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– Bibliothèque et Archives Canada, 2022

The publication of these research reports is made possible thanks
to the support of HEC Montréal, Polytechnique Montréal, McGill
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Abstract : We consider the problem of estimating the density of a random variable X which is
the output of a simulation model. We show how an unbiased density estimator can be constructed
via the classical likelihood ratio derivative estimation method proposed over 35 years ago by Glynn,
Rubinstein, and others. We then extend this density estimation method to cover situations where it
does not apply directly. What we obtain is closely related to the generalized likelihood ratio method
proposed recently by Peng and his co-authors, although the assumptions differ. We compare the
methods and assumptions on some examples.
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1 Introduction

We are interested in estimating the unknown density f of a continuous random variable X when

realizations of X can be generated by simulation. Specifically, we assume that X = h(Y) where the

random vector Y has a known distribution from which we can sample exactly, and we know how

to compute h(y) for any given realization y. There is a well-developed set of simulation methods

to estimate the expectation µ = E[X], reduce the variance of the estimators of µ, and compute

a confidence interval on µ Asmussen and Glynn (2007); Law (2014). But simulation experiments

typically provide information for much more than estimating the mean. In particular, this information

can be exploited to estimate the entire distribution of X instead of just its mean. This could be done

simply by providing an estimate of the cumulative distribution function (cdf), but a density estimate

actually provides a better visual insight on the distribution. A simple and widely used reasonable

density estimator is a histogram. An improvement is a kernel density estimator (KDE) Parzen (1962);

Scott (2015), also popular but less obvious to construct and tune.

These density estimators are biased. To reduce the bias, one must reduce the width of the rectan-

gles for the histogram or the bandwidth for the KDE, but in both cases this increases the variance.

Therefore, a compromise must be made to minimize the mean square error (MSE), and as a result

the MSE of the density estimator does not converge at the canonical rate of O(n−1) with n indepen-

dent simulation runs. The best rate with the optimal bandwidth is O(n−2/3) for the histogram and

O(n−4/5) for the KDE Scott (2015). When the observations of X are given and assumed independent,

the KDE is pretty much the best available method. But when the observations are generated by (Monte

Carlo) simulation, there are opportunities to do better by manipulating the way the observations are

obtained and collecting additional information.

Since the density is the derivative of the cdf: f(x) = F ′(x) where F (x) =
∫ x
−∞ f(y)dy, one may

think of taking the derivative of an unbiased cdf estimator as a density estimator. Doing this with the

empirical cdf does not work, because its derivative is zero almost everywhere. To make it work, one

needs to construct a cdf estimator which is continuous in x and differentiable almost everywhere.

One approach that follows this path and was examined recently (Asmussen, 2018; L’Ecuyer et al.,

2022) uses conditional Monte Carlo (CMC) to construct a conditional density estimator (CDE). It

consists in hiding part of the information in Y and computing the cdf and density of X conditional

on the information that remain. This requires hiding enough information for the cdf of the resulting

conditional distribution to be continuous (i.e., no probability mass) while keeping sufficient information

for the conditional density to be sufficiently easy to compute. When this can be achieved, under mild

additional conditions, the derivative of the sample cdf can be taken as an unbiased density estimator.

This CDE can be very effective and it gives an O(n−1) convergence rate for the MSE. However, it is

not always easy to construct a valid and effective CDE in this way.

The method developed in this paper provides an alternative. As for the CDE, the likelihood ratio

density estimator (LRDE) is based on the idea of constructing a continuous cdf estimator and taking

the derivative. But instead of replacing the cdf by a conditional expectation, we make a change of

variable to obtain an expression that defines the cdf F (x) as an integral whose bounds (ideally) do

not depend on x, in which case we can differentiate this expression by taking the derivative inside the

integral. The change of variable typically introduces a likelihood ratio in the integrand, hence the name

LRDE. In this sense, it is based on the likelihood ratio (LR) derivative estimation method described

and studied by Glynn (1987); L’Ecuyer (1990, 1995); Glynn and L’Ecuyer (1995), and Asmussen and

Glynn (2007), among others. Our method generalizes the approach of Laub et al. (2019), designed

for the special case where X is a sum of dependent random variables with known joint density, and it

was originally inspired by that paper. In case the integral bounds still depend on x, things get a little

more complicated and the differentiation yields additional terms that account for this change in the

region of integration as a function of x, but we can still obtain an unbiased density estimator, under

appropriate conditions.
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A closely related density estimation approach was proposed by Lei et al. (2018) and Peng et al.

(2020), based on a generalized likelihood ratio (GLR) method of Peng et al. (2018). The GLR is an

extension of the classical LR derivative estimation method designed to deal with discontinuities that

are not easily handled by ordinary LR. Lei et al. (2018) sketched out how to construct a density

estimator via GLR, although their general formulas are not so easy to interpret and implement in

applications. More convenient GLR density estimator formulas are given in Theorem 1 of Peng et al.

(2020). Peng et al. (2022a) recently proposed GLR-U, a variant of GLR in which the stochastic model

is defined directly in terms of independent uniform random variables over (0, 1), and which can handle

a broad class of situations that were not covered by the original GLR setting of Peng et al. (2018).

