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Abstract : We study an integrated multi-product production and distribution problem considering a
network of multiple plants and customers, who are geographically dispersed, with direct shipment from
the plants to the costumers. In addition to the decisions on production and distribution, a decision
needs to be taken on the level of process flexibility in the network, i.e., which products can be produced
in which plants. There is a clear trade-off between these decisions. On one hand, a network with total
flexibility where each plant can produce all types of products allows for lower transportation costs,
but requires large investments in flexibility and frequent setups. On the other hand, a network with
a limited amount of flexibility where each plant produce only few products, will increase the trans-
portation costs, but requires a lower investment in flexibility. We model this problem as an extension
of the capacitated lot-sizing problem. We limit the investment in flexibility by a budget constraint
and minimize the operational costs. Varying this budget allows us to analyze different levels of flexi-
bility. In this paper, we propose mathematical models and a hybrid solution method that combines a
mixed integer programming-based approach and a kernel search heuristic. Our computational results
using data sets from the literature show that the proposed hybrid method produces on average better
solutions with significantly lower computational times when compared with the results produced by a
state-of-the-art optimization software. Additional computational results are presented by varying key
parameters and analyzing their impact on the value of flexibility. These computational experiments
indicate that some of the main managerial insights which were derived in the literature for the case
without transportation costs are no longer valid when we consider transportation costs.

Keywords: Heuristics, lot sizing, transportation costs, multiple plants, process flexibility, production,
distribution
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1 Introduction

In this research, the focus is on problems that appear in the context of industrial production and

distribution planning. These problems involve the production of several products in multiple plants,

and the distribution of these products to customers via direct shipments. These are complex tasks and

need to be performed routinely. In general, production and distribution planning deals with decisions

about the necessary production activities to transform the raw materials into finished products, and

the transportation of these products to customers.

The planning of the production activities relates to the decisions about the quantity of products

which must be produced. At the core, there is the lot sizing problem (Pochet and Wolsey (2006))

which consists of determining the quantity of products to be produced in each plant and period of

a planning horizon. Production, setup, inventory, and backlog costs are considered. In addition,

since we suppose that in the network the multiple plants and customers are geographically dispersed,

transportation costs must also be taken into account. When the transportation between the plants

and the customers is done using direct shipments, the problem is called the two-level production-

transportation problem (Melo and Wolsey (2012)). According to Melo and Wolsey (2012), this is a

general problem that covers several other problems arising in the literature and in practice, such as

problems where the bottlenecks are on operations of mixing and packing (Molina et al. (2016)), the

one-warehouse multi-retailer problem (Cunha and Melo (2016)) and other extensions.

In addition to the decisions on production and distribution, we look at this problem in the context of

a network of existing plants that can be flexible to make one or more different products. Nowadays, with

the advancement of information technologies, aiming to be more competitive, companies’ strategies

give more importance to the benefits of flexibility. In line with this, researchers have recognized

that flexibility concepts are important for building sustainable supply chains since they enable firms

to be reactive, even in large-scale production, without sacrificing cost efficiency. The seminal paper

of Jordan and Graves (1995) analyzed the value of manufacturing process flexibility in a stochastic

model with a single period. Since then, several authors have extended and analyzed the concept of

limited flexibility configurations considering different stochastic environments. The main idea of the

process flexibility studied by Jordan and Graves (1995) is that a limited amount of flexibility, applied

in the right way, can provide benefits close to the level offered by full flexibility. This is true even in

a deterministic multi-period production planning environment, as studied by Fiorotto et al. (2018).

This new work extends the latter paper by considering the transportation decisions to the customers,

thereby capturing a more complex and more realistic trade-off.

This paper has the following contributions. First, we propose a new optimization problem that

considers a network of customers and plants with specific transportation costs between each plant and

customer. The decision on which product to make in which plant also has to take into account the

trade-off with the transportation cost and hence the geographical dispersion of the demand. Second,

we propose two mathematical models for the analyzed problem, being one based on a classical for-

mulation and the other a reformulation as a facility location problem. After analyzing the quality of

the lower bounds, a third mathematical model is proposed which combines the first two formulations.

Third, a hybrid solution method that combines a mixed integer programming (MIP)-based approach

and a kernel search heuristic is proposed to solve the problem. The idea is to use a mixed integer

programming-based approach to find an initial solution, and an intensification phase based on a kernel

search heuristic tries to improve the initial solution. Computational results are presented comparing

the proposed method with the use of a state-of-the-art commercial optimization package. Fourth, we

present additional computational results aiming to analyze how different parameters impact the value

of flexibility.

The paper is organized as follows. In Section 2, we present a literature review on related papers.

In Section 3, we introduce the mathematical formulations. In Section 4, a hybrid solution approach
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is proposed, which combines a MIP-based approach and a kernel search heuristic. In Section 5, we

present the computational results and, finally, in Section 6 the conclusions and future research.

2 Literature review

In the literature, there has been a broad effort to extend decision models and methods for the lot sizing

problems in order to include more relevant industrial features. The lot sizing decision is crucial for

companies since the production, inventory and setup costs represent a significant portion of the total

product cost. Increased competition has forced companies to obtain a competitive position by paying

attention to their complete supply chain. In that perspective, particular attention must be given to the

integration of lot sizing decisions with other operational decisions such as the transportation decision

and with higher-level decisions such as the level of process flexibility. As we did not find any paper that

simultaneously considers all the integrated aspects that are taking into account in the present paper

(lot sizing on multiple plants, transportation with direct shipment and limited process flexibility), we

we will discuss each of the important issues separately. First we will discuss the lot sizing problem

with multiple plants and transportation between plants, then we give an overview of the problem with

several plants and geographically dispersed customers, and finally we discuss the lot sizing problem

with limited process flexibility.

There are some studies on the lot sizing problem with several plants and transportation costs

among the plants, but using only aggregate demands without geographically dispersed costumers and

considering total flexibility (each plant can produce all types of products). In de Matta and Miller

(2004) the lot sizing decisions are integrated with the transportation of the items between the plants so

that some plants produce intermediate products and others the final products. Sambasivan and Yahya

(2005) propose a Lagrangian-based heuristic for a similar problem by relaxing the capacity constraints.

Their research was motivated by a practical application in steel rolled production. Guimarães et al.

(2012) present a formulation for a problem with multiple plants in a beverage industry. The authors

studied the planning operations that define the scheduling and size of the production, in which the

objective is to satisfy the demand by minimizing production, overtime and transfer costs. Carvalho

and Nascimento (2016) address this problem considering that all plants produce the same set of items

(each one of the plants with a single machine) and that the demands must be satisfied without backlog.

Considering the problem with multiple plants and setup carryover, Carvalho and Nascimento (2018)

apply a meta-heuristic approach to find feasible solutions. The authors pointed out that the set of

feasible solutions becomes significantly bigger considering the possibility of setup carryover.

Regarding the problem with several plants (with total flexibility) and geographically dispersed

costumers, Park (2005) develops a local improvement heuristic which obtains better results when com-

pared to a two-stage hierarchical approach. By analyzing the input parameters, the author identified

conditions in which the integrated approach provides substantial benefits compared to the sequential

approach. Ekşioğlu et al. (2007) consider that the inventory at the costumers’ level is forbidden and

plants have limited production capacity. The authors propose a Lagrangian-based heuristic and present

computational tests on randomly generated data. Melo and Wolsey (2012) extend the paper of Park

(2005) and propose different formulations for this problem, as well as a formulation-based heuristic

procedure. Computational results are presented and show the quality of the proposed heuristic. It

is worth mentioning that, the problem with geographically dispersed customers and one plant is also

know as the One-Warehouse Multi-Retailer problem (Solyalı and Süral (2012) and Cunha and Melo

(2016)). Gruson et al. (2019) compare several formulations for a three-level lot sizing and replenish-

ment problem with a distribution structure. They consider a single type of item that is produced in

a single plant which replenishes several warehouses and then retailers, using direct shipments. The

papers including routing decisions are out of the scope of this research. We refer to Adulyasak et al.

