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entifique.

The series Les Cahiers du GERAD consists of working papers
carried out by our members. Most of these pre-prints have been
submitted to peer-reviewed journals. When accepted and published,
if necessary, the original pdf is removed and a link to the published
article is added.

Suggested citation: M. Poursoltani, E. Delage, A. Georghiou (De-
cember 2021). Risk-averse regret minimization in multi-stage
stochastic programs, Technical report, Les Cahiers du GERAD
G–2021–70, GERAD, HEC Montréal, Canada.
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les exigences légales associées à ces droits. Ainsi, les utilisateurs:
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Abstract : Within the context of optimization under uncertainty, a well-known alternative to minimiz-
ing expected value or the worst-case scenario consists in minimizing regret. In a multi-stage stochastic
programming setting with a discrete probability distribution, we explore the idea of risk-averse regret
minimization, where the benchmark policy can only benefit from foreseeing ∆ steps into the future.
The ∆-regret model naturally interpolates between the popular ex-ante and ex-post regret models.
We provide theoretical and numerical insights about this family of models under popular coherent risk
measures and shed new light on the conservatism of the ∆-regret minimizing solutions.

Keywords: Regret minimization, risk measures, multi-stage stochastic programming, robust opti-
mization
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1 Introduction

The regret minimization paradigm, introduced by Savage (1951), is claimed to provide less conservative

solutions compared to the ones returned by optimizing with respect to the the worst-case scenario

(Perakis and Roels 2008, Aissi et al. 2009, Natarajan et al. 2014, Caldentey et al. 2017). Given a

profit function h(x, ζ), which depends on the decision x and an uncertain vector of parameters ζ, the

regret minimization approach aims at minimizing the difference between the achieved profit and the

best profit that would have been made if the realization of ζ was known before making the decision.

Namely, the so-called ex-post worst-case regret minimization problem takes the form of:

(EP-WCR) minimize
x∈X

max
ω∈Ω

{
max
x′∈X

h(x′, ζ(ω))− h(x, ζ(ω))

}
,

where X is the set of admissible actions, Ω denotes the outcome space, and x′ captures the decision

made with full information about ω, which we will refer to as the benchmark policy.

While most of the regret minimization literature focuses on worst-case scenario analysis, there has

recently been a scarce but growing interest for formulations that account for more information about

the underlying potential of realization of the different outcomes. A first common approach can be

referred as the ex-post risk averse regret minimization problem:

(EP-RAR) minimize
x∈X

ρ

(
max
x′∈X

h(x′, ζ(ω))− h(x, ζ(ω))

)
,

where ρ can either be a law-invariant risk measure (see Kusuoka (2001)), e.g. expected value or

Conditional Value-at-Risk (CVaR), or a worst-case risk measure (c.f. Postek et al. (2018)), e.g. a worst-

case expected value that accounts for incomplete distribution information. For example, Natarajan

et al. (2014) proposed an ex-post regret minimization model equipped with a worst-case CVaR risk

measure that accounted for information about the marginal distribution of the different terms of ζ.

Indeed, having access to distributional information enables one to employ a variety of popular risk

measures, which can help further control conservatism by trading off between the expected value and

tail risks of the regret with respect to a fully informed decision.

A second approach (see Perakis and Roels (2008)) departs from the traditional ex-post regret form

as it instead measures regret with respect to an action x′ that does not have knowledge of the realized

scenario. This rather gives rise to what can be referred as the ex-ante risk averse regret minimization

problem:

(EA-RAR) minimize
x∈X

max
x′∈X

ρ (h(x′, ζ(ω))− h(x, ζ(ω))) .

To clarify, we illustrate the distinction between the two approaches using a simple project selection

problem with partial distirbution information as an example.

Example 1. A manager must choose one of the three available projects for investment (i.e. X :=

{xA,xB ,xC}) and considers two possible scenarios (i.e. Ω := {ω1, ω2}) for the projects’ payoff.

Although the true probability of each scenario is not known to the manager, she considers two different

possibilities (i.e. P := {PI , PII}) and employs worst-case expected value as the risk measure.1 Table 1

provides the numerical details while Table 2 presents the optimal project selected under four different

regret minimization formulations: {Ex-ante/Ex-post} {Worst-case/Risk averse} regret minimization.

The reader is referred to Appendix A for further numerical details.

Specifically, both ex-post models measure the regret under each outcome by comparing to the best

action in hindsight: i.e., xB and xA under scenarios ω1 and ω2 respectively. However, ex-ante model

needs to consider the same action x′ to compare to under all the scenarios. Namely, in the case of the

risk-averse model, we have x′
∗

= xB . Looking at Table 2 one can remark that while under a worst-case

1Note that the selected values of PI and PII are such that maxP∈P EP[X] can be reinterpreted as the 75%-conditional
value-at-risk of X when using the probability measure P(ω1) = 1− P(ω2) = 20%.
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Table 1: Numerical details of Example 1

Project payoffs Probabilities
xA xB xC PI PII

ω1 1$ 5$ 4$ 80% 0%
ω2 6$ 2$ 3$ 20% 100%

Table 2: Optimal project selected under four variants of regret minimization in Example 1

Ex-ante Ex-post

Worst-case xC xC

Risk averse xA xC

regret formulation, the optimal decision is unaffected by the use of ex-post or ex-ante regret, this is

not the case anymore when using a risk averse setting.

Example 1 raises questions such as what are conditions under which EP-RAR and EA-RAR are

equivalent, whether other formulations exists between ex-ante and ex-post that could fill in the gap

between the two solutions (especially in a multi-stage setting), and finally what are the implications

of these formulation in terms of level of conservatism. To the best of our knowledge, this paper

investigates these questions for the first time and by presenting a new multi-stage regret minimization

formulation that measures regret with respect to decisions that can exploit information revealed up to

∆ stages into the future. This model effectively interpolates very naturally between the ex-ante (with

∆ = 0) and ex-post (with ∆ =∞) models and effectively allows to study them under the same lens.

Overall, the contribution can be summarized as follows:

• Theoretically, we show that EP-RAR and EA-RAR are equivalent in terms of optimal solution

in a risk neutral setting, and equivalent both in optimal solution and value when a worst-case

risk measure is used if a “relatively complete recourse property” is satisfied.

• Methodologically, we introduce the ∆-regret model for multi-stage stochastic programming under

a discrete probability space. We show how this model can be evaluated over a continuum of ∆

values and can be reformulated as a special class of two-stage robust linear program that is

amenable to a rich range of solution schemes when the stochastic program is linear.

• Numerically, we investigate the effect of ∆ and risk aversion on the conservatism of solutions

proposed by the ∆-regret model in a simple newsvendor problem. We further illustrate the effect

of enforcing different information look-ahead levels ∆ on the regret experienced in a multi-period

inventory management problem.

The rest of the paper is composed as follows. Section 2 reviews the relevant literature. Section 3

presents the ∆-regret model, an interpretation that gives rise to fractional regret model, and an

illustrative example involving an inventory management problem. Section 4 presents our theoretical

contributions and proposed solution scheme while Section 5 presents our numerical experiments.

2 Literature review

Since the first introduction by Savage (1951), regret minimization has been used in a wide range of

applications including single-period portfolio selection (Lim et al. 2012), shortest path, subset selection

(Natarajan et al. 2014), spanning tree, ranking problems (Audibert et al. 2014), and in pricing and

mechanism design (Caldentey et al. 2017 and Koçyiğit et al. 2021) to name a few. Broadly speaking, the

regret minimization models that are found in the literature can be classified based on three elements,

e.g., the type of risk measure employed for regret evaluation, the length of the planning horizon, and

the type of nonanticipativity constraint imposed on the benchmark policy.
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In a single-stage setting, the majority of studies focus on the ex-post worst-case regret minimization

problem (see for e.g. Feizollahi and Averbakh 2014, Furini et al. 2015 and Park et al. 2021), perhaps

because of the ease of requiring only support information about the unknown parameters. Under the

assumption of partial distribution information, Natarajan et al. (2014) study ex-post regret using a

worst-case Conditional Value-at-Risk measure. Chen et al. (2006) exploit a similar regret model but

in the context of a p-median problem. In these formulations, the benchmark policy can be seen as

exploiting both the information about the distribution and about the realization itself. This is in sharp

contrast with the ex-ante formulation that employs a worst-case risk measure (see Yue et al. (2006)

and Perakis and Roels (2008) for an application to the newsvendor problem). Indeed, these works

employ a worst-case expected value to measure regret and rather interpret it as the expected value of

distribution information (EVDI), due to the following equivalence:

max
x′∈X

sup
P∈P

EP [h(x′, ζ(ω))− h(x, ζ(ω))] = sup
P∈P

((
max
x′∈X

EP [h(x′, ζ(ω))]

)
− EP[h(x, ζ(ω)]

)
.

In the literature studying EVDI of the newsvendor problem, one can mention that Chen and Xie (2021)

assume concurrent demand and supply randomness and Zhu et al. (2013) provide closed-form solutions

for the relative EVDI. Other applications of EVDI can be found in blood classification (see El-Amine

et al. (2018)) and portfolio optimization (see Lim et al. (2012) and Benati and Conde (2022)).

