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Abstract: Constrained blackbox optimization is a difficult problem, with most approaches coming from the
mathematical programming literature. The statistical literature is sparse, especially in addressing problems
with nontrivial constraints. This situation is unfortunate because statistical methods have many attractive
properties: global scope, handling noisy objectives, sensitivity analysis, and so forth. To narrow that gap, we
propose a combination of response surface modeling, expected improvement, and the augmented Lagrangian
numerical optimization framework. This hybrid approach allows the statistical model to think globally and
the augmented Lagrangian to act locally. We focus on problems where the constraints are the primary
bottleneck, requiring expensive simulation to evaluate and substantial modeling effort to map out. In that
context, our hybridization presents a simple yet effective solution that allows existing objective-oriented
statistical approaches, like those based on Gaussian process surrogates and expected improvement heuristics,
to be applied to the constrained setting with minor modification. This work is motivated by a challenging,
real-data benchmark problem from hydrology where, even with a simple linear objective function, learning a
nontrivial valid region complicates the search for a global minimum.

Key Words: Surrogate model, Gaussian process, nonparametric regression and classification, sequential
design, expected improvement.
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1 Introduction

The area of mathematical programming has produced efficient algorithms for nonlinear optimization, most

of which have provable convergence properties. They include algorithms for optimizing under constraints

and for handling so-called blackbox functions, where evaluation requires running an opaque computer code

revealing little about the functional form of the objective and/or constraints. Many modern blackbox solvers

converge without derivative information and require only weak regularity conditions. Since their search is

focused locally, however, only local solutions are guaranteed.

Statistical approaches to blackbox optimization offer more global scope compared to non-statistical ap-

proaches. Methods based on expected improvement (EI, Jones et al., 1998) enjoy global convergence proper-

ties and compare favorably to alternatives when objective evaluations are expensive, are simulated by Monte

Carlo (Picheny et al., 2013), or are otherwise observed with noise, or when there are many local optima.

In more conventional contexts, however, non-statistical approaches are usually preferred. We attribute this

primarily to two factors: rates of convergence and treatment of constraints. Global search is slower than

local search; so, for easier problems, the statistical methods underperform. Additionally, statistical methods

are more limited in their ability to handle general constraints in optimization. Here we explore a hybrid

approach that pairs a global statistical perspective (Gaussian process emulation) with a classical technique

for accommodating constraints (the augmented Lagrangian approach).

We consider constrained nonlinear optimization problems of the form

min
x
{f(x) : c(x) ≤ 0, x ∈ B} , (1)

where f : Rd → R denotes a scalar-valued objective function, c : Rd → Rm denotes a vector1 of constraint

functions, and B ⊂ Rd denotes a known, bounded, and convex region. Here we take B = {x ∈ Rd : l ≤ x ≤ u}
to be a hyperrectangle, but it could also include other constraints known in advance. Throughout, we will

assume that a solution of (1) exists; in particular, this means that the feasible region {x ∈ Rd : c(x) ≤ 0}∩B
is nonempty. In (1), we note the clear distinction made between the known bound constraints B and the

constraints c1(x), . . . , cm(x), whose functional forms may not be known.

This abstract problem in (1) is a challenging problem for general nonlinear constraints c, and even more

difficult when evaluation of at least one of f and c requires running an expensive, blackbox simulation.

In Section 2 we review local search algorithms from the numerical optimization literature that allow for

blackbox f and c. The statistical literature, by contrast, has only offered solutions in certain contexts. For

example, Schonlau et al. (1998) adapted EI for unknown f and known c; Gramacy and Lee (2011) considered

unknown f and unknown c ∈ {0, 1}; and Williams et al. (2010) considered f and c coupled by an integral

operator. These methods work well in their chosen contexts, but are rather limited in scope.

The current state of affairs is unfortunate as we believe that statistical methods have much to offer. In

addition to searching more globally, statistical methods can offer robustness (Taddy et al., 2009), natively

facilitate uncertainty quantification, and (like statistical models for other engineering contexts) enjoy a near

monopoly in the noisy observation case. Moreover, in many real-world optimization problems it is the han-

dling of the constraints that is challenging and expensive; many have a simple, known objective f (e.g., linear,

such as total cost f(x) =
∑
i xi), but multiple complicated, simulation-based constraints (e.g., indicating if

expenditures so-allocated meet policy/physical requirements). And yet, to our knowledge, this important

case is unexplored in the statistical literature. In this context, we consider in Section 5 a hydrology problem;

even with a simple linear objective function, learning a highly nonconvex feasible region complicates the

search for a global minimum.

One way forward is to force our abstract problem (1) into a more limited, but already developed, statistical

framework. For example, the integrated expected conditional improvement (IECI) method of Gramacy and

Lee (2009) could be applied by treating c(x) as binary. However, this approach discards useful information

about the distance to the boundary separating feasible (“valid”) and infeasible (“invalid”) regions. The key

contribution of this paper is to develop a statistical approach based on the augmented Lagrangian (e.g.,

1Vector inequalities are taken componentwise (i.e., for a, b ∈ Rd, a ≤ b means ai ≤ bi for all i = 1, . . . , d).
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Bertsekas, 1982) used in the mathematical programming literature. Augmented Lagrangian methods convert

a problem with general constraints into a sequence of unconstrained (or simply constrained) problems and

fully leverage knowledge on how far a point is from satisfying a constraint. Under specific conditions we can

derive closed form expressions, like EI, to guide the optimization, and we explore Monte Carlo alternatives for

other cases. The end result is a scheme that compares favorably to modern alternatives in the mathematical

programming literature, especially in the presence of several nonglobal minima.

Although the approach we advocate is quite general, for specificity in this paper, we focus on blackbox

optimization problems for which the objective f is known while the constraints c are unknown (require

simulation). This setting all but rules out statistical comparators whose emphasis is on modeling f and treat c

as an inconvenience. Throughout, we note how the advocated approach can be extended to unknown f by

pairing it with standard surrogate modeling techniques.

