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auteurs conservent leur droit d’auteur et leurs droits moraux sur leurs
publications et les utilisateurs s’engagent à reconnâıtre et respecter
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Abstract : Yield uncertainty is an important issue in various industries such as agriculture, food, and
textile where the production output is reliant on uncontrollable factors and fluctuating raw material
quality. To systematically leverage data to deal with uncertainty in a cost-effective fashion, distributio-
nally robust optimization combines the strengths of stochastic programming and robust optimization
by optimizing the expected costs against an ambiguity set that defines possible distributions. In this
work, we leverage a data-driven robust optimization framework and formulate a mixed-integer distri-
butionally robust multi-item lot-sizing model with uncertain production yield to determine a robust
production plan. To this end, we use a scenario-wise formulation that partitions the available data into
scenarios that define different patterns influencing the quality of the product and production process.
In addition, we apply the proposed approach to real-world data of a case study to demonstrate the
effectiveness of the proposed framework in dealing with yield uncertainty. Our experimental results
show that distributionally robust plans lead to more effective cost-saving strategies and decreased risk
of stock-outs. Additionally, our findings suggest that the proposed model exhibits lower sensitivity to
variations in production yield realizations and it is more proficient in incorporating historical data into
the decision-making process. This results in a more effective response to challenges encountered within
the production system under yield uncertainty.

Keywords : Lot-sizing, production planning, yield uncertainty, distributionally robust optimization.

Résumé : L’incertitude des rendements de production est un problème important dans diverses
industries telles que l’agriculture, l’alimentation et le textile, où la production dépend de facteurs
incontrôlables et de la qualité fluctuante des matières premières. Pour exploiter systématiquement les
données afin de gérer l’incertitude de manière rentable, l’optimisation distributionnellement robuste
combine les atouts de la programmation stochastique et de l’optimisation robuste en optimisant les
coûts attendus par rapport à un ensemble d’ambigüıtés qui définit les distributions possibles. Dans ce
travail, nous exploitons un cadre d’optimisation robuste basé sur les données et formulons un modèle
de dimensionnement de lots multi-produits robuste sur le plan de la distribution et avec un rendement
de production incertain pour déterminer un plan de production robuste. À cette fin, nous utilisons une
formulation par scénarios qui divise les données disponibles en scénarios définissant différents modèles
influençant la qualité du produit et du processus de production. De plus, nous appliquons l’approche
proposée aux données réeles d’une étude de cas pour démontrer l’efficacité du cadre proposé pour
traiter l’incertitude du rendement. Nos résultats expérimentaux montrent que des plans de distribution
robustes conduisent à des stratégies de réduction des coûts plus efficaces et à une diminution du risque
de rupture de stock. De plus, nos résultats suggèrent que le modèle proposé présente une sensibilité
moindre aux variations des rendements de production et qu’il est plus efficace dans l’intégration des
données historiques dans le processus de prise de décision. Il en résulte une réponse plus efficace aux
défis rencontrés au sein du système productif dans un contexte d’incertitude sur les rendements de
production.

Mots clés : Dimensionnement des lots, planification de la production, incertitude de rendement,
optimisation distributionnellement robuste.
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1 Introduction

In today’s fiercely competitive business environment, manufacturers across different industries, es-

pecially those where yield uncertainty is high, are struggling to make the most of their resources and

production capabilities to ensure that they can meet the demand for high-quality products in a market

that’s constantly changing and volatile while keeping costs as low as possible. In such a situation,

manufacturers seek to enhance their processes to improve quality and reduce waste. Despite advan-

cements in technology for quality improvements and defect detection, many production environments

still face challenges with high defect rates. This is particularly true for industries characterized by

complex production systems, products with stringent specifications, or highly manual production pro-

cesses. The quality of production in such industries is often influenced by external factors like climate

changes, supply disruptions or delays, and fluctuations in raw material quality, as well as internal

factors such as machinery maintenance, workforce availability and skill, and failures in the production

process flow. As a result, the production yield rate becomes highly unpredictable in these industries,

directly impacting the quantity of high-quality products obtained from production.

Production yield is a measure of a production system’s performance and efficiency in meeting the

quality specifications of the products. An accurate production yield estimation helps manufacturers to

maintain the system under control, reducing its vulnerability to errors, malfunctions, irregularities, and

loss of profit. The production yield is often estimated from the historical data and quality control data

associated with the production process. However, these predictions are often inaccurate because of the

complexity and various uncontrollable factors that can affect the quality of the production. Therefore,

the losses in production quality are difficult to predict and measure, and their impacts can be highly

damaging to the system [22]. For instance, in the olive oil industry, yield uncertainty can increase overall

costs as low production yields force producers to buy olives from other farmers to fulfill demand and

meet the contractual obligation [23]. Yield uncertainty can also affect the contractual arrangements

in supply chains. If the production yield is low, it can result in increased insurance payouts, reduced

capital investment, and difficulties in obtaining credit and subsidies [2]. Yield uncertainty in vaccine

production can also have a direct impact on social welfare as it may result in weak immunity to new

virus strains or mutations [13]. Therefore, optimization approaches that effectively and systematically

hedge against such uncertainties are of utmost importance.

When faced with high levels of uncertainty, two commonly used approaches are stochastic pro-

gramming (SP) and robust optimization (RO). Generally, SP optimizes based on the expected value

when uncertainties follow a known probability distribution [6]. Traditional SP methods rely on a re-
liable estimate of the probability distribution of uncertain parameters. In practice, decision-makers in

industry often struggle to provide accurate estimates for the probability distribution of the production

yield due to a lack of quality data and their dependence on various factors such as weather conditions,

operators, and raw material quality. RO is an alternative approach that does not rely on precise esti-

mation of the underlying probability distribution. RO optimizes against the worst-case scenario within

an uncertainty set, which can sometimes result in overly cautious and expensive solutions [3]. Howe-

ver, traditional robust optimization methods often use simplistic uncertainty representations which

can result in solutions that are conservative and costly to implement. To address this issue, distri-

butionally robust optimization (DRO) provides a robust perspective for stochastic programming [14].

More specifically, DRO incorporates the probabilistic concepts from SP and the robust perspective

from RO [50]. DRO immunizes the system from the worst-case probability distribution described by

an ambiguity set, which defines a family of probability distributions of the uncertain parameter. An

ambiguity set can be created using partial stochastic information estimated from historical data [14].

As DRO is a recent optimization methodology, some challenges remain to be addressed. More spe-

cifically, there are restrictive assumptions that must be made to compute a tractable solution, the

reformulation can be complex and affects the intractability of models [50]. Recently, [11] introduce

an event-wise ambiguity set, and the authors provide an efficient reformulation for this ambiguity

set. This formulation combines the scenario-tree method from SP with the bounded representation
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of uncertain parameters from RO. The event-wise formulation can be used to represent well-known

ambiguity sets including generalized moment, mean absolute, Wasserstein distance and Wasserstein

set, and clustering-based ambiguity set by making use of an additional random variable to generalize

the definition of the uncertain parameter [11].

The paper introduces a distributionally robust model to address the multi-item lot-sizing problem

(LSP) when dealing with yield uncertainty. The LSP aims to determine production setups and quanti-

ties to meet demand with quality goods while minimizing overall production and inventory costs [32].

Our contribution is fourfold. First, we propose a distributionally robust formulation for the multi-item

LSP under production yield uncertainty. To this end, we leverage the scenario-wise ambiguity set based

on the framework proposed by [11]. Second, using the framework presented in [48], we reformulate the

distributionally robust model as a mixed integer linear program (MILP) that can be efficiently solved

by commercial solvers. Third, through simulations, we compare the quality of the production plans

obtained from the distributionally robust model with the production plans obtained from traditional

stochastic programming and robust optimization models. Finally, we empirically validate the value of

the robust solution using data from a case study to highlight the advantages of using DRO to deal

with production yield uncertainty.