In the multi-stage setting, most studies focus on a two-stage setting under an ex-post worst-case

regret minimization (see Bertsimas and Dunning (2020), and Poursoltani and Delage (2021) and ref-

erences therein). Additionally, Xu et al. (2015) study a two-stage bidding problem in an electricity

market, where perfect distribution information is assumed and different risk measures (namely Value-

at-Risk, conditional Value-at-Risk, and expected value) are applied on the realized ex-post regret.

Similar approaches were used in Zhang et al. (2020). Lim et al. (2006) investigate ex-ante and ex-post

worst-case expected regret model in a fully multi-stage framework involving either an inventory man-

agement or a portfolio optimization problem. The authors derive analytical expressions for both the

benchmark policies and regret minimizing policies and draw connections between regret minimization

and Bayesian learning.

There has also been an interest in the economic literature to study the role that regret can play in

a dynamic environment. For instance, Hayashi (2011) and Halpern and Leung (2016) study different

forms of ex-post regret models and identify conditions under which regret minimizing policies are

dynamically consistent. Alternatively, one can refer to Krähmer and Stone (2008) that considers

a two-stage setting where the decision maker optimizes a trade-off between expected payoff and an

weighted sum of the regret experienced at different point of time. The regret in each period is measured

using an unconventional method that involves computing the effect of a one step deviation from an

equilibrium policy that prescribes both how to adapt to revealed information and under any history of

previous actions. Finally, Hayashi (2009) explore dynamic consistency and the role of ex-post regret

in optimal stopping problems, while Strack and Viefers (2021) explores in the same application the

effect of using stopping time to control the horizon over which the ex-post regret is measured.

This paper can be viewed to contribute to multi-stage regret theory from an optimization point

of view. Indeed, we propose for the first time an intuitive risk-averse multi-stage regret minimization

problem where the pessimism of the benchmark policy set is controlled using a bound on the maximum

amount of look-ahead. This ∆-regret model naturally interpolates between the ex-ante and ex-post

regret models. Furthermore, we explore the properties of ∆-regret model under popular risk measures

and provide a promising direction for numerical resolution of these models, which is based on the recent

advances in two-stage robust optimization. This later results can be seen as an interesting extension

of Poursoltani and Delage (2021) to the multi-stage setting.
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3 ∆-regret minimization in multi-stage stochastic programs

We consider a multi-stage decision making environment in which at each stage t ∈ {1, . . . , T} a decision

maker needs to make a decision xt ∈ Rn based on the available historical information captured by

[ζ1 ζ2 · · · ζt−1]. Focusing on a discrete probability space (Ω,Σ,Q), where Q is assumed strictly

positive without loss of generality, one classical decision-making approach formulates the following

multi-stage stochastic program:

(MSP) min
x∈X∩Xna

ρ
(
− h(x, ζ)

)
(1)

where x : Ω → Rn×T is the multi-stage policy, ζ : Ω → Rm×T−1 is the concatenated matrix of the

random vectors observed over the whole horizon, h(x, ζ) is the cumulative profit of implementing

policy x when ζ is realized, ρ is a convex risk measure that maps a random cost to a risk level,

X := {x : Ω→ Rn×T |x(ω) ∈ Xω , ω ∈ Ω}, with bounded Xω ⊆ Rn×T , imposes “physical” constraints

that must be satisfied by the policy under each outcome in Ω, while Xna ensures that the policy is

nonanticipative with respect to the information revealed by ζ. We formalize below some of these

elements.

Definition 1. The set of nonanticipative policies takes the form:

Xna :=
{
x : Ω→ Rn×T

∣∣∣xt(ω) = xt(ω
′), ∀ω, ω′ ∈ Ω : ζ[t−1](ω) = ζ[t−1](ω′), ∀t ∈ {1, 2, ..., T}

}
,

where [t] := {1, . . . , t}, and where ζ[0](ω) = ζ[0](ω′) is interpreted as always true.

Definition 2. According to Föllmer and Schied (2002), letting L : {ξ : Ω → R} be the space of all

possible finite random liabilities, ρ is a convex risk measure if and only if it satisfies:

• Monotonicity: ∀ξ1, ξ2 ∈ L, ξ1 ≥ ξ2 a.s.⇒ ρ(ξ1) ≥ ρ(ξ2);

• Translation invariance: ∀ξ ∈ L, t ∈ R, ρ(ξ + t) = ρ(ξ) + t;

• Convexity: ∀ξ1, ξ2 ∈ L, and θ ∈ [0, 1], ρ(θξ1 + (1− θ)ξ2) ≤ θρ(ξ1) + (1− θ)ρ(ξ2).

Moreover, ρ is considered a coherent risk measure if it further satisfies:

• Scale invariance: ∀ξ ∈ L, α ≥ 0, ρ(αξ) = αρ(ξ).

In particular, it is well known that ρ(−h(x, ζ)) = EQ[−h(x, ζ)] and Conditional Value-at-Risk (see

Example 3 for a definition) fall in the class of coherent risk measure. Unless specified otherwise, in

what follows we will assume that ρ is a convex risk measure.

To improve computational tractability, we will later (when indicated) focus on the class of problems

where constraints and objective function are affine with respect to x.

Assumption 1. [Stochastic Linear Programming] The profit function is an affine function of x de-

fined as

h(x, ζ) :=

T∑
t=1

c>t (ζ)xt + d(ζ) , (2)

for some arbitrary ct : Rm×(T−1) → Rn and d : Rm×(T−1) → R. Furthermore, for each ω ∈ Ω, Xω is a

bounded polyhedron formulated as:

Xω :=

{
x ∈ Rn×T

∣∣∣∣∣
T∑
t=1

ajt(ζ(ω))>xt(ω) ≤ bj(ζ(ω)) , j = 1, 2, ...,J

}
,

with arbitrary ajt : Rm×(T−1) → Rn and bj : Rm×(T−1) → R, for all j and t.

Recall that the regret models discussed in the introduction addressed a static decision model

(namely with T = 2). Hence, the main difference between the ex-post and ex-ante models hinged
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on whether the benchmark action x′ could fully anticipate or not realization ζ. A natural question to

pose is therefore how the concept of regret extends in the multi-stage problems where we have T > 2

and where the values of ζ are progressively revealed in time. In what follows, we propose a multi-stage

regret minimization formulation that measures regret with respect to a benchmark policy that can

exploit information revealed up to ∆ stages into the future, which we term ∆-regret. This model

effectively interpolates very naturally between the ex-ante (with ∆ = 0) and ex-post (with ∆ = ∞)

models and effectively allows to study them under the same lens. Section 3.1 will present the ∆-regret

model. Section 3.2 will describe an environment where ∆ can be interpreted as a rational number (e.g.

1/2-regret model). Finally, Section 3.3 will present an illustrative example involving a multi-stage

inventory management problem.

3.1 The ∆-regret model

In a multi-stage decision making problem, a regret-averse policy maker might be interested to compare

his decisions to benchmark policies that exploit shorter foresight than the total planning horizon. This

gives rise to the idea of ∆-regret model where the benchmark policies are capable of predicting the

future realizations up to ∆ steps ahead in the future. As an immediate result of such setting, the

benchmark policies can adapt to the information released till time step t+ ∆. Assuming ρ is a convex

risk measure, the ∆-regret model in the multi-stage setting is formulated as

(∆-regret) minimize
x∈X∩Xna

R∆(x), (3a)

where

R∆(x) := max
x′∈X∩X∆

ρ(h(x′, ζ)− h(x, ζ)), (3b)

and where X∆ is the space of policies that violate the nonanticipativity constraints by up to a margin

of ∆ steps. More specifically,

X∆ :=
{
x : Ω→ Rn×T

∣∣∣xt(ω) = xt(ω
′), ∀ω, ω′ ∈ Ω : ζ[t+∆−1](ω) = ζ[t+∆−1](ω′), ∀t ∈ {1, 2, ..., T}

}
,

where we interpret ζ[t] := ζ when t ≥ T − 1. For any ∆ ∈ {0, 1, 2, 3, .., T − 1}, the ∆-regret model

will evaluate the regret of the prescribed decisions as contrasted with the ones that could have been

made if the uncertain parameters were revealed up to ∆ steps ahead of time. Clearly, when ∆ = 0,

X∆ reduces to Xna , implying that the benchmark policy has no access to any realization beforehand.
On the contrary, ∆ = T − 1 gives the benchmark policy full access to all the realizations of ζ at any

point of time. The ∆-regret model therefore naturally interpolates between the ex-ante and ex-post

regret models. In addition, regret is a non-decreasing function of ∆. These concepts are formalized in

the following lemma.

Lemma 1. The ∆-regret model, i.e. problem (3), reduces to ex-ante and ex-post regret minimization

when ∆ = 0 and ∆ ≥ T − 1 respectively. Moreover, its optimal value is an increasing function of ∆.

Proof. Clearly when ∆ = 0, we have that X∆ = X0 = Xna . So that the 0-regret model reduces to the

ex-ante form:

minimize
x∈X∩Xna

max
x′∈X∩Xna

ρ(h(x′, ζ)− h(x, ζ)) ,

and in particular to

minimize
x∈X

max
x′∈X

ρ(h(x′, ζ)− h(x, ζ)) ,

when dealing with a static linear problem, i.e. T = 2 and c2 = aj2 = 0 for all j.