The remainder of the paper is organized as follows. Section 1 describes a model problem that introduces

the challenges in this area and makes connections to a motivating real-data problem from hydrology, which is

presented in detail in Section 5. Section 2 reviews statistical optimization, particularly in the unconstrained

context, and introduces the augmented Lagrangian (AL) framework for constrained optimization. Section 3

contains the essence of our methodological contribution, combining statistical surrogates with the AL. Sec-

tion 4 describes implementation details and provides results on our model example. Section 5 then provides

a similar comparison for our motivating hydrology problem. We conclude in Section 6 with a discussion

focused on the potential for further extensions and efficiency gains.

A toy problem

We begin by introducing a test problem that illustrates some of the challenges of solving problems of the

form (1). The problem consists of a linear objective in two variables:

min
x

{
x1 + x2 : c1(x) ≤ 0, c2(x) ≤ 0, x ∈ [0, 1]2

}
, (2)

where the two nonlinear constraints are given by

c1(x) =
3

2
− x1 − 2x2 −

1

2
sin
(
2π(x21 − 2x2)

)
, c2(x) = x21 + x22 −

3

2
.

Figure 1 shows the feasible region and the three local optima, with xA being the unique global minimizer.

We note that, at each of these solutions, the second constraint is strictly satisfied and the first constraint

holds with equality. For xC , the lower bound on x1 is also binding, if this bound were not present, xC

would not be a local solution. The second constraint may seem uninteresting here, but it reminds us that

the solution may not be on every constraint boundary, and it is important to accomodate this type of

constraint when the constraints are unknown. This problem shares several characteristics of our pump-and-

treat hydrology problem detailed in Section 5, notably a linear objective and highly nonlinear, nonconvex

constraint boundaries.

2 Elements of hybrid optimization

Here we review the elements we propose hybridizing: statistical response surface models, expected improve-

ment, and the augmented Lagrangian (AL) and its use with derivative-free solvers. Implementations of the

specific algorithms (particularly leveraging AL) that serve as our main comparators are detailed in Section 4.

2.1 Surrogate Modeling Framework for optimization

Examples where statistical models are used to guide an optimization date back at least to Mockus et al.

(1978) and Box and Draper (1987). Although this technique has evolved over the years, the basic idea

involves training a flexible regression model fn on input-output pairs {x(i), y(i)}ni=1 and letting aspects of

the predictive distribution fn(x) choose x(n+1) according to some criteria. One option is to search the
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xA ≈ [0.1954, 0.4044],

f
(
xA
)
≈ 0.5998,
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f
(
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)
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Figure 1: The test problem (2) and its local minimizers; only xA is a global minimizer.

predictive mean surface derived from fn(x), which serves as a surrogate for the true f(x), for global or local

minima. Most modern practitioners would choose Gaussian process (GP) regression models as emulators fn

for a deterministic objective, f , since these models produce highly accurate, conditionally normal predictive

distributions and can interpolate the data if desired. For a review of GP regression for computer experiments,

see Santner et al. (2003). For a more general overview of the so-called surrogate modeling framework for

optimization, see Booker et al. (1999). This literature is focused primarily on the objective f , with far less

attention to constraints (e.g., Audet et al., 2000; Sasena, 2002). Known constraints are usually accommodated

by restricting search to the valid region.

2.2 Expected improvement

In initial usage, outlined above, the full statistical potential of fn remained untapped: estimated uncer-

tainties—a hallmark of any statistical endeavor—captured in the predictive distributions were not being

used. Jones et al. (1998) changed this state of affairs by recognizing that the conditionally normal equations

provided by a GP emulator fn(x), completely described by mean function µn(x) and variance function

σ2n(x), could be used together to balance exploitation and exploration towards a more efficient global search

scheme. They defined an improvement statistic I(x) = max{0, fnmin − Y (x)}, where fnmin is the minimum

among the n y-values seen so far, and Y (x) ∼ fn(x) is a random variable. The improvement assigns large

values to inputs x where Y (x) is likely below fnmin. Jones et al. showed that the expected improvement (EI)

could be calculated analytically in the Gaussian case:

E{I(x)} = (fnmin − µn(x))Φ

(
fnmin − µn(x)

σn(x)

)
+ σn(x)φ

(
fnmin − µn(x)

σn(x)

)
, (3)

where Φ and φ are the standard normal cdf and pdf, respectively. The equation reveals a balance between

exploitation (µn(x) under fnmin) and exploration (σn(x)). The expectation is essentially tallying the mass of

the predictive distribution for Y (x) that is under fnmin.

Leveraging the analytic EI, Jones et al. proposed the efficient global optimization (EGO) algorithm where

each trial involved using a a branch-and-bound scheme to search for the largest E{I(x)}. In a later paper,

Schonlau et al. (1998) provided an analytical form for a generalized EI based on a powered up improvement

measure Ig(x) = |fnmin − Y (x)|gI{Y (x)<fnmin}. Special cases of E{Ig(x)} for g = 0, 1, 2 lead to searches based

on the probability P (Y (x) < fnmin), the original EI criterion, and a hybrid criterion E{I(x)}2 + Var[I(x)],

respectively.

Under relatively weak regularity conditions, search algorithms based on EI variations converge to the

global optimum. EGO, which specifically pairs GP emulators with EI, can be seen as one example of a wider

family of similar routines. For example, radial basis function emulators have been used with similar success
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in the context of local search (Wild and Shoemaker, 2013). Although weak from a technical viewpoint, the

computer model regularities required are rarely reasonable in practice. They ignore potential feedback loops

between surface fits, predictive distributions, improvement calculations, and search (see, e.g., Bull, 2011);

in practice, these can pathologically slow convergence and/or lead to local rather than global solutions.

Practitioners instead prefer hybrids between global EI and deliberately local search (e.g., Taddy et al., 2009;

Gramacy and Le Digabel, 2011).

