G-2018-56
Price bias and common practice in option pricing
and BibTeX reference
Generally, the semiclosed-form option pricing formula for complex financial models depends on unobservable factors such as stochastic volatility and jump intensity. A popular practice is to use an estimate of these latent factors to compute the option price. However, in many situations, this plug-and-play approximation does not yield the appropriate price. This paper examines this bias and quantifies its impacts. We decompose the bias into terms that are related to the bias on the unobservable factors and to the precision of their point estimators. The approximated price is found to be highly biased when only the history of the stock price is used to recover the latent states. This bias is corrected when option prices are added to the sample used to recover the states' best estimate. We also show numerically that such a bias is propagated on calibrated parameters, leading to erroneous values.
Published July 2018 , 31 pages