Alternatively, when ∆ ≥ T − 1, by definition we have that X∆ =
{
x : Ω→ Rn×T

}
, implying that:

R∆(x) = max
x′∈X

ρ
(
h(x′, ζ)− h(x, ζ)

)
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= ρ
(

max
x′∈Xω

h(x′, ζ(ω))− h(x(ω), ζ(ω))
)
,

which follows from monotonicity of ρ. Specifically, we first have that for all x′ ∈ X ∩ XT :

h(x′(ω), ζ(ω))− h(x(ω), ζ(ω)) ≤ max
x′′∈Xω

h(x′′, ζ(ω))− h(x(ω), ζ(ω)) ∀ω ∈ Ω.

Hence,

ρ(h(x′, ζ)− h(x, ζ)) ≤ ρ( max
x′′∈Xω

h(x′′, ζ(ω))− h(x(ω), ζ(ω))) .

On the other hand, we can define x̄′(ω) ∈ arg maxx′∈Xω
h(x′, ζ(ω))−h(x(ω), ζ(ω)), with x̄′ ∈ X ∩XT

to conclude that:

ρ
(

max
x′∈Xω

h(x′, ζ(ω))− h(x(ω), ζ(ω))
)

= ρ
(
h(x̄′, ζ)− h(x, ζ)

)
≤ max
x′∈X∩XT

ρ
(
h(x′, ζ)− h(x, ζ)

)
≤ max
x′∈X∩XT

ρ
(

max
x′′∈Xω

h(x′′, ζ(ω))− h(x(ω), ζ(ω))
)

= ρ
(

max
x′′∈Xω

h(x′′, ζ(ω))− h(x(ω), ζ(ω))
)
,

where the first inequality follows since x̄′ ∈ XT . We can therefore conclude that the T -regret model

reduces to the ex-post model:

minimize
x∈X∩Xna

ρ(max
x′∈X

h(x′, ζ)− h(x, ζ)) ,

which takes the following form when the problem is static:

minimize
x∈X

ρ(max
x′∈X

h(x′, ζ)− h(x, ζ)) .

Finally, we turn to establishing the monotonicity of the optimal value of problem (3). Let ∆ ≤ ∆′,

then X∆ ⊆ X∆′ . This implies that:

R∆(x) = max
x′∈X∩X∆

ρ(h(x′, ζ)− h(x, ζ)) ≤ max
x′∈X∩X∆′

ρ(h(x′, ζ)− h(x, ζ)) = R∆′(x) .

3.2 Extension to fractional ∆-regret model

In this section, we explore the possibility of formulating a ∆-regret minimization model where ∆ is a

rational number. This opportunity arises in a special family of multi-stage stochastic programs, which

we refer to as an “overdiscretized” multi-stage program.

Definition 3. Let Td := {1, H+1, 2H+1, . . . , (D−1)H+1}, with (D−1)H+1 = T be a set of evenly

distributed decision moments over the horizon T . An MSP is called overdiscretized if ct(ζ) := 0 and

dt(ζ) := 0 for all t 6∈ Td and X ⊆ Xd, where

Xd := {x ∈ Rn×T |xt = 0 ,∀t 6∈ Td} .

Note that in an overdiscretizedMSP, the set Td describes the only time points at which a decision

is actually implemented. Intermediate time points t 6∈ Td play the role of capturing how the information

about the random process is being revealed to the decision maker between any two decisions. This

type of model can for instance be relevant in an inventory management problem where production

decisions can only be made once a day, yet orders are received continuously throughout the day. While

this overdiscretized property is irrelevant from the point of view of classical risk minimization, we will

see that it gives rise to the concept of fractional ∆-regret.
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Indeed, from the point of view of identifying the optimal strategy for this MSP, one can simplify

the representation of the overdiscretized model by adapting the discretization to focus on pure decision

moments. Specifically, the overdiscretized MSP model can be shown equivalent to:

(M̂SP) min
x̂∈X̂∩X̂na

ρ
(
ĥ(x̂, ζ̂)

)
(4)

where x̂ : Ω→ Rn×D, ζ̂ : Ω→ R(mH)×D, and where

ĥ(x̂, ζ̂) :=

D∑
d=1

ĉd(ζ̂)>x̂d + d̂(ζ̂), (5)

with ĉd(ζ̂) := c>(d−1)H+1(ζ) and d̂(ζ̂) := d(ζ), while X̂ and X̂na are defined such that x̂ ∈ X̂ ∩ X̂na if

and only if

xt(ω) :=

{
x̂d(ω) if t = (d− 1)H + 1

0 otherwise.
∈ X ∩ Xna .

From the perspective of ∆-regret minimization however, one can consider that the ∆-regret model

associated toMSP provides a ∆/H-regret model for M̂SP. This is interesting given that it provides

the means of constructing a continuum of ∆-regret model for all ∆ ∈ Q+. Namely, for any ∆ := q/r

with q, r ∈ N , one should assemble an overdiscretized description of theMSP with H := r, and solve

the q-regret model of this MSP. We close with a remark that a common tool for assembling such

an overdiscretized model is to assume an underlying continuous stochastic process for the vector of

uncertainties: e.g. in an inventory management problem, one might assume that the demand for each

product is independent and follows a Poisson process.

3.3 Illustrative example of ∆-regret model

We consider the multi-stage inventory management problem previously studied in Ben-Tal et al. (2004)

and Kuhn et al. (2011). We assume that each period t consists of a day. The inventory system consists

of I factories which produce a single item and store it at a shared warehouse. The production cost

of a single unit of the item on day t at factory i is cit and the objective is to determine the optimal

production level of each factory for each (xit) to satisfy the uncertain demand and minimize the total

production cost over a planning horizon of T days. While x̄it indicates the production capacity of

factory i on day t, the maximum production potential over the whole planning horizon is determined

by x̄i,tot. The minimum and the maximum inventory levels that should be maintained at the end of

each day are denoted by xwh and x̄wh, respectively, and x0
wh represents the initial inventory level. If

dt(ω) ∈ R denotes the demand of day t under scenario ω, then we let ζt−1(ω) := dt(ω) ∈ R to model

the fact that the demand for day t is known when deciding of the production levels at the beginning of

the day: this occurs for instance when orders for pick up need to be made at the latest one day before

pickup. The MSP for this inventory problem takes the form where:

h(x, ζ) := −
T∑
t=1

I∑
i=1

c>itxit(ω),

and

Xω :=

x ∈ Rn×T
∣∣∣∣∣∣

0 ≤ xit ≤ x̄it, ∀i ∈ I, ∀t ∈ T∑T
t=1 xit ≤ x̄i,tot, ∀i ∈ I

xwh ≤ x0
wh +

∑t
s=1

∑I
i=1 xis −

∑t−1
s=1 ζs(ω)− d1 ≤ x̄wh, ∀t ∈ T

 .

We consider a simple instance of this problem with 2 factories (I = 2), 3 days planning horizon (T = 3)

and 5 demand pattern scenarios (Ω = {ω1, ω2, ω3, ω4, ω5}). In this setting, considering the scenario

tree structure depicted in Figure 1, the nonanticipativity constraints are expressed as:

Xna :=

{
x : Ω→ R2×3

∣∣∣∣ x1(ω1) = x1(ω2) = x1(ω3) = x1(ω4) = x1(ω5)
x2(ω1) = x2(ω2), x2(ω4) = x2(ω5)

}
.
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When measuring regret, the policy maker might be interested in comparing her policy to one that

benefits from the same information. This is an immediate implication of ∆ = 0 in the ∆-regret model.

Setting ∆ to 1 allows her to measure her regret with respect to the policy made under one stage

look-ahead information. Eventually, ∆ = 2 compares to policies that exploit the full information.

Specifically, we have the following reductions:

X0 = Xna , X1 =
{
x : Ω→ R2×3

∣∣ x1(ω1) = x1(ω2), x1(ω4) = x1(ω5)
}
X2 =

{
x : Ω→ R2×3

}
.

Figure 1 illustrates each policy sets in a scenario tree. This example shows how increasing ∆ lifts the

constraints imposed on x′ gradually and the full access of the realized scenario is bestowed upon x′

when ∆ is at its maximum value.
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Figure 1: Comparison of adaptation power between x (beside the timeline ) and x′ (on the right of each tree) as a
function of ∆. The nodes of the tree present what information is available at each point of time

Now, let’s instead consider that orders are received continuously throughout the day. In this

context, the manager might consider that additional information about tomorrow’s demand will be

available in the middle of the day and could resent some regret for not having access to this information

earlier. Optimizing this form of regret is possible by using the fractional regret model presented in

Section 3.2. Figure 2 illustrates the corresponding policy sets associated to the ∆ = 0.5 and ∆ = 1.5

regret models. One should note that in this example H = 0.5, D = 5 such that Td := {1, 1.5, 2, 2.5, 3}.

4 Properties of ∆-regret model under risk measures

In this section, we explore interesting properties that arise under different choice of risk measures

for the ∆-regret model. In particular, the first two subsections initially study the properties that

emerge under specific coherent risk measures, namely the worst-case ρ(ξ) = ess sup(ξ) and expected

value ρ(ξ) = EQ[ξ]. We then consider the general class of coherent risk measures using their worst-

case expectation representation, i.e. ρ(ξ) := supP∈P EP[ξ] (see Artzner et al. (1999)) We will show

that under a worst-case risk measure, all ∆-regret models are equivalent if (and only if) a relatively

complete recourse property is satisfied. This will also occur, yet only in terms of optimal solution set

for models that employ an expected value. Finally, we will derive a reformulation for all coherent

risk measures that take the form of a two-stage robust linear program when the stochastic program is

linear and the risk measure linear programming representable.