(2015) for a review on production-routing problems.
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Jordan and Graves (1995) is the first study to analyze the benefits of using a limited amount

of resource flexibility. Analyzing a manufacturing system with stochastic demand, they show that a

chained configuration of products and plants performs almost as well as the full flexibility configuration

in terms of average sales and capacity utilization. This means that it is not necessary that all the plants

need to be able to produce all types of products in order to capture most of the benefits of flexibility.

After the studies presented by Jordan and Graves (1995), several other works were proposed to analyze

the value of resource flexibility in a context of stochastic demand (Koste and Malhotra (1999), Graves

and Tomlin (2003), Bertrand (2003), Muriel et al. (2006), Mak and Shen (2009), Gurumurthi and

Benjaafar (2004), Andradóttir et al. (2013)).

Some limited research has been done on lot sizing problems with limited flexibility. This has been

mostly for the case of production with parallel machines. In most cases, the assumption is made that

all machines can produce all types of products (Toledo and Armentano (2006), Mateus et al. (2010),

Fiorotto and de Araujo (2014), Fiorotto et al. (2015), Vincent et al. (2020)) which corresponds to full

flexibility. In some other cases, different machines can produce a different set of products, but the

flexibility configuration is an input and not a decision. In their application in the tire industry, Jans and

Degraeve (2004) discuss a problem where not all types of tires can be produced on all types of heaters.

Xiao et al. (2015) study the capacitated lot sizing problem with parallel resources in the semiconductor

industry where not all resources are eligible to produce all items. A proposed hybrid heuristic based on

Lagrangian relaxation and simulated annealing method outperformed the numerical results observed

in the literature. The solutions of the model connect the eligible resources to the items by satisfying

a particular set of constraints that reduce the flexibility configurations. Wu et al. (2018a) propose

different mathematical formulations for the lot sizing problem with nonidentical parallel machines,

which are capable of producing a predefined subset of items, and analyze the per-item and per-period

decomposition for these formulations. Besides the limited flexibility given as input, the authors also

consider a constraint that restricts the number of machines that can produce a same type of item per

period. In Wu et al. (2018b), the authors extend the problem studied in Wu et al. (2018a) by adding

carbon emission constraints. Moreover, in each period, the number of machines that can be setup for

a type of item is restricted to only one. The authors propose a progressive selection heuristic which

was able to obtain superior results when compared with the state-of-the-art approaches found in the

literature.

Recently, Fiorotto et al. (2018) addressed process flexibility and the chaining principle in lot sizing

problems by analyzing the value of the resource flexibility in balanced systems (the numbers of items

and resources are equals). The comparison of different limited flexibility configurations led to the

conclusion that the benefits of the best long chain and the full flexibility configurations are practically

the same. Also, when the flexibility level of the resource is a decision variable of the model, it is possible

to obtain a new configuration with a smaller number of links than the best chain configuration which

gets almost the same benefits as the complete flexibility configuration. Finally, they also pointed out

that the importance of flexibility value increases when the data are heterogeneous. More specifically,

the authors analyse separately the backlog cost and demand heterogeneity, as well as, the case with

setup times. Inspired by a semiconductor manufacturing system, where machines must be qualified to

process a product, Perraudat et al. (2022) propose mixed-integer mathematical models for a tactical

qualification management problem. The authors propose both deterministic and robust formulations

for the problem. Computational results, using industrial data, are presented and provide some very

interesting managerial insights, such as: the price of uncertainty is acceptable, often less than a

few additional qualifications for each machine; it is possible to achieve the same level of robustness

as the case where all new qualifications are performed by only performing a restricted number of

relevant qualifications; using the nominal set of qualifications can lead to significant capacity constraint

violations.
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3 Problem formulations

We model a production planning problem with multiple items, plants and clients and transportation

costs from plants to clients. The planning horizon is finite and subdivided into several periods. The

plants have a predetermined production capacity and a limited amount of flexibility. In order to be

able to produce a certain type of product, the plant needs to make a specific investment. The level

of flexibility in each plant is a decision variable and a flexibility constraint is modeled by imposing

a budget limit on the total amount invested in flexibility over all plants. The use of backlogging is

allowed. In addition, to produce a given item in a specific period, a setup must be performed. The goal

of the problem is to find a production plan that satisfies all constraints by minimizing the production,

setup, inventory, backlog, and transportation costs. Figure 1 illustrates the integrated production-

transportation problem considering 5 items, 3 production plants and 6 customers. Observe that for

this example, there is a limited amount of flexibility in which production plant one can produce items

one and four, production plant two can produce items three and four and production plant three can

produce items two and five. Moreover, it is also important to note that all production plants can

deliver their products to all customers with respective transportation costs.

Figure 1: Graphical representation of the integrated production-transportation problem.

The mixed integer programming models are presented next. Before presenting the models, consider

the following sets, parameters and decision variables for the problem based on the classical formulation

for the multi-plant lot sizing problem proposed by Sambasivan (1994).

Sets
I set of items, I = {1, . . . , n} (index i);
F set of plants, F = {1, . . . , f} (index j);
K set of clients, K = {1, . . . , c} (index k);
P set of periods, P = {1, . . . , p} (indexes t and u);

Parameters
ditk demand of item i in period t for client k;
sditu sum of the demands of item i, from period t to period u;
stij setup time for item i at plant j;
vtij unit processing time of item i at plant j;
scij setup cost of item i at plant j;
hcij unit inventory cost of item i at plant j;
bcitk unit backlog cost of item i for client k in period t;
vcij unit production cost of item i at plant j;
tcijk unit transportation cost of item i from plant j to client k;
fcij flexibility investment cost for item i at plant j;

Capjt production capacity (in units of time) of plant j in period t;
Fmax maximum budget to invest in flexibility;
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Decision variables
xijt amount of item i to be produced at plant j in period t;
sijt amount of item i in stock at plant j at the end of period t;

trijkt amount of item i to be transported from plant j to client k in period t;
bitk amount of backlog for item i and client k in period t;
yijt binary variable that assumes value 1, if plant j is setup to produce item i in period t and 0, otherwise;
zij binary variable that assumes value 1, if plant j is configured to produce item i and 0, otherwise.

The capacitated lot sizing problem with multiple plants, process flexibility and transport costs

(MPCLSP-PFT) is modeled as follows:

(M1) min
∑
i∈I

∑
j∈F

∑
t∈P

[
scijyijt + vcijxijt + hcijsijt +

∑
k∈K

(tcijktrijkt)

]
+
∑
i∈I

∑
t∈P

∑
k∈K

(bcitkbitk) (1)

subject to:

sijt = xijt + sij,t−1 −
∑
k∈K

trijkt ∀(i, j, t) (2)

ditk =
∑
j∈F

trijkt + bitk − bi,t−1,k ∀(i, t, k) (3)

xijt ≤ min{sdi1p, (Capjt − stij)/vtij}yijt ∀(i, j, t) (4)∑
i∈I

(stijyijt + vtijxijt) ≤ Capjt ∀(j, t) (5)

yijt ≤ zij ∀(i, j, t) (6)∑
i∈I

∑
j∈F

fcijzij ≤ Fmax (7)

yijt ∈ {0, 1}, zij ∈ {0, 1}, xijt ≥ 0, trijkt ≥ 0 ∀(i, j, t, k) (8)

sijt ≥ 0, sij0 = 0, sijp = 0, bitk ≥ 0, bi0k = 0 ∀(i, j, t, k) (9)

Objective function (1) minimizes the sum of setup, production, inventory, backlog and transporta-

tion costs. Constraints (2) model the flow balance at the plants, whereas (3) model the flow balance

at the customers. Note that at the customers, demand cannot be fulfilled early: so no inventory is

allowed, but if the demand cannot be delivered on time, backlogging is allowed. Constraints (4) guar-

antee that if an item is produced at a specific plant, a set up is done. Constraints (5) limit the available

capacity for production and setup in each plant and period. For each plant j, item i and period t,

constraints (6) ensure that a setup cannot be performed if plant j is not configured to produce item i.

Constraint (7) limits the budget invested in flexibility. Finally, the domains of the decision variables

are defined by constraints (8) and (9).