GRL-U can be adapted to estimate densities.

Our development in this paper starts with the ordinary LR derivative estimator instead, and is

simpler. Our LRDE uses a change of variable followed by a change of density to construct a smooth

cdf estimator which can be differentiated to provide an unbiased density estimator, the LRDE. We

give explicit conditions under which this LRDE is unbiased. Then we further explore the situation

in which some of our initial conditions do not hold because the integration domain after the change

of variable depends on x, and we show how to extend our plain vanilla LRDE to this setting. The

resulting estimators are equivalent in many cases to those obtained via GLR or GLR-U, although

our unbiasedness conditions differ from those given for those GLR methods. We illustrate this with

examples in which our conditions hold whereas those given in the GLR papers do not hold. Our results

therefore expand the range of applicability of LR and GLR for density estimation.

The remainder is organized as follows. In Section 2, we provide background on density estimation,

define the general setting, develop our vanilla form of LRDE, and provide some examples. We further

extend our LRDE to the case where the integration domain after the change of variable depends on x,

and we provide sufficient conditions for unbiasedness. In Section 3, we review density estimators that

have been proposed based on the GLR approach, with the corresponding assumptions. For each case,

we highlight certain assumptions that often do not hold, and we give specific illustrations in which

this happens while all our assumptions from Section 3 hold. In Section 4, we illustrate and compare

different LRDE variants on a stochastic activity network example. We show that some variants work

well while others do not (the corresponding assumptions do hot hold), and this depends on the choice

of change of variable. We also report the results of numerical experiments with this example. A

conclusion is given in Section 5.

2 Likelihood ratio density estimation

2.1 Setting

We assume a model of the form X = h(Y), where Y is a random vector having a known density fY
with respect to the Lebesgue measure, continuous over a mesurable set (typically a rectangular box)

R ⊆ Rd, h : R → R is a measurable function, and the random variable X has a continuous cdf F (it

has a density f with respect to the Lebesgue measure, with no mass point). We further assume that

we can sample realizations of Y from its exact distribution by Monte carlo and that we know how to

compute X = h(Y) for any such realization. Thus, we can easily generate independent realizations of

X. Our aim is to estimate the unknown density f of X over a finite interval [a, b] from such realizations

of X and any additional information that can be collected from the simulation.

We denote by f̂n an estimator of f from a sample of size n, and we measure the quality of f̂n over

[a, b] by the mean integrated square error (MISE), defined as

MISE = MISE(f̂n) =

∫ b

a

E[f̂n(x)− f(x)]2dx. (1)
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The MISE is the sum of the integrated variance (IV) and the integrated square bias (ISB):

MISE = IV + ISB =

∫ b

a

E(f̂n(x)− E[f̂n(x)])2dx+

∫ b

a

(E[f̂n(x)]− f(x))2dx.

For the situation where n independent observations of X are given, the two most popular density

estimation methods are histograms and KDEs (Scott, 2015). They achieve a MISE of O(n−2/3) and

O(n−4/5), respectively, when their parameters are selected optimally. For the LRDE methods examined

in this paper, under the given assumptions, the ISB is zero and the MISE is O(n−1).

2.2 The LRDE without boundary terms

The cdf of X can be written as

F (x) = P[h(Y) ≤ x] =

∫
R

I[h(y) ≤ x]fY(y)dy. (2)

The aim is to obtain an expression for the derivative F ′(x) of the above integral with respect to x,

which can be written as the expectation of a random variable that we know how to sample. We cannot

just move the differentiation with respect to x inside the integral in (2), because the indicator function

is discontinuous in x. To get around that, the idea is to introduce a change of variable y 7→ z = z(x) of

the form y = ϕ(z;x) for a family of one-to-one functions {ϕ(·;x), x ∈ [a, b]} such that the inequality

h(ϕ(z;x)) ≤ x reduces to h̃(z) ≤ 1, for some function h̃ independent of x when z is given. The

indicator term I[h(y) ≤ x] can then be rewritten as I[h̃(z) ≤ 1], which no longer depends on x. We

assume for now that R̃ = ϕ−1(R)
def
= ϕ−1(R;x) is independent of x. where ϕ−1 denotes the inverse of

ϕ(z;x) with respect to z for fixed x. This ensures that the integration domain remains independent

of x after the change of variable. We will lift this condition in Section 2.3. The dependence on x is

thus entirely moved into the distribution of z, and we can rewrite

F (x) =

∫
R̃

I[h̃(z) ≤ 1]fY(ϕ(z;x))|Jϕ(z;x)|dz,

where |Jϕ(z;x)| is the Jacobian of the transformation y = ϕ(z;x), defined as the determinant of the

matrix of partial derivatives of the coordinates of ϕ(z;x) with respect to the coordinates of z (for fixed

x). This Jacobian is assumed to exist and be nonzero.

Suppose we want to estimate the derivative at x = x0. In a small open neighborhood Υ(x0) of x0,

the likelihood ratio between the density of z for x and for x0 is

L(z;x, x0) =
fY(ϕ(z;x))|Jϕ(z;x)|
fY(ϕ(z;x0))|Jϕ(z;x0)|

.