4.1 The case of ρ(ξ) = ess sup(ξ)

In this section, we consider measuring the ∆-regret using the essential supremum as the risk measure:

ρ(ξ) := ess sup(ξ) = inf {a |P(ξ > a) = 0} .

In particular, we will confirm conditions under which, the invariability of ∆-regret to ∆, observed

in Example 1, holds. In order to present our main result, we first introduce an assumption about

the MSP.
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Figure 2: Comparison of adaptation power between x (beside the timeline) and x′ (on the right of each tree) as a function

of ∆ in an overdiscretized MSP. Note that the notation presents the indexing of the M̂SP

Assumption 2. The multi-stage stochastic program satisfies the relatively complete recourse

property, i.e.,

X [t]
ω = X [t]

ω′ , ∀(ω, ω′) : ζ [t−1](ω) = ζ [t−1](ω′),∀t,

where

X [t]
ω := {x ∈ Rn×t|∃x̄ ∈ Rn×T−t, [x x̄] ∈ Xω}

is a projection of Xω on the space spanned by the decision vectors x1, x2,. . .xt.

In simpler words, this assumption imposes that when looking at the set of feasible decisions x in

hindsight, this set only includes candidates that had a probability one guarantee of being feasible at

the time that they were implemented. While the decision to satisfy this assumption is an important

modeling choice in designing the ∆-regret model and might affect the measured regret (see Example 2

below), it is in fact always possible to modify a multi-stage stochastic program so that the property is

satisfied.

Lemma 2. Given anMSP, one can constructMSP that produces the same optimal value and optimal

solution set as MSP while satisfying the relatively complete recourse assumption, i.e. Assumption 2.

Proof. Let MSP be exactly the same as MSP except for Xω which is replaced with:

X̄ω := ∩Tt=1 ∩ω′:ζ[t−1](ω)=ζ[t−1](ω′) {x ∈ Rn×T |x1:t ∈ X [t]
ω′ } .

First, we can start by demonstrating that MSP satisfies the relatively complete recourse property.

Namely, for all t, if (ω, ω′) is such that ζ [t−1](ω) = ζ [t−1](ω′), then:

X̄ [t]
ω = {x ∈ Rn×t|∃x̄ ∈ Rn×T−t, [x x̄] ∈ X̄ω}

= {x ∈ Rn×t|∃x̄ ∈ Rn×T−t, [x x̄] ∈ ∩Tt=1 ∩ω′′:ζ[t−1](ω)=ζ[t−1](ω′′) {x ∈ Rn×T |x1:t ∈ X [t]
ω′′}}

= {x ∈ Rn×t|∃x̄ ∈ Rn×T−t, [x x̄] ∈ ∩Tt=1 ∩ω′′:ζ[t−1](ω′)=ζ[t−1](ω′′) {x ∈ Rn×T |x1:t ∈ X [t]
ω′′}}

= {x ∈ Rn×t|∃x̄ ∈ Rn×T−t, [x x̄] ∈ X̄ω′} = X̄ [t]
ω′ .
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Next, we show thatMSP produces the same set of optimal solutions and optimal value asMSP.

In particular, one can show that X ∩ Xna = X̄ ∩ Xna where X̄ := {x : Ω→ Rn×T |x(ω) ∈ X̄ω , ω ∈ Ω}.
First, since we have that:

X̄ω ⊆ ∩ω′:ζ[T−1](ω)=ζ[T−1](ω′){x ∈ Rn×T |x1:T ∈ X [T ]
ω′ } ⊆ Xω ,

we can conclude that X ∩ Xna ⊇ X̄ ∩ Xna . Alternatively, we have that for all x ∈ X ∩ Xna , one can

confirm that x ∈ X̄ , i.e. x(ω) ∈ X̄ω for all ω. Specifically, fixing any ω, any t, and any ω′ that satisfies

ζ [T−1](ω) = ζ [T−1](ω′), we can check that x1:t(ω) ∈ X [t]
ω′ since

[x1:t(ω) xt+1:T (ω′)] = [x1:t(ω
′) xt+1:T (ω′)] ∈ Xω′ ,

where we used the fact that x ∈ Xna which implies that x1:t(ω) = x1:t(ω
′).

We can now turn to the main result of this section which indicates that relatively complete recourse

is a necessary and sufficient condition for the ∆-regret model to be invariant to ∆ under the essential

supremum risk measure.

Theorem 1. Given that Assumption 2 holds and ρ(ξ) = ess sup(ξ), for any arbitrary ∆ ≥ 0, the

objective function of problem (3) reduces to

R∆(x) = RT−1(x) = max
ω∈Ω

max
x′∈Xω

h(x′, ζ(ω))− h(x(ω), ζ(ω)). (6)

Proof. The argument goes as follows:

R∆(x) = sup
x′∈X∩X∆

ess sup(h(x′, ζ)− h(x, ζ)) (7a)

≤ sup
x′∈X∩XT−1

ess sup(h(x′, ζ)− h(x, ζ)) (7b)

≤ sup
x′∈X

ess sup(h(x′, ζ)− h(x, ζ)) (7c)

≤ ess sup( sup
x′∈Xω

h(x′, ζ(ω))− h(x(ω), ζ(ω))) (7d)

= max
ω∈Ω

sup
x′∈Xω

h(x′, ζ(ω))− h(x(ω), ζ(ω)) (7e)

= sup
x′∈Xω∗

h(x′, ζ(ω∗))− h(x(ω∗), ζ(ω∗)) (7f)

≤ sup
x′∈Xω∗

ess sup(h(π(ω;x′, ω∗), ζ(ω))− h(x(ω), ζ(ω))) (7g)

≤ sup
x′∈X∩Xna

ess sup(h(x′, ζ)− h(x, ζ)) (7h)

≤ sup
x′∈X∩X∆

ess sup(h(x′, ζ)− h(x, ζ)) (7i)

= R∆(x) , (7j)

where (7b) follows from Lemma 1 and (7c) results from relaxing the constraint that x′ ∈ XT−1.

(7d) follows from the monotonicity of ess sup and the fact that h(x′(ω), ζ(ω)) − h(x(ω), ζ(ω)) ≤
supx′∈Xω

h(x′, ζ(ω)) − h(x(ω), ζ(ω)), almost surely. (7e) follows from the fact that Q(ω) ≥ 0 for all

ω ∈ Ω and Ω is finite. In (7f) we define ω∗ has any maximizer of (7e). In (7g), we let π(·;x′, ω∗)
be a nonanticipative policy which implements x′ under outcome ω∗ while implementing an arbitrarily

chosen feasible action at each time point for all other outcomes, e.g.:

πt(ω;x′, ω∗) :=

 x′t if ζ(ω)[t−1] = ζ(ω∗)[t−1]

arg min
x̄t:[π[t−1](ω;x′,ω∗)> x̄t]>∈X [t]

ω

‖x̄t‖2 otherwise ∀t. (8)
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The fact that this policy exists and is in X ∩ Xna is due to Assumption 2 (proof below) and moti-

vates (7h). Finally, (7i) follows from the fact that Xna ⊆ X∆.

We finalize this proof by providing more details about the three facts regarding πt(ω;x′, ω∗). First,

this policy exists since we can construct it from t = 1, . . . , T with the guarantee that the arg min in (8)

is non-empty given that for all t and all ω ∈ Ω:

ζ[t−1](ω) = ζ[t−1](ω∗)⇒ ζ[t′−1](ω) = ζ[t′−1](ω∗), ∀1 ≤ t′ ≤ t⇒ π[t](ω;x′, ω∗) ∈ X [t]
ω ,

while iteratively, from t = 2 to t = T , and for all ω ∈ Ω:

π[t−1](ω;x′, ω∗) ∈ X [t−1]
ω & ζ[t−1](ω) 6= ζ[t−1](ω∗)

⇒ ∃x̄ ∈ Rn×T−t+1, [π[t−1](ω;x′, ω∗) x̄] ∈ Xω
⇒ ∃x̄t ∈ Rn×1, [π[t−1](ω;x′, ω∗) x̄t] ∈ X [t]

ω

⇒ arg min
x̄t:[π[t−1](ω;x′,ω∗)> x̄t]>∈X [t]

ω

‖x̄t‖2 ∈ X [t]
ω

⇒ π[t](ω;x′, ω∗) ∈ X [t]
ω ,

where we first employ the definition of π[t−1](ω;x′, ω∗) ∈ X [t−1]
ω , and then confirmed that the first

vector of the x̄ matrix could be used to create a member of X [t]
ω .

Now regarding π(·;x′, ω∗) ∈ X , this is necessary the case as we just showed that π(·;x′, ω∗) ∈ X [t]
ω

for all t and ω ∈ Ω. Hence, π(·;x′, ω∗) ∈ X [T ]
ω = Xω for all ω. Furthermore, π(·;x′, ω∗) ∈ Xna

by construction. Namely, for any t, if ζ(ω)[t−1] = ζ(ω′)[t−1] = ζ(ω∗)[t−1], then πt(·;x′, ω∗) = x′t.

