Back

G-2016-39

Comparing the geometric-arithmetic index and the spectral radius of graphs

and

BibTeX reference

The geometric-arithmetic index GA of a graph G is the sum of ratios, over all edges of G, of the geometric mean to the arithmetic mean of the end vertices degrees of an edge. The spectral radius λ1 of G is the largest eigenvalue of its adjacency matrix. These two parameters are known to be used as molecular descriptors in chemical graph theory.
In the present paper, we compare GA and λ1 of a connected graph with given order. We prove, among other results, upper and lower bounds on the ratio GA/λ1 as well as a lower bound on the ratio GA/λ21. In addition, we characterize all extremal graphs corresponding to each of these bounds.

, 10 pages

Research Axis

Research applications

Publication

Comparing the geometric-arithmetic index and the spectral radius of graphs
and
MATCH Communications in Mathematical and in Computer Chemistry, 84(2), 473–482, 2020 BibTeX reference