In this neighborhood, we have

F (x) =

∫
R̃

I[h̃(z) ≤ 1]L(z;x, x0)fY(ϕ(z;x0))|Jϕ(z;x0)|dz. (3)

Under appropriate conditions to be specified below, we can take the derivative with respect to x inside

the integral in (3), to obtain

f(x) = F ′(x) =
d

dx

∫
R̃

I[h̃(z) ≤ c]L(z;x, x0)fY(ϕ(z;x0))|Jϕ(z;x0)|dz

=

∫
R̃

I[h̃(z) ≤ 1]

(
d

dx
L(z;x, x0)

)
fY(ϕ(z;x0))|Jϕ(z;x0)|dz

=

∫
R̃

I[h̃(z) ≤ 1]

(
d

dx
L(z;x, x0)

)
fY(ϕ(z;x))|Jϕ(z;x)|

L(z;x, x0)
dz
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=

∫
R̃

I[h̃(z) ≤ 1]

(
d

dx
lnL(z;x, x0)

)
fY(ϕ(z;x))|Jϕ(z;x)|dz

=

∫
R

I[h(y) ≤ x]S(y, x)fY(y)dy

= E[I[h(Y) ≤ x]S(Y, x)], (4)

where

S(y, x) = S(ϕ(z;x), x)
∣∣
z=ϕ−1(y;x)

=
d lnL(z;x, x0)

dx

∣∣∣
z=ϕ−1(y;x)

=
d ln(fY(ϕ(z;x))|Jϕ(z;x)|)

dx

∣∣∣
z=ϕ−1(y;x)

=
(
∇(ln fY)(y)>∇xϕ(z;x) +

d ln |Jϕ(z;x)|
dx

)∣∣∣
z=ϕ−1(y;x)

(5)

is the score function associated with L. This yields the unbiased LRDE (for one sample)

f̂(x) = I[h(Y) ≤ x]S(Y, x), (6)

where Y is generated from the density fY.

We made the change of variable to be able to move the differentiation inside the integral, and

after that we reversed the change of variable. Our approach can be seen as an application of the

LR derivative estimation methodology (Glynn, 1990; L’Ecuyer, 1990), with an additional change of

variable to be able to apply the method for density estimation. Formula (6) was already derived

in L’Ecuyer and Puchhammer (2022) with a more specific change of variable.

Assumption 1. We assume that Y has a density fY with respect to the Lebesgue measure on R. There

is a family of bijective functions {ϕ(·;x) : R̃ → R, x ∈ [a, b]} so that h(ϕ(z;x)) ≤ x is equivalent to

h̃(z) ≤ 1 for some function h̃ independent of x. Furthermore, ϕ and fY satisfy

(A1) For all x ∈ [a, b], the mapping ϕ(·;x) has continuous partial derivatives and |Jϕ(·;x)| 6= 0.

(A2) With probability 1 over the realizations of Y = ϕ(Z;x), fY(ϕ(Z;x))|Jϕ(Z;x)| is a continuous

function of x over [a, b], and is differentiable except perhaps at a countable set of points D(Y) ⊂
[a, b]. There is also a random variable Γ defined over the same probability space as Y with

E[Γ] <∞ and

sup
x∈[a,b]\D(Y)

|I[h(Y) ≤ x]S(Y, x)| ≤ Γ.

Condition (A1) guarantees that the change of variable with ϕ(z;x) is justified and (A2) allows us

to exchange the order of integration and differentiation in the second line of (4).

Theorem 1. Suppose R̃ = ϕ−1(R;x) is independent of x. Under Assumption 1, the LRDE (6) is

unbiased for the density f(x) at x for all x ∈ [a, b]. If E[Γ2] ≤ Kγ for some constant Kγ <∞, then its

variance is also bounded by Kγ uniformly over the interval [a, b], so its IV is bounded by (b− a)Kγ .

Example 1 (A sum of random variables). Suppose that R = Rd or R = [0,∞)d, and that Y =

(Y1, . . . , Yd)
> has a differentiable density fY over R. Let X = h(Y) = Y1 +Y2 + · · ·+Yd = 1 ·Y (the

scalar product), where 1 is the vector with all entries equal to 1. We want to estimate the density at

some point x > 0.

We first take the change of variable

y = ϕ(z;x) = x z. (7)

This gives h(xz) = xh(z) ≤ x iff h̃(z) ≤ 1 independent of x with h̃ = h. For each case of R, this ϕ

also gives ϕ−1(R;x) = R, which does not depend on x. Moreover, |Jϕ(z;x)| = xd, ∇xϕ(z;x) = z,

S(y, x) = (d+ (∇(ln fY)(y)) · y) /x, and Theorem 1 applies. The resulting LRDE (6) is the special

case considered in Laub et al. (2019); their Proposition 1 was already proving that I[1 ·Y ≤ x]S(Y, x)
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is an unbiased estimator of the density of X at x for this special case. If Y1, . . . , Yd are independent

and Yj has density fj , we further have ln fY(y) =
∑d
j=1 ln fj(yj). Then,

S(y, x) =
d+ (∇(ln fY)(y)) · y

x
=

1

x

d+

d∑
j=1

yj
f ′j(yj)

fj(yj)

 . (8)

An alternative change of variable is

y = ϕ(z;x) = z + x ej , (9)

where ej is the jth unit vector in Rd. We have h(ϕ(z;x)) ≤ x iff h(z) ≤ 0, so we can take h̃ = h+ 1.