Alternatively, for any (ω, ω′) such that ζ(ω)[t−1] = ζ(ω′)[t−1] 6= ζ(ω∗)[t−1], we can exploit the fact

that:

ζ[t−1](ω) = ζ[t−1](ω′)⇒ ζ[t′−1](ω) = ζ[t′−1](ω′), ∀1 ≤ t′ ≤ t ,

so that iteratively from t′ = 2 to t′ = t, given that:

πt′−1(ω;x′, ω∗) = πt′−1(ω′;x′, ω∗)

and that Assumption 2 implies that X [t′]
ω = X [t]

ω , then necessarily

πt′(ω;x′, ω∗) = arg min
x̄t′ :[π[t′−1](ω;x′,ω∗)T x̄t]T∈X [t′]

ω

‖x̄t′‖2

= arg min
x̄t′ :[π[t′−1](ω

′;x′,ω∗)T x̄t]T∈X [t′]
ω′

‖x̄t′‖2 = πt′(ω
′;x′, ω∗) .

At first glance, the result of Theorem 1 looks intuitive since essential supremum hedges against a

single worst-case scenario. Thus imposing a nonanticipative structure on x′ ∈ X∆ will have no effect

for any value of ∆. What is less intuitive is the role of Assumption 2. In this regard, the following

example supports and illustrates our claims that the relatively complete recourse property is necessary

to obtain this invariance, and that MSP can always be reformulated to satisfy this assumption.

Example 2. Consider a simple two-stage (i.e. T = 2) problem, where the set of first and second stage

actions are defined as A = {a1, a2, a3} and B = {b1, b2}, respectively. After implementing the first

stage decision, the decision maker is faced with two scenarios ω1 or ω2 with 10% and 90% chances

respectively. We consider the following definition for X :

X := {x := {ω1, ω2} → A×B|x(ω1) ∈ Xω1
, x(ω2) ∈ Xω2

} ,

with:

Xω1 := {(a1, b1), (a3, b1), (a3, b1)}

Xω2
:= {(a2, b2), (a3, b1), (a3, b2)}
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In words, if the decision maker chooses a1, he can react to ω1 with b1 but has no feasible recourse

against ω2. The reverse is true for a2, while a3 enables both the b1 and b2 actions under ω1 and ω2

respectively. The profit function, defined only over feasible pairs, takes the form described in Table 3.

Table 3: Profit function in Example 2

Actions h(x, ζ(ω1)) h(x, ζ(ω2))

(a1, b1) 4 -
(a2, b2) - 1
(a3, b1) 3 -
(a3, b2) - 0

In this example, X [1]
ω1 = {a1, a3} 6= X [1]

ω2 = {a2, a3}, which indicates that Assumption 2 is violated.

Furthermore there is only one feasible policy for the decision maker, i.e. {x̄} = {(a3, b11{ω =

ω1} + b21{ω = ω2})} = X ∩ Xna . Focusing on this policy, one can compute the ∆-regret under the

essential supremum measure as follows. In the case of ∆ = 1, the feasible space for the benchmark

policy becomes x′ ∈ X ∩ X1 = X = {x̄, x̄′} with

x̄′ := (a11{ω = ω1}+ a21{ω = ω2}, b11{ω = ω1}+ b21{ω = ω2}) .

We can thus conclude that:

R1(x̄) = max
x′∈{x̄,x̄′}

ess sup(h(x′, ζ)− h(x̄, ζ))

= max(ess sup(h(x̄, ζ)− h(x̄, ζ)), ess sup(h(x̄′, ζ)− h(x̄, ζ)))

= max(ess sup(0), ess sup(1)) = 1 .

On the other hand, if ∆ = 0, we have that x′ ∈ X ∩ X0 = X ∩ Xna = {x̄}, i.e. the benchmark

decision must be chosen among the same sets of decision as for the decision maker. This naturally

leads to R0(x̄) = 0. We therefore showed that when Assumption 2 is violated, it is possible that

0 = R0(x) 6= R1(x) = 1.

We close this example with the observation that if theMSP was modified as proposed in Lemma 2,

then we would have:

X̄ω1
:={x ∈ A×B|x1 ∈ X [1]

ω1
} ∩ {x ∈ A×B|x1 ∈ X [1]

ω2
} ∩ Xω1

={x ∈ A×B|x1 ∈ X [1]
ω1
∩ X [1]

ω2
} ∩ Xω1 = {x ∈ A×B|x1 ∈ {a3}} ∩ Xω1 = {(a3, b1)}

while

X̄ω2 := {x ∈ A×B|x1 ∈ X [1]
ω1
} ∩ {x ∈ A×B|x1 ∈ X [1]

ω2
} ∩ Xω2 = {(a3, b2)} .

Using X̄ := {x : Ω → A × B |x(ω) ∈ X̄ω , ω ∈ Ω} instead of X does not affect the solution of the

MSP since in any case X ∩ Xna = {x̄} = X̄ = X̄ ∩ Xna . Yet, using X̄ instead of X does affect the

∆-regret model given that under X̄ now we have that R1(x̄) = R0(x̄) = 0. Intuitively, from the regret

perspective the difference between the two models reduces to whether the benchmark policy is allowed

to implement decisions that don’t have a probability one guarantee to lead to long term feasibility.

4.2 The case of ρ(ξ) = EQ[ξ]

For a given probability measure Q, the expected value can be considered as another option among the

popular risk measures. However, for any value of ∆ problem (3) produces the same optimal solution

as MSP. This is formalized in the following proposition.

Proposition 1. Given that ρ(ξ) := EQ[ξ], for any arbitrary ∆, problems (1) and (3) have the same set

of optimal solutions as the MSP.
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Proof. The argument goes as follows:

R∆(x) = max
x′∈X∩X∆

EQ[h(x′, ζ)− h(x, ζ)] (9a)

= max
x′∈X∩X∆

EQ[h(x′, ζ)]− EQ[h(x, ζ)] (9b)

= g(∆)− EQ[h(x, ζ)] (9c)

with g(∆) := maxx′∈X∩X∆
EQ[h(x′, ζ)], and where (9b) follows from linearity of the risk measure. The

fact that ∆ only affects the constant g(∆) in (9c) allows us to conclude that the optimal solution sets

of problem (3) is unaffected by ∆. We also observe that:

minimize
x∈X∩Xna

R∆(x) ≡ maximize
x∈X∩Xna

EQ[h(x, ζ)]− g(∆) (10)

hence the ∆-regret model has the same optimal solution set as MSP when ρ(ξ) = EQ[ξ].

While Proposition 1 establishes that all ∆-regret models produce the same optimal solution under

a risk neutral setting, we will see in our numerical experiments that optimal values do change for

different values of ∆. Interestingly, in the case of ∆ = 0, one can confirm that a risk neutral decision

maker never experiences regret if she acts optimally.

Corollary 1. The optimal value of problem (3) with ∆ = 0 and ρ(ξ) := EQ[ξ] is equal to zero and

achieved by the MSP solution.

Proof. This follows from the fact that X0 = Xna , hence replacing g(∆) := maxx′∈X∩Xna
EQ[h(x′, ζ)] in

Equation (10) leads to:

minimize
x∈X∩Xna

R∆(x) = max
x∈X∩Xna

EQ[h(x, ζ)]− g(∆)

= max
x∈X∩Xna

EQ[h(x, ζ)]− max
x′∈X∩Xna

EQ[h(x′, ζ)] = 0

In particular, Proposition 1 and Corollary 1 suggest that the regret experienced by a decision maker

can be decomposed into three positive components

R∆(x) = max
x′∈X∩X∆

ρ (h(x′, ζ)− h(x, ζ))

=

(
max

x′∈X∩X∆

ρ (h(x′, ζ)− h(x, ζ))− max
x′∈X∩X0

ρ (h(x′, ζ)− h(x, ζ))

)
+

(
max

x′∈X∩X0

ρ (h(x′, ζ)− h(x, ζ))− max
x′∈X∩X0

EQ [h(x′, ζ)− h(x, ζ)]

)
+ max
x′∈X∩X0

EQ [h(x′, ζ)− h(x, ζ)]

=

(
max

x′∈X∩X∆

ρ (h(x′, ζ)− h(x, ζ))− max
x′∈X∩X0

ρ (h(x′, ζ)− h(x, ζ))

)
(11a)

+

(
max

x′∈X∩X0

ρ (h(x′, ζ)− h(x, ζ))− max
x′∈X∩X0

EQ [h(x′, ζ)− h(x, ζ)]

)
(11b)

+ EQ[h(x∗, ζ)]− EQ [h(x, ζ)] . (11c)

The first component (11a) captures the part of the regret which comes from the information that is

out of the decision maker reach. The second component (11b) captures a part of the regret that comes

from risk aversion of the decision maker. Finally, the last component (11c) comes from not being

optimal with respect to the risk neutral version of MSP.
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4.3 The case of coherent risk measures

In a more general context, it is well-known (see Artzner et al. (1999)) that any coherent risk measure

can be represented using a worst-case expectation formulation :

ρ(ξ) := sup
P∈P

EP[ξ],

where P is a non-empty convex set of probability measures that, in the distributionally robust optimiza-

tion literature, is also referred as an ambiguity set known to contain the true underlying measure Q.