This work is organized as follows. Section 2 reviews the literature on distributionally robust opti-

mization with a specific focus on its applications to lot-sizing problems and other related problems.

Section 3 formally outlines the problem we are considering and introduces the scenario-wise distribu-

tionally robust optimization methodology as well as its MILP reformulations. Section 4 presents the

experimental results on the quality of distributionally robust plans. Finally, Section 5 concludes this

work and suggests some future research directions.

2 Literature review

This section first presents briefly the literature on lot-sizing under uncertainty, then the stochas-

tic and robust studies on lot-sizing problems (LSPs) under yield uncertainty. Finally, we review the

distributionally robust optimization theory and its application to the multi-item LSPs.

2.1 LSPs under yield uncertainty

The classical LSP has been first introduced in the 1950s by [47]. LSPs have attracted a wide range

of research from management, production, operations, and mathematical optimization communities.

We refer readers to [8] for the recent state-of-the-art methods on single-item LSPs, and to [33] for

further information on LSPs. Although the literature on LSPs is vast, there are still some knowledge

gaps on non-deterministic formulations. [1] and [8] indicate the predominance of studies on uncertain

demand, whereas other uncertain parameters such as lead time, cost, capacity, and production yield,

which can significantly affect the quality and efficiency of the manufacturing process and production

plans, are not widely studied. Finally, a review of literature on lot-sizing problems under uncertain

yield is presented by [51].

Non-deterministic multi-item LSP literature dates back to the 1990s, when [10] present a simulation

approach to define production plans. [9] propose a MILP formulation to address capacitated LSP with

uncertain demand, and the authors suggest a fix-and-relax heuristic strategy to determine a solution.

[43] develops a column generation heuristic to solve a stochastic LSP under demand uncertainty. Since

then, a large number of publications have considered non-deterministic LSPs, and there is abundant

literature on stochastic programming and robust optimization for LSPs. Most of the studies consider the

demand is unknown [44, 45, 27], and a different stream of research considers lead time uncertainties [46,

41]. However, other parameters may be unknown such as production capacity, process duration, and

production yield, and they are only very few studies on the uncertainty of these parameters [39].
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Research on production planning under yield uncertainty is rather scarce. [24] propose a stochastic

program to handle yield uncertainty due to the quality of raw materials for a sawmill production plan.

[35] propose a multi-item multi-echelon LSP for a manufacturing system that includes disassembly,

refurnishing, and reassembly, all while dealing with uncertainties. As the stochastic MILP model is

formulated with a scenario tree, the resulting model is very complex and suffers from a scalability

issue. To overcome this drawback, [35] develop a branch-and-cut algorithm to compute good solutions

within a reasonable timeframe. [31] propose a robust optimization model for the single item LSP under

yield uncertainty. The authors investigate the robust formulation of the problem, and they propose a

MILP model and a dynamic program to solve it. Then, [42] expends the previous work to the LSP

where production decisions are adjustable to the realizations of yield uncertainty. The authors propose

a MILP approximation and a column-and-constraint generation algorithm to compute an optimal

adaptive robust production plan.

The literature on multi-item LSPs under yield uncertainty is in its early stages of development. To

the best of our knowledge, no studies have yet explored the multi-item LSP under yield uncertainty,

and this work aims to fill this knowledge gap via the distributionally robust optimization. This paper

extends the lot-sizing model presented in [31, 42] to the multi-item variant, and we investigate the use

of the distributionally robust optimization framework to enhance the quality of the solution in this

challenging context.

2.2 Distributionally robust optimization

Although research on robust optimization has been first introduced in the 1950s with [38]’s work,

[14] are among the first to formally establish a distributionally robust optimization framework. They

did so by defining an ambiguity set based on moment information and proposing a semi-infinite pro-

gramming method to solve it. In a later study, [50] provide a comprehensive review of convex DRO

methodology, and they introduce standardized forms for convex ambiguity sets. The authors also out-

line the conditions which ensure the tractability of the distributionally robust models. [15] introduce

the Wasserstein ambiguity set, which is both convex and allows for a tractable reformulation. [26]

expand on previous research and present additional theory on the Wasserstein ambiguity set. Their

work highlights the advantages of this approach both conceptually and computationally. They also

demonstrate promising outcomes when utilizing the Wasserstein ambiguity set in conjunction with

machine learning models. [5] propose a tractable adaptive DRO formulation based on second-order co-

nic representable ambiguity sets. The authors provide tools to reformulate the distributionally robust

models as an MILP that can be easily solved with commercial solvers. In the same vein, [11] introduce

an event-wise formulation for the ambiguity sets, and provide a new modeling package, called RSOME,

to help modelers reformulate and solve distributionally robust models. For an extensive review of DRO,

we also refer interested readers to [36].

For the sake of tractability, distributionally robust models are often approximated using conic re-

presentations like second-order programs or linear reformulation [12]. These models take into account

available distributional information to compute the expectation of the uncertainty either through an

expected value formulation or in a chance constraint form [50]. For the latter, we can refer to the work

of [30] where the authors propose a risk-averse perspective for a distributional robust model based

on conditional value-at-risk (CVaR) constraints for a disassembly line balancing problem. [30] refor-

mulate the CVaR constraints as second-order cone constraints and propose a cutting-plane algorithm

to solve the reformulated robust model based on a reduced ambiguity set. [16] present a two-stage

distributionally robust model for the COVID-19 testing facility territory design and capacity planning

problem. The authors then develop a tractable reformulation and an adversarial approach to compute

a robust solution. In the same spirit, [49] apply a second-order conic (SOC) programming approach

to a two-stage distributionally robust model. The authors propose an approximation of the hard SOC

model to determine a feasible robust solution.
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[14] propose an ambiguity set constructed from the knowledge of the support of the moment of the

distribution. [7] suggest that, when dealing with processes that involve random variables in a dynamic

environment (such as the production yield rate that changes according to the process condition), it

is important to consider a larger ambiguity radius and confidence region (such as the Wasserstein

distance) to reduce disturbances in cases of errors or misestimation. The authors indicate that a large

set of scenarios is necessary to accurately estimate the occurrence of time-varying random variables.

[18] state that the Wasserstein ambiguity set can be used to effectively prevent disturbance and reduce

the impacts caused by inaccurate distribution estimates or insufficient data. [37] propose an adversarial

approach to incorporate estimations of the uncertainty distribution in a Wasserstein ambiguity set.

The authors also discuss approaches to estimate these distributions in situations where they may vary

over time. Finally, [29] report the effectiveness of the Wasserstein ambiguity set with a finite and small

sample set. The authors demonstrate that this model delivers reliable out-of-sample performance and

greater robustness compared to other models that do not consider distribution information.

The concept of distributionally robust optimization for inventory management problems has been

studied since the 2010s. [19] propose a risk-averse distributionally robust multi-item newsvendor pro-

blem under uncertain demand. The authors approximate the distributionally robust model to a quadra-

tic programming model, which yields a conservative but tractable formulation. Meanwhile, [21] present

a reformulation approach based on the conditional value-at-risk (CVAR) to solve the multi-product

assembly and the portfolio selection problem. They use a cutting plane algorithm to solve this robust

model. [34] develop a reformulation by utilizing Lagrange multipliers and propose decomposition me-

thods to solve the multi-product inventory problem under demand and supply uncertainties. Finally,

[48] reformulate the multi-item newsvendor problem using event-wise affine decision rules and propose

a column generation algorithm to determine the solution. Distributionally robust optimization has

been applied to lot-sizing problems in recent years. However, the focus of the studies has been mostly

on demand uncertainty. [17] present a distributionally robust model to mitigate prediction errors from

demand prediction models for a two-stage lot-sizing problem. [17] also present adversarial approaches

to handle demand uncertainty in this lot-sizing problem.

