
Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

Parallel versions of the mesh adaptive direct search
algorithm

Sébastien Le Digabel Antoine Lesage-Landry Samuel Mendoza

DFOS’24, 2024-06-27

BBO: Parallel versions of MADS 1/30

https://www.gerad.ca/Sebastien.Le.Digabel/
https://alesagelandry.github.io
https://www.gerad.ca/en/people/samuel-mendoza
https://dfos2024.diag.uniroma1.it

Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

Presentation outline

Introduction

MADS and NOMAD

Parallel versions of MADS

Computational tests

Conclusion

BBO: Parallel versions of MADS 2/30

Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

Introduction

MADS and NOMAD

Parallel versions of MADS

Computational tests

Conclusion

BBO: Parallel versions of MADS 3/30

Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

Context: Blackbox Optimization (BBO)

min
x∈X

f(x) s.t. x ∈ Ω = {x ∈ X : cj(x) ≤ 0, j = 1, 2, . . . ,m}

X is a n-dimensional space and the evaluations of f and the cj ’s are provided by a
blackbox:

- -
x ∈ X
n inputs

f(x), cj(x), j = 1, 2, . . . ,m

m+ 1 outputs

▶ Each call to the blackbox may be time-expensive and time-heterogeneous
▶ The evaluation can fail
▶ Sometimes f(x) ̸= f(x)
▶ Derivatives are not available and cannot be approximated

BBO: Parallel versions of MADS 4/30

Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

Heterogeneous blackboxes

time

bb(x1)

bb(x2)

▶ Numerical methods may take longer to converge close to an optimal point: This
occurs with the solar problem [Andrés-Thió et al., 2024]

▶ CPU-time related functions [Abramson et al., 2012]

▶ This may have great impact for parallel methods

BBO: Parallel versions of MADS 5/30

https://github.com/bbopt/solar

Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

Motivation
Different ways of parallelizing BBO:

▶ Parallelize the blackbox

▶ Parallelize the algorithm: Subject of this work

▶ Hybrid solution: Share processes between the blackbox and the algorithm

▶ With multiple available processes, it is also possible to construct large lists of trial
points

Parallelize MADS: 4 methods:

▶ pMADS-S

▶ pMADS-A

▶ COOP-MADS

▶ PSD-MADS

BBO: Parallel versions of MADS 6/30

Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

Introduction

MADS and NOMAD

Parallel versions of MADS

Computational tests

Conclusion

BBO: Parallel versions of MADS 7/30

Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

MADS [Audet and Dennis, Jr., 2006]

Updates

search on the mesh Mk to improve xk

(surrogates, LHS, VNS, Nelder-Mead, etc.)

Search

xk=0

fail

local search on Mk around xk

Poll

success fail

refine Mkcoarsen Mk

k ← k + 1
success

a stopping criteria
is satisfied ?

termination

no

yes

return xk

end

or

BBO: Parallel versions of MADS 8/30

Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

[0] Initializations (x0, δ0)
[1] Iteration k

[1.1] Search
select a finite number of mesh points
evaluate candidates opportunistically

[1.2] Poll (if Search failed)
construct poll set Pk = {xk + δkd : d ∈ Dk}
sort(Pk)
evaluate candidates opportunistically

[2] Updates
if success

xk+1 ← success point
increase δk

else
xk+1 ← xk

decrease δk

k ← k + 1, stop or go to [1]

BBO: Parallel versions of MADS 9/30

Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

MADS illustration with n = 2: Poll step

δk = ∆k = 1 δk is the mesh size parameter

∆k is the frame size parameter

we keep δk < ∆k typically with ∆k =
√
δk

and δk+1 ← δk × 4 (success)