Here, for R = Rd, we have ϕ−1(R;x) = R independent of x, and we obtain an unbiased LRDE of

the form (6). We then have ∇xϕ(z) = ej , |Jϕ(z;x)| = 1, and if the Yj are independent, S(y, x) =

f ′j(yj)/fj(yj). Theorem 1 applies and in this case we only need the density fj to be differentiable

(not the other ones). A similar estimator was obtained by Peng et al. (2020) in a slightly less general

setting. For R = [0,∞)d, on the other hand, ϕ−1(R;x) = [−x,∞) × [0,∞)d−1 is not independent of

x, so Theorem 1 does not apply. In fact, the LRDE (6) is biased in this case.

2.3 The LRDE with boundary terms

Sometimes, the integration domain R̃ in (3) depends on x. We saw an example of that already at the

end of Example 1, with ϕ(z;x) = z + x ej and R = [0,∞)d. In this case, we denote the domain by

R̃(x), and we have to account for the dependence by differentiating the region boundary with respect

to x, assuming that the boundary moves smoothly as a function of x. More specifically, let ∂R̃(x)

denote the boundary of R̃(x), and let b(z(x), x) denote the rate of displacement of ∂R̃(x) as a function

of x in the direction normal to this boundary and pointing outward of R̃(x), at the boundary point

z = z(x) ∈ ∂R̃(x). The infinitesimal displacement b(z(x), x)dx enlarges or shrinks the region R̃(x)

at point z(x), and this changes the integral at a rate given by b(z(x), x)dx times the value of the

integrand at z(x), if we assume that this integrand ([· · · ] below) is continuous in x in a neighborhood

of this point. The derivative of (3) is then

F ′(x) =
d

dx

∫
R̃(x)

[· · · ]dz =

∫
R̃(x)

d

dx
[· · · ]dz +

∫
∂R̃(x)

[· · · ]b(z(x), x)dz. (10)

This is Leibniz’s integral rule Wikipedia (2022). Formula (10) is also useful when fY has discontinuities

in R, and we can partition R into disjoint subregions R = R1∪R2∪· · · in which fY is differentiable. We

can then compute the integral over each subregion and add up. Even when ϕ−1(R;x) is independent of

x, the boundaries of the subregions R̃`(x) = ϕ−1(R`;x) may depend on x, in which case the estimator

will be a sum of terms of the form (10).

By undoing the change of variable, the last term in (10) can be rewritten as∫
∂R̃(x)

[· · · ]b(z(x), x)dz =

∫
∂R

I[h(y) ≤ x]b(ϕ−1(y, x), x)fY(y)dy.

We now derive an explicit form of the LRDE for the common situation in which the region R is a

rectangular box R =
∏d
j=1(αj , βj), where αj < βj are in R ∪ {±∞}, and R̃(x) depends on x. In

the rest of this paper, any expression that contains βj = ∞ or αj = −∞ must be interpreted as a

limit. Under our continuity assumptions, for each x, ϕ(·;x) is also a bijection between the boundary

of R̃(x) and the boundary of R. We also assume that fY is differentiable on R. In this case, each

boundary panel of R lies on a hyperplane of the form yj = αj or yj = βj for some index j. If y

lies on the boundary panel with yj = βj , which we denote ∂R+
j , and if z(x) = ϕ−1(y;x), then the
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displacement rate of the corresponding boundary piece of R̃(x) in the positive perpendicular direction

is the derivative with respect to x of the jth coordinate of z(x) = ϕ−1(y;x). That is, we have

b(z(x), x) = (∇xz(x)) · ej = (∇xϕ−1(y;x)) · ej
def
= rj(y, x).

Let R−j =
∏
k 6=j(αk, βk) and let y−j be the vector y with its jth coordinate removed. We then have∫

∂R+
j

I[h(y) ≤ x]b(ϕ−1(y, x), x)fY(y)dy =

∫
∂R+

j

I[h(y) ≤ x]rj(y, x)fY−j (y−j)fYj |Y−j
(yj | y−j)dy

=

∫
R−j

I[h(y) ≤ x]rj(y, x)fY−j
(y−j)fYj |Y−j

(βj | y−j)dy−j

= E[I[h(Y+
−j) ≤ x]rj(Y

+
−j , x)fYj |Y−j

(βj | Y−j)] (11)

where Y+
−j is the vector Y in which Yj has been replaced by βj .