Our work differs from the aforementioned literature in various ways. To the best of our knowledge,

this paper is the first to tackle the multi-item LSP under yield uncertainty. Since various operational

conditions (such as changes in raw material quality and ambient temperature) can affect production

yield, we adopted an event-wise ambiguity set in a DRO framework. This approach leads to a less

conservative plan since one can incorporate available data and scenario analysis into the decision-

making process.

Notation : We use boldface (e.g., X) to denote vectors. The following definitions are also used in
this paper :
a) The support function of a convex set Q describing a variable zzz is defined as δ∗(z|Q) = supξξξ∈Q ξξξ⊤zzz.
b) The perspective of a function g(x) : Rn ⇒ R is a function g(x, t) : Rn × R ⇒ R = tg(x

t
), ∀t > 0. The

perspective of a function is a mathematical concept that often helps modelers provide non-intuitive
behaviors or to demonstrate some properties associated with optimization problems [20].
c) The conjugate of a function g(y) is a convex function g∗(y), even if g(x) is not convex. The
conjugate is given by g∗(y) = supx∈domdomdomg(x) y

⊤x− g(x), where domdomdom, the domain of a function, gives all
the inputs to the function.

3 Distributionally robust multi-item lot-sizing problem under yield
uncertainty

We consider a multi-item multi-period lot-sizing problem (LSP) with backorders and uncertain

production yield. This is an extension of the single-item problem presented in [31]. We aim to determine

the optimal production setups and lot sizes for a given set of items I within a finite planning horizon T .
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For each item i ∈ N = {1, ..., |N |} and each period t ∈ T = {1, ..., |T |}, the following parameters are

given : setup cost sit, unit production cost vit, unit inventory cost hit, unit backorder cost bit, and

demand dit. The production yield ρ̃it for item i in period t is uncertain, and it is strictly positive

(0 < ρ̃it ≤ 1). In addition, Mit =
∑

τ∈T diτ

minτ≤tρτ
is an upper bound on the production quantity. The LSP

requires finding the production quantity Xit and the setup decision Yit to meet demands and minimize

costs. In the distributionally robust optimization paradigm, these decisions are made to minimize the

worst-case expected inventory management cost concerning a set of probability distributions F . We

denote by Hit(ρ̃̃ρ̃ρ) the inventory or backorder cost for item i and period t depending on the uncertain

yield ρ̃ρρ. We assume that the decision-maker follows a static strategy, where the production plan is

decided before observing the realization of the uncertain production yield, and the decisions remain

fixed over the entire planning horizon. The distributionally robust multi-item lot-sizing uncapacitated

problem (DRLSP) can be formulated as follows :

min

(∑
i∈N

∑
t∈T

(sitYit + vitXit) + sup
P∈F

EP

[∑
i∈N

∑
t∈T

Hit(ρ̃it)
])

(1a)

s.t.

Hit(ρ̃̃ρ̃ρ) ≥ hit

[
t∑

τ=1

(ρ̃iτXiτ − diτ )

]
∀i ∈ N ; t ∈ T ; ρ̃̃ρ̃ρ ∈ P (1b)

Hit(ρ̃̃ρ̃ρ) ≥ −bit

[
it∑

τ=1

(ρ̃iτXiτ − diτ )

]
∀i ∈ N ; t ∈ T ; ρ̃̃ρ̃ρ ∈ P (1c)

Xit ≤ MitYit ∀i ∈ N ; t ∈ T (1d)

Xit, Hit ≥ 0 ∀i ∈ N ; t ∈ T (1e)

Yit ∈ {0, 1} ∀i ∈ N ; t ∈ T (1f)

where F is the ambiguity set which represents a family of the distributions, P is a distribution realized

from this set, and ρ̃̃ρ̃ρ is the uncertain yield based on the distribution P. Without a loss of generality,

we assume that there is no stock or backorder at the beginning of the planning horizon. The objective

function (1a) minimizes the total cost comprising the setup, unit production, and worst-case expected

inventory and backorder costs. The model determines the inventory management and backlog costs

Hit(ρ) which account for the production yield. More specifically, constraints (1b) compute the inventory

cost for item i in period t with the help of the cumulative amount of quality goods obtained for periods

up to t. Similarly, constraints (1c) compute the backorder cost if the cumulative amount of quality

goods is not enough to meet all demands up to t. The constraints (1d) are setup-forcing constraints

that relate the lot sizes (Xit) to the setup decisions (Yit). These constraints set the setup variable Yit

to 1 if any production for item i occurs in period t, and the setup remains inactive otherwise (Yit = 0).

To address the capacitated version of the problem, constraints (1d) should be modified to represent

the resource availability by setting Mit = min{Cit,Mit}, where Cit is the available capacity for item i

in period t.

To obtain the optimal solution to the deterministic uncapacitated lot-sizing problem, one can

solve the single-item model separately for each item. However, in the distributionally robust lot-sizing

problem, an additional assumption is required, namely, that the sub-problem of finding the worst-case

distribution is also separable per item. This means that the ambiguity set does not include constraints

that link the distributions of different items.

The supP∈F EP[.] represents the worst case expected cost over the ambiguity set F . To solve pro-

blem (1) with a MILP solver, we transform it into a MILP distributionally robust model for LSP

under yield uncertainty. This section provides our MILP reformulation. First, we define the scenario-

wise ambiguity set. Second, we define the scenario-wise affine decision rule that computes the inven-

tory management costs as a function of the realization of the random production yield. Finally, we
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rely on Slater’s condition and Sion’s minimax theorem to reformulate our DRO model as a robust

model [11, 48].

3.1 Definition of the scenario-wise ambiguity set

The event-wise ambiguity set was first introduced by [11], and it incorporates the scenario tree

representation from stochastic optimization with the affine decision rules to represent the uncertainties

in the ambiguity set. For a formal definition of the event-wise ambiguity set and further information

on its application, we refer the interested readers to [11].

As we consider a static decision framework, where all decisions are fixed before the realization of

uncertain yield, the event ambiguity set has only one event with several scenarios that describe the

uncertainty. In the static decision framework, the realization of the production yield impacts only the

inventory management costs. Therefore, we reduced the event-wise ambiguity set to a scenario-wise

ambiguity set where each scenario is a pattern that describes one possible behavior of the uncertain

yield.

Let us assume a historical data set H of the production yield, which contains various measurements

of production performance PP from the past (e.g., H = {PP1, PP2, ..., PP8}, where 8 production

performances are available). From H, we can identify different scenarios s that influence the production

yield. For instance, scenarios can represent changes in temperature and changes in raw material. In

this case, a scenario s1 (denoted [normal, S1]) corresponds to the case where the ambient temperature

is normal, and raw materials come from supplier S1. We have s2 = [low,A], s3 = [normal,B], s4 =

[low,B]. Therefore, we can partition H in S exclusive scenarios that contain at least one measurement

each (e.g., S {s1, s2, s3, s4}, and s1 = {PP1, PP6, PP7}, s2 = {PP2, PP4, PP5}, s3 = {PP3, PP8},
s4 = {PP2, PP6, PP8}, such that s1 ∪ s2 ∪ s3 ∪ s4 = S ⊂ H). Each scenario helps us to estimate the

true value of our random variable (here the production yield ρ̃ρρ). More precisely, from H we obtain a

set S = s1, .., sS of scenarios, where each scenario s represents a conditional moment information that

the uncertain production yield follows.