or δk+1 ← δk/4 (fail)r
xk

r
t1

r
t2

r
�

�
�

�
��

t3

poll trial points={t1, t2, t3}

BBO: Parallel versions of MADS 10/30

Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

MADS illustration with n = 2: Poll step

δk = ∆k = 1

r
xk

r
t1

r
t2

r
�

�
�

�
��

t3

poll trial points={t1, t2, t3}

δk+1 = 1/4

∆k+1 = 1/2

r
xkr���

t4 r
t5

r
�

�
�

t6

= {t4, t5, t6}

BBO: Parallel versions of MADS 10/30

Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

MADS illustration with n = 2: Poll step

δk = ∆k = 1

r
xk

r
t1

r
t2

r
�

�
�

�
��

t3

poll trial points={t1, t2, t3}

δk+1 = 1/4

∆k+1 = 1/2

r
xkr���

t4 r
t5

r
�

�
�

t6

= {t4, t5, t6}

δk+2 = 1/16

∆k+2 = 1/4

r
xk

r
t7

r�� t8rSS
t9

= {t7, t8, t9}

BBO: Parallel versions of MADS 10/30

Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

NOMAD (Nonlinear Optimization with MADS)
▶ C++ implementation of the MADS algorithm [Audet and Dennis, Jr., 2006]

▶ Standard C++. Runs on Linux, Mac OS X and Windows

▶ Parallel versions with MPI and OpenMP

▶ MATLAB versions; Multiple interfaces (Python, Excel, etc.)

▶ Open and free – LGPL license

▶ Download at https://www.gerad.ca/nomad or
https://github.com/bbopt/nomad

▶ Support at nomad@gerad.ca

▶ Related articles in TOMS [Le Digabel, 2011, Audet et al., 2022]

BBO: Parallel versions of MADS 11/30

https://www.gerad.ca/en/software/nomad
https://www.gerad.ca/nomad
https://github.com/bbopt/nomad
https://github.com/bbopt/nomad
mailto:nomad@gerad.ca

Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

NOMAD: Parallel versions

▶ Current versions: 3.9 (June 2018) and 4.4.0 (January 2024)

▶ V3: based on MPI

▶ V4: based on OpenMP

▶ Parallel implementations are more mature in NOMAD V3

▶ Both versions can generate large lists of trial points if many processes are
available, using enriched poll directions and sampling

BBO: Parallel versions of MADS 12/30

Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

Introduction

MADS and NOMAD

Parallel versions of MADS

Computational tests

Conclusion

BBO: Parallel versions of MADS 13/30

Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

Parallel MADS (pMADS)
Implementation (NOMAD V3):

▶ Evaluate the trial points in parallel: Straightforward opportunity for speedup

▶ Master/worker paradigm over MPI communications

▶ The efficiency of the opportunistic strategy is affected

master

worker

xf(
x)
,
x
∈
Ω
?

worker
x

f
(x

),
x

∈
Ω

?

.
f
(x

),
x

∈
Ω

?

x

worker

f(x),
x
∈
Ω
?x

BBO: Parallel versions of MADS 14/30

Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

pMADS versions

pMADS-S (synchronous):

▶ The iteration is over only when all the evaluations in progress are terminated

▶ Processes can be idle between two evaluations

pMADS-A (asynchronous):

▶ If a new best point is found, the iteration is terminated even if there are
evaluations in progress. New trial points are then generated

▶ Processes never wait between two evaluations

▶ “Old” evaluations (stragglers) are considered when they are finished

▶ Processes are never idled during an iteration

BBO: Parallel versions of MADS 15/30

Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

PSD-MADS
▶ PSD: Parallel Space Decomposition [Audet et al., 2008b]

▶ Idea: each process executes a MADS algorithm on a subproblem and has
responsibility of small groups of variables

▶ Based on the block-Jacobi method [Bertsekas and Tsitsiklis, 1989] and on the
Parallel Variable Distribution [Ferris and Mangasarian, 1994]

▶ Objective: solve larger problems (≃ 50− 500 instead of ≃ 10− 20)

▶ Choice of subproblems:
▶ Random
▶ Overlapping is authorized
▶ Small size: n = 2
▶ Small budget of evaluations (≃ 10)

BBO: Parallel versions of MADS 16/30

Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

PSD-MADS: processes
▶ Master

▶ receives all workers signals
▶ updates current solution and mesh
▶ decides subproblem variables
▶ sends subproblem data

▶ Workers Slaves
▶ receive subproblem data
▶ optimize subproblem
▶ send optimization data