For y on the boundary panel ∂R−j with yj = αj instead, we need to add a negative sign because the

box is enlarged by a displacement in the negative direction, so we get b(z(x), x) = −rj(y, x), and the

expectation in (11) becomes E[I[h(Y−−j) ≤ x]rj(Y
−
−j , x)fYj |Y−j

(αj | Y−j)] where Y−−j is the vector Y

in which Yj has been replaced by αj .

By summing over all the 2d boundary panels, we obtain that if

B(y, x) =

d∑
j=1

(
I[h(y+

−j) ≤ x]rj(y
+
−j , x)fYj |Y−j

(βj | y−j)− I[h(y−−j) ≤ x]rj(y
−
−j , x)fYj |Y−j

(αj | y−j)
)

(12)

(in which some of the terms might be 0), then E[B(Y, x)] =
∫
∂R

I[h(y) ≤ x]b(ϕ−1(y, x), x)fY(y)dy.

Assumption 2. Suppose Assumption 1 holds. Let R = (α,β) and suppose fY is continuous on the

closure of R. We also assume that:

(A3) For each y ∈ R, the inverse transformation ϕ−1(y;x) is differentiable in x on [a, b], and each

term in (12) is well-defined, w.p.1.

Theorem 2. Under Assumption 2, the following estimator is unbiased for f(x) for all x ∈ [a, b]:

f̂(x) = I[h(Y) ≤ x]S(Y, x) +B(Y;x). (13)

Example 2. Consider the model from Example 1, h(Y) = 1 · Y. Let the Yj be independent and

exponentially distributed with rate λj > 0, and let fj be the density of Yj for all j. In this case,

f ′j(x)/fj(x) = −λj . If we use the change of variable y = x z in (7), the LRDE is f̂(x) = I[1 · Y ≤
x](d− Y1λ1 − · · · − Ydλd)/x and is unbiased for f(x) for all x > 0 by Theorem 1.

If we use the change of variable y = z + xej in (9), the jth coordinate of ϕ−1([0,∞)d;x) (i.e.,

the left boundary panel ∂R−j ) depends on x, so we need to add B(y;x) in (12). We have rj(y, x) =

(∇x(y − xej)) · ej = −1 and the other rk’s are zero. Hence, rj(y
−
−j ;x)fj(αj) = −fj(0) = −λj .

Moreover, S(y, x) = f ′j(yj)/fj(yj) = λj by Example 1. By Theorem 2, the following LRDE is unbiased

for f(x):

f̂(x) = I[1·Y ≤ x]S(Y, x)+B(Y, x) = −I[1·Y ≤ x]λj−I[1·Y−j ≤ x](−λj) = I[1·Y−j ≤ x < 1·Y]λj .

3 Density estimation with the GLR

Peng et al. (2018) suggested using the GLR gradient estimator as a density estimator (GLRDE) and

gave a general formula for it. Simpler formulas for specific settings were later proposed by Peng et al.

(2020, 2022a). All these papers consider a representation of the cdf of X of the form

F (x) = E[I[h(Y) ≤ x]] = E[ψ(g(Y, x))], (14)
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where g : Rd × [a, b] → Rd is sufficiently smooth and ψ : Rd → R is measurable and independent

of x, but can be discontinuous. This means that the dependence on x is put entirely into g and all

singularities into ψ. The function g(·, x) here represents a change of variable just like ϕ, but in the

other direction; i.e., we have z = g(y, x) = ϕ−1(y;x). We obtain our earlier setting by also taking

ψ(z) = I[h̃(z) < 1]. That is, the general form (14) covers our setting. We now look more closely at

the GLRDEs proposed by Peng et al. (2018) and by Peng et al. (2022a), and the assumptions given

in those papers.

3.1 The original GLRDE

The original GLRDE form Peng et al. (2018) was

f̂(x) = I[h(Y) ≤ x]S(Y, x) with (15)

S(y, x) = − trace
(
J−1
g (y, x)∇xJg(y, x)

)
+

d∑
j=1

e>j J
−1
g (y, x)

(
∇yjJg

)
J−1
g (y, x)∇xg(y, x)

−
(
J−1
g (y, x)∇xg(y, x)

)>∇ ln fY(y).

This is the same estimator as our LRDE in (6), with a more detailed development of the score function

S(Y, x). Peng et al. (2018) gave the following sufficient unbiasedness conditions for this GRLDE.

Assumption 3.

(B1) The density fY is strictly positive and continuously differentiable over all of Rd.
(B2) The function g(y, x) is invertible in y, and g is twice continuously differentiable on Rd × [a, b].

(B3) One has limyj→±∞
∫
Rd−1 supx∈[a,b] |rj(y;x)|fY(y)dy−j = 0 for all 1 ≤ j ≤ d

(B4) The GLRDE f̂(x) in (15) satisfies
∫
Rd supx∈[a,b] |f̂(x)|dy <∞.

The majority of standard distributions violate (B1). For example, the exponential density has a

jump at 0 and is zero on the left. But we showed in Example 2 that it can satisfy our assumptions and

can give an unbiased LRDE (6). Peng et al. (2018) mention that (B1) can often be satisfied through a

change of variable. However, finding an appropriate change of variable is not always easy. Condition

(B3) also imposes strong assumptions on the tails of fY.

