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Context: Blackbox Optimization (BBO)

min
x∈X

F (x) s.t. x ∈ Ω = {x ∈ X : cj(x) ≤ 0, j = 1, 2, . . . ,m}

X is a n-dimensional space, F can have p components, and the evaluations of F and
the cj ’s are provided by a blackbox:

- -
x ∈ X
n inputs

F (x), cj(x), j = 1, 2, . . . ,m

p+m outputs

▶ Each call to the blackbox may be expensive
▶ The evaluation can fail
▶ Sometimes F (x) ̸= F (x)
▶ Derivatives are not available and cannot be approximated
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Blackboxes as illustrated by a Boeing engineer + SOLAR

The SOLAR problem [Andrés-Thió et al., 2024] is an example of a challenging
blackbox application available at https://github.com/bbopt/solar
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Terms

▶ “Derivative-Free Optimization (DFO) is the mathematical study of
optimization algorithms that do not use
derivatives” [Audet and Hare, 2017]

▶ Optimization without using derivatives
▶ Derivatives may exist but are not available

▶ Obj./constraints may be analytical or given by a blackbox

▶ “Blackbox Optimization (BBO) is the study of design and analysis of algorithms
that assume the objective and/or constraints functions are given by
blackboxes” [Audet and Hare, 2017]

▶ A simulation, or a blackbox, is involved
▶ Obj./constraints may be analytical functions of the outputs
▶ Derivatives may be available (ex.: PDEs)

▶ Sometimes referred as Simulation-Based Optimization (SBO)
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Optimization: Global view
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Typical setting

Algorithm

f
(blackbox)

x1,x2,...
f(x1),f(x2),...

x0 x*

Unconstrained case, with one initial starting solution
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Algorithms for blackbox optimization
A method for blackbox optimization should ideally:

▶ Be efficient given a limited budget of evaluations

▶ Be robust to noise and blackbox failures

▶ Natively handle general constraints

▶ Have convergence properties ensuring first-order local optimality in the smooth
case – otherwise why using it on more complicated problems?

▶ Easily exploit parallelism

▶ Deal with multiobjective optimization

▶ Deal with integer and categorical variables

▶ Have a publicly available implementation
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Families of methods
▶ “Computer science” methods:

▶ Heuristics such as genetic algorithms
▶ No convergence properties
▶ Cost a lot of evaluations
▶ Should be used only in last resort for desperate cases

▶ Statistical methods:
▶ Design of experiments – out of date compared to modern DFO methods
▶ Bayesian optimization: EGO algorithm based on surrogates and expected

improvement
▶ Still limited in terms of dimension
▶ Does not natively handle constraints
▶ Better to use these tools in conjonction with DFO methods

▶ Derivative-Free Optimization methods (DFO)
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DFO methods
▶ Model-based methods:

▶ Derivative-Free Trust-Region (DFTR) methods.
▶ Based on quadratic models or radial-basis functions
▶ Use of a trust-region
▶ Better for { DFO \ BBO }
▶ Not resilient to noise and hidden constraints
▶ Not easy to parallelize

▶ Direct-search methods:
▶ Classical methods: Coordinate search, Nelder-Mead – the other simplex method
▶ Modern methods: Generalized Pattern Search (GPS), Generating Set Search (GSS),

Mesh Adaptive Direct Search (MADS)

So far, the size of the instances (variables and constraints) is typically limited to ≃ 50,
and we target local optimization
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MADS [Audet and Dennis, Jr., 2006] (figure by Samuel Mendoza)

Updates

search on the mesh Mk to improve xk

(surrogates, LHS, VNS, Nelder-Mead, etc.)