Definition 4. The ambiguity set P is a bounded convex set which implies that

sup
P∈P

EP[ξ] = max
p∈D∩M

∑
ω∈Ω

pωξ(ω)

where ξ : Ω → R, M ⊂ R|Ω| is the simplex set, and D ⊂ R|Ω| denotes a general convex and compact

set.

Taking advantage of Definition 4, problem (3) can be cast as a two-stage robust optimization

problem. This is formalized in the following proposition.

Proposition 2. Given ρ(ξ) := supP∈P EP[ξ], problem (3) reduces to

minimize
x∈X∩Xna

max
x′∈X∩X∆

min
r,v

r (12a)

s.t. δ∗(v|D)− vω + h(x′(ω), ζ(ω))− h(x(ω), ζ(ω)) ≤ r, ∀ω ∈ Ω, (12b)

where r ∈ R, v ∈ R|Ω| and δ∗(v|D) := supp∈D p
Tv represents the support function of D.

Proof. Taking advantage of worst-case expectation risk measure, problem (3) leads to

R∆(x) = max
x′∈X∩X∆

ρ
(
h(x′, ζ)− h(x, ζ)

)
= max
x′∈X∩X∆

max
p∈D∩M

∑
ω∈Ω

pωh(x′(ω), ζ(ω))− h(x(ω), ζ(ω)) .

Using epigraph variable r, this can be alternatively rewritten as

R∆(x) = max
x′∈X∩X∆

min
r

r

s.t.
∑
ω∈Ω

pωh(x′(ω), ζ(ω))− h(x(ω), ζ(ω)) ≤ r, ∀p ∈ D ∩M

r ∈ R.

(13)

Letting g(x,x′,p) :=
∑
ω∈Ω pωh(x′(ω), ζ(ω))−h(x(ω), ζ(ω)) and applying Theorem 2 in Ben-Tal et al.

(2015), we get:

max
p∈D∩M

g(x,x′,p) = inf
v
δ∗(v|D)− inf

p∈M
p>v − g(x,x′,p) (14a)

= inf
v
δ∗(v|D)− inf

p:p≥0,
∑

ω∈Ω pω=1

∑
ω∈Ω

pω
(
vω − h(x′(ω), ζ(ω)) + h(x(ω), ζ(ω))

)
(14b)

= inf
v
δ∗(v|D)−min

ω∈Ω
vω − h(x′(ω), ζ(ω)) + h(x(ω), ζ(ω)) (14c)

= inf
v

max
ω∈Ω

δ∗(v|D)− vω + h(x′(ω), ζ(ω))− h(x(ω), ζ(ω)), (14d)

where v ∈ R|Ω| and (14c) follows from the fact that searching over worst-case distribution is indeed

searching over the worst-case outcome. Plugging this result back into Equation (13) leads to the

two-stage optimization model presented in (12).
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In general, problem (12) is a non-linear two-stage robust optimization problem. However, under

a number of popular ambiguity sets, support function of δ∗(v|P) renders a linear programming repre-

sentation which in turn makes (12) a robust linear two-stage program. Such choices include the sets

associated to Conditional Value-at-Risk or expectiles (see Bellini and Bernardino (2017)), and, in the

DRO literature, some type-1 Wasserstein ambiguity sets (see Mohajerin Esfahani and Kuhn (2018))

or some sets based on hypothesis testing (see Bertsimas et al. (2018)).

Corollary 2. Given that Assumption 1 is satisfied and that D := {p ∈ R|Ω| | ∃ q ∈ Rnq , Bpp+Bqq ≤ b},
where Bp ∈ Rm×|Ω|, Bq ∈ Rm×nq , b ∈ Rm, then problem (12) reduces to the following robust two-stage

linear optimization problem:

min
x∈X∩Xna

max
x′∈X∩X∆

min
r, v,λ

r

s.t. λ>b− vω +

T∑
t=1

c>t (ζ(ω))(x′t(ω)− xt(ω)) ≤ r, ∀ω ∈ Ω

B>p λ = v

B>q λ = 0

r ∈ R, v ∈ R|Ω|, λ ∈ Rm+ .

(15)

Proof. We define

D′ := {p′ ∈ R|Ω|+nq | ∃p ∈ R|Ω|, q ∈ Rnq ,p′ = [p> q>]>, Bp′ ≤ b}

where B := [Bp Bq] so that D := {p ∈ Rnp | ∃p′ ∈ D′,p = Ap′}, where A := [I 0]. Since D is an

affine projection D′, we have that

δ∗(v|D) = sup
p′:Bp′≤b

v>Ap′ = inf
λ≥0:A>v=B>λ

b>λ ,

where we exploited strong LP duality theory, given that D, and implicitly D′, is non-empty. After

replacing B by using its definition and reintegrating the infimum operation in constraint (12b) we get

problem (15).

Example 3. Conditional Value-at-Risk (CVaR) evaluates the conditional expectation of the random

variable ξ under α% worst scenarios and mathematically takes the form of

CVaRα(ξ) := inf
t
t+

1

1− α
Ep̄[max(0,−ξ − t)], (16)

where p̄ denotes the reference probability distribution. It has the following worst-case expectation

representation (see Rockafellar et al. (2006)):

CVaRα(ξ) := sup
p∈D∩M

∑
ω∈Ω

pωX(ω), (17)

where D := {p ∈ R|Ω| |p ≤ p̄/(1− α)}, where p̄ω := Q(ω). Based on Corollary 2, we get the following

two-stage linear program:

min
x∈X∩Xna

max
x′∈X∩X∆

min
r, v

r (18a)

s.t.
p̄>v

1− α
− vω +

T∑
t=1

c>t (ζ(ω))(x′t(ω)− xt(ω)) ≤ r, ∀ω ∈ Ω (18b)

r ∈ R, v ∈ R|Ω|+ . (18c)

Solving problem (15) in polynomial time is likely to be in general impossible as the class of two-

stage robust linear optimization problems is known to be NP-hard, see Ben-Tal et al. (2004). However,
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there is a variety of exact and approximate solution schemes that can practically solve problem (15),

see (Poursoltani and Delage 2021, Section 3.1). One such exact approach is the column-and-constraint

generation algorithm proposed in Zeng and Zhao (2013). The procedure expresses the inner minimiza-

tion problem through its KKT conditions which in turn can be expressed as a mixed-integer linear

program (MILP), solving the resulting min-max problem using an iterative scheme. Such a procedure

can be directly applied to problem (15) which we briefly discuss in Appendix B. We remark that

the effectiveness of the column-and-constraint generation algorithm heavily relies on the the ability

to efficiently solve the inner MILP. However, the McCormick inequalities which are typically used to

linearize the KKT conditions lead to weak linear relaxations for the inner MILP. When using the Con-

ditional Value-at-Risk, one can strengthen the mixed-integer formulation by taking advantage both of

structure of the ambiguity set, which leads to improved computational efficiency. This strengthened

formulation is also discussed in Appendix B.

We finish this section by remarking that alternative two-stage robust formulation exists for prob-

lems (12) and (15) as suggested by Bertsimas and de Ruiter (2016) for the two-stage linear programming

case and de Ruiter et al. (2018) for the two-stage non-linear case. This could be of practical interest

for problems (12). Under Assumption 1, X ∩X∆ is a polyhedral set while in general constraint (12b)

is a non-linear convex constraint due to the support function δ∗(v|D). As suggested by de Ruiter et al.

(2018), one can dualize the inner minimization problem in problems (12), interchanging the order of

the maximization over x′ ∈ X ∩X∆ and the newly introduced dual variables λ, and finally dualizing the

new inner maximization over x′ ∈ X ∩ X∆. The resulting two-stage problem will have linear first and

second stage constraints, while all non-linear constraint will now appear in the maximization problem.

Such reformulation could open up new avenues for exact and approximate solution approaches for

regret minimization problems.

5 Numerical experiments

In this section, we conduct two numerical studies to provide numerical insights on the relationship

between the amount of look-ahead (∆) allowed for the benchmark policy, the level of risk aversion on

the solution quality, and the level of regret. To this end, Section 5.1 studies a single-stage single-item

newsvendor problem, which reduces to either the ex-post (EP-RAR) or ex-ante (EA-RAR) problems

discussed in the introduction. By comparing the two regret models as well as the solution resulting

fromMSP we aim to shed light on the conditions in which each method produces the least conservative

solution. In Section 5.2, we consider the multi-period inventory problem discussed in Section 3.3. The

multi-stage nature of the problem allows us to benchmark multiple values of ∆ including fractional

values and measure the level of regret. In addition, we examine the breakdown of regret as this is

expressed in (11). In both studies, we measure risk using Conditional Value-at-Risk as it allows to easily

control the level of risk aversion with a single parameter, namely α. Solutions to the regret models that

appear in each study can be obtained using the column-and-constraint generation algorithm discussed

in Appendix B.

5.1 Newsvendor problem

In this section, we consider a single-item newsvendor problem in which h(x, ζ) = pmin(x, ζ) − cx

denotes the profit function, p > 0 is the sales price, c < p is the ordering cost, and ζ is the random

demand following a discrete uniform distribution with 10000 scenarios taking values in [8, 12]. The

ordering decision x is constrained in X = [8, 12]. Using ρ(ξ) = CVaRα(ξ), we solve problem (3) for

∆ = 0 and ∆ = 1, as well as the corresponding CVaR minimization problem (1).