A confidence set of distribution gives the range of values compatible with the data estimated with

the distribution considered. To account for confidence sets, [50] redefines the random variable with the

inclusion of an additional variablemmm. This additional variable links the outcomes from different proba-

bility distributions with their respective confidence sets without imposing a condition on the confidence

set [11]. Therefore, the scenario-wise model remains valid for different settings and definitions of the

ambiguity set.

We redefine the random production yield as (ρ̃ρρ, m̃mm), where the primary random variablec ρ̃ρρ ∈
R(N×T ) gives the uncertain production yield, and the auxiliary random variable m̃mm ∈ R(N×T )m ensure

that the scenario-wise model remains valid for different probability distributions without imposing

additional or specific conditions on the confidence set. The space R(N×T )m (resp. R(N×T )ρ) defines a

sub-space from the space R(N×T ) of the appropriated size to represent the auxiliary variable m̃mm (resp.
ρ̃ρρ). Note that the production yield is item-independent.

For each scenario s, we define the convex sets Qs and Ws. Qs represents the expected value from

the estimation of the random variable, while the support set Ws indicates the support of the random

variable. Ws = {(ρρρ,mmm) ∈ R(N×T ) + R(N×T )m |ρρρ ≤ ρρρ ≤ ρρρ,gggs(ρρρ) ≤ mmm} is the epigraph of gggs and relates

the random variable ρρρ to the auxiliary variable m̃mm. Ws also gives the lower bound ρρρ (resp. upper bound

ρρρ) of the production yield. We can define the scenario-wise ambiguity set F as follows :

F =


P ∈ P0

∣∣∣∣∣∣∣∣∣∣∣

(ρ̃ρρ, m̃mm, s̃) ∼ P, ppp ∈ P
EP

[
(ρ̃ρρ, m̃mm) | s̃ = s

]
∈ Qs ∀s ∈ S

P
[(

(ρ̃ρρ, m̃mm) ∈ Ws | s̃ = s
)]

= 1 ∀s ∈ S

P(s̃ = s) = ps ∀s ∈ S


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where P0 ∈ R(N×T )+(N×T )m × S is the set of S distributions of the random yield for item i ∈ N and

period t ∈ T , P is one possible probability distribution for the random production yield, and ps is the

probability of scenario s, such that ppp > 0,
∑

s∈S ps = 1.

Before presenting the MILP reformulation for our problem based on the scenario-wise ambiguity

set, we first describe the ambiguity set under each scenario within the scenario-wise ambiguity set in

the following subsections.

3.1.1 Mean absolute ambiguity set

The mean absolute ambiguity set FM [15, 48] defines the set of possible distributions based on the

mean ( ρ̄ρρs) and standard deviation ( ρ̂ρρs) of the production yield from the lot sizes of each item i in

a given period t and scenario s ∈ S. A distribution Ps ∈ FM can be represented by the support set

Ws = {(ρρρ,mmm) ∈ R(N×T ) + R(N×T )m | ρρρ ≤ ρρρ ≤ ρρρ, ||ρρρ − ρ̄ρρs|| ≤ mmm} ∀s ∈ S. In addition, the expected

value of the random variables takes values in the set Qs = {(qqqρ, qqqm)|qqqρ = ρ̄ρρs;qqqm = ρ̂ρρs}, and ps = 1
|S| .

Assuming P0 ∈ (R(N×T )+(N×T ) × S) , the mean absolute ambiguity set for the uncertain production

yield is given as follows :

FM =


P ∈ P0

∣∣∣∣∣∣∣∣∣∣∣

((ρ̃ρρ, m̃mm), s̃) ∼ P
EP[ρ̃ρρ | s̃ = s] = ρ̄ρρs ∀s ∈ S
EP[m̃mm | s̃ = s] = ρ̂ρρs ∀s ∈ S

P
[
(ρ̃ρρ, m̃mm) ∈ Ws | s̃ = s

]
= 1 ∀s ∈ S

P(s̃ = s) = 1
|S| ∀s ∈ S


3.1.2 Wasserstein ambiguity set

A Wasserstein ambiguity set contains a collection of probability distributions that are at most

θ distant from the available distributions built from past production yield behaviors. As explained

by [15] and [48], the Wasserstein ambiguity set FW considers an empirical distribution P̆ estimated

from historical data, and FW contains all probability distributions P whose Wasserstein distance with

P̆ is lower than θ. θ represents the radius of the Wasserstein ball centered at the empirical distribution.

The Wasserstein ambiguity set can be represented as a scenario-wise ambiguity set. For each

scenario s, Qs is given by Qs = {(qqqρ, qm)|qm = θ}, while Ws is given by Ws =
{
(ρρρ,m) | ρρρ ∈

[ρρρ,ρρρ]; ||ρρρ − ρ̆ρρs||p ≤ m
}
. Note that p, in the Wasserstein support set, indicates the p-norm. Let us

assume P0 ∈ ((RN×T)+1 × S) . For the uncertain production yield, the Wasserstein ambiguity set is

given as follows :

FW =

P ∈ P0

∣∣∣∣∣∣∣∣∣∣
((ρ̃ρρ, m̃), s̃) ∼ P
EP

[
m̃ | s̃ ∈ S

]
= θ

P
[
(ρ̃ρρ, m̃) ∈ Ws

]
= 1 ∀s ∈ S

P(s̃ = s) = 1
|S| ∀s ∈ S


3.2 Scenario-wise LSP under yield uncertainty reformulation

Under uncertain yield, the inventory and backorder cost Hit(ρ̃, m̃, s̃) depend on the realization of

the yield of each item i in each period t. We characterize Hit(ρ̃, m̃, s̃) as an affine function of the

uncertain yield with the following scenario-wise decision rule :

Hit(ρρρ,m̃mm, s) = H0
its +

∑
l∈T

∑
k∈N

H
′

itklsρkl +
∑

j∈(N×T )|m|

H
′′

itjsmj

where H0
its represent the cost component that is free from disturbances due to uncertainty, HHH

′

its is

the cost component that is a function to the realization of the random yield ρ̃ρρ, and HHH
′′

its is the cost
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component that is a function of the auxiliary variable m̃mm for item i in period t and for scenario s.

Therefore, HHH0 ∈ R((N×T )×S)
+ ; HHH

′ ∈ R(N×T+(N×T )|ρ|×S); HHH
′′ ∈ R((N×T )+(N×T )|m|×S) . Note that mmm

represents the conditional information for the confidence region of the ambiguity set. Therefore, for the

mean absolute ambiguity set, m̃mm represents the deviation from the mean for each scenario, such that

mmm ∈ R((N×T )+(N×T )|m|×S). For the Wasserstein ambiguity set, mmm represents the Wasserstein radius

that should be considered in the confidence region. Since all the scenarios should respect the same

condition on the Wasserstein distance, the vector m̃mm under a Wasserstein ambiguity set is reduced to

only one variable m̃.

