006]

▶ Standard C++. Runs on Linux, Mac OS X and Windows

▶ Parallel versions with MPI and OpenMP

▶ MATLAB versions; Multiple interfaces (Python, Excel, etc.)

▶ Open and free – LGPL license

▶ Download at https://www.gerad.ca/nomad or
https://github.com/bbopt/nomad

▶ Support at nomad@gerad.ca

▶ Related articles in TOMS [Le Digabel, 2011, Audet et al., 2022]

BBO: Parallel versions of MADS 11/30
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NOMAD: Parallel versions

▶ Current versions: 3.9 (June 2018) and 4.4.0 (January 2024)

▶ V3: based on MPI

▶ V4: based on OpenMP

▶ Parallel implementations are more mature in NOMAD V3

▶ Both versions can generate large lists of trial points if many processes are
available, using enriched poll directions and sampling

BBO: Parallel versions of MADS 12/30
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Parallel MADS (pMADS)
Implementation (NOMAD V3):

▶ Evaluate the trial points in parallel: Straightforward opportunity for speedup

▶ Master/worker paradigm over MPI communications

▶ The efficiency of the opportunistic strategy is affected

master

worker

xf(
x)
,
x
∈
Ω
?

worker
x

f
(x

),
x

∈
Ω

?

. . . . . .
f
(x

),
x

∈
Ω

?

x

worker

f(x),
x
∈
Ω
?x
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pMADS versions

pMADS-S (synchronous):

▶ The iteration is over only when all the evaluations in progress are terminated

▶ Processes can be idle between two evaluations

pMADS-A (asynchronous):

▶ If a new best point is found, the iteration is terminated even if there are
evaluations in progress. New trial points are then generated

▶ Processes never wait between two evaluations

▶ “Old” evaluations (stragglers) are considered when they are finished

▶ Processes are never idled during an iteration

BBO: Parallel versions of MADS 15/30
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PSD-MADS
▶ PSD: Parallel Space Decomposition [Audet et al., 2008b]

▶ Idea: each process executes a MADS algorithm on a subproblem and has
responsibility of small groups of variables

▶ Based on the block-Jacobi method [Bertsekas and Tsitsiklis, 1989] and on the
Parallel Variable Distribution [Ferris and Mangasarian, 1994]

▶ Objective: solve larger problems (≃ 50− 500 instead of ≃ 10− 20)

▶ Choice of subproblems:
▶ Random
▶ Overlapping is authorized
▶ Small size: n = 2
▶ Small budget of evaluations (≃ 10)

BBO: Parallel versions of MADS 16/30
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PSD-MADS: processes
▶ Master

▶ receives all workers signals
▶ updates current solution and mesh
▶ decides subproblem variables
▶ sends subproblem data

▶ Workers Slaves
▶ receive subproblem data
▶ optimize subproblem
▶ send optimization data

▶ Cache server
▶ memorizes all black-box evaluations
▶ allows the “cache search” in the pollster

Master
+ Cache Server

pollster
n variables
1 direction

subproblem data

optim
iza

tion re
sult

slave 1
ns variables

2ns directions

slave 2
ns variables

2ns directions

slave 3
ns variables

2ns directions

slave 4
ns variables

2ns directions

slave 5
ns variables

2ns directions

BBO: Parallel versions of MADS 17/30



Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

! P =1
x0=x*=[10 10 10 10]
f(x0)=10

Master

time

BBO: Parallel versions of MADS 18/30



Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

! P =1
x0=x*=[10 10 10 10]
f(x0)=10

Slave s2

Pollster

Slave s3

!0=1 f(x0)=10

f(x0)=10

! min=1 N2={3,4}

!0=1
! min=1

f(x0)=10
N3={2,3}

f(y1)=14

! P =1

stop (1 it.)  it. fail

!=1

time

Master

x0=[ 10 10 10 10 ]

]y1=[ 11 10 10 10

x0=[ 10 10 10 10 ]

10 10 ]y1=[ 11 10

x0=[ 10 10 10 10 ]

10 10y1=[ 11 10 ]
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Master
!P =1
x0=x*=[10 10 10 10]
f(x0)=10

Pollster

Slave s3

!0=1 f(x0)=10

f(x0)=10

!min=1 N2={3,4}

!0=1
!min=1

f(x0)=10
N3={2,3}

f(y1)=14

!P =1

f(x0)=10!=1

stop (1 it.)  it. fail

f(y1)=12

x*=[10 10 9 10]
f(x*)=9

Slave s2

f(y1)=16

it. success

f(y2)=11

time

!=1/4

]

y3=[

10 ]

]y1=[11 10 10 10

x0=[10 10 10 10 ] x0=[10 10 10 10 ]

y1=[10 10 9.75 10 ]

x0=[10 1010 10]

10 10 ]11 10y1=[ 10 10 ]y2=[  9 10

10 10

10

10 11y2=[10 10 ]11 10y1=[

x0=[1010 10

y3=[

f(y2)=9
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Cooperative MADS: COOP-MADS
▶ Uses a simplified version of the PSD-MADS parallel framework
▶ Processes run in parallel on the original problem with different seeds in order to

produce different behaviours
▶ The cache server S allows to share evaluations
▶ (Almost) asynchronous method

cache server S

MADS
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,

x
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Convergence

▶ pMADS-S: Same as MADS

▶ pMADS-A: Almost same as MADS except when stragglers give new successes: In
that case, convergence is ensured by setting the mesh size parameter back to the
“old” value

▶ PSD-MADS: Convergence based on the pollster that considers all variables.
Convergence is ensured by the MADS framework: no conditions on the
subproblems definitions

▶ COOP-MADS: Same as MADS
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Impact of the synchronisation barrier

▶ solar4: n = 29, m = 16

▶ Heterogeneous blackbox

▶ pMADS-S (SYNC) vs pMADS-A
(ASYNC)

▶ 64 processors

2 4 8 16 32 64
0

100

200

300

Processors

R
u
n
T
im

e
(s
)

sync
async
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Moré-Wild smooth test problems
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Multimodal problems for testing COOP-MADS

▶ 42 multimodal problems from [Jamil and Yang, 2013]

▶ n = 2

▶ budget of 1,600 evaluations

▶ 4 MPI processes

BBO: Parallel versions of MADS 24/30
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COOP-MADS on multimodal problems
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STYRENE, n=8, 6,000 evaluations, with 13 processes
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Test Problem G2 [Hedar and Fukushima, 2006]

min
x∈Rn

f(x) =

∣∣∣∣∣∣∣∣∣∣
n∑

i=1
cos4 xi − 2

n∏
i=1

cos2 xi√
n∑

i=1
ix2i

∣∣∣∣∣∣∣∣∣∣
s.t.


c1(x) = −

n∏
i=1

xi + 0.75 ≤ 0

c2(x) =
n∑

i=1
xi − 7.5n ≤ 0

n = 500, 0 ≤ x ≤ 10, x0 = [5 5 ... 5]⊤
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Problem G2, n=500, 50,000 evaluations
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Summary
▶ We presented four parallel versions of the MADS algorithm:

▶ pMADS-S and pMADS-A
▶ PSD-MADS
▶ COOP-MADS

▶ These versions are mature in NOMAD V3

▶ Achieve good improvements depending on several contexts (size,
time-heterogeneity, multimodality, etc.)

▶ Future work:
▶ More benchmarking

▶ Full availability in NOMAD V4

▶ Use of smarter subspaces in PSD-MADS for large problems
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