▶ Cache server
▶ memorizes all black-box evaluations
▶ allows the “cache search” in the pollster

Master
+ Cache Server

pollster
n variables
1 direction

subproblem data

optim
iza

tion re
sult

slave 1
ns variables

2ns directions

slave 2
ns variables

2ns directions

slave 3
ns variables

2ns directions

slave 4
ns variables

2ns directions

slave 5
ns variables

2ns directions

BBO: Parallel versions of MADS 17/30

Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

! P =1
x0=x*=[10 10 10 10]
f(x0)=10

Master

time

BBO: Parallel versions of MADS 18/30

Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

! P =1
x0=x*=[10 10 10 10]
f(x0)=10

Slave s2

Pollster

Slave s3

!0=1 f(x0)=10

f(x0)=10

! min=1 N2={3,4}

!0=1
! min=1

f(x0)=10
N3={2,3}

f(y1)=14

! P =1

stop (1 it.) it. fail

!=1

time

Master

x0=[10 10 10 10]

]y1=[11 10 10 10

x0=[10 10 10 10]

10 10]y1=[11 10

x0=[10 10 10 10]

10 10y1=[11 10]

BBO: Parallel versions of MADS 18/30

Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

Master
!P =1
x0=x*=[10 10 10 10]
f(x0)=10

Pollster

Slave s3

!0=1 f(x0)=10

f(x0)=10

!min=1 N2={3,4}

!0=1
!min=1

f(x0)=10
N3={2,3}

f(y1)=14

!P =1

f(x0)=10!=1

stop (1 it.) it. fail

f(y1)=12

x*=[10 10 9 10]
f(x*)=9

Slave s2

f(y1)=16

it. success

f(y2)=11

time

!=1/4

]

y3=[

10]

]y1=[11 10 10 10

x0=[10 10 10 10] x0=[10 10 10 10]

y1=[10 10 9.75 10]

x0=[10 1010 10]

10 10]11 10y1=[10 10]y2=[9 10

10 10

10

10 11y2=[10 10]11 10y1=[

x0=[1010 10

y3=[

f(y2)=9

BBO: Parallel versions of MADS 18/30

Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

!P =1

!min=1

!min=1

!P =1
x0=x*=[10 10 10 10]
f(x0)=10

Slave s2

Pollster

Slave s3

!0=1 f(x0)=10

f(x0)=10

min=1 N2={3,4}

!0=1
!min=1

f(x0)=10
N3={2,3}

f(y1)=14

f(x0)=10!=1

stop (1 it.) it. fail

f(y1)=12

x*=[10 10 9 10]
f(x*)=9

f(y2)=9

f(y1)=16 f(y2)=11

it. success

!P =1

!=1/4 !=1 f(x0)=9

f(y3)=10

stop (3 ev.)

stop (3 ev.)

!0=1

!0=1

!

stop (1 it.) it. fail

N2={1,3}

 Master

time

N3={2,4}
10

]

f(y3)=15

9

10 10 10 10]]10 10 10 10]

10 10 10 10x0=[]

10 10 9 10

10 10]11 10 10 10]9 10 10 10]10 11y1=[y2=[y3=[

10

y1=[

x0=[

10 9 9 10

10 10

11 10 10 10

10

x0=[

x0=[10 10 9 10]

x0=[x0=[

10]10y1=[11 10 10]10y2=[10 11 10]10y3=[9 10

10 9y1=[11 10]

x0=[10]

y1=[]10 10 9.75 10y1=[]

10]910y1=[11

BBO: Parallel versions of MADS 18/30

Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

Cooperative MADS: COOP-MADS
▶ Uses a simplified version of the PSD-MADS parallel framework
▶ Processes run in parallel on the original problem with different seeds in order to

produce different behaviours
▶ The cache server S allows to share evaluations
▶ (Almost) asynchronous method

cache server S

MADS

si
gn
al

si
gn
al
,

x
∈
S
?

MADS
s
i
g
n
a
l

s
i
g
n
a
l
,

x
∈

S
?