For a wider review of the literature, we recommend the tutorial by Brochu et al. (2010) and the Ph.D.

thesis of (Boyle, 2007), both on “Bayesian optimization”.2 It is revealing that, in a combined near-200 pages

of text, the treatment of constraints is virtually neglected; this is clearly an underserved area. Schonlau et al.

(1998) were the first to consider bounds on known constraint functions in the EI framework and Williams

et al. (2010) considered an unknown constraint situation having a particular integral relationship with the

objective. Gramacy and Lee (2011) provided a generic method for a single constraint coded in binary; as

mentioned in Section 1, arbitrary constraints can be coerced to fit this model, but not without potentially

substantial information loss.

2.3 Augmented Lagrangian framework

Augmented Lagrangian (AL) methods are a class of algorithms for constrained nonlinear optimization that

enjoy favorable theoretical properties for finding local solutions from arbitrary starting points. The main

device used by these methods is the augmented Lagrangian which, for the inequality constrained problem

(1), is given by

LA(x;λ, ρ) = f(x) + λ>c(x) +
1

2ρ

m∑
i=1

max (0, ci(x))
2
, (4)

where ρ > 0 is a penalty parameter and λ ∈ Rm+ serves the role of Lagrange multiplier.

The first two terms in (4) correspond to the Lagrangian, which is the merit function that defines station-

arity for constrained optimization problems. Without the second term, (4) reduces to an additive penalty

method (APM) approach to constrained optimization. APM-based comparators are used as benchmarks for

the hydrology problem in Section 5. Without considerable care in choosing the scale of penalization, however,

APMs can introduce ill-conditioning in the resulting subproblems.

We focus on AL-based methods in which the original nonlinearly constrained problem is transformed

into a sequence of nonlinear problems where only the bound constraints B are imposed. In particular,

given the current values for the penalty parameter, ρk−1, and approximate Lagrange multipliers, λk−1, one

approximately solves the subproblem

min
x

{
LA(x;λk−1, ρk−1) : x ∈ B

}
. (5)

Given a candidate solution xk, the penalty parameter and approximate Lagrange multipliers are updated

and the process repeats. Algorithm 1 gives a specific form of these updates. Functions f and c are only

evaluated when solving (5), comprising the “inner loop” of the scheme. For additional details on AL-based

methods, see, e.g., Nocedal and Wright (2006).

We note that termination conditions have not been explicitly provided in Algorithm 1. In our setting,

termination is primarily dictated by a user’s computational budget. Our empirical comparisons in Sections 4–

5 involve tracking the best (valid) value of the objective over increasing budgets determined by the number

of evaluations of the blackbox, (i.e., the cumulative number of inner iterations). Outside that context,

however, one could stop when all constraints are sufficiently satisfied and the (approximated) gradient of the

Lagrangian is sufficiently small; for example, given thresholds η1, η2 ≥ 0, stop when

∥∥max
{
c(xk), 0

}∥∥ ≤ η1 and

∥∥∥∥∥∇f(xk) +

m∑
i=1

λki∇ci(xk)

∥∥∥∥∥ ≤ η2.
2This is the terminology preferred by the machine learning community, combining EI-type blackbox optimization and rein-

forcement learning. The Bayesian perspective goes back to Mockus et al. (1978), but many of the techniques can be justified on
less idealogical terms.
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Require: λ0 ≥ 0, ρ0 > 0
1: for k = 1, 2, . . . (i.e., each “outer” iteration) do
2: Let xk (approximately) solve (5)

3: Set λki = max
(

0, λk−1i + 1
ρk−1 ci(x

k)
)

, i = 1, . . . ,m

4: If c(xk) ≤ 0, set ρk = ρk−1; otherwise, set ρk = 1
2ρ
k−1

5: end for

Algorithm 1: A basic augmented Lagrangian framework.

2.4 Derivative-free augmented Lagrangian methods

The inner loop of Algorithm 1 can accommodate a host of methods for solving the unconstrained (or simply

constrained) subproblem (5). Solvers can leverage derivatives of the objective and/or constraint functions if

they are available, or be derivative-free when they are not. We specifically focus on the derivative-free case

as this subsumes blackbox optimization (see, e.g., Conn et al., 2009). In our comparisons in Sections 4–5 we

consider two of solver for the inner loop. We now briefly introduce how these solvers can be situated within

the AL framework; software/implementation details are deferred until later.

Direct Search: Loosely, direct search involves probing the objective at stencils centered around the

current best input value. The outputs obtained on the stencil determine the placement and size of the next

stencil. A modern overview of direct search methods can be found in Kolda et al. (2003a). In particular,

we consider the mesh adaptive search (MADS) algorithm (Audet and Dennis, 2006). MADS is a directional

direct-search method that uses dense sets of directions and generates trial points on a spatial discretization

called a mesh. The most important MADS parameters are the initial and minimal poll sizes, which define the

limits for the poll size parameter (determining the stencil size), and the maximum mesh index, which limits

poll size reductions after a failed iteration (when a stencil does not find an improved solution). In the context

of Algorithm 1 it makes sense to allow the initial poll size parameter to take a software-recommended/default

value, but to set the maximum mesh index to k−1, prescribing a finer subproblem as outer iterations progress.

Model-based: These are closest in spirit to the statistical methods we propose. Model-based optimiza-

tion employs local approximation models, typically based on local polynomials (e.g., Conn et al., 2009) or

nonlinear kernels such as radial basis functions (e.g., Wild and Shoemaker, 2013), which are related to GPs.

Here we consider the trust-region-based method that was previously used as an AL inner solver by Kannan

and Wild (2012). This method builds quadratic approximation models qf , qc1 , . . . , qcm about the current

iterate xk−1 by interpolating the values of f, c1, . . . , cm at design points. The AL subproblem (5) is then

approximately solved by locally solving a sequence of quadratic problems of the form

min
x

{
qf (x) +

m∑
i=1

λk−1i qci(x) +
1

2ρk−1

m∑
i=1

[
max (0, qci(x))

2
]
Q

: x ∈ Bk−1
}
, (6)

where [·]Q denotes a truncation to a quadratic form and Bk−1 is a local neighborhood (“trust region”) of

xk−1. The choice of quadratic models enables the efficient solution of (6).