Problem reformulation

Consider the following parameters and decision variables for the MPCLSP-PFT reformulated as a

facility location problem as proposed by Krarup and Bilde (1977) for the basic lot sizing problem.

Parameters
Costijtuk unit cost for production, inventory and transportation of item i produced at plant j

in period t to satisfy the demand of client k in period u. The cost is calculated as
follows: Costijtuk = vcij + tcijk + (u− t)hcij , for all (i, j, t, u ≥ t, k);

Costbijtuk unit cost for production and transport of item i produced as backlog at plant j in
period t to fulfill the demand of client k in period u; The cost is set by making

Costbijtuk = vcij + tcijk +
t−1∑
l=u

bcilk, for all (i, j, t, u < t, k);
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Decision variables
x′ijtuk amount of item i to be produced at plant j in period t to satisfy the demand of client

k in period u;
b′ipuk amount of item i backlogged at the end of the planning horizon (i.e., period p), nec-

essary to fulfill the unmet demand of client k in period u;

The MPCLSP-PFT reformulated as a facility location problem can be modeled as follows:

(M2)

min
∑
i∈I

∑
j∈F

∑
t∈P

(scijyijt) +
∑
i∈I

∑
u∈P

∑
k∈K

[
(

p∑
t=u

bcitk)b′ipuk

]

+
∑
i∈I

∑
j∈F

∑
t∈P

∑
k∈K

[(
p∑

u=t

(Costijtukx
′
ijtuk)

)
+

(
t−1∑
u=1

(Costbijtukx
′
ijtuk)

)]
(10)

subject to: ∑
j∈F

∑
t∈P

x′ijtuk + b′ipuk = diuk ∀(i, u, k) (11)

x′ijtuk ≤ min{diuk, (Capjt − stij)/vtij}yijt ∀(i, j, t, u, k) (12)∑
i∈I

(
stijyijt +

∑
u∈P

∑
k∈K

vtijx
′
ijtuk

)
≤ Capjt ∀(j, t) (13)

yijt ≤ zij ∀(i, j, t) (14)∑
i∈I

∑
j∈F

fcijzij ≤ Fmax (15)

yijt ∈ {0, 1}, zij ∈ {0, 1}, x′ijtuk ≥ 0, b′ipuk ≥ 0 ∀(i, j, t, u, k) (16)

Objective function (10) minimizes the sum of setup, production, inventory, backlog and transporta-

tion costs. Constraints (11) model the flow balance at the plants and at the customers. Note that at

the customers, demand cannot be fulfilled early: so no inventory is allowed, but if the demand cannot

be delivered on time, backlogging is allowed. In constraint (11) we use an additional variable b′ipuk
since it is possible that some part of the demand will not be satisfied by any production in the case

there is backlog at the end of the horizon. Constraints (12) guarantee that if an item is produced at a

specific plant, a set up is done. Constraints (13) limit the available capacity for production and setup

in each plant and period. For each plant j, item i and period t, constraints (14) ensure that a setup

cannot be performed if plant j is not configured to produce item i. Constraints (15) limit the budget

invested in flexibility. Finally, the domains of the decision variables are defined by constraints (16).

As it will be explained in more detail in Section 4.2, the proposed solution method considers the

solution of the linear relaxed problem to assist the solution procedure. Having this in mind, we analyzed

the lower bounds obtained with both the formulations M1 and M2 so we can have the best results in

the solution method. Based on the analyses presented in A, we notice that for the problems with tight

capacity M1 provides better bounds while M2 obtained better bounds for the problems with normal

capacity.

Based on the results presented in A, we consider a third formulation (M3) to the MPCLSP-PFT

that always gives a lower bound that is equal or better than those found with the formulations M1

and M2. The formulation M3 consists in minimizing the objective function value ζ ∈ R, subject to
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constraints (2)–(9), (11)–(13) and (16)–(19).

ζ ≥
∑
i∈I

∑
j∈F

∑
t∈P

[
scijyijt + vcijxijt + hcisijt +

∑
k∈K

(tcijktrijkt)

]
+
∑
i∈I

∑
t∈P

∑
k∈K

(bcitkbitk)

(17)

ζ ≥
∑
i∈I

∑
j∈F

∑
t∈P

(scijyijt) +
∑
i∈I

∑
u∈P

∑
k∈K

(bcipkb
′
ipuk)

+
∑
i∈I

∑
j∈F

∑
t∈P

∑
k∈K

[(
p∑

u=t

(Costijtukx
′
ijtuk)

)
+

(
t−1∑
u=1

(Costbijtukx
′
ijtuk)

)] (18)

∑
u∈P

∑
k∈K

x′ijtuk = xijt ∀(i, j, t) (19)

Constraints (17) and (18) limit the value ζ of the objective function to be equal or greater than

the values of the objective functions of M1 and M2, respectively. For each tuple of item, plant and

period, constraints (19) guarantee the correspondence between the two types of production decision

variables.

4 Solution method

To search for good feasible solutions to the MPCLSP-PFT, we propose a solution method denoted by

KS, which consists in the hybridization of a MIP-based approach and a kernel search (KS) heuristic.

The strategy is an adaption of solution methods proposed in (Carvalho and Nascimento, 2021). While

an MIP-based approach provides an initial solution, an intensification phase based on a kernel search

heuristic (Angelelli et al., 2007) tries to improve the initial solution.

The following sections describe in detail the structure of the applied MIP-based and kernel search

strategies.

4.1 MIP-based approach

The proposed approach takes advantage of the outstanding performance of commercial MIP solvers to
solve some classes of combinatorial problems, in particular, to solve the addressed problem when the

decision variables associated to the flexibility are fixed.

To find an initial solution, we use a variation of the model (1)–(9) by adding constraints (20). The

main idea behind this model, here denoted by DModel, is to fix the decision variables zij associated

to the process flexibility such that each item is produced by only one plant. To this end, consider a

set S composed of preselected pairs of items and plants (i, j) satisfying the aforementioned condition.

zij = 1 ∀(i, j) ∈ S (20)

Based on the set S, constraint (20) imposes a solution to the flexibility related variables by fixing

to the value 1 the decision variables zij , ∀ (i, j) ∈ S.

To decide the pairs (i, j) of items and plants to be in the set S we used the cost of sending the

demands of an item i at plant j to the clients. Let sdkik be the total demand of an item i ordered by

a client k during the whole planning horizon. The cost of transportation PTij of item i from plant j

to all the clients is calculated as presented in Equation (21).

PTij =
∑
k∈K

tcijksdkik (21)
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For each item i starting from 1 and ending at n the pair (i, j) is chosen, as shown in Algorithm 1,

and it is inserted in the set S.

Algorithm 1: Decision on the set S.

Data: PTij

Result: S
1 S ← ∅;
2 assignedP lants← ∅;
3 for i = 1 to n do
4 min←∞;
5 bestJ ← 0;
6 for j = 1 to f do
7 if (PTij < min) & (j /∈ assignedP lants) then
8 min← PTij ;
9 bestJ ← j;

10 Add (i, bestJ) to S;
11 Add j to assignedP lants;
12 if |assignedP lants| = |I| then
13 assignedP lants← ∅;

14 Return S.

After solving DModel, we apply the KS heuristic to the current solution as described in the next

section.

4.2 KS heuristic

In this section we present an improvement strategy based on a math-heuristic known as Kernel Search

(KS). The KS heuristic has presented good solutions to some combinatorial optimization problems

including to lot sizing problems (Guastaroba et al., 2017; Carvalho and Nascimento, 2018).

Introduced first in (Angelelli et al., 2007) to solve a portfolio problem, the KS is inspired on ideas of

the core-based algorithms proposed by Balas and Zemel (1980); Pisinger (1994); Martello et al. (2000)

to address knapsack problems. Generally speaking, the KS is a strategy composed of two phases where

several reduced problems are solved by re-optimizing a dynamic set of promising variables, denoted by

kernel, and fixing the remaining variables at 0.