The formulation of the DRLSP under yield uncertainty with scenario-wise ambiguity set and the

scenario-wise decision rule is given as problem (2) :

min

{∑
i∈N

∑
t∈T

(
sitYit + vitXit

)
+ sup

P∈F
EP

[∑
i∈N

∑
t∈T

Hit(ρ̃ρρ, m̃̃m̃m, s̃̃s̃s)
]}

(2a)

s.t. (1d), (1f)

Hit(ρρρ,mmm,sss) ≥ hit

[
t∑

τ=1

(ρρρiτXiτ − diτ )

]
∀(ρρρ,mmm) ∈ Ws; i ∈ N ;

t ∈ T ; s ∈ S
(2b)

Hit(ρρρ,mmm,sss) ≥ −bit

[
it∑

τ=1

(ρρρiτXiτ − diτ )

]
∀(ρρρ,mmm) ∈ Ws; i ∈ N ;

t ∈ T ; s ∈ S
(2c)

Hit(ρρρ,mmm,sss) ≥ 0
∀(ρρρ,mmm) ∈ Ws; i ∈ N ;

t ∈ T ; s ∈ S
(2d)

Xit ≥ 0 ∀i ∈ N ; t ∈ T (2e)

which can be rewritten problem (3) :

min
∑
i∈N

∑
t∈T

(
sitYit + vitXit

)
+ sup

P∈F
EP

[
Φ

]
(3a)

s.t. (1d), (1f), (2e)

H0
its +HHH

′

its

⊤
ρρρ+HHH

′′

its

⊤
mmm ≥ hit

[
t∑

τ=1

(ρρρiτXiτ − diτ )

] ∀(ρρρ,mmm) ∈ Ws;

i ∈ N ; t ∈ T ;

s ∈ S

(3b)

H0
its +HHH

′

its

⊤
ρρρ+HHH

′′

its

⊤
mmm ≥ −bit

[
it∑

τ=1

(ρρρiτXiτ − diτ )

] ∀(ρρρ,mmm) ∈ Ws;

i ∈ N ; t ∈ T ;

s ∈ S

(3c)

H0
its +HHH

′

its

⊤
ρρρ+HHH

′

its

⊤
mmm ≥ 0

∀(ρρρ,mmm) ∈ Ws;

i ∈ N ; t ∈ T ;

s ∈ S

(3d)

where Φ =
∑

i∈N

∑
t∈T

(
H0

it +HHH
′

it(s̃)
⊤ρρρ+HHH

′′

it(s̃)
⊤mmm

)
.

The rest of this section gives the reformulation of problem (3) as a MILP model. To reformulate (3)

as a MILP, we follow the first theorem in [11] to transform the worst expectation into robust constraints,

and we apply the first theorem in [48] to write the robust counterpart of all constraints subject to the

production yield uncertainty.

The first theorem in [11] states that, if Slater’s condition holds for the worst-case expectation

problem, then the problem can be reformulated as a robust optimization problem. For our model,

if Slater’s condition is valid for supP∈F EP
[∑

i∈N

∑
t∈T Hit(ρ̃ρρ, m̃̃m̃m, s̃̃s̃s)

]
, then the worst expectation for
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∑
i∈N

∑
t∈T Hit(ρ̃ρρ, m̃̃m̃m, s̃̃s̃s) can be formulated in a robust fashion as follows :

inf γ

γ ≥
∑
s∈S

(
psαs +µµµ

′

s

⊤
βββ

′

s +µµµ
′′

s

⊤
βββ

′′

s

)
∀s ∈ S

αs + ρρρ⊤βββ
′

s +mmm⊤βββ
′′

s ≥
∑
i∈N

∑
t∈T

(
H0

its +HHH
′

its

⊤
ρρρ+HHH

′′

its

⊤
mmm
)

∀(ρρρ,mmm) ∈ Ws; s ∈ S

γ ∈ R, ααα ∈ RS ∀s ∈ S

βββ
′

s ∈ R(N×T ), βββ
′′

s ∈ R(N×T )m ∀s ∈ S

Let us denote by µµµ
′

s and µµµ
′′

s the expected values of the random variables ρ̃ρρ and m̃mm in the set Qs

for a scenario s (µ
′

s, µ
′′

s ∈ Qs). We can then redefine the worst expectation supP∈F EP[∑
i∈N

∑
t∈T Hit(ρ̃ρρ, m̃̃m̃m, s̃̃s̃s)

]
= λ(ppp,µµµ) as follows :

λ(ppp,µµµ) = sup
P∈F

∑
s∈S

psEPs

[∑
i∈N

∑
t∈T

Hit(ρ̃ρρ, m̃̃m̃m, s)

]
s.t.

EPs [ρ̃ρρ] = µµµ
′

s ∀s ∈ S

EPs
[m̃mm] = µµµ

′′

s ∀s ∈ S

P[(ρ̃ρρ, m̃̃m̃m) ∈ Ws] = 1 ∀s ∈ S

The min-max theorem helps us to obtain the following dual from the supremum :

λ′(ppp,µµµ) = inf
∑
s∈S

(αs + psµµµ
′⊤
βββ

′
+ psµµµ

′′⊤
βββ

′′
)

s.t.

αs + ps(ρρρ
⊤βββ

′
+mmm⊤βββ

′′
) ≥ Hit(ρ̃ρρ, m̃̃m̃m, s̃̃s̃s) ∀(ρρρ,mmm) ∈ Ws; s ∈ S

βββ
′

s ∈ R(N×T ),βββ
′′

s ∈ R(N×T )m ∀s ∈ S

ααα ∈ RS

Since strong duality holds, λ∗ = λ′∗. As pppµµµ is non-convex, we can replace µs with µs

ps
to obtain a

convex representation of the infimum problem. We also replace αs with psαs (as ps > 0, p ∈ P ∀s ∈ S).

Then, we divide the λ′ by ps which leads to the following reformulation of the infimum :

λ′(ppp,µµµ) = inf(ppp⊤ααα+µµµ
′⊤
βββ

′
+µµµ

′′⊤
βββ

′′
)

s.t.

αs + ρρρ⊤βββ
′

s +mmm⊤βββ
′′

s ≥
∑
i∈N

∑
t∈T

Hit(ρ̃ρρ, m̃̃m̃m, s̃̃s̃s) ∀(ρρρ,mmm) ∈ Ws; s ∈ S

βββ
′

s ∈ R(N×T ),βββ
′′

s ∈ R(N×T )m ∀s ∈ S

ααα ∈ RS

Replacing λ with λ′ in problem (3) leads to the following robust reformulation of our DRLSP model

denoted as problem (4) :

min
Y,X

∑
i∈N

∑
t∈T

(
sitYit + vitXit

)
+ γ (4a)
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s.t. (1d), (1f), (2e), (3b), (3c), (3d)

γ ≥
∑
s∈S

(
psαs +µµµ

′

s

⊤
βββ

′

s +µµµ
′′

s

⊤
βββ

′′

s

)
∀ps ∈ Ps;

µs

ps
∈ Qs; s ∈ S (4b)

αs + ρρρ⊤βββ
′

s +mmm⊤βββ
′′

s ≥
∑
i∈N

∑
t∈T

(
H0

its +HHH
′

its

⊤
ρρρ+HHH

′′

its

⊤
mmm
)

∀(ρρρ,mmm) ∈ Ws; s ∈ S (4c)

βββ
′

s ∈ R(N×T ),βββ
′′

s ∈ R(N×T )m ∀s ∈ S (4d)

γ ∈ R,ααα ∈ RS (4e)

Problem (4) contains an infinite set of constraints since the support Ws of the uncertain yield is not

a finite set. To reformulate these constraints as linear robust counterpart constraints, we recall the first

theorem in [48] that requires two steps. First, [48] apply Sion’s minimax theorem (see [40]) to reverse

the order of a sup and inf problem concerning a bounded distribution P. Second, the authors rely on

strong duality to derive robust counterpart reformulations of constraints subject to uncertainty.