3 Statistical surrogate additive penalty methods

The methods above are not designed for global optimization and it is hard to predict to which local minima

they will ultimately converge when several minima are present. Hybridizing with statistical surrogates offers

the potential to improve this situation. Here we introduce the basic idea and explore variations. The simplest

approach involves deploying a statistical surrogate directly on the AL (4), but this has obvious shortcomings.

To circumvent these, we consider separately modeling the objective function f and each constraint function

ci. We then pursue options for using the surrogate to solve (5), either via the predictive mean or EI, which

has an enlightening closed-form expression in a special case.
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3.1 Surrogate modeling the augmented Lagrangian

Consider deploying GP regression-based emulation of the AL (4) in order to find xk. In each iteration of the

inner loop (step 2 of Algorithm 1), proceed as follows. Let n denote the total number of blackbox evaluations

obtained throughout all previous “inner” and “outer” iterations, collected as (x(1), f (1), c(1)), . . . , (x(n), f (n),

c(n)). Then form y(i) = LA(x(i);λk−1, ρk−1) via f (i) and c(i) and fit a GP emulator to the n pairs

{(x(i), y(i))}ni=1. Optimization can be guided by minimizing µn(x) in order to find x(n+1), or via EI following

equation (3) with Y (x) ≡ Y`n(x) ∼ N (µn(x), σ2n(x)). Approximate convergence can be determined by any

number of simple heuristics, from the number of iterations passing without improvement, to monitoring the

maximal EI (Gramacy and Polson, 2011) over the trials.

At first glance this represents an attractive option, being both modular and facilitating a global-local

tradeoff. It is modular in the sense that standard software can be used for emulation and EI. It is global

because the GP emulates the entire data seen so far, and EI balances exploration and exploitation. Finally, it

is local because, as the AL “outer” iterations progress, the (global) “inner” searches organically concentrate

near valid regions.

Several drawbacks, however, become apparent upon considering the nature of the composite objective

(4). For example, the y(i) values are bound to exhibit behavior in their relationship with the x(i)s that

requires nonstationary surrogate models, primarily because of the final squared term in the AL. Most out-of-

the-box GP regression methods assume stationarity, which means that the functional structure (wiggliness,

correlation, differentiability, and/or noise) must be uniform throughout the input space. The squared term

amplifies the effects of c(x) away from the boundary with the valid region, so it is not consistent with the

assumption of stationarity. A related challenge is the max in (4), which produces kinks near the boundary

of the valid region, with the regime changing behavior across that boundary.

There are modern GP methods that accommodate nonstationarity (Schmidt and O’Hagan, 2003; Paciorek

and Schervish, 2006) and even regime-changing behavior (Gramacy and Lee, 2008). To our knowledge,

however, only the latter option is paired with public software. That method leverages treed partitioning,

whose divide-and-conquer approach can accommodate limited differentiability and stationarity challenges,

but only if regime changes are roughly axis-aligned. Partitioning, however, does not parsimoniously address

effects amplified quadratically in space. In fact, no part of the above scheme, whether surrogate modeling

(via GPs or otherwise) or EI-search, acknowledges the known quadratic relationship between objective (f)

and constraints (c). By treating the entire apparatus as a blackbox, it discards potentially useful information.

Moreover, when the objective portion (f) is completely known, as in our motivating example(s), the fitting

method needlessly models a known quantity, which is inefficient (see, e.g., Kannan and Wild, 2012).

3.2 Separately modeling the pieces of the composite

Those shortcomings can be addressed by deploying surrogate models separately on the components of the

AL, rather than wholly to the composite. With separate models, stationarity assumptions are less likely to

be violated since modeling can commence on quantities prior to the problematic square and max operations.

Separately estimated emulators, fn(x) for the objective and cn(x) = (cn1 (x), . . . , cnm(x)) for the constraints,

can provide predictive distributions for Yfn(x) and Y nc (x) = (Y nc1(x), . . . , Y ncm(x)), respectively. The n super-

scripts, which we drop below, serve here as a reminder that we propose to solve the “inner” AL subproblem

(5) using all n data points seen so far. Samples from those distributions, obtained trivially via GP emulators,

are easily converted into samples from the composite

Y (x) = Yf (x) + λ>Yc(x) +
1

2ρ

m∑
i=1

max(0, Yci(x))2, (7)

serving as a surrogate for LA(x;λ, ρ). When the objective f is known, we can forgo calculating fn(x) and

swap in a deterministic f(x) for Yf (x).

As in Section 3.1, there are several ways to choose new trial points using the composite distribution of

the random variable(s) in (7), for example, by searching the predictive mean or EI. We first consider the
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predictive mean approach and defer EI to Section 3.3. We have E{Y (x)} = E{Yf (x)} + λ>E{Yc(x)} +
1
2ρ

∑m
i=i E{max(0, Yci(x))2}. The first two expectations are trivial under normal GP predictive equations,

giving

E{Y (x)} = µnf (x) + λ>µnc (x) +
1

2ρ

m∑
i=1

E{max(0, Yci(x))2}, (8)

via a vectorized µnc = (µnc1 , . . . , µ
n
cm)>. An expression for the final term, which involves E{max(0, Yci(x))2},

can be obtained by recognizing its argument as a powered improvement for −Yci(x) over zero, i.e., I
(0)
−Yci

(x) =

max{0, 0 + Yci(x)}. Since the power is two, an expectation-variance relationship can be exploited to obtain

E{max(0, Yci(x))2} = E{I−Yci (x)}2 + Var[I−Yci (x)] (9)

= σ2n
ci (x)

[(
−
µnci(x)

σnci(x)
+ 1

)
Φ

(
−
µnci(x)

σnci(x)

)
−
µnci(x)

σnci(x)
φ

(
−
µnci(x)

σnci(x)

)]
,

by using a result from the generalized EI (Schonlau et al., 1998). Combining (8) and (9) completes the

expression for E{Y (x)}. When f is known, simply replace µnf with f .