In the first phase of KS, called the Initialization phase, the solution for the linear relaxation of
the original problem is commonly used to decide which variables are most likely to be in the optimal

solution of the investigated problem and to build the structure of a KS, which is composed of a kernel

and a sequence of buckets. Therefore, initially, all variables with a linear relaxation value greater

than 0 are addressed to the kernel and the remaining variables are sorted according to their associated

reduced costs in a sequence of nb evenly-sized buckets. Then, the first reduced subproblem is solved by

considering the re-optimization of the variables in the kernel and by fixing the variables in the buckets

at 0. The re-optimization here is modelled as a MIP.

During the second phase, known as the Extension phase, the method keeps investigating the solution

space of the problem by iteratively re-optimizing, besides the variables in the kernel, those from one of

the sequence of nb buckets defined on the Initialization phase. Therefore, at each iteration a reduced

problem restricted to the kernel and the next bucket from an ordered sequence of buckets, and fixing

all the remaining variables at 0, is solved. Moreover, to speed-up the solution process and to find new

promising variables, each reduced problem is also subject to two additional constraints. Whilst one

constraint imposes an upper bound on the objective function, a second constraint guarantees that at

least one variable of the bucket being investigated is in the solution of the current subproblem. If a

feasible solution is found, then the kernel is enlarged by adding to it all variables of the bucket with

value greater than 0 in the solution of the current iteration. The method ends after investigating all
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the buckets. For more details on the KS heuristic we refer the reader to (Angelelli et al., 2007, 2010;

Guastaroba et al., 2017).

Based on the aforementioned standard KS, next, we describe in detail both the Initialization and

the Extension phases of a slightly adapted KS heuristic applied here to solve the MPCLSP-PFT.

Initialization phase

The linear relaxation solution (including the reduced cost) associated to the relaxed variables of the

original problem are commonly used to guide the construction of the kernel and the sequence of

buckets. A difference in the adopted KS is the use of a feasible solution found by the MIP-based

approach, described in Section 4, to build the kernel and the sequence of buckets, besides the use of

the linear solution. The Initialization phase can be described as follows.

1. Step 1 - Solve the linear relaxation of the MPCLSP-PFT

Let (x, yLR, zLR, b, w, tr) be the decision variables of the linear relaxation of the MPCLSP-PFT.

First, the KS method solves the problem (P2).

(P2) min
∑
i∈I

∑
j∈F

∑
t∈P

[
scijy

LR
ijt + vcijxijt + hcisijt +

∑
k∈K

(tcijktrijkt)

]
+
∑
i∈I

∑
t∈P

∑
k∈K

(bcitkbitk)

(22)

subject to:

Constraints (2)− (7), (23)

zLR
ij = 1 ∀(i, j) ∈ S (24)

yLR
ijt ∈ [0, 1], zLR

ij ∈ [0, 1], xijt ≥ 0, bitk ≥ 0, sijt ≥ 0, trijkt ≥ 0 ∀(i, j, t, k) (25)

Where the optimal solution to problem (P2) is represented by tuple (x(P2), y(P2), z(P2), b(P2),

w(P2), tr(P2)). Note that in (24) we fix some flexibility decisions as defined for the MIP-based

approach. The aim is to combine the information of both solutions to have a promising set of

decision variables to create the kernel.

2. Step 2 - Build the kernel

The kernel, represented by Π, is the set responsible for keeping the promising variables. In this

approach we consider the variables yijt, for all (t), and zij as promising if they satisfy at least

one of the following conditions:

(a) their associated pair of indices (i, j) ∈ S or zP2
ij value is equal to 1;

(b) at least one reduced cost associated to the linear variables yP2
ijt , t ∈ P, is greater than the

average of the positive reduced costs associated to the set y.

The complementary set Π receives all the variables yijt and zij , that are not in the kernel.

It is worth mentioning that the remaining decision variables x, b, w and tr are always included

in the reduced problems solved throughout the method.

3. Step 3 - Define sequence of buckets

To build the sequence of buckets, the variables of set Π are sorted according to their plant index.

The main idea is to keep all the variables associated to a plant j in the same bucket. Therefore,

for each variable zij ∈ Π the following order of the variables is defined to organize the sequence:

{zij , yij,1, yij,2, . . . , yij,p}. Next, the variables from Π are evenly distributed into nb buckets.

Therefore, d|Π|/nbe binary variables are assigned to each bucket Bv, where v ∈ {1, . . . , nb}. In

this paper, the value of nb is set up to d|Π|/|Π|e as it is suggested in (Guastaroba et al., 2017).
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4. Step 4 - Solve the MIP of the MPCLSP-PFT restricted to Π

In the first attempt to improve the solution found by the MIP-based approach, the problem (P3)

is solved.

(P3) min
∑
i∈I

∑
j∈F

∑
t∈P

[
scijyijt + vcijxijt + hcisijt +

∑
k∈K

(tcijktrijkt)

]
+
∑
i∈I

∑
t∈P

∑
k∈K

(bcitkbitk)

(26)

subject to:

Constraints (2)− (7), (27)∑
i∈I

∑
j∈F

∑
t∈P

[
scijyijt + vcijxijt + hcisijt +

∑
k∈K

(tcijktrijkt)

]
+
∑
i∈I

∑
t∈P

∑
k∈K

(bcitkbitk) < Z∗

(28)

xijt ≥ 0, bitk ≥ 0, sijt ≥ 0, trijkt ≥ 0, ∀(i, j, t, u, k) (29)

yijt ∈ {0, 1}, zij ∈ {0, 1}, ∀yijt ∈ Π, zij ∈ Π (30)

yijt = 0, zij = 0, ∀yijt ∈ Π, zij ∈ Π (31)

While constraint (28) imposes an upper bound (Z∗) on the objective function of the problem,

constraints (31) ensure that the variables in Π are fixed at 0. The upper bound Z∗ is equal to the

value of the objective function of the solution (x∗, y∗, z∗, b∗, w∗, tr∗) provided by the MIP-based

approach as input to the KS heuristic.

Extension phase

In the Extension phase the solution space is investigated iteratively by solving reduced problems

restricted to the kernel Π combined with the v-th bucket, where v represents the current iteration that

starts from 1 and finishes at nb. Next, all the steps performed in the Extension phase are described.

1. Step 1 - Solve subproblem restrict to Π ∪Bv

At each iteration v the method solves problem (P4)v.

(P4v) min
∑
i∈I

∑
j∈F

∑
t∈P

[
scijyijt + vcijxijt + hcisijt +

∑
k∈K

(tcijktrijkt)

]
+
∑
i∈I

∑
t∈P

∑
k∈K

(bcitkbitk)

(32)

subject to:

Constraints (2)− (7), (33)∑
i∈I

∑
j∈F

∑
t∈P

[
scijyijt + vcijxijt + hcisijt +

∑
k∈K

(tcijktrijkt)

]
+
∑
i∈I

∑
t∈P

∑
k∈K

(bcitkbitk) < Z∗ (34)

xijt ≥ 0, bitk ≥ 0, sijt ≥ 0, trijkt ≥ 0, ∀(i, j, t, u, k) (35)

yijt = 0, zij = 0, ∀yijt ∈
nb⋃

h=0,h6=v

Bh, zij ∈
nb⋃

h=0,h 6=v

Bh (36)

∑
{(ijt)|yijt∈Bv}

yijt ≥ 1, (37)
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∑
{(ij)|zij∈Bv}

zij ≥ 1, (38)

yijt ∈ {0, 1}, zij ∈ {0, 1}, ∀yijt ∈ (Π ∪Bv), zij ∈ (Π ∪Bv) (39)

Constraints (36) have the same function as constraints (31). In order to ensure that the new

solution provides promising variables to be added to the kernel, constraints (37) and (38) impose

that at least one of the variables from the sets y and z in the bucket Bv belong to the solution

of (P4)v.

2. Step 2 - Update the best solution, the set Π and the bucket Bv

If a feasible solution to the problem (P4)v is found by CPLEX within a stopping criteria, the

method updates the solution (x∗, y∗, z∗, b∗, w∗, tr∗), the upper bound Z∗ and the set Π.

Let B+
v be the set with the variable subsets {zij , yij,1, yij,2, . . . , yij,p}, for all (i, j) such that

zij ∈ Bv is equal to 1 in the solution of (P4)v. Then, to update the kernel the methods combines

B+
v into Π, i.e., Π := (Π ∪B+

v ). Moreover, the set Bv is updated by making Bv := BvnB
+
v .