To compare the ordering decisions from the three utility functions we consider instances where

(p, c) ∈ {(10, 1), (10, 5), (10, 9)}. Figure 3 plots the optimal regret and Figure 4 plots the optimal

ordering levels as a function of α. We observe the following: (i) For α = 0, all models reduce

to minimizing expected loss, thus all models produce the same optimal solution, as suggested by
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Proposition 1, despite that the optimal regret is different. (ii) For α = 1, both ∆ = 0 and ∆ = 1

produce the same optimal ordering decision. This is not surprising as the risk measure reduces to

ρ(ξ) = CVaR1(ξ) = ess sup(ξ) and from Theorem 1 we know that both regret models will achieve

the same optimal regret, see Figure 3. Note that in general it is possible that the two regret models

produce different optimal solutions, however, this is not the case in this one-dimensional example.

(iii) Although all models result in the same ordering levels for α = 0, as the value of α increases

both ∆-regret models result in significantly larger ordering levels compared to the CVaR minimization

problem. If we interpret the behavior of the decision maker to be “less conservative” if her order is large,

then the results provide further evidence that regret minimization models provide less conservative

solutions than CVaR minimization. Similar behavior was observed when other demand distribution

were considered such as symmetric and skewed Beta distributions (not presented in this paper). (iv)

The ordering decisions for both ∆ models is the same for p = 2c due to the symmetric nature of the

distributions. For p > 2c, ∆ = 1 is less conservative while the reverse is true for the p < 2c case. This

can be intuitively interpreted as follows: when the profit margin p− c is large, see (p, c) = (10, 1), then

for ∆ = 1 under-ordering will induce a large regret as the benchmark decision is chosen after observing

the demand and due to the large profit margin over producing will induce lower regret. ∆ = 0 on the

other hand, produces slightly more conservative ordering decisions as the benchmark decision is chosen

before the demand realizes. In contrast, the reverse behavior is true if profit margin p− c is small, see

(p, c) = (10, 9). The ordering decisions from both ∆ models is significantly lower as the profit margin

is small with ∆ = 0 producing less conservative decisions than with ∆ = 1. (v) It is interesting to

observe that for (p, c) = (10, 1) and (p, c) = (10, 9) both ∆-regret models have the same optimal regret.

This is due to the fact that the demand follows a uniform distribution which is symmetric.

To better understand the optimal ordering levels from the ∆-regret models, we now take a look

at the behavior of the benchmark ordering levels x′. For ∆ = 1, as the benchmark policy can adapt

to the demand, the optimal ordering decisions is x′∗ = ζ. Thus its decision is not affected by the α

level and as consequence the ordering level x∗ is also constant across all α values. For ∆ = 0, for any

x ∈ X problem (3b) is in general non-convex. For the optimal x∗ and α > 0 problem (3b) has two

global maximizers depicted in red in Figure 5. Therefore, the benchmark policy can be thought as a

randomized policy. For the optimal x∗ we can thus equivalently express (3b) as

R∆(x∗) = sup
F∈F(x′∗1 ,x

′∗
2 )

Ex′∼F
[
ρ(h(x′, ζ)− h(x∗, ζ)|x′)

]
(19)

where F(x′∗1 , x
′∗
2 ) is the family of all Bernoulli distributions supported on the two global maximizers

of problem (3b). Using the optimizer F ∗ of (19), we can now construct EF∗(x′∗) which is depicted in

blue in Figure 5. The downwards sloping behavior of EF∗(x′∗) as α increases in (p, c) = (10, 1) partly

explains the downward sloping behavior of the ordering decision x∗ in the range α ∈ (0, 0.5) as the

decision maker is trying to minimize her regret compared to the benchmark policy thus orders less.

However, in the range α ∈ (0.5, 1] the decision maker is more concerned about the worst-case behavior

of the regret thus her ordering decision is less affected by the probability the adversary assigns to each

of its actions. The reverse is true for (p, c) = (10, 9).

5.2 Multi-period inventory management problem

In this section, we revisit the multi-stage inventory management problem described in Section 3.3

and consider an instance with 3 production facilities and a three day horizon. We assume that the

demand information for the next day can be progressively collected in the middle and on the next

morning; however, the production can only be planned at the beginning of each day at which point

the full demand of the day is known. Overall, the outcome space includes 16 scenarios (|Ω| = 16).

The scenario tree that describes the evolution of the random demand, demand realizations and other

parameters of the inventory model are presented in Appendix C. The experiments are conducted over

the risk aversion levels of α = n/16, where n ∈ {0, 1, ..., 16}. We remark that although we present
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results for a single instance, when tested on other randomly generated instances the insights from the

results presented were qualitatively the same.
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Figure 3: Optimal Regret for different value of ∆, α and (p, c).
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Figure 4: Optimal ordering levels for ∆-regret and CVaR minimization using a discrete Uniform demand distribution.
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Figure 5: Optimal adversarial ordering levels. For each α the two global optimizers of (3b) are given in red, while blue
depicts the mean EF∗ (x′∗) of the adversarial randomized policy.
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The first experiment compares the optimal ∆-regret values for ∆ ∈ {0, 0.5, 1, 1.5, 2} at different

levels of risk aversion α. The results are presented in Figure 6. Looking at the figure, one can remark

that for any fixed look-ahead level, increasing the risk aversion level leads to an increased minimal ∆-

regret. This originates from the fact that the Conditional Value-at-Risk only considers the worst-case

(1−α)·100% of scenarios, e.g. while at α = 0% it incorporates all the scenarios, at α = 100% it measures

the regret with respect to the worst-case scenario. On the other hand, when fixing the risk aversion

level, the results demonstrate an increase in the minimal regret as the look-ahead level ∆ increases

from 0 to 2. This is in line with fact that as ∆ increases, we are gradually relaxing the nonanticipativity

constraints imposed on the set of benchmark policies, as suggested in Lemma 1. Moreover, we can

observe that as the risk aversion level reaches 100%, i.e., ρ(ξ) = CVaR1(ξ) = ess sup(ξ), all regret

models achieve the same regret, verifying Theorem 1 which stated that all models are equivalent under

the essential supremum risk measure. At the opposite side of the graph, one sees that the minimal

risk for the regret model with ∆ = 0 converges to zero as predicted by Corollary 1.

Figure 6: Optimal ∆-regret using Conditional Value-at-Risk at different risk aversion level α

The second set of results presents a breakdown of regret as this is expressed in Equation (11).

To this end, using the optimal solutions of ∆ ∈ {0, 1, 2} we evaluate the three expression in (11)

which can be interepretted as the “look ahead regret” (11a), “risk-aversion regret” (11b) and “regret

of being suboptimal w.r.t. MSP” (11c). Figure 7 presents the cumulative breakdown of the regret.

As expected, for α = 0%, the “risk-aversion regret” is zero for all ∆ by definition, while for α = 100%

the “look ahead regret” is zero for all ∆ as suggested by Theorem 1. In fact, the “look ahead regret”

decreases as α increases. For ∆ = 0, by definition the “look ahead regret” is zero indicating that regret

is a combination of the “risk-aversion regret” and “regret of being suboptimal w.r.t. MSP”. It is

interesting to observe that the “regret of being suboptimal w.r.t. MSP” is relatively low in the range

of α ∈ [0, 0.6] but constitutes roughly half of the total regret when α = 1.

A Illustrative example

Table 4 provides detailed calculations of obtaining the optimal decision for the project selection prob-

lem, described in Example 1, when the ex-post worst-case regret measure is exploited. Once the

decision maker chooses project A (x = xA), she will face either scenario ω1 or ω2, resulting in a payoff

of 1$ or 6$, respectively. Having full access to the realized scenario, the optimal benchmark decision

consists of choosing project B (x′ = xB) under ω1 with 5$ payoff and picking project A (x′ = xA)

under ω2 with 6$ payoff, leading to a 4$ regret for the decision maker in the first case and zero regret

in the second one; consequently, the worst-case regret of choosing project A will be 4$. Performing the

same analysis for x = xB and x = xC brings about the worst-case regrets of 4$ and 3$, respectively.

As a conclusion, aiming at minimizing the worst-case regret, the decision maker finds project C with

3$ worst-case regret as her best option.
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Figure 7: Regret breakdown for different ∆-regret optimal solutions.

Table 4: EP-WCR

x ω x′ {.}† sup
ω∈Ω
{.}

Project A
ω1 Project B 4

4
ω2 Project A 0

Project B
ω1 Project B 0

4
ω2 Project A 4

x∗x∗x∗= Project C
ω1 Project B 1

333
ω2 Project A 3

min
x∈X

sup
ω∈Ω
{.} 333

† {.}:=
{

max
x′∈X

h(x
′
, ζ(ω))− h(x, ζ(ω))

}

Putting emphasis on risk-aversion, Table 5 clarifies the details of getting the optimal decisions for

the ex-post worst-case expected regret minimization problem. In this setting, similar to the EP-WCR

case, the benchmark policy has full access to the future scenario realizations, and as an immediate

result, always selects project B under ω1 and project A under ω2. If the manager picks project A for

investment, withdrawing the distributional information, the felt regret consists of 4$ and 0$ for ω1 and

ω2 realizations, respectively. However, in contrast to EP-WCR, in EP-RAR with ρ(ξ) := supP∈P EP[ξ]

the expected regret is measured with respect to the worst P from P. Since the PI and PII lead to

expected regrets of 3.2$ and 0$, the worst-case expected regret of choosing project A equals 3.2$.