3.3 New expected improvement

The composite random variable Y (x) in Eq. (7) does not have a form that readily suggests a familiar

distribution, for any reasonable choice of fn and cn (e.g., under GP emulation), thwarting analytic calculation

of EI. A numerical approximation is straightforward by Monte Carlo. Assuming normal predictive equations,

simply sample y
(t)
f (x), y

(t)
c1 (x), . . . , y

(t)
cm(x) from N (µnf (x), σ2n

f (x)) and N (µnci , σ
2n
ci ), respectively, and then

average:

E{IY (x)} ≈ 1

T

T∑
t=1

max(0, ynmin − y(t)(x)) (10)

=
1

T

T∑
t=1

max

[
0, ynmin −

(
y
(t)
f (x) + λ>y(t)c (x) +

1

2ρ

m∑
i=1

max(0, y(t)ci (x))2

)]
.

We find generally low Monte Carlo error and so very few samples (e.g., T = 100) suffice.

However, challenges arise in exploring the EI surface over x ∈ X , as whole swaths of the input space emit

numerically zero E{IY (x)}. When f is known, whereby Yf (x) ≡ f(x), and when the outer loop is in later

stages (large k), yielding smaller ρk, the portion of the input space yielding zero EI can become prohibitively

large, complicating searches for improvement. The quadratic nature of the AL composite (7) causes Y to be

bounded below for any Yc-values under certain (λ, ρ), no matter how they are distributed.

To delve a little deeper, consider a single blackbox constraint c(x), a known objective f(x), and a slight

twist on Eq. (7) obtained by removing the max. In this special case, one can derive an analytical expression

for the EI under GP emulation of c. Let IY = max{0, ymin − Y } be the improvement function for the

composite Y , suppressing x to streamline notation. Calculating the EI involves the following integral, where

c(y) represents the density cn of Yc:

E{IY } =

∫ ∞
−∞

Iyc(y) dy =

∫
θ

(ymin − y)
1√
2πσ

e−
1

2σ2
(y−µ)2 dy, θ = {y : y < ymin}.

Substitution and integration by parts yields that when λ2 − 2(f − ymin)/ρ ≥ 0,

E{IY } =

[
ymin −

(
µ2

2ρ
+ λµ+ f

)
− σ2

2ρ

]
(Φ(v2)− Φ(v1)) (11)

+ [σµ/ρ+ λσ](φ(v2)− φ(v1)] +
σ2

2ρ
(v2φ(v2)− v1φ(v1)),

where v1 =
u− − µ
σ

, v2 =
u+ − µ
σ

, u± =
−λ±

√
λ2 − 2(f − ymin)/ρ

ρ−1
.
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Otherwise, when λ2 − 2(f − ymin)/ρ < 0, we have that E{IY } = 0. Rearranging gives ρλ < 2(f − ymin),

which, as ρ is repeatedly increased, reveals a shrinking region of x values that lead to nonzero EI.

Besides pointing to analytically zero EI values under (7), the above discussion suggests two things. First,

avoiding x values leading to f(x) > ymin will boost search efficiency by avoiding zero EI regions, an observation

we exploit in Section 4.1. Second, we recognize that dropping the max in (7) may lead to efficiency gains in

two ways: from analytic rather than Monte Carlo evaluation, and via a more targeted search when f is a

known monotone function, which is bounded below over the feasible region. In that case, a solution is known

to lie on the boundary between valid and invalid regions. Dropping the max will submit large negative c(x)’s

to a squared penalty, pushing search away from the interior of the valid region and towards the boundary.

While the single-constraint, known f formulation is too restrictive for most problems, some simple reme-

dies are worthy of consideration. Extending to blackbox f , and modeling Yf , is relatively straightforward

since Yf (x) features linearly in Eq. (7). Extending to multiple constraints is much more challenging. One

option is to reduce a multiple constraint problem into a single one by estimating a single surrogate cn(x) for

an aggregated constraint function, say
∑
i Yci(x). Some care is needed here because summing positive and

negative Yci(x) cancels valid and invalid values, potentially resulting in (extreme) information loss. Instead

it would be better to model Yc =
∑
i |Yci(x)| or Yc =

∑
i max(0, Yci(x)) even though that may result in

challenging kinks to model with GPs, say. The former option, using absolute values, is only sensible when

the constraint set is reduced to only include those that are active/binding at the solution (as is the special

case considered above).3 The advantage of modeling an aggregated final constraint term, pre-squaring, is

that the analytic EI (11) can be used directly on the resulting Y (x) = Yf (x) + λ>Yc(x) + 1
2ρYc(x)2. The

disadvantage, beyond modeling challenges arising from kinks, is that information loss is always a concern

when aggregating.

4 Implementation and illustration

We first dispense with implementation details for our proposed methods (see Section 3) and our comparators

(see Section 2.4). We then demonstrate how these methods fare on our motivating toy data from Section 1.

All methods are initialized with λ0 = (0, . . . , 0)> and ρ = 1/2. Throughout, we randomize over the initial x0

by choosing it uniformly in B.

4.1 Implementation for surrogate model-based comparators

Multiple variations were suggested in Section 3, we focus our comparative discussion here on those that

performed best. To be clear, none of them performed poorly in our exercises, but several are easy to criticize

on an intuitive level and those same methods are consistently dominated by their more sensible counterparts.

In particular, we do not provide results for the simplistic approach of Section 3.1, which involved modeling a

non-stationary composite AL response surface, as that method is dominated by the analog involving separated

modeling of the constituent parts described in Section 3.2.