3.2 The GLRDE with uniform input

To get around (B1), Peng et al. (2022a) proposed a setting in which Y is replaced by a vector U

uniformly distributed over the unit hypercube (0, 1)d. This is essentially a special case of our setting

of Section 2.3, with R = (α,β) = (0, 1)d and fY taken as the uniform distribution. This setting can

still handle a more general Y by incorporating a transformation from U to Y into the function g. The

proposed GLRDE is

f̂(x) = I[h(U) ≤ x]S(U, x) +

d∑
j=1

(
lim
uj↑1

ψ(g(u, x))rj(u, x)− lim
uj↓0

ψ(g(u, x))rj(u, x)

)
, (16)

where

rj(u, x) =
(
J−1
g (u;x)∇xg(u, x)

)>
ej , 1 ≤ j ≤ d. (17)

Peng et al. (2022a) showed that this estimator is unbiased for f(x) under the following conditions.

Assumption 4. We have F (x) = E[ψ(g(U, x))] with g(·, x) : (0, 1)d × [a, b]→ R. Moreover:

(C1) The function g(u, x) is invertible in u and twice continuously differentiable on (0, 1)d × [a, b].

Furthermore, the matrix Jg(u, x) is invertible for almost u.
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(C2) For all 1 ≤ j ≤ d,

lim
uj↑1

sup
x∈[a,b],u−j∈(0,1)d−1

|rj(u, x)| = lim
uj↓0

sup
x∈[a,b],u−j∈(0,1)d−1

|rj(u, x)| = 0.

(C3) For f̂(x) defined in (15) we have
∫

(0,1)d
supx∈[a,b] |f̂(x)|du <∞.

Assumption 4 allows Y to have a more general support than (B1), but (C2) still requires a nice

behaviour of fY on the boundary of its support. To alleviate this, Peng et al. (2022a) introduce another

set of conditions:

Assumption 5. Take Assumption 4 without (C2), and add:

(D1) There is a sequence of functions ψε : Rd → R that are differentiable an infinite number of times,

and a p > 1, such that

lim
ε→0

sup
x∈[a,b]

∫
(0,1)d

|ψε(g(u, x))− ψ(g(u, x))|pdu = 0.

Furthermore, if d ≥ 2, we have for some fixed ε > 0 and all uj ∈ (0, 1) \ [ε, 1− ε], 1 ≤ j ≤ d,

lim
ε→0

sup
x∈[a,b]

∫
(0,1)d−1

|ψε(g(u, x))− ψ(g(u, x))|pdu−j = 0.

If d = 1, the above condition holds without integration and with p = 1.

(D2) The functions rj , 1 ≤ j ≤ d, satisfy
∫

(0,1)d−1 supx∈[a,b],uj∈(0,1) |ψ(g(u, x))rj(u, x)|du−j <∞.

This avoids (C2), but condition (D1) is usually hard to verify. Peng et al. (2022a) simplify this for

the special case in which

I[h(y) ≤ x] =

d∏
j=1

I[gj(uj , x) ≤ 0]. (18)

This decomposition can be applied for example if h is the maximum of several functions. Then, (D1)

is satisfied if for a fixed ε > 0 and for all 1 ≤ j ≤ d, we have

inf
x∈[a,b],uj∈[ε,1−ε]

|dgj(uj , x)/duj | > 0 and inf
x∈[a,b],uj∈(0,1)\[ε,1−ε]

|gj(uj , x)| > 0, (D1’)

Another simplification works for the special case in which

gj(uj , x) = ξj(x)ηj(uj) for all 1 ≤ j ≤ d. (19)

Conditions (C2), (C3), (D2), and (D1’) can then be replaced respectively by

lim
uj↑1
|d log ηj(uj)/duj | = lim

uj↓0
|d log ηj(uj)/duj | =∞, (C2’)

E
[
|ηj(Uj)η′′j (Uj)|/

(
η′j(Uj)

)2]
<∞, (C3’)

inf
uj∈(0,1)

|d log ηj(uj)/duj | > 0, (D2’)

inf
x∈[a,b]

|ξj(x)| > 0, inf
uj∈[ε,1−ε]

|η′j(uj)| > 0, inf
uj∈(0,1)\[ε,1−ε]

|ηj(uj)| > 0. (D1”)

However, the decompositions (18) and (19) hold simultaneously only in special cases.

The following example exhibits simple situations in which our assumptions hold, showing that

the LRDE is unbiased, yet none of the Assumptions 3 through 5, including their simplifications, are

satisfied. This example illustrates the limitations of the simplified conditions (C2’) and (D1’).
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Example 3. Let U1, U2 be two independent uniforms on (0, 1), h(U) = max{U1, U2}, and [a, b] ⊂
(0, 1). For the LRDE, we set R = (0, 1)2 and consider the change of variable ϕ(z;x) = xz. As

ϕ−1(u;x) = u/x, R̃(x) = ϕ−1(R, x) = (0, 1/x)2 depends on x, we construct the LRDE (13). We have

S(u, x) = 2/x, as demonstrated in Example 1, and rj(u, x) = ∇x(ϕ−1(u;x)) · ej = −uj/x2, j = 1, 2.