Replicating the same analysis for x = xB and x = xC gives rise to worst-case expected regrets of 4$
and 3$. As a consequence, investment on project C with 3$ worst-case expected regret will be the

optimal choice.

An alternative to EP-RAR consists in EA-RAR, where the benchmark has no longer access to

the realized scenario and only knows the true distribution. Table 6 summarizes the analysis for this

problem. To be consistent with previous analysis, once again, we elaborate the details of getting

the worst-case expected regret of choosing project A. In this case, the immediate payoff under ω1

and ω2 will be 1$ and 6$, respectively. Subsequently, the benchmark decision can be made after

evaluating the expected regret of each of the three possible options (x′ = xA, xB or xC) under PI and

PII and picking the one which maximizes the expected regret of decision maker’s choice (x = xA).

Looking at Table 6, one remarks six expected values for x = xA, representing these six settings. For
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Table 5: EP-RAR

x P x′∗
EP [.]† sup

P∈P
EP [.]

ω1 ω2

Project A
PI Project B Project A 3.2

3.2PII Project B Project A 0

Project B
PI Project B Project A 0.8

4PII Project B Project A 4

x∗x∗x∗ = Project C
PI Project B Project A 1.4

333PII Project B Project A 3

min
x∈X

sup
P∈P

EP [.] 333

† EP [.] := EP
[
maxx′∈X h(x′, ζ(ω))− h(x, ζ(ω))

]

instance, if x′ = xC and P = PI , the corresponding expected regret of x = xA can be derived as

EP [h(x′, ζ)− h(x, ζ)] = 0.8(4− 1) + 0.2(3− 6) = 1.8$. The maximum expected regret among thes six

values is 2.4$ which is associated with x′ = xB under P = PI .

Table 6: EA-RAR

x x′ P EP [.]† sup
P∈P

EP [.] max
x′∈X

sup
P∈P

EP [.]

x∗x∗x∗ = Project A

Project A
PI 0

0

2.42.42.4

PII 0

Project B
PI 2.4

2.4PII −4

Project C
PI 1.8

1.8PII −3

Project B

Project A
PI −2.4

4

4

PII 4

Project B
PI 0

0PII 0

Project C
PI −0.6

1PII 1

Project C

Project A
PI −1.8

3

3

PII 3

Project B
PI 0.6

0.6PII −1

Project C
PI 0

0PII 0

min
x∈X

max
x′∈X

sup
P∈P

EP [.] 2.42.42.4

† EP [.] := EP
[
h(x′, ζ)− h(x, ζ)

]
Performing the same analysis for x = xB and x = xC guides the manager towards investing on the

project with minimum worst-case expected regret; more specifically, the minimum value in the last

column of this table is 2.4$, indicating that the best choice for the manager is to choose project A for

investment with worst-case expected regret of 2.4$. This is in contrast with the recommended option

of project C coming from EP-WCR and EP-RAR problems.
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B Column and constraint generation algorithm

The column and constraint generation algorithm, proposed by Zeng and Zhao (2013), is an iterative

scheme which optimally solves two-stage linear robust optimization problems with right-hand-side

uncertainty. Hence, we can employ it for solving problem (15). Assume that X ∩ Xna is non-empty,

and let {x′1, . . . ,x′K} denote the set of policies that comprise the vertices of X∩X∆, i.e., x′k : Ω→ Rn×T
for all k ∈ {1, . . . ,K}. Let K′ ⊆ {1, . . . ,K}. The column and constraint generation algorithm can be

viewed as a reduction to the vertex enumeration method, where at each iteration, a vertex is added to

the following master problem

M(K′) = minimize
x,s,{vk,λk}∀k∈K′

s

s.t. λ>k b− vω,k +

T∑
t=1

c>t (ζ(ω))(x′t,k(ω)− xt(ω))) ≤ s, ∀ω ∈ Ω , ∀k ∈ K′

B>p λk = vk, ∀k ∈ K′
B>q λk = 0, ∀k ∈ K′
s ∈ R, λk ∈ Rm+ , vk ∈ R|Ω|, ∀k ∈ K′
x ∈ X ∩ Xna .

(20)

For any K′ ⊆ {1, . . . ,K},M(K′) constitutes a lower bound on the optimal value of problem (15). For

a given x ∈ X ∩Xna , we can evaluate R∆(x) through solving the inner maximization of problem (15).

Expressing the inner minimization of problem (15) thought its KKT conditions and merging it into

the outer maximization problem, yields the following bilinear optimization program

R∆(x) = max
x′, r, v,λ,p, q

r + λ>b (21a)

s.t. r + vω ≥
T∑
t=1

c>t (ζ(ω))(x′t(ω)− xt(ω)), ∀ω ∈ Ω (21b)

B>p λ = v (21c)

B>q λ = 0 (21d)∑
ω∈Ω

pω = 1 (21e)

Bpp+Bqq ≤ b (21f)

pω(r + vω −
T∑
t=1

c>t (ζ(ω))(x′t(ω)− xt(ω))) = 0, ∀ω ∈ Ω (21g)

λie
>
i (b−Bpp−Bqq) = 0, ∀i = 1, 2, ...,m (21h)

r ∈ R, v ∈ R|Ω|, λ ∈ Rm+ , p ∈ R|Ω|+ , q ∈ Rnq (21i)

x′ ∈ X ∩ X∆, (21j)

where ei ∈ Rm is the ith column of the identity matrix. Constraints (21b)–(21d) ensure primal

feasibility, (21e)–(21f) ensure dual feasibility, while the bilinear constraints (21g) and (21h) ensure

complementary slackness. To make the problem amenable to efficient optimization solvers, the bilin-

ear constraints can be linearized using McCormick inequalities, see McCormick (1983). To this end,

let M denotes a sufficiently large constant, typically referred to as the big-M constant in the inte-

ger programming literature. By introducing binary variables Binp ∈ {0, 1}|Ω| and Binλ ∈ {0, 1}m,

constraints (21g) and (21h) can be reformulated as

r + vω −
T∑
t=1

c>t (ζ(ω))(x′t(ω)− xt(ω)) ≤MBinpω, ∀ω ∈ Ω (22a)

p ≤ 1− Binp (22b)
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b−Bpp−Bqq ≤MBinλ (22c)

λ ≤M(1− Binλ). (22d)

Solving the resulting mixed integer linear program provides an upper bound on the optimal value of

problem (15). The optimal worst-case benchmark policy x′ of problem (21), can be added to the

master problem to further strengthen the lower bound. Algorithm 1 describes the iterative process.

The computational efficiency of Algorithm 1 heavily relies on the ability to evaluate efficiently R∆(x)

Algorithm 1 Column and constraint generation algorithm, Zeng and Zhao (2013)

1: Initialize: lb = −∞, ub =∞, K′ = ∅.
2: Solve problem (20) and let x∗ be the optimal solution. Set lb =M(K′);
3: Evaluate R∆(x∗) by solving problem (21) and let x′∗ be the optimal solution. Set ub = R∆(x∗);
4: if ub− lb > 0 then
5: K′ = K′ ∪ {i} where i is the index of x′∗ in the set of vertices {x′1, . . . ,x′K}, and go to Step 2;
6: else
7: Return: x∗ and R∆(x∗).
8: end if

in Step 3. The choice of the big-M constant heavily influences the solution speed, i.e., choosing it too

big will result to weak linear relaxation leading in longer computational times. For the special case

where the risk measure is the Conditional Value-at-Risk, the matrices in D reduce to Bp = I ∈ R|Ω|×|Ω|,
Bq = 0 and b = p̄/(1− α). Since by construction p ∈ [0, 1]|Ω|, then constraint (22c) reduces to

p̄

(1− α)
− p ≤ 1

(1− α)
diag(p̄)Binλ,

where diag(p̄) is a diagonal matrix with p̄ appearing in the diagonal entries. In other words, the big-M

constant can be set to p̄ω/(1− α) for the ωth constraint.

C Multi-period inventory management problem

Table 7: Demand Realizations - ζt(ω)

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 ω11 ω12 ω13 ω14 ω15 ω16

t

0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
0.5 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4
1 6 6 6 6 3 3 3 3 11 11 11 11 12 12 12 12

1.5 10 10 6 6 13 13 4 4 0 0 15 15 9 9 14 14
2 4 1 7 14 2 4 9 12 15 2 12 8 13 4 11 3

Table 8: Instance Parameters

cit i = 1 i = 2 i = 3

t = 1 14 12 20
t = 2 18 16 22
t = 3 24 18 28

x̄it = 15, ∀i ∈ I, ∀t ∈ T
x̄i,tot = 25, ∀i ∈ I

x0
wh = 0, xwh = 0, x̄wh = 50
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Figure 8: Scenario tree of a multi-period inventory management problem with T = 3, |Ω| = 16 and Td := {1, 1.5, 2, 2.5, 3}
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