We entertain alternatives from Section 3.2 that involve guiding the inner optimization with E{Y } and

E{IY }, following Eqs. (9) and (10), respectively. We note here that the results based on a Monte Carlo E{Y },
via the analog of (10) without “max[0, ynmin−”, and the analytical alternative (9) are indistinguishable up

to Monte Carlo error when randomizing over x0. Taking inspiration from the analytic EI derivation for the

special case in Section 3.3, we consider a variation on the numeric EI that discards the max term, which is

appropriate for our monotone (linear) objective functions, f . However, we do not provide results based on the

analytic expression (11) because that requires compromises on the modeling end, which leads to deterioration

in performance. Therefore, in total we report results for four variations pairing one of E{Y } and E{IY } with

the original AL (7) and a version obtained without the max, which are denoted by the acronyms EY, EI,

EY-nomax, EI-nomax, respectively.

3We note in Section 6 that this is also the case when the inequality constraints are transformed into equality constraints
c(x) + s = 0 by inclusion of slack variables s ≥ 0.
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Throughout we treat f as known and emulate each Yci with separate GP response surface models initialized

with ten random input-output pairs from B (i.e., the outer loop of Algorithm 1 starts with x(1:10)). For fast

updates and MLE calculations we used updateGP and mleGP from the laGP package (Gramacy, 2013) for

R. Each inner loop search in Algorithm 1 is based on a random set of 1000 candidate x locations Xn. We

recognize that searching uniformly in the input space is inefficient when f is a known linear function. Instead,

we consider random objective improving candidates (OICs) defined by X = {x : f(x) < fn∗
min} where fn∗

min is

the best value of the objective for the n∗ ≤ n valid points found so far. If n∗ = 0 then fn∗
min =∞. A random

set of candidates Xn is easy to populate by rejection sampling. A näıve sampler could have a high rejection

rate if X is a very small fraction of the volume of B; however, we find that even in that case the algorithm

is very fast in execution.

A nice feature of OICs is that a fixed number |Xn| organically pack more densely as improved fn∗
min are

found. However, as convergence slows in later iterations the density will plateau, which will have two conse-

quences: (1) impacting convergence diagnostics based on the candidates (like maxE{IY }); and (2) causing

the proportion of Xn whose EI is nonzero to dwindle. We address (1) by declaring approximate convergence,

ending an inner loop search, if ten trials pass without improving ynmin. When E{IY } is guiding search, earlier

approximate convergence is declared when maxx∈B E{IY (x)} < ε, for some tolerance ε. Consequence (2) can

be addressed by increasing |Xn| over time; however, we find it simpler to default to E{Y }-based search if less

than, say, 5% of Xn gives nonzero improvement. This recognizes that the biggest gains to the exploratory

features of EI are realized early in the search, when the risk of being trapped in an inferior local mode are

greatest.

We close the description here by recognizing that while this explains some of the salient details of our

implementation, many specifics have been omitted for space considerations. For full transparency please see

the optim.auglag function and documentation in the laGP package. That routine implements all variations

considered here.

4.2 Implementation for classical AL comparators

We now summarize the particular implementation details for our comparators.

Direct: For MADS we use the implementation in the NOMAD software (Le Digabel, 2011; Abramson

et al., 2014). Beyond adaptations for the maximum mesh index in Section 2.4, software defaults are used

throughout with the direction type set to “OrthoMads n+1” (Audet et al., 2012) and quadratic models (Conn

and Le Digabel, 2013) disabled. NOMAD can handle constraints natively using a progressive barrier approach

(Audet and Dennis, 2009), which we include as a representative comparator from outside the APM framework.

Model-Based: We used the same code employed in Kannan and Wild (2012). A maximum of 50

blackbox evaluations were allotted to solving the subproblem (5), with early termination being declared if

the norm of the gradient of the approximated AL (see (6)) was below 10−2; for the toy problem this model

gradient condition determined the inner termination, for the motivating hydrology problem in Section 5, the

budget determined the inner termination. The initial trust-region radius was taken to be ∆0 = 0.2 for the

toy problem (2) and ∆0 = 10, 000 for the hydrology problem. In order to remain consistent with Kannan

and Wild (2012), a maximum of 5 outer iterations (see Algorithm 1) were performed. If there remained

function/constraint evaluations in the overall budget, the method was rerun from a random starting point

(without incorporating any of the history of previous run(s)).

4.3 Empirical results on toy data

Figure 2 summarizes the results of a Monte Carlo experiment for the toy problem described in Section 1.

Each of 100 repetitions is initialized with a different random starting value in B = [0, 1]2. The graph in the

figure records the average of the best valid value of the objective over the iterations. Those numbers coincide

ones shown in the middle section of the accompanying table for the 25th, 50th and final iteration. The other

two sections show the 90% quantiles to give an indication of worst and best case behavior.
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n 25 50 100

95%
EI 0.866 0.775 0.602

EI-nomax 0.906 0.770 0.603
EY 1.052 0.854 0.603

EY-nomax 1.042 0.796 0.603
MADS-AL 1.070 0.979 0.908

MADS 1.056 0.886 0.863
model 1.064 0.861 0.750

average
EI 0.715 0.658 0.602

EI-nomax 0.715 0.633 0.601
EY 0.779 0.653 0.601

EY-nomax 0.743 0.634 0.603
MADS-AL 0.789 0.728 0.709

MADS 0.793 0.697 0.673
model 0.775 0.667 0.621

5%
EI 0.610 0.602 0.600

EI-nomax 0.613 0.601 0.600
EY 0.607 0.601 0.600

EY-nomax 0.606 0.600 0.600
MADS-AL 0.600 0.600 0.600

MADS 0.608 0.600 0.599
model 0.600 0.599 0.599

Figure 2: Results on our toy motivating problem from Section 1 over 100 Monte Carlo repetitions with a
random starting value. The plot tracks the average best valid value of the objective over blackbox iterations,
and the table shows more detailed distributional information (95%, average 5%) at iterations 25, 50, and 100.

Since augmented Lagrangian-based methods tend to focus just outside of active constraints, examining

only strictly feasible points can lead to erroneous conclusions when comparing methods. Therefore, we

have followed the convention in constrained optimization and tolerate a small degree of constraint violation

when summarizing results. In particular, in these results we consider a point x(j) to be effectively valid if

‖max(0, c(x(j)))‖∞ ≤ 10−3.