This is zero when uj = 0, and I[h(u) ≤ x] = 0 for uj = 1. Hence, B(u, x) = 0, and the LRDE is

f̂(x) = 2I[max{U1, U2} ≤ x]/x.

This estimator coincides with the GLRDE using gj(u, x) = uj/x. Clearly, (B1) from Assumption 3

does not hold. Since rj(u, x) = −uj/x2 → −1/x2 6= 0 for uj → 1, (C2) is also violated. We have a

decomposition of the form gj(uj , x) = ξj(x)ηj(uj) (19), so we can check the alternative condition (C2’).

Here, ηj(u) = u and d log ηj(u)/du = 1/u→ 1 for u→ 1. Thus, Assumption 4 does not hold. Verifying

(D1) is extremely hard, but we can rewrite I[max{u1, u2} ≤ x] = I[u1/x−1 ≤ 0]I[u2/x−1 ≤ 0], see (18),

so we can check (D1’) instead, with gj(u, x) = u/x − 1. However, any pair u = x gives gj(u, x) = 0

and the second infimum in (D1’) cannot be positive.

4 Example: A stochastic activity network

We consider a stochastic activity network (SAN) example, for which we compare various LRDE con-

structions with respect to their performance, and we demonstrate how changing model parameters

can affect their unbiasedness. A SAN is a directed graph connecting a source with a sink, in which

each edge has a random length Yj , 1 ≤ j ≤ d. We consider the SAN depicted in Figure 1, taken from

L’Ecuyer and Puchhammer (2022) with different model parameters. This example has d = 11, but

larger networks can usually be handled in the exact same way as presented here. SANs model a wide

variety of problems with precedence relations between activities, such as maximum flow problems or

the lifetimes of multi-component systems; see L’Ecuyer et al. (2022) and L’Ecuyer and Puchhammer

(2022). Here, we look at the length X of the longest path from the source to the sink. We refer to

the six possible paths by the indexes j of those Yj that lie on them; Π1 = {1, 4, 10}, Π2 = {1, 4, 8, 11},
Π3 = {2, 5, 10}, Π4 = {2, 5, 8, 11}, Π5 = {2, 6, 9, 11}, Π6 = {3, 7, 9, 11}. Denoting by Ll the length of

path l for 1 ≤ l ≤ 6, we can write X as

X = h(Y) = max
1≤l≤6

Ll = max
1≤l≤6

∑
j∈Πl

Yj .

0source 2
Y2

1
Y1

3

Y3

4

Y4

Y5

5

Y6

Y7
6

Y8

Y9

7 sink

Y10

Y11

Figure 1: A stochastic activity network 8 nodes and 11 links.

Suppose that the Yj , 1 ≤ j ≤ 11, are independent and have a Weibull distribution with scale

parameter λ = 1 and shape parameter α > 0. I.e., the density of Yj is fj(y) = αyα−1 exp (−yα) for

y > 0. Notice that fj is unbounded at 0 when α < 1.

We first construct a LRDE without boundary terms. We set R = (0,∞)11, fix x > 0, and define

the change of variable y = ϕ1(z;x) = xz in (7). We have h(ϕ1(z;x)) = xh(z), so h(y) ≤ x iff h̃(z)
def
=

h(z) ≤ 1. Here, R̃(x) = ϕ−1
1 (R;x) = (0,∞)11 is independent of x, and we can construct the LRDE (6).

We derived the score function for this change of variable in (8). Using f ′j(y)/fj(y) = (α− 1−αyα)/y,
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we get

f̂1(x) = I[h(Y) ≤ x]x−1

11 +

11∑
j=1

Yjf
′
j(Yj)/fj(Yj)

 = I[h(Y) ≤ x]αx−1

11−
11∑
j=1

Y αj

 .

By Theorem 1, f̂1(x) is unbiased for any x > 0 and all α > 0.

We can derive alternate LRDEs as follows. We take a directed minimal cut, i.e., a set of links

C so that each path from source to sink contains exactly one element of C. In Figure 1, there are

14 possible choices for C, e.g.,C1 = {10, 11}, C2 = {1, 2, 3}, and C3 = {3, 4, 5, 6}. By definition of C,
the change of variable ϕC(z;x) = z + x

∑
j∈C ej satisfies h(ϕC(z;x)) = h(z) + x. Hence, h(y) ≤ x

iff h̃(z)
def
= h(z) + 1 ≤ 1. Since ∇xϕC(z;x) =

∑
j∈C ej and |Jϕ| = 1, the score function is S(y;x) =∑

j∈C f
′
j(yj)/fj(yj). Here, ϕ−1

C (y;x) = y − x
∑
j∈C ej , so R̃(x) = ϕ−1

C (R;x) depends on x in the

dimensions j ∈ C, and we need to consider boundary terms. We have rj = (∇xϕ−1
C (y;x)) · ej = −1

for j ∈ C and rj = 0 otherwise, and I[h(Y+
−j) ≤ x] = 0. Therefore, the LRDE (13) for an arbitrary

directed minimal cut C is

f̂C(x) = I[h(Y) ≤ x]
∑
j∈C

Y −1
j

(
α− 1− αY αj

)
+ f1(0)

∑
j∈C

I[h(Y−−j) ≤ x]. (20)

For α > 1 and x > 0, this estimator is unbiased by Theorem 2. For α ∈ (0, 1), the term f1(0) is infinite

and Theorem 2 does not apply. In some cases, such a closed form formula for arbitrary C can be very

convenient for selecting a C for which we expect the LRDE to have low variance.