Equations (5) give the robust counterpart reformulation of (4b). The second line separates the dual

variables into individual problems, and it shows that only µµµ dual variables are impacted by Q, while

all dual variables are dependent on P. In the third line, we redefine the supremum problem in terms

of the support function. In the fourth line, we redefine the support function as an infimum problem,

and we gather the dual variables in the same supremum problem dependent on P. In the fifth line, we

exploit Sion’s minimax theorem to reverse the order of the supremum and infimum problems. Finally,

the last line gives the reformulation in terms of a support function for P.

sup
{µµµs

ps
}∈Qs,s∈S,ppp∈P

ααα⊤ppp+ βββ⊤µµµ

= sup
ppp∈P

ααα⊤ppp+
∑
s∈S

ps sup
{µµµs

ps
}∈Qs

βββ⊤
s µµµs

ps

= sup
ppp∈P

ααα⊤ppp+
∑
s∈S

psδ
∗
(
βββs|Qs

)
(5)

= sup
ppp∈P

(
ααα⊤ppp+ ppp inf

ν:ν≥δ∗(βββs|Qs)
ν
)

= inf
ν:ν≥δ∗(βββs|Qs)

sup
ppp∈P

ppp(ααα+ ν)

= inf
ν:ν≥δ∗(βββ|Q)

δ∗ (ααα+ ν|P)

The final linear reformulation is obtained by replacing the general support function with the specific

linear support function of the considered ambiguity set.

For the remaining constraints subject to the uncertain production yield, we assume that Slater’s

condition holds, as does the strong duality. Slater’s condition helps us to transform the worst expec-

tation problem into a robust formulation. On the other side, the strong duality allows us to develop a

tractable linear formulation for the obtained robust model. Thus, we derive equivalent robust counter-

part formulations for these constraints. As a result, the constraints seek the supremum of the random

variables over a support set [48]. The supremum problem sup is defined with the support functions of

the support set. On the other hand, its dual ( inf) is formulated using the conjugate of the epigraph

g. Thus, we apply the strong duality to redefine the sup problem in terms of its dual inf. First, we

demonstrate how to obtain the counterpart reformulation for constraint (4c). Then, we provide the

reformulation for the remaining constraints in A.1.



Les Cahiers du GERAD G–2024–12 11

We rewrite constraint (4c) to isolate the terms with the random variables on the right side, and we

obtain the following reformulation :

αs −
∑
i∈N

∑
t∈T

H0
its ≥ (

∑
i∈N

∑
t∈T

HHH
′

its − βββ
′

s)
⊤
ρρρ + (

∑
i∈N

∑
t∈T

HHH
′′

its − βββ
′′

s )
⊤
mmm ∀(ρρρ,mmm) ∈ Ws; s ∈ S

Note that the right side term can be rewritten as a convex optimization problem based on the

support function of Ws. If we exploit Slater’s condition and the strong duality since the random

variable ρ̃ρρ is bounded by ρρρ and ρρρ on Ws, we can assume ρρρ =
ρρρ+ρρρ

2 and vvv = gggs(ρρρ) + 1. Then, we define a

new random variable ξξξj ∈ Ws : ξξξj = ρρρ ∀j ∈ (N × T )|m| for any scenario s ∈ S. Finally, we obtain the

following convex optimization problem :

sup
κ

ρρρ⊤ccc1s +mmm⊤ccc2s

where

κ = {ρρρ,mmm, {ξξξj}j∈(N×T )|m| ∈ R, ρρρ ∈ [ρρρ,ρρρ].

We also have

gjs(ξj) ≤ mj ,

(ξξξj) = ρ, ∀j ∈ (N × T )|m|},

ccc1s =
∑
i∈N

∑
t∈T

HHH
′

its − βββ
′

s

and

ccc2s =
∑
i∈N

∑
t∈T

HHH
′′

its − βββ
′′

s .

As the strong duality holds, we can then reformulate this sup problem in terms of its inf dual

problem through the Lagrangian duality. Thus, we obtain the following primal-dual problem :

primal = supρρρ⊤ccc1s +mmm⊤ccc2s inf fct
ρρρ− ρρρ ≥ 0

∑
j∈(N×T )|m|

www1
js = ccc1s − ηηη1s + ηηη2s

−(ρρρ− ρρρ) ≥ 0 −−−−−→
dualized

ccc2s + λλλ1
s = 0

mj − gjs(ξξξj) ≥ 0 ηηη1s, ηηη
2
s,λλλ

1
s ≥ 0

ξξξj − ρρρ ≥ 0 www1
js ∈ R

ρρρ,mmm,ξξξj ∈ R

where the dual’s objective function is given by fct = ρρρ
⊤
ηηη1s −ρρρ⊤ηηη2s +

∑
j∈(N×T )|m|

λ1
js(mj − gjs(ξξξj)) +

www1
js

⊤
(ξξξj − ρρρ). The dual variables are ηηη1, ηηη2, λλλ1 and www1. In addition, the equations indexed by j are

defined for all j ∈ (N × T )|m|.

Finally, we rewrite the convex optimization problem as linear robust constraints based on the

obtained dual problem and the epigraph in the support set Ws as given below. From the assumption

that Slater’s condition is valid, the strong duality holds. Thus, the optimal dual variables from the

infimum yield an optimal supremum solution. We apply the minimax theorem to inverse the order of

the sup and inf problems on the second line, we rewrite the dual objective function in terms of its

conjugate function on the third line, and we isolate the sup problem that is now only dependent on

the dual variables www and λλλ on the fourth line. Then, we replace the later conjugate function with its

perspective on the fifth line given below.

sup
κ

ρρρ⊤ccc1s +mmm⊤ccc2s

= sup
κ

inf
ζ
ρρρ⊤ccc1s +mmm⊤ccc2s + (ρρρ− ρρρ)⊤ηηη1s − (ρρρ− ρρρ)⊤ηηη2s +

∑
j∈(N×T )|m|

λ1
js(mj − gjs(ξξξj)) +www1

js
⊤
(ξξξj − ρρρ)
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= inf
ζ
sup
κ

ρρρ⊤ccc1s +mmm⊤ccc2s + (ρρρ− ρρρ)⊤ηηη1s − (ρρρ− ρρρ)⊤ηηη2s +
∑

j∈(N×T )|m|

λ1
js(mj − gjs(ξξξj)) +www1

js
⊤
(ξξξj − ρρρ)

= inf
ζ
ρρρ
⊤
ηηη1s − ρρρ⊤ηηη2s +

∑
j∈(N×T )|m|

sup
ξξξj

www1
js

⊤
(ξξξj)− λ1

jsgjs(ξξξj)

= inf
ζ
ρρρ
⊤
ηηη1s − ρρρ⊤ηηη2s +

∑
j∈(N×T )|m|

λ1
jsg

∗
js

(www1
js

λ1
js

)
where ζ = {ηηη1s, ηηη2s,λλλ1

s ≥ 0; www1
js ∈ R ∀j ∈ (N × T )|m|; ccc

2
s + λλλ1

s = 0;
∑

j∈(N×T )|m|
www1

js = ccc1s − ηηη1s + ηηη2s}
and j ∈ (N × T )|m| whenever j index appears. As a result, we obtain the following reformulation for

the sup convex model :

sup
κ

ρρρ⊤ccc1s +mmm⊤ccc2s = inf
ζ
ρρρ
⊤
ηηη1s − ρρρ⊤ηηη2s +

∑
j∈(N×T )|m|

λ1
jsg

∗
js

(www1
js

λ1
js

)

where λ1
jsg

∗
js

(
www1

js

λ1
js

)
is the perspective function of the conjugate function of g∗js on (www1

js, λ
1
js) for all

j ∈ (N × T )|m|.

Note that the superscript 1 on the dual variables λλλ and www, (resp. the subscripts 1 and 2 on the

coefficients ccc and the dual variables ηηη) indicates the terms associated to constraints (4c), while the sub-

script 2 (resp. 3 and 4) is associated to constraints (3b), subscript 3 (resp. 5 and 6) to constraints (3c),

and subscript 4 (resp. 7 and 8) to constraints (3d).