Figure 2 indicates that all variations on our methods eventually outperform the comparators both in

terms of average and worst case behavior. All methods find the right global minima in five or more cases [5%

results], but only the EI-based ones perform substantially better in the worst case [using the 95% numbers].

In only one case out of 100 did EI not find the global minima, whereas 15% of the model-based runs failed to

find it. Except for a brief time near iteration n = 50, and ignoring the first 20 iterations where all methods

are about equally good, EI-based comparators dominate EY analogues. There is a period between n = 25 and

n = 50 where EI’s average progress stalls temporarily. We observed that this usually marks a transitional

period from exploratory and to primarily exploitive behavior. Finally, towards the end of the trials the

methods based on dropping the max from Eq. (7) win out. Ignoring regions of the space which give large

negative values of the constraint seems to help once the methods have abandoned their more exploitative

behavior. However, this comes at the cost of poorer performance earlier on.

5 Pump-and-treat hydrology problem

Worldwide, there are more than 10,000 contaminated land sites (Meer et al., 2008), and environmental clean-

up at these sites has received increased attention over the last 20-30 years. Preventing the migration of
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contaminant plumes is vital to protect water supplies and prevent disease. One approach is pump-and-treat

remediation in which wells are strategically placed to pump out the contaminated water, purify it, and

inject it back into the system. For some situations, pump-and-treat is an effective way of reducing high

concentrations of contaminants and preventing their spread. One case study of the pump-and treat approach

to remediation is the 580-acre Lockwood Solvent Groundwater Plume Site, an EPA Superfund site located

near Billings, Montana. Due to industrial practices, the groundwater at this site is contaminated with volatile

organic compounds that are hazardous to human health (United States Environmental Protection Agency,

2013). Figure 3 shows the location of the site and provides a cartoon illustration of the two contaminated

plumes that threaten the Yellowstone River. To prevent further expansion of these plumes, the placement of

six pump-and-treat wells has been proposed as shown in the figure.
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Figure 3: Map of the Lockwood site and illustration of the contaminant plumes. The map on the left identifies
the Lockwood Solvent region (outlined in bold red) and shows its proximity to the Yellowstone River and the
city of Billings. The image was borrowed from the website of Agency for Toxic Substances & Disease Registry
(2010). The right panel is illustrates the plume sites, its boundaries (including the Yellowstone river), and
the proposed location of six remediation wells (A1, A2, B1, B2, B3, B4).

In Mayer et al. (2002), the pump-and-treat problem was posed as a blackbox optimization problem with

constraints, and in Fowler et al. (2008) the authors explore the applicability of a wide variety of derivative-free

optimization approaches to solve this problem. When formulated as an optimization problem, the number of

wells, their locations, and their pumping rates are varied in order to minimize the cost of operating the system.

Constraints are included to assure that the plumes are indeed contained. For the Lockwood site problem, the

number of wells and their locations are specified and only the pumping rates are varied. This results in the

following constrained optimization problem: min0≤xj≤2×104 f(x) =
∑6
j=1 xj , subject to c1,2(x) ≤ 0, where

xj is the pumping rate for well j. The objective f is linear and describes the total pumping required to run

the system. In the absence of constraints, the solution is at the origin and corresponds to no pumping and

no remediation. Therefore, two quantified constraints on the amount of contaminant exiting the system are

imposed. Constraint c1 calculates how much of the plume enters the river, whereas c2 accounts for flow at the

southern and eastern boundaries, and computing both involves a computationally expensive simulation. A

so-called analytic element method (AEM) groundwater model simulates the amount of contaminant exiting

the boundaries each pumping scenario (Matott et al., 2006). The simulator thus returns c(x) ≥ 0, with

c(x) = 0 indicating satisfaction, producing a kink that can present modeling challenges.

5.1 Some comparators

Matott et al. (2011) featured this example in a comparison of MATLAB and Python optimizers, treating

constraints via APM. The results of this study are shown in the left panel of Figure 4 under a total budget of

one-thousand evaluations. All comparators were initialized at x0 = (10000, . . . , 10000)>, a valid input. The

Hooke-Jeeves algorithm performed best, which is an early example of a “direct search” method (Hooke and

Jeeves, 1961). To abstract this suite of results as a benchmark for our numerical studies, we will superimpose
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Figure 4: Convergence Behavior of the Selected Algorithms 
(as applied to the Pump-and-Treat problem) 
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Figure 4: Progress of optimization algorithms on the Lockwood pump-and-treat problem. The left graph
shows the results of the comparison study of the performance of optimization algorithms completed by
(Matott et al., 2011); the right one abstracts away the left graph for further comparison, for example using
OICs (shown). On both graphs, the x-axis counts the number of optimization iterations and the y-axis shows
the value of the objective function at the best iterate that satisfies both constraints.

our new results on an analogue obtained after striping away identifying information and focusing on the first

500 iterations. The right panel of Figure 4 shows an example, with a simple comparator overlayed based on

stochastic search with OICs [Section 4.1].

Indeed, that simple stochastic search is surprisingly good relative much more thoughtful comparators.

To clarify, the search is based on sampling one OIC in each trial, and updating the best valid value of the

objective when a new one is found. Since it is a stochastic method, we are revealing its average behavior

over thirty replicates. On average, it is competitive with very best group of methods for the first twenty-

five iterations or so, suggesting that those methods, while implementing highly varied protocols, are not

searching any better than randomly in early stages. Also observe that even after those early stages, OICs

still outperform at least half of the alternatives for the remainder of the trials. Those methods are getting

stuck in local minima, whereas OICs are shy of clumsily global. However pathologically slow a random search

like this may be to converge, its success on this problem illustrates clear benefit to exploration rather than

exploitation in early stages.