.

s
i
g
n
a
l
,

x
∈

S
?

s
i
g
n
a
l MADS

signal,
x
∈
S
?

signal

BBO: Parallel versions of MADS 19/30

Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

Convergence

▶ pMADS-S: Same as MADS

▶ pMADS-A: Almost same as MADS except when stragglers give new successes: In
that case, convergence is ensured by setting the mesh size parameter back to the
“old” value

▶ PSD-MADS: Convergence based on the pollster that considers all variables.
Convergence is ensured by the MADS framework: no conditions on the
subproblems definitions

▶ COOP-MADS: Same as MADS

BBO: Parallel versions of MADS 20/30

Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

Introduction

MADS and NOMAD

Parallel versions of MADS

Computational tests

Conclusion

BBO: Parallel versions of MADS 21/30

Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

Impact of the synchronisation barrier

▶ solar4: n = 29, m = 16

▶ Heterogeneous blackbox

▶ pMADS-S (SYNC) vs pMADS-A
(ASYNC)

▶ 64 processors

2 4 8 16 32 64
0

100

200

300

Processors

R
u
n
T
im

e
(s
)

sync
async

BBO: Parallel versions of MADS 22/30

Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

Moré-Wild smooth test problems

0 100 200 300 400 500

0

0.2

0.4

0.6

0.8

1

groups of np + 1 evaluations

p
or
ti
on

of
p
ro
b
le
m
s
so
lv
ed

data profiles τ = 10−5

MADS
pMADS-A
PSD-MADS
COOP-MADS

0 50 100 150 200

0

0.2

0.4

0.6

0.8

1

elapsed time (s)

p
or
ti
on

o
f
p
ro
b
le
m
s
so
lv
ed

data profiles τ = 10−5

MADS
pMADS-A
PSD-MADS
COOP-MADS

BBO: Parallel versions of MADS 23/30

Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

Multimodal problems for testing COOP-MADS

▶ 42 multimodal problems from [Jamil and Yang, 2013]

▶ n = 2

▶ budget of 1,600 evaluations

▶ 4 MPI processes

BBO: Parallel versions of MADS 24/30

Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

COOP-MADS on multimodal problems

0 50 100 150 200

0

0.2

0.4

0.6

0.8

1

Groups of np + 1 evaluations k

P
o
rt
io
n
of

p
ro
b
le
m

so
lv
ed

Data Profiles τ = 10−3

coop-mads
pmads-a

0 10 20 30 40

0

0.2

0.4

0.6

0.8

1

Elapsed Time (s)

P
or
ti
on

o
f
p
ro
b
le
m

so
lv
ed

Data Profiles τ = 10−3

coop-mads
pmads-a

BBO: Parallel versions of MADS 25/30

Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

STYRENE, n=8, 6,000 evaluations, with 13 processes

0 1000 2000 3000 4000 5000 6000
3.4

3.3

3.2

3.1

3

2.9

2.8
x 107

black box evaluations

ob
je

ct
ive

Styrene (n=8) bbe vs obj 12 processes

MADS
pMADS A
pMADS S
PSD MADS
COOP MADS
COOP LTMADS

0 200 400 600 800 1000
0

50

100

150

200

250

300

350

400

450

500

550

black box evaluations
tim

e
(s

)

Styrene (n=8) bbe vs time 12 processes

BBO: Parallel versions of MADS 26/30

Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

Test Problem G2 [Hedar and Fukushima, 2006]

min
x∈Rn

f(x) =

∣∣∣∣∣∣∣∣∣∣
n∑

i=1
cos4 xi − 2

n∏
i=1

cos2 xi√
n∑

i=1
ix2i

∣∣∣∣∣∣∣∣∣∣
s.t.


c1(x) = −

n∏
i=1

xi + 0.75 ≤ 0

c2(x) =
n∑

i=1
xi − 7.5n ≤ 0

n = 500, 0 ≤ x ≤ 10, x0 = [5 5 ... 5]⊤

BBO: Parallel versions of MADS 27/30

Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

Problem G2, n=500, 50,000 evaluations

0 1 2 3 4 5
x 104

0.6

0.5

0.4

0.3

0.2

0.1

0

black box evaluations

ob
jec

tive

MADS
pMADS A
pMADS S
PSD MADS
COOP MADS
COOP LTMADS

0 1 2 3 4 5
x 104

0

100

200

300

400

500

600

700

800

black box evaluations

tim
e (

s)
BBO: Parallel versions of MADS 28/30

Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

Introduction

MADS and NOMAD

Parallel versions of MADS

Computational tests

Conclusion

BBO: Parallel versions of MADS 29/30

Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

Summary
▶ We presented four parallel versions of the MADS algorithm:

▶ pMADS-S and pMADS-A
▶ PSD-MADS
▶ COOP-MADS

▶ These versions are mature in NOMAD V3

▶ Achieve good improvements depending on several contexts (size,
time-heterogeneity, multimodality, etc.)

▶ Future work:
▶ More benchmarking

▶ Full availability in NOMAD V4

▶ Use of smarter subspaces in PSD-MADS for large problems

BBO: Parallel versions of MADS 30/30

Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

References I

Abramson, M., Asaki, T., J.E.Dennis, Jr., Magallanez, Jr., R., and Sottile, M. (2012).
An Efficient Class of Direct Search Surrogate Methods for Solving Expensive Optimization Problems with
CPU-time-related Functions.
Structural Multidisciplinary Optimization, 45(1):53–64.

Andrés-Thió, N., Audet, C., Diago, M., Gheribi, A., Le Digabel, S., Lebeuf, X., Lemyre Garneau, M., and
Tribes, C. (2024).
solar: A solar thermal power plant simulator for blackbox optimization benchmarking.
Technical Report G-2024-37, Les cahiers du GERAD.

Audet, C., Béchard, V., and Le Digabel, S. (2008a).
Nonsmooth optimization through Mesh Adaptive Direct Search and Variable Neighborhood Search.
Journal of Global Optimization, 41(2):299–318.

Audet, C. and Dennis, Jr., J. (2006).
Mesh Adaptive Direct Search Algorithms for Constrained Optimization.
SIAM Journal on Optimization, 17(1):188–217.

BBO: Parallel versions of MADS 31/30

Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

References II

Audet, C., Dennis, Jr., J., and Le Digabel, S. (2008b).
Parallel Space Decomposition of the Mesh Adaptive Direct Search Algorithm.
SIAM Journal on Optimization, 19(3):1150–1170.

Audet, C. and Hare, W. (2017).
Derivative-Free and Blackbox Optimization.
Springer Series in Operations Research and Financial Engineering. Springer, Cham, Switzerland.

Audet, C., Le Digabel, S., Rochon Montplaisir, V., and Tribes, C. (2022).
Algorithm 1027: NOMAD version 4: Nonlinear optimization with the MADS algorithm.
ACM Transactions on Mathematical Software, 48(3):35:1–35:22.

Bertsekas, D. and Tsitsiklis, J. (1989).
Parallel and distributed computation: numerical methods.
Prentice-Hall, Upper Saddle River, NJ, USA.

Ferris, M. and Mangasarian, O. (1994).
Parallel Variable Distribution.
SIAM Journal on Optimization, 4(4):815–832.

BBO: Parallel versions of MADS 32/30

Introduction MADS and NOMAD Parallel versions of MADS Computational tests Conclusion

References III

Hedar, A.-R. and Fukushima, M. (2006).
Derivative-free filter simulated annealing method for constrained continuous global optimization.
Journal of Global Optimization, 35(4):521–549.

Jamil, M. and Yang, X.-S. (2013).
A literature survey of benchmark functions for global optimisation problems.
International Journal of Mathematical Modelling and Numerical Optimisation, 4(2):150–194.

Le Digabel, S. (2011).
Algorithm 909: NOMAD: Nonlinear Optimization with the MADS algorithm.
ACM Transactions on Mathematical Software, 37(4):44:1–44:15.

Moré, J. and Wild, S. (2009).
Benchmarking Derivative-Free Optimization Algorithms.
SIAM Journal on Optimization, 20(1):172–191.

BBO: Parallel versions of MADS 33/30

	Introduction
	

	MADS and NOMAD
	

	Parallel versions of MADS
	

	Computational tests
	

	Conclusion
	