The LRDE f̂C can also be obtained with the approach suggested in Peng et al. (2020). Their

strategy, however, encompasses difficulties which do not appear with our approach. Moreover, it is

hard to obtain a formula for a general C. To apply their strategy, we set ψ(z) =
∏6
l=1 I[zl ≤ 0] and pick

a subset of six variables uj1 , . . . , uj6 while considering the remaining ones fixed, so that the selection

gl(ujl , x) =
∑
k∈Πl

F−1
k (uk)− x yields an invertible Jg. This, however, will not work here, as |Jg| = 0

for any possible choice of variables. Indeed, a closer analysis of the network shows that L1 + L4 =

L2+L3. While this dependence is feasibly detectable in this toy model, it can substantially increase the

computational overhead if the SAN comprises thousands of paths. L’Ecuyer and Puchhammer (2022)

solve this dependence problem by discarding the path Π4. We then put (j1, j2, . . . , j5) = (5, 7, 8, 10, 11)

and define g1(u10, x) = L1−x, g2(u8, u11, x) = L2−x, g3(u5, u10, x) = L3−x, g4(u11, x) = L5−x, and

g5(u7, u11, x) = L6− x. This will yield the estimator fC3 . Notice that Jg is not diagonal or triangular,

so it is virtually impossible to anticipate the structure of J−1
g and this particular form of the estimator

from the selected indexes (j1, j2, . . . , j5) and the discarded Π4.

For a numerical illustration, we consider five different scenarios, α ∈ {0.5, 1, 1.5, 2, 3}. In the first

one, α = 0.5, fj(0) is infinite. For α = 1, we get the exponential distribution with rate λ = 1, therefore

fj(y) has a jump of height 1 at zero. For α = 1.5, 2, 3, the fj(y) are continuous on R, but their

derivatives are infinite, positive, and zero, respectively, at y = 0.

The estimator f̂1 is unbiased for α > 0. Similarly, the LRDE fC is unbiased for the selected α,

except for α = 0.5. We will compare the estimators obtained with f̂1 and f̂C for C = C1, C2, C3, as

defined above. To do that, we take a and b as estimates of the 2.5 and 97.5 percentile of X, respectively,

for each α.

We estimate the performance of each LRDE f̂ by estimating the MISE (1) using random integration

nodes xk, 1 ≤ k ≤ 103, which we sample independently and uniformly in [a+ (k − 1)(b− a)/103, a+

k(b − a)/103] (a stratification scheme). Since the estimator is unbiased, MISE = IV, it suffices to

estimate at each xk the empirical variance V̂ark of n = 106 realizations of the estimator f̂ . This gives

the following unbiased estimator for the IV:

ÎV =
(b− a)

103n

1000∑
k=1

V̂ark.
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The results are summarized in Table 1. For α = 0.5 the only unbiased LRDE is f̂1. For all other

choices of α, f̂1 is the estimator with the smallest variance. This is because the score function of the

f̂Cj has a larger variance and/or the presence of non-zero boundary terms for α = 1. Among the fCj ,

the variance seems to increase slightly with the cardinality of Cj , causing more summands in the score

function, with one exception at α = 1.5.

Table 1: Estimated IV for various LRDEs under different distribution parameters α for the SAN.

Estimator α = 0.5 α = 1.0 α = 1.5 α = 2.0 α = 3.0

f̂1 2.28E-7 9.08E-7 1.73E-6 2.62E-6 4.48E-6

f̂C1
- 4.31E-6 1.65E-3 7.57E-5 2.43E-5

f̂C2 - 9.69E-6 8.63E-4 7.88E-5 3.52E-5

f̂C3
- 1.72E-5 2.49E-3 1.25E-4 4.72E-5

5 Conclusion

We showed how an unbiased density estimator can be obtained by combining the LR derivative estima-

tion method with a clever change of variable. We compared our approach with the recently proposed

GLR, which can also be used to construct unbiased density estimators. We gave various examples in

which the required assumptions in the GLR papers are not satisfied whereas our assumptions hold,

showing that the proposed estimators are unbiased. This often happens when the GLR estimators

turn out to be the same as ours, which suggests that the assumptions for GLR are more restrictive

than needed for density estimators. In future work, we plan to explore to see how well these LRDEs

can perform and how easily they can be applied in more elaborate and larger-scale applications. We

also plan to further study their combination with quasi-Monte Carlo methods and variance-reduction

techniques such as conditioning (Ben Abdellah et al., 2021; L’Ecuyer and Puchhammer, 2022; Peng

et al., 2022b).
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