5.2 Using augmented Lagrangians

Figure 5 shows the results of a Monte Carlo experiment set up just like the one from Section 4.3. In this

case each of the thirty repetitions was initialized randomly with x0 ∈ B = [0, 20000]6. The comparators from

Section 5.1 are shown in gray, however note these used a fixed starting location x0, not a random one—i.e.,

they were not included in the Monte Carlo. From the figure we can see that the relative orderings of our

comparators is roughly the same as for the toy problem, except results vary for the classical ones depending

on then number of evaluations, n. The surrogate model-based average and worst case behavior is better than

the other AL comparators, and competitive with the best APMs from Matott et al. It is worth noting that

many of the individual Monte Carlo runs of our EI and EY- based methods outperformed all Matott et al.

APM comparators, including Hooke-Jeeves.

In fact, one has reason to believe that the initializing value x0 used by those methods is a tremendous help.

For example, when running MADS (no AL) with that same value, it achieved the best result in our study,
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n 100 200 500

95%
EI 37584 28698 25695

EI-nomax 43267 28875 25909
EY 36554 32770 27362

EY-nomax 36446 29690 26220
MADS-AL 60000 49020 32663

MADS 60000 60000 60000
model 60000 60000 35730

average
EI 31048 26714 24936

EI-nomax 30874 26333 25032
EY 30701 27721 25359

EY-nomax 29199 26493 24954
MADS-AL 40474 32162 28479

MADS 44694 39157 35931
model 36378 34994 30304

5%
EI 27054 25119 24196

EI-nomax 26506 24367 24226
EY 25677 24492 24100

EY-nomax 25185 24487 24128
MADS-AL 30776 26358 24102

MADS 30023 26591 23571
model 25912 25164 24939

Figure 5: Results on the hydrology problem over 30 Monte Carlo repetitions with a random starting value.
The plot tracks the average best valid value of the objective over blackbox iterations, and the table shows
more detailed distributional information (95%, average 5%) at iterations 25, 50, and 100.

23,026. That MADS’s average behavior is much worse suggests extreme differential performance depending

on the quality of initialization, particularly with regards to the validity of the initial value x0. In fact, the

95% section of the table reveals that a substantial proportion (5-10%) of the repetitions resulted in no valid

solution (up to the 1e-3 tolerance) even after as many as n = 100 iterations.4 We can guess, then, that had

the Matott et al. comparison been randomly initialized, the best comparators would similarly have fared

much worse. By contrast, in experiments with the surrogate-based methods using the same helpful x0 we

found (not shown) no differences, up to Monte Carlo error, in the final solutions we obtained.

6 Discussion

We explored a hybridization of statistical global optimization with an amenable mathematical programming

approach to accommodating constraints. In particular, we combine Gaussian processes (GP) surrogate

modeling and expected improvement (EI) methods from the design of computer experiments literature with

an additive penalty method (APM) that has attractive convergence properties: the augmented Lagrangian

(AL). The main advantage of this pairing is that it reduces a constrained optimization into an unconstrained

one, for which statistical methods are rather more mature. Statistical methods are not known for their

rapid convergence to local optima, but they are more conservative than their mathematical programming

analogues: in many cases offering better global solutions for similar computational effort (number of blackbox

function evaluations).

4We put 60000 in as a place holder for that case.
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This paper has demonstrated clear potential for such an approach. We have extended the idea of EI to

a composite objective arising from the AL, and showed that the most sensible variations on such schemes

consistently outperform similar methods leveraging a more traditional optimization framework whose focus is

usually more local in nature. Still, we see potential for further improvement. For example, we anticipate gains

from a more aggressive hybridization which acknowledges that the statistical methods fail to “penetrate” into

local troughs, particularly towards the end of a search. In the unconstrained context, Gray et al. (2007);

Taddy et al. (2009) have had success with pairing EI with the APPS direct search method (Kolda et al.,

2003b). Gramacy and Le Digabel (2011) took a similar tack with MADS. Both setups port provable local

convergence from the direct method over to a more global search context by, in effect, letting the direct solver

take over towards the end of the search process to “drill down” to a final solution.

Other potential extensions involve improvements on the statistical modeling front. For example, our

models for the constraints in Section 3.2 are explicitly independent for each ci, i = 1, . . . ,m, leaving untapped

potential to leverage cross correlations (e.g., Williams et al., 2010). Moreover, ideas from multi-objective

optimization may prove helpful in our multi-constraint format. Treating them as we do in a quadratic

composite (via the AL) represents one way forward, however keeping them separated with Pareto-optimal-

like strategies may prove advantageous as a way to reconcile competing constraint information. A good

starting point from the statistical literature may be Svenson and Santner (2012) or Picheny (2013) who both

consider EI-like methods.

There may be alternative ways to acknowledge—in the known monotone objective (f) case, as in both of

our examples—that the solution lies on a constraint boundary. Our ideas for this case, e.g., dropping the max

in the AL (7), are attractive because they can be facilitated by a minor coding change, but gives just modest

improvements. It may be advantageous to exploit that knowledge more aggressively by, say, estimating a

classification surface to explicitly direct sampling near boundaries (e.g., Lee et al., 2010). Such an approach

would benefit from further hybridization with an EI-like scheme so as not to focus on parts of the boundary

which are not improving on the objective (Lindberg and Lee, 2015).

However in closing we remark that perhaps extra complication, which is what many of the above ideas

entail, may not be pragmatic from an engineering perspective. The AL is a simple framework, and its

hybridization with GP models and EI is relatively straightforward, allowing existing statistical software be

leveraged directly—e.g., laGP was easy to augment to accommodate all of the new methodology described

herein. That is attractive because, relative to the mathematical programming literature, statistical optimiza-

tion has very few “horses in the race” when it comes to methods readily deployable by practitioners. The

statistical optimization literature is still in its infancy in the sense that bespoke implementation is required for

most novel application. Software packages like NOMAD and APPS generally work, by contrast, right out of the

box. It is hard to imagine matching that engineering capability for hard constrained optimization problems

with statistical methodology if we insist on those methods being even more intricate than the current state

of the art.
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