Search

xk=0

fail

local search on Mk around xk

Poll

success fail

refine Mkcoarsen Mk

k ← k + 1
success

a stopping criteria
is satisfied ?

termination

no

yes

return xk

end

or
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[0] Initializations (x0, δ0 )
[1] Iteration k

[1.1] Search
select a finite number of mesh points
evaluate candidates opportunistically

[1.2] Poll (if Search failed)
construct poll set Pk = {xk + δkd : d ∈ Dk}
sort(Pk)
evaluate candidates opportunistically

[2] Updates
if success

xk+1 ← success point
increase δk

else
xk+1 ← xk

decrease δk

k ← k + 1, stop or go to [1]
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MADS illustration with n = 2: Poll step

δk = ∆k = 1 δk is the mesh size parameter

∆k is the frame size parameter

we keep δk < ∆k typically with ∆k =
√
δk

and δk+1 ← δk × 4 (success)

or δk+1 ← δk/4 (fail)r
xk

r
t1

r
t2

r
�

�
�

�
��

t3

poll trial points={t1, t2, t3}
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Special features of MADS
▶ Constraints handling with the Progressive Barrier [Audet and Dennis, Jr., 2009]

▶ and hidden constraints [Audet et al., 2022a]

▶ Surrogates [Talgorn et al., 2015]

▶ Categorical variables [Abramson, 2004]

▶ Granular and discrete variables [Audet et al., 2019]

▶ Global optimization [Audet et al., 2008a]

▶ Parallelism [Le Digabel et al., 2010, Audet et al., 2008b]

▶ Multiobjective optimization [Bigeon et al., 2022]

▶ Sensitivity analysis [Audet et al., 2012]

▶ Handling of stochastic blackboxes [Alarie et al., 2021, Audet et al., 2021]
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NOMAD (Nonlinear Optimization with MADS)
▶ C++ implementation of the MADS algorithm [Audet and Dennis, Jr., 2006]

▶ Standard C++. Runs on Linux, Mac OS X and Windows

▶ Parallel versions with MPI

▶ MATLAB versions; Multiple interfaces (Python, Excel, etc.)

▶ Open and free – LGPL license

▶ Download at https://www.gerad.ca/nomad

▶ Support at nomad@gerad.ca

▶ Related articles in TOMS [Le Digabel, 2011, Audet et al., 2022b]
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NOMAD: History and team

▶ Developed since 2000

▶ Current versions: 3.9 (June 2018) and 4.4 (January 2024)

▶ Algorithm designers, developers:
▶ M. Abramson, C. Audet, G. Couture, J. Dennis, S. Le Digabel,

V. Rochon-Montplaisir, C. Tribes

▶ Developers:
▶ Versions 1 and 2: G. Couture
▶ Version 3 (2008): S. Le Digabel, C. Tribes
▶ Version 4 (2021): V. Rochon-Montplaisir, C. Tribes
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Main functionalities (1/2)
▶ Single (p = 1) or multiobjective optimization (p > 1)

▶ Variables:
▶ Continuous, integer, binary, categorical, granular
▶ Periodic
▶ Fixed
▶ Groups of variables

▶ Searches:
▶ Latin-Hypercube
▶ Variable Neighborhood Search
▶ Nelder-Mead Search
▶ Quadratic models
▶ Statistical surrogates
▶ User search
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Main functionalities (2/2)
▶ Constraints treated with 4 different methods:

▶ Progressive Barrier (default)
▶ Extreme Barrier
▶ Progressive-to-Extreme Barrier
▶ Filter method

▶ Several direction types:
▶ Coordinate directions
▶ LT-MADS
▶ OrthoMADS
▶ Hybrid combinations

▶ Sensitivity analysis

(all items correspond to published or submitted papers)
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Blackbox conception (batch mode)

▶ Command-line program that takes in argument a file containing x, and displays
the values of F (x) and the cj(x)’s

▶ Can be coded in any language

▶ Typically: > bb.exe x.txt displays f c1 c2 (one objective and two
constraints)
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Run NOMAD > nomad parameters.txt
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Summary
▶ Blackbox optimization motivated by industrial applications

▶ Algorithmic features backed by mathematical convergence analyses and published
in optimization journals

▶ NOMAD: Software package implementing MADS

▶ Open source; LGPL license

▶ Features: Constraints, biobjective, global optimization, surrogates, several types
of variables, parallelism

▶ Fast support at nomad@gerad.ca

▶ NOMAD has become a baseline for benchmarking DFO algorithms
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