Repeating the aforementioned reformulation technique to obtain a linear robust counterpart to all

constraints subject to the uncertain production yield, we obtain the final MILP robust reformulation

of problem (4), which is given as in Problem (6) :

min
∑
i∈N

∑
t∈T

(
sitYit + vitXit

)
+ γ (6a)

s.t.

γ ≥ δ∗
(
ααα+111ν|P

)
(6b)

ν ≥ δ∗
(
βββ|Q

)
(6c)

αs −
∑
i∈N

∑
t∈T

H0
its ≥

∑
i∈N

∑
t∈T

ρitη
1
its −

∑
i∈N

∑
t∈T

ρ
it
η2its

+
∑

j∈(N×T )|m|

λ1
jsg

∗
js

(www1
js

λ1
js

)
∀s ∈ S (6d)

λ1
js = β

′′

js −
∑
i∈N

∑
t∈T

H
′′

itjs

∀j ∈ (N × T )m;

s ∈ S
(6e)∑

j∈(N×T )|m|

www1
js =

∑
i∈N

∑
t∈T

(−β
′

its − η1its + η2its)
∑
i∈N

∑
t∈T

(
∑
k∈N

∑
l∈T

HHH
′

itkls) ∀s ∈ S (6f)

H0
its + hit

t∑
τ=1

diτ ≥
∑
k∈N

∑
l∈T

(ρklη
3
itkls − ρ

kl
η4itkls)

+
∑

j∈(N×T )|m|

λ2
itjsg

∗
js

(www2
itjs

λ2
itjs

)
∀i ∈ N ; t ∈ T ; s ∈ S (6g)

λ2
itjs = Hm

itjs

∀i ∈ N ; t ∈ T ;

j ∈ (N × T )m;

s ∈ S

(6h)
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∑
j∈(N×T )|m|

w2
itjs = −H

′

itkls − η3itkls + η4itkls
∀i, k ∈ N ; k ̸= i;

t, l ∈ T ; s ∈ S
(6i)

∑
j∈(N×T )|m|

w2
itjs = −H

′

itkls − η3itkls + η4itkls
∀i ∈ N ; t, l ∈ T ;

l > t; s ∈ S
(6j)

∑
j∈(N×T )|m|

w2
itjs = hitXil −H

′

itkls − η3itkls + η4itkls
∀i ∈ N ; t, l ∈ T ;

l ≤ t; s ∈ S
(6k)

H0
its + bit

t∑
τ=1

(ρiτXiτ − diτ ) ≥
∑
k∈N

∑
l∈T

(ρklη
5
itkls − ρ

kl
η6itkls)

+
∑

j∈(N×T )|m|

λ2
itjsg

∗
js

(www3
itjs

λ2
itjs

) ∀i ∈ N ; t ∈ T ;

s ∈ S
(6l)

λ3
itjs = Hm

itjs

∀i ∈ N ; t ∈ T ;

j ∈ (N × T )m;

s ∈ S

(6m)

∑
j∈(N×T )|m|

w3
itjs = −H

′

itkls − η5itkls + η6itkls
∀i, k ∈ N ; k ̸= i;

t, l ∈ T ; s ∈ S
(6n)

∑
j∈(N×T )|m|

w3
itjs = −H

′

itkls − η5itkls + η6itkls
∀i ∈ N ; t, l ∈ T ;

l > t; s ∈ S
(6o)

∑
j∈(N×T )|m|

w3
itjs = −bitXil −H

′

itkls − η5itkls + η6itkls
∀i ∈ N ; t, l ∈ T ;

l ≤ t; s ∈ S
(6p)

H0
its ≥

∑
k∈N

∑
l∈T

(ρklη
7
itkls − ρ

kl
η8itkls) +

∑
j∈(N×T )|m|

λ2
itjsg

∗
js

(www4
itjs

λ2
itjs

)
∀s ∈ S (6q)

λ4
itjs = Hm

itjs

∀i ∈ N ; t ∈ T ;

j ∈ (N × T )m;

s ∈ S

(6r)

∑
j∈(N×T )|m|

www4
itjs = −HHH

′

its − ηηη7its + ηηη8its ∀s ∈ S (6s)

Xit ≤ MitYit ∀i ∈ N ; t ∈ T (6t)

Xit, H
0
its, ηηη

1
s, ηηη

2
s, ηηη

3
its, ηηη

4
its, ηηη

5
its, ηηη

6
its, ηηη

7
its, ηηη

8
its, λ

1
js, λ

2
itjs ≥ 0

∀i ∈ N ; t ∈ T ;

j ∈ (N × T )m;

s ∈ S

(6u)

ααα ∈ RS ,βββ
′

s ∈ R(N×T )×S ;

βββ
′′

s ∈ R(N×T )×S
m ,HHH

′

its,HHH
′′

its, γ,www
1
js,www

2
itjs,www

3
itjs,www

4
itjs ∈ R

∀i ∈ N ; t ∈ T ;

j ∈ (N × T )m;

s ∈ S

(6v)

Yit ∈ {0, 1} ∀i ∈ N ; t ∈ T (6w)

where : constraints (4b) are reformulated as constraints (6b)–(6c) ; constraints (4c) are reformulated as

constraints (6d)–(6f) ; constraints (3b) are reformulated as constraints (6g)–(6k) ; constraints (3c) are

reformulated as constraints (6l)–(6p) ; and constraints (3d) are reformulated as constraints (6q)–(6s).
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4 Computational experiments and discussion

The objectives of the computational experiments are : (i) to evaluate the performance of distri-

butionally robust optimization (DRO) models for the LSP with uncertain production yield compared

to the solutions obtained from traditional robust optimization and stochastic programming models ;

(ii) to present an in-depth investigation of distributionally robust plans for the LSP with uncertain

production yield in terms of costs and quality, as well as computational efficiency ; (iii) to demonstrate

the performance of the DRO in a real-world setting through a case study.

We consider the following models in the experiments :

1. RO, the static robust optimization model presented in Appendix A.2

2. SPN , the two stage stochastic programming model presented in Appendix A.3 that assumes the

production yield follows a normal distribution

3. SPU , the two stage stochastic programming model presented in Appendix A.3 that assumes the

production yield follows a uniform distribution

4. MDRO, the mean absolute distributionally robust model given in Appendix A.4

5. WDRO, the Wasserstein distributionally robust model given in Appendix A.5

4.1 Instance generation and simulation approach

The experiments are performed with instances generated following the standard approach in the

literature on LSPs as in [31]. Each parameter was drawn from a uniform distribution, such that the

production cost, holding stock cost, demand, nominal value, and maximum deviation of the uncertain

production yield supports correspond to the following intervals : vit ∈ U(30, 50), hit ∈ U(1, 10),

dit ∈ U(450, 780), ρ̄
′

it ∈ U(0.7, 0.9), and ρ̂
′

it ∈ U(0.01, 0.1), respectively. The setup costs for each item i

are computed with the time between order formula sit =
D̄it·TBO2·ht

2 , where D̄it represents the average

demand for item i in periods up to t and the time between order (TBO) indicates the duration between

a customer’s orders. We also set the inventory and backorder levels at the beginning of the horizon to

zero.

To represent data of historical yields, we randomly generated 100 historical production yields for

each item. These vectors are drawn from a uniform distribution with support [ρ̄
′

it−ρ̂
′

it; ρ̄
′

it+ρ̂′it] for each

item i in period t. From this generated data set, a K-means clustering algorithm is applied to partition

the data in K different scenarios that share some distributional information in terms of the production

yield rate [28]. For each cluster s (which represents a scenario or pattern of the uncertain production

yield), we compute the average production yield ρ̄its, standard deviation of the production yield ρ̂its,

and finally, upper and lower bounds on the production yield given by ρits and ρ
its

, respectively, for all

item i ∈ N , all period t ∈ T and all scenario s ∈ S that should be considered on the ambiguity set.