3. Step 3 - Update v and check stopping criterion

After solving problem (P4)v, v is updated by making v = v + 1. The Extension phase stops if

(v > nb) and returns solution (x∗, y∗, z∗, b∗, w∗, tr∗), otherwise, if v ≤ nb, the method returns to

Step 1 from the Extension phase.

If v > nb and (x∗, y∗, z∗, b∗, w∗, tr∗) is empty, then it returns that no feasible solution was found.

A pseudo-code of the proposed KS is displayed in Algorithm 2.

Algorithm 2: KS heuristic.

Data: Solution obtained by the MIP-based approach (x∗, y∗, z∗, b∗, w∗, tr∗).
Result: (x∗, y∗, z∗, b∗, w∗, tr∗).
/* Initialization phase */

1 Solve the problem (P2);

2 Build kernel Π, set Π;

3 Set up nb = d|Π|/|Π|e;
4 Sort variables of set Π and build sequence of buckets Bv , with v ∈ {1, . . . , nb};
5 (x(P3), y(P3), z(P3), b(P3), w(P3), tr(P3))← solution of (P3);

6 if (x(P3), y(P3), z(P3), b(P3), w(P3), tr(P3)) is feasible then

7 (x∗, y∗, z∗, b∗, w∗, tr∗)← (x(P3), y(P3), z(P3), b(P3), w(P3), tr(P3));

/* Extension phase */

8 for v = 1 to nb do

9 (x(P4)v , y(P4)v , z(P4)v , b(P4)v , w(P4)v , , tr(P4)v )← solution of (P4)v ;

10 if (x(P4)v , y(P4)v , z(P4)v , b(P4)v , w(P4)v , , tr(P4)v ) is feasible then

11 (x∗, y∗, z∗, b∗, w∗, tr∗)← (x(P4)v , y(P4)v , z(P4)v , b(P4)v , w(P4)v , , tr(P4)v );
12 Update kernel Π and bucket Bv ;

13 Return solution (x∗, y∗, z∗, b∗, w∗, tr∗).

5 Computational experiments

This section is divided in three parts. First, we compare the proposed mathematical models considering

a set of small sized instances. Second, we compare the results of the best mathematical model with

the heuristic results for some more difficult instances. Third, we present an analysis of the value of

flexibility considering a set of small instances for which the optimization package finds the optimal

solution or the solutions present small gaps.

The experiments were carried out on a computer with two Intel Core i5-9300H processor of 2.4

GHz, 16 GB DDR3 RAM . The algorithms are implemented in C++ language. To solve each instance,

we used 1 thread and imposed a time limit of 3600 seconds to both the KS heuristic and CPLEX v.

12.10 commercial solver.
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5.1 General data

In this section, we describe some general parameters that will be used in the next three sections. Among

other parameters, we analyze the values for the parameter Fmax, which appear in constraints (7) and

consists of the total budget available to invest in flexibility. We consider that fcij = 1, so that the

total budget represents the maximum number of production-plant links.

The base case for the comparison is the case in which Fmax is equal to the number of products (in

the reminder, the Fmax value representing this flexibility configuration is referred to as Flex1). The

others possible values considered for the parameter Fmax will be 50%, 75% and 100% (in the next

tables, the Fmax values representing these flexibility configurations are called, respectively, Flex2,

Flex3 and Flex4), where 100% means that all plants can produce all products, that is, there is total

flexibility, while the other values are percentages calculated relative to this maximum number of links,

i.e., n× f . For example, for the flexibility configuration with 50% (Flex2), it is considered that 50%

of the total possible links can be used.

The possible choices of the capacity levels per period (constraints (5)) vary according to a

factor µ, which multiplies the total average capacity ACap, which is calculated by(( ∑
i∈I

∑
k∈K

∑
t∈P

diktvti+sti

)
/
(
f×p
))

. We consider values µ = 0.6, 0.7, 0.9, 1.1, 1.3 in order to have a

broad range of problems so that the solutions have different levels of backlog. Note that the data used

are plant invariant, therefore, we did not consider the index related to the plant in the formula to

indicate the production and setup time.

We also consider four different possible values for the transportation costs (tcijk) in the objective

function (1):

• No transportation costs: where tcijk = 0, ∀i, j, k;

• Low transportation costs: where for each item i, tcijk is the Euclidean distance between plant j

and client k multiplied by a scalar value β = 0.3;

• Medium transportation costs: similar to the Low transportation costs β = 0.6;

• High transportation costs: where tcijk is 100 times the value defined for Low transportation costs

(hence β = 30);

Table 1 shows how the general parameters were defined for the MPCLSP-PFT, which are based on

part of an instance set proposed in (Trigeiro et al., 1989). The remaining parameters will be specified

in the next sections.

Table 1: Parameter definitions designed for the MPCLSP-PFT.

Parameters All classes of instances

ditk U[0, 180]
stij U[10, 50]
vtij 1
scij U[400, 1000]
hcij U[1, 5]
bcjtk 300
bcjpk 600
vcij 0
fcij 1

Each row presents a set or value used
to define their parameters where U[a, b]
represents the uniform distribution.
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5.2 Comparison of the mathematical models

This section presents a comparison of the proposed mathematical models M1, M2 and M3 in terms

of lower bounds, upper bounds, gap and computational time. For this, the instances have 4 and

5 plants (f); 5 and 8 items (n); 5 periods (p); 4 and 6 clients (c).

In this section, the choice of the flexibility levels are Flex2 = 50% and Flex3 = 75% and we

consider low and high transportation costs (tcijk) according to the definition presented in the previous

section. Moreover, in this section, the choice of the capacity levels per period varies with a factor

µ = 0.6, 0.9, 1.3.

Table 2 shows the lower bounds obtained by the linear relaxations of the three models. Each line

of this table represents an average of 10 instances, being 5 instances with 4 clients and another 5

instances with 6 clients. It is possible to observe that the best LP lower bounds are obtained by model

M3. Considering µ = 0.9 and µ = 1.3, model M2 obtains better LP lower bounds than model M1.

However, when the capacity is very tight (µ = 0, 6) model M1 can obtain better LP lower bounds

than model M2. In A we include a small example and a discussion about these lower bounds.

Table 2: Linear relaxation lower bounds obtained by each mathematical model.

µ f n c p

Low transportation cost

Flex2–50% Flex3–75%

M1 M2 M3 M1 M2 M3

0,6 4 8 4/6 5 3749539 3825795 3894188 3749539 3825795 3894188
0,6 5 5 4/6 5 2776698 2442629 2779972 2776698 2442629 2779972
0,9 4 8 4/6 5 11188 24077 24116 11188 24068 24107
0,9 5 5 4/6 5 14470 15373 16833 14470 15372 16833
1,3 4 8 4/6 5 7995 23768 23770 7995 23763 23766
1,3 5 5 4/6 5 9932 15151 15465 9932 15150 15465

Averages 1094970 1057799 1125724 1094970 1057796 1125722

µ f n c p

High transportation cost

Flex2–50% Flex3–75%

M1 M2 M3 M1 M2 M3

0,6 4 8 4/6 5 3860162 4036550 4090468 3860162 4036550 4090467
0,6 5 5 4/6 5 2842214 2572275 2875256 2842214 2572275 2875292
0,9 4 8 4/6 5 142934 206183 206183 142934 199112 199112
0,9 5 5 4/6 5 104230 131101 131172 104230 129581 129621
1,3 4 8 4/6 5 131958 183750 183750 131958 178055 178055
1,3 5 5 4/6 5 87915 117786 117786 87915 115987 115987

Averages 1194902 1207941 1267436 1194902 1205260 1264756

Next we fix the level of flexibility equal to 75% (Flex3 = 75%) and analyze other aspects comparing

the results of the mathematical models. Table 3 shows the best lower bound, upper bounds, the

computational times and gap. In order to measure the solution quality, let gap be the distance between

the best solution (ZUB) and the best lower bound (ZLB) found by CPLEX v.12.10 time limited to

3600 seconds. We calculate the gap as it is presented in Equation (40).

gap = 100× ZUB − ZLB

ZLB
% (40)

From Table 3 it is possible to observe that, considering low transportation cost, Model M1 obtained

better lower bounds for four of the six considered configurations and on average the lower bounds are

1.11% and 0.21% better than models M2 and M3, respectively. On the other hand, when considering

high transportation cost, the lower bounds found by the three models are more similar and the general

average difference between the results of model M1 and the models M2 and M3 decreases to only
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0.68% and 0.14%, respectively. Table 3 also shows that the values of the upper bounds are quite

similar considering the three different models. However, again model M1 found better general average

results (although the difference is less than 0.04% for all configurations and models). Finally, it is

also interesting to see that both computational times and optimally gaps reduce considering high

transportation cost when compared to the case with low transportation costs. We also observe that

generally instances become easier to solve when the capacity is less tight.

Table 3: Lower bounds, upper bounds, computational times and gaps obtained by each mathematical model.

µ f n c p

Low transportation cost (Flex3–75%)

M1 M2 M3

LB UB GAP Time LB UB GAP Time LB UB GAP Time

0,6 4 8 4/6 5 3937580 3985694 1,2 3600 3909431 3987682 2,0 3600 3925016 3988534 1,6 3600
0,6 5 5 4/6 5 2806476 2822546 0,6 3600 2759706 2822575 2,4 3600 2805370 2822554 0,7 3600
0,9 4 8 4/6 5 24452 24622 0,7 3600 24508 24620 0,4 2692 24387 24637 1,0 3251
0,9 5 5 4/6 5 18272 18399 0,7 1800 17733 18400 3,6 3022 18128 18400 1,4 2639
1,3 4 8 4/6 5 23833 23835 0 231 23833 23835 0 12 23833 23835 0 82
1,3 5 5 4/6 5 15998 15999 0 982 15975 15999 0,1 955 15977 15999 0,1 957

Averages 1137769 1148516 0,5 2302 1125198 1148852 1,4 2314 1135452 1148994 0,8 2355

µ f n c p

High transportation cost (Flex3–75%)

M1 M2 M3

LB UB GAP Time LB UB GAP Time LB UB GAP Time

0,6 4 8 4/6 5 4141558 4168911 0,7 3600 4126407 4168900 1,1 3600 4132061 4170759 0,9 3600
0,6 5 5 4/6 5 2896688 2906011 0,4 3295 2859997 2907548 1,8 3600 2895446 2906003 0,4 3509
0,9 4 8 4/6 5 205011 205068 0 995 205047 205068 0 443 205017 205068 0 1222
0,9 5 5 4/6 5 132454 132599 0,1 1291 132512 132599 0,1 862 132470 132605 0,1 1452
1,3 4 8 4/6 5 182325 182343 0 63 182325 182343 0 45 182325 182343 0 90
1,3 5 5 4/6 5 117530 117541 0 24 117530 117541 0 23 117529 117541 0 39

Averages 1279262 1285413 0,2 1545 1270637 1285667 0,5 1429 1277475 1285720 0,2 1652

5.3 Evaluation of the proposed heuristic

This section presents a comparison of the proposed mathematical model M1 against the heuristic

approach. We choose model M1 because, according to the results from the previous section, it show

a good performance in terms of quality of upper bounds, gaps and computational times. Regarding

the heuristic approach, we have tested different combinations of models and parameters. Analyzing

these preliminary tests, the best results were obtained when considering DModel, so that to solve the

problems DModel and (P2) we time limited CPLEX v. 12.10 to 300 seconds, which is on average

100 times more than the necessary time for the instances considered. Moreover, to find a solution to

(P3) and (P4)v in the KS heuristic, CPLEX was time limited according to the amount of time spent

(SpentTimev) until the iteration v, the available time (AvailTime) and number of remaining iterations

(RItv) at iteration v. Therefore, at each iteration v, the time given to CPLEX, called TimeMIPv, is

calculated as it is shown in Equation (41).

TimeMIPv = (AvailTime - SpentTimev)/RItv (41)

Where AvailTime was set to 3600 seconds. It is important to highlight that the best results were

obtained using model M3 to solve the linear relaxation (P2) and model M1 in the other steps of the

Kernel search.

The instances used in this section have 8, 10 and 12 plants (f); 8, 10 and 12 items (n); 8, 10

and 15 periods (p); 6 and 12 clients (c). The choice of the flexibility levels are Flex3 = 75% and

Flex4 = 100% and we consider low transportation costs (tcijk) according to the definition presented
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in the previous section. Moreover, in this section, the choice of the capacity levels per period varies

according to µ = 0.6, 0.9, 1.1, 1.3.

In Table 4 we compare the results of the mathematical model and the heuristic solution for instances

with Flex3- 75%. We see that the computational package reaches the time limit for all instances when

solving the mathematical model while the heuristic solution presented a reduced computational time.

The gaps of the heuristic presented in Table 4 are calculated using the lower bounds found by M1.

Analysing the Gap, the mathematical model M1 obtains better gaps for instances up to 12 plants, 10

items, 6 clients and 10 periods. For instances bigger than this, the gaps obtained when solving the

mathematical model are quite high, while the heuristic presents a smaller gap in most of the cases.

Observe that on average, while the gap found by the heuristic is 12.29, the model presents a significant

higher value (equal to 31.08).

Table 4: Mathematical model and heuristic solution (Flex3- 75%).

µ f n c p

Low transportation cost Flex3- 75%

M1 Kernel M1 + M3

LB linear LB UB Time Gap Initial sol. Kernel sol. Time Gap

0,6 8 8 6 8 and 10 15110259 15128755 15278330 3600 0.99 15705670 15351672 1933 1.48
0,6 8 10 6 8 and 10 18162430 18200448 18376182 3600 0.98 19004599 18381056 1669 1.00
0,9 8 8 6 8 and 10 39634 48286 50160 3600 3.74 59259 50300 1029 3.99
0,9 8 10 6 8 and 10 40268 58534 63802 3600 8.11 12040019 64884 1423 9.68
1,1 8 8 6 8 and 10 32510 46305 47600 3600 2.77 48106 47821 1215 3.22
1,1 8 10 6 8 and 10 33185 57362 59642 3600 3.80 9408708 60791 1273 5.57
1,3 8 8 6 8 and 10 27719 45545 46822 3600 2.79 47535 47260 846 3.74
1,3 8 10 6 8 and 10 28397 56832 57332 3600 0.83 6796277 58254 1138 2.34
0,6 10 12 6 8 and 10 88080144 88095492 88614425 3600 0.62 89559591 88574293 3381 0.56
0,6 12 12 6 8 and 10 89435478 89443062 90303606 3600 1.01 91262093 91045684 3600 1.65
0,9 10 12 12 10 and 15 77422 106566 48379917 3600 72.09 50914922 29157543 2103 67.79
0,9 12 12 12 10 and 15 88896 108960 207890297 3600 79.66 116889 116819 2476 6.62
1,1 10 12 12 10 and 15 64741 103840 54995327 3600 69.80 40909839 159907 1673 27.31
1,1 12 12 12 10 and 15 73906 101335 140378625 3600 91.89 116349 116327 1895 12.59
1,3 10 12 12 10 and 15 56145 100762 224347565 3600 79.88 30940009 8458620 2745 33.34
1,3 12 12 12 10 and 15 63482 98088 218967408 3600 78.24 116349 116346 2882 15.30

Averages 13213414 13237511 69241065 3600 31.08 22940388 15737974 1955 12.26

Table 5 shows the results of the mathematical model and the heuristic solution for instance with

Flex4- 100%. It is possible to see that the behavior of the results is similar compared to the previous

results presented in Table 4. In other words, for the instances with 8 and 10 items, although the upper

bounds of the model are slightly smaller than those presented by the heuristic, the model always

reaches the time limit of 3600 seconds while the solution times presented by heuristic are significantly

smaller. On the other hand, considering the instances with 12 items, the upper bounds found by the

heuristic are much better than the upper bounds found by the model and on average, the gap found

by the model is greater than twice that found by the heuristic.

5.4 Analysis of flexibility

This section presents an analysis of the benefits of the flexibility in the integrated lot sizing and trans-

portation problem. The focus of the analysis is concentrated on the chosen values for the parameter

Fmax. In order to obtain good solutions allowing a better analysis of the value of the flexibility,

reduced instances were used. The instances have 3 plants (f); 3 and 6 items (n); 5 periods (p); 4 and

6 clients (c). In this section, we consider values µ = 0.6, 0.7, 0.9, 1.1, 1.3 in order to have a broad range

of problems so that the solutions have different levels of backlog. Moreover, four different values for

the transportation costs previously described are considered.

In Table 6 we present the average upper bounds (columns UB) found for all instances and flexibility

configurations considering different levels of transportation costs. Note that the upper bounds found
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Table 5: Mathematical model and heuristic solution (Flex4- 100%).

µ f n c p

Low transportation cost Flex4- 100%

M1 Kernel M1 + M3

LB linear LB UB Time Gap Initial sol. Kernel sol. Time Gap

0,6 8 8 6 8 and 10 15110259 15124683 15277995 3600 1.02 15705670 15338827 2044 1.42
0,6 8 10 6 8 and 10 18162430 18200916 18376321 3600 0.98 19004599 18395159 1822 1.08
0,9 8 8 6 8 and 10 39634 48015 50162 3600 4.31 59259 50376 1095 4.70
0,9 8 10 6 8 and 10 40268 58177 64105 3600 9.11 12040019 65265 1292 10.74
1.1 8 8 6 8 and 10 32510 46123 47668 3600 3.22 48106 47886 921 3.71
1,1 8 10 6 8 and 10 33185 57198 59619 3600 4.02 9408708 61156 1455 6.33
1,3 8 8 6 8 and 10 27719 45423 46824 3600 3.01 47535 47278 920 3.96
1,3 8 10 6 8 and 10 28397 56810 57328 3600 0.84 6796277 58395 1253 2.59
0,6 10 12 6 8 and 10 88080144 88094341 88651169 3600 0.63 89559591 88551622 3413 0.54
0,6 12 12 6 8 and 10 89435478 89444252 90284573 3600 0.98 91262093 91051251 3600 1.65
0,9 10 12 12 10 and 15 77422 105743 225969350 3600 76.24 50914922 34401987 2759 61.96
0,9 12 12 12 10 and 15 88896 108134 107713440 3600 79.41 116889 116800 2704 7.38
1,1 10 12 12 10 and 15 64741 102251 288008239 3600 78.50 40909839 22419221 2582 63.32
1,1 12 12 12 10 and 15 73906 100934 329445442 3600 83.50 116349 116349 2860 13.01
1,3 10 12 12 10 and 15 56145 98175 160148340 3600 61.39 30940009 8459704 2672 35.86
1,3 12 12 12 10 and 15 63482 95427 335676401 3600 91.97 116349 116346 2893 17.52

Averages 13213414 13236663 103742311 3600 31.20 22940388 17456101 2143 14.74

by the case in which each product can be made in exactly one plant (Flex1) were set to 100% and the

other values are calculated relative to this. The overall computational results show that the benefits of

flexibility depend on the amount of flexibility (number of links between plants and products), capacity

level and transportation costs. In this analysis, the value of flexibility is defined as the possible relative

cost reduction of a given flexibility level compared to the case with no flexibility. In Table 6, the value

of flexibility is hence equal to 100% - UB(%).

Fiorotto et al. Fiorotto et al. (2018) analysed the case without transportation cost. The setting

in their paper was an environment consisting of multiple parallel machines, which can be dedicated

to produce only one type of product, or can be flexible to produce multiple types of products. This

corresponds to our case with no transportation costs in Table 6. Fiorotto et al. Fiorotto et al. (2018)

presented two main findings, which were in line with the observations made in Jordan and Graves

(1995). However, when we analyse the case with (high) transportation cost, we see that these two

observations do not hold anymore. We next discuss each of these two findings in detail and compare

the case with and without transportation cost.

First, Fiorotto et al. (2018) observe that the value of flexibility is the highest when the overall

capacity is roughly in line with overall demand, but this value decreases when capacity is much lower

than demand, or when capacity is much higher than demand. In Table 6, we observe a similar trend

for the case with no and low transportation cost, where the case with low capacity is represented by

a low value of µ and the case with a high level of capacity is represented by a high value of µ. The

reason is as follows. With a very low capacity level, the base case (in which each product is made in

only one plant) has a lot of backlog and the capacity is already fully used, so flexibility will bring little

benefit since it will not allow to satisfy more demand. With a high level of capacity, the base case

with no flexibility already allows to satisfy all the demand with no backlog, and hence flexibility also

has little value here.

However, when transportation costs are present and substantial, we observe a clear tendency that

for cases with a high capacity level (corresponding to a high value of µ) the value of flexibility remains

high. This can be explained by the additional trade-off with the transportation cost that is present

in this problem. With a very low capacity level, flexibility will bring little benefit as explained for

the case with no transportation cost. When capacity increases, flexibility will allow to first reduce

the backlog and satisfy more of the demand and has hence more value. At a very high capacity level,
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the base case does not present any backlog, but flexibility still has value because it enables to reduce

the transportation cost. The fact that products can be made in several plants allows to reduce the

distance to the final customers. Of course, the exact value of flexibility also depends on other costs,

such as the setup costs. Indeed, the number of overall setups will increase if we produce a specific type

of item in several plants.

A second main difference that we observe when we introduce (high) transportation cost is that the

difference between the value of a little flexibility (Flex2) and full flexibility (Flex4) becomes higher.

In the case without transportation cost, as analysed by Fiorotto et al. (2018) and also observed in

Jordan and Graves (1995), a low level of flexibility (Flex2) (if configured in a smart way) gives almost

the same benefits as full flexibility (Flex4). We observe a similar trend for the case with no, low

and medium transportation cost. Indeed, for these cases, the maximum difference between Flex2 and

Flex4 is 2.28%. However, with high transportation costs, this difference becomes much higher for the

cases with a high level of capacity (µ = 1.1 and 1.3). For the case with µ = 1.3, 6 products and six

plants, this difference reaches 11.04%. For this case, even the difference between Flex3 and Flex4 is

equal to 3.82%. This indicates that with high transportation cost, not all the benefits of full flexibility

can be reached with a limited level of flexibility.

In order to better understand the results presented in Table 6, we show in Table 7 the characteristics

of the solutions considering no transportation cost and high transportation cost for Flex1 and Flex4:

the percentage of setup, backlog, transportation and holding cost (columns SC%, BC%, TC% and

IC%, respectively) in the objective function value. Considering no transportation cost, we observe

that the biggest benefits of flexibility shown in Table 6 (capacity level equal to 0.9 and 0.7 for the

problems with 3 and 6 items, respectively) are the result of decreasing the percentage of backlog cost in

the objective function when considering flexibility. For example, considering the instance with 3 items,

4 clients and capacity level equal to 0.9, the percentage of backlog cost goes from 74.31% to 1.24% for

Flex1 and Flex4, respectively. On the other hand, the percentage of setup cost goes from 24.01% to

93.36%. It shows that adding flexibility allowed a more adequate production planning where, although

the number of setups increased, the total level of backlog decreased significantly. Regarding the case

with high transportation cost, Table 6 showed high benefits of flexibility even for instances with high

capacity levels. Table 7 shows that it happens because although there is no backlog in these cases,

adding flexibility allows to reduce the transportation cost significantly. Note that for the instances

with high capacity levels (1.1 and 1.3) by adding flexibility it is possible to decrease the percentage

of transportation cost around 10%. Therefore, different from the case with no transportation cost (in

which the benefits of flexibility comes only from reducing the backlog), in the studied problem, the

benefits of flexibility comes from the backlog and also the number of items transported. However, for

the same case, we also observe that the setup cost portion increased significantly when adding more

flexibility, since one product can now be produced in many different plants.

Aiming to further analyse the effect of the flexibility considering transportation costs, in Figure 2 we

present the behavior of the total setup, backlog, transportation and inventory costs when increasing

the amount of flexibility. On the horizontal axis, zero stands for the case with no flexibility and

the values of 1, 2, and 3 stand for Flex1, Flex2 and Flex3, respectively. The different colored lines

within one graph indicate the various cases for the transportation cost, ranging from no transportation

cost to high transportation cost. Figure 2 shows that while the decrease in the backlog cost is very

similar for all levels of transportation costs, the behavior and especially the size of the decrease in

the other costs are quite different. Note that with high transportation cost, the setup and inventory

costs increase when increasing the amount of flexibility. On the other hand, the transportation cost

decreases significantly by adding flexibility. It is important to see that for this problem, the value

of the total transportation cost is much bigger than the setup and inventory costs which makes the

increase in these latter costs insignificant when calculating the benefits of flexibility.

Regarding the solution gaps and times, Figure 3 shows that both values increases by adding flex-

ibility and the biggest values are found for the problems without transportation costs. On the other
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hands, the smallest values are found considering the problem with high transportation costs. However,

note that solution gaps and times are on average always less than 0.3% and 600 seconds.

Figure 2: Averages setup, backlog, transportation and inventory costs.

Figure 3: Average solution gaps and times.

6 Conclusion

In this paper the lot-sizing problem with process flexibility in a deterministic context was studied.

Different from the standard problem with parallel resources, the studied problem considers a limited

amount of flexibility so that each resource can produce only certain types of items. We extend a

previous paper from the literature by considering a network of costumers dispersed around different

plants obtaining an integrated lot sizing and transportation problem. The objective is to analyze the

value of flexibility and develop solution methods for this problem. In order to overcome the difficulties

in solving medium and especially big size instances, we propose a hybrid solution method that combines

mixed integer programming-based approach and kernel search heuristic.

Our computational experiments show that, in terms of total costs, the proposed hybrid solution

method presents on average better solutions with significantly lower computational times when com-
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pared with the results produced by a high-performance MIP software. Moreover, for several levels

of capacity, the optimality gaps found by the proposed approach are significantly lower than those

presented by the high-performance MIP software.

Our analyses indicate that some of the main managerial insights derived for the case without

transportation cost are no longer valid when we introduce (high) transportation cost. More specifically,

with transportation costs, we find that flexibility adds benefits in the case of high capacity levels

because flexibility allows to lower the transportation costs. Furthermore, we found that with high

transportation cost and a high level of capacity, a limited amount of flexibility does not provide similar

benefits as the case with full flexibility. Therefore, considering that to invest in flexibility (adding new

products to the production line) can be very expensive in practice, this study can be used as a guide

for industries to carry out an adequate planning of investment in flexibility to decrease the total costs.

There are some interesting issues that can be explored as further research, for example, to solve

the problem considering overtime instead of backlog costs and apply the proposed method to this new

problem. It would also be interesting to analyse the value of flexibility in a stochastic setting in which

demand is uncertain.

A Analysis of the lower bounds

Based on the results presented in Section 3, we can observe an unusual situation where, depending on

the available capacity, the reformulation M2 of the problem does not provide better lower bounds than

those obtained with the classical formulation. This fact motivated us to use a third formulation M3,

which combines M1 and M2 in such a way that we always have the best lower bound independent of

the available capacity.

To investigate what makes the classical formulation M1 providing better lower bounds to problems

with tight capacity compared to the reformulation M2, we solved a small example. Consider two

small instances to the MPCLSP-PFT with one item, one plant, one client, and two periods with the

parameter values presented in Table 8. Note that, apart from the capacity values, all the parameter

have the same values. In the first instance, the capacity in both periods is equal to 80 and in the

second instance, the capacity in both periods is equal to 150.

Table 8: Parameter values predefined for a small example of the MPCLSP-PFT.

Parameter Indices Value Parameter Indices Value

dit
(1,1) 108

Capjt
(1,1) {80,150}

(1,2) 107 (1,2) {80,150}

stij (1,1) 40 scij (1,1) 1000

vtij (1,1) 1 vcij (1,1) 0

bcitk
(1,1,1) 300 hci (1) 5
(1,2,1) 600

tcjk (1,1) 0.2658
Fmax - 1

The solution and detailed information on the solution of the linear relaxation of both models M1

and M2 are presented in Tables 9 and 10. According to these tables, one can observe that the main

difference in the results is the existence/absence of backlog in the last period of the planning horizon

for the instance with the smallest/largest available capacity. Therefore, this indicates that the classical

formulation provides better lower bounds than the reformulated problem when the available capacity

is tight enough to lead to the existence of backlog (last period) in the solution of the linear relaxed

problem. Moreover, it indicates that the opposite happens when there is no backlog (last period) in

the solution of the linear relaxed problem.
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Table 9: Solution values of the linear relaxation for both models and instances.

Capjt
M1 M2

Capjt
M1 M2

DV Value DV Value DV Value DV Value

80

y111 1.00 y111 0.67

150

y111 0.98 y111 1.00
y112 1.00 y112 0.67 y112 0.97 y112 0.98
z11 1.00 z11 1.00 z11 1.00 z11 1.00
b111 68.00 b′1211 54.67 x111 108.00 x11111 108.00
b121 135.00 b′1221 53.67 x112 107.00 x11121 2.00
x111 40.00 x11111 26.67 tr1111 108.00 x11221 105.00
x112 40.00 x11121 26.67 tr1112 107.00
tr1111 40.00 x11211 26.67
tr1112 40.00 x11221 26.67

Table 10: Detailed information based on the results of the linear relaxation of the problem.

Capjt Information M1 M2 Capjt Information M1 M2

80

Objective function 103421.26 90895.02

150

Objective function 2011.69 2048.46
Used capacity 160.00 160.00 Used capacity 293.18 294.25
Total capacity 160.00 160.00 Total capacity 300.00 300.00
Number of setups 2.00 1.33 Number of setups 1.95 1.98
Setup cost 2000.00 1333.33 Setup cost 1954.55 1981.31
Number of backlog 135.00 108.34 Number of backlog 0.00 0.00
Backlog cost 101400.00 89400.00 Backlog cost 0.00 0.00
#Units transported 80.00 106.67 #Units transported 215.00 215.00
Transportation cost 21.26 28.35 Transportation cost 57.15 57.15
Number of storage 0.00 26.67 Number of storage 0.00 2.00
Storage cost 0.00 133.33 Storage cost 0.00 10.00

The solution and detailed information on the solution of the MIP of both models M1 and M2 are

presented in Tables 11 and 12.

Table 11: MIP solution values for both models and instances.

Capjt
M1 M2

Capjt
M1 M2

DV Value DV Value DV Value DV Value

80

y111 1.00 y111 1.00

150

y111 1.00 y111 1.00
y112 1.00 y112 1.00 y112 1.00 y112 1.00
z11 1.00 z11 1.00 z11 1.00 z11 1.00
b111 68.00 b′1211 28.00 x111 108.00 x11111 108.00
b121 135.00 b′1221 107.00 x112 107.00 x11121 107.00
x111 40.00 x11111 40.00 tr1111 108.00
x112 40.00 x11121 40.00 tr1112 107.00
tr1111 40.00
tr1112 40.00

Table 12: Detailed information based on the results of the MIP problem.

Capjt Information M1 M2 Capjt Information M1 M2

80

Objective function 103421.26 103421.26

150

Objective function 2057.15 2057.15
Used capacity 160.00 160.00 Used capacity 295.00 295.00
Total capacity 160.00 160.00 Total capacity 300.00 300.00
Number of setups 2.00 2.00 Number of setups 2.00 2.00
Setup cost 2000.00 2000.00 Setup cost 2000.00 2000.00
Number of backlog 135.00 135.00 Number of backlog 0.00 0.00
Backlog cost 101400.00 101400.00 Backlog cost 0.00 0.00
#Units transported 80.00 80.00 #Units transported 215.00 215.00
Transportation cost 21.26 21.26 Transportation cost 57.15 57.15
Number of storage 0.00 0.00 Number of storage 0.00 0.00
Storage cost 0.00 0.00 Storage cost 0.00 0.00
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