From the generated data set, we also take the average production yield ρ̄
′′

it, standard deviation of the

production yield ρ̂
′′

it, and finally, upper and lower bounds on the production yield given by ρ
′′

it and ρ
′′

it
for all item i ∈ N , all period t ∈ T to represent the uncertainty set for the robust model or probability

distributions for the stochastic programs considered in this section.

The ambiguity sets are created from the generated historical data, and so does the uncertainty set

and parameters to define the distributions for the stochastic models. For WDRO, each centroid of

the obtained clusters represents the empirical distribution for the respective scenario. For MDRO, we

compute the mean and standard deviation of the production yield in each cluster. We consider that a

completely robust production plan can be computed with the most conservative uncertainty set from

the robust optimization, i.e. the box uncertainty set. This set is equivalent to the budgeted uncertainty

set proposed by [4] when the budget is set to Γt = t for each period t. The production yield is mapped

in terms of the nominal value and maximum deviation of the production yield calculated from the

average value over all the scenarios. For the stochastic programs, we consider two possible estimations
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for the probability distribution of the uncertain yield. While SPU uses 100 scenarios drawn from a

uniform distribution based on the maximum and minimum values of the production yield measured

from the generated data set, SPN samples scenarios from a normal distribution based on the average

and standard deviation of the production yield obtained from the generated data. The algorithms

were implemented in Python 3.6, and the MILP and the RSOME models are solved with CPLEX

version 12.10. We use the KMeans function from the Python scikit-learn 1.2.2 library to partition the

generated data [25]. The experiments were run on Intel(R) Gold 6148/2.4GHz processors with 92G of

RAM. All the models for all the instances were solved to optimality.

To investigate the quality of the distributionally robust optimization solutions, we evaluate the mo-

dels’ performance through a Monte Carlo simulation with |Ω| = 5000 scenarios, where each scenario

ω gives a possible production yield rate ρωit for each item i in each period t, and the distribution of

scenarios follows the same probability of occurrence as the scenarios in the ambiguity set. Considering

a case of good estimation of the production yield, the true realization ρωit follows a uniform distribution

with support [ρ
′′

it
; ρ

′′

it]. When we consider the case of misspecification of the distribution of the produc-

tion yield, we assume that ρωit follows a normal distribution with the average production yield ρ̄
′′

it and

standard deviation of the production yield ρ̂
′′

it. We evaluate each model by solving the deterministic

model for each scenario ω with the setups and lot size decisions fixed to the values obtained from the

optimization step.

The rest of this section is organized as follows. First, Section 4.3 defines the best parameters for

the ambiguity sets, that is, the number of scenarios, and the Wasserstein radius for the Wasserstein

ambiguity set. Then, Section 4.3 reports the simulation results based on the production plans for all

the considered models. Next, Section 4.4 presents the results of an industrial case study.

4.2 Definition of the ambiguity set

To design a sufficiently good ambiguity set, we estimate the best parameters to compute the DRO

models based on the average expected cost and the computational time. For that, we consider the same

data set for an instance with 5 items and 12 production periods, and we analyze the impact of these

parameters on the solution. For both DRO models, we partition the generated data in 8 scenarios (that

is S ∈ {1, ..., 8}. Considering the WDRO model, we also show how the Wasserstein distance impacts

the expected cost and the computational time. We consider a Wasserstein radius θ ∈ {0.01, 0.1, 0.5, 1},
where the higher the radius, the more conservative the ambiguity set is.

Figure 1 shows the average expected cost and computation time of the MDRO and WDRO models

for different numbers of scenarios in their respective ambiguity sets. Although the results under an

ambiguity set of one unique scenario give the lowest expected average cost and computation time, this

ambiguity set disregards the possibility of the different and independent possible patterns describing

the uncertain parameter. Thus, we evaluate the best number of scenarios that can define different and

independent scenarios yielding a low expected cost and an acceptable computational time. Therefore,

Figure 1 shows that three scenarios are enough to quickly calculate a satisfactory MDRO plan whose

average cost is the lowest, and different and independent scenarios are taken into account separately.

The figure also indicates that a good WDRO plan can be defined over the same amount of scenarios

as the MRO plan. Furthermore, the figure shows that although low θ lead to a slightly lower expected

cost, no significant difference is observed. Therefore, we can set the Wasserstein distance to its most

conservative value (θ = 1), without a significant increase in the expected costs.

4.3 Performance of the models

This section reports the performance and quality of production plans for the considered LSP under

production yield uncertainty. Based on the results presented in Section 4.2 we consider 3 scenarios for

the ambiguity sets considered here, and we set the Wasserstein radius to 1. For the simulation, we
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Figure 1 – Setting the parameters for the DRO models

consider two simulation frameworks : an in-sample and an out-of-sample context. The later simulation

framework investigates a situation when the underlying yield uncertainty can differ from the distribu-

tion used to generate the data. The first considers that the generated data is a good representation

of the future value of the production yield. When simulating with a uniform distribution, SPU gives

an expected cost whose distribution is a good estimation of the uncertainty, while SPN proposes the

production plan when the stochastic program follows a wrong estimation of the uncertainty. When si-

mulating with a normal distribution, the SPU plan is based on a wrong estimation of the uncertainty,

and SPN gives the production plan that follows a good estimation of the uncertainty.

We present some charts to represent the impact of the production yield on the production plan

considering the two simulation frameworks. In each figure, we represent the in-sample simulation on

the left side, while the right side corresponds to the out-of-sample simulation. Figure 2 reports on the

impact of the realization of the production yield on the costs. The DRO models outperform other

methods (that is SP and RO models) since they result in the lowest average costs. As MDRO is more

conservative than WDRO, it presents the lowest expected costs based on average scenarios (even in

the case of misspecification of the production yield distribution). MDRO yields the lowest costs in the

more pessimistic scenarios (here represented by the 95th and 99th percentile costs and also the cases

of misspecification of the uncertain distribution.

Table 1 and Table 2 give the numerical results represented in Figure 2 for the in-sample and

out-of-sample simulation, respectively. In these tables, we compare the methods based on the average

computational time (column Time, in seconds) from the optimization, and the expected value (column

Exp.Cost) of each solution approaches evaluated in the simulation, along with the 95th and 99th

percentile cost (p.c.), where the 99th percentile cost gives the approximate behavior of the models

for an adverse context. We also indicate the coefficient of variation CV of the costs, which gives the

percentage of variability of the costs. Thus, CV gives the ratio of the standard deviation to the mean,

where a high CV indicates costs widely dispersed from the average expected cost.

Analyzing the in-sample simulation, Table 1 confirms that DRO models outperform other ap-

proaches. Although the expected value obtained with SPU is 1% (resp. 1.1%) lower than the respec-
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(a) Average expected cost

(b) Average 95th percentile cost

(c) Average 99th percentile cost

Figure 2 – Cost distributions of the production plans

tive costs obtained with WDRO (resp. DRO), WDRO (resp. MDRO) reduces the average expected

cost by 1.7% (resp. 1.6%) compared to the RO plan, and by 3.2% (resp. 3.1%) compared to SPN .

In addition, WDRO (resp. MDRO) reduces the 95th percentile costs by 2%, 2.6% and 12.5% (resp.

1.8%, 2.4% and 12.2%) compared to RO, SPU and SPN , respectively, with a reduction in terms of

99th percentile costs of about 1.9%, 2.8% and 17.5% (resp. 1.7%, 2.6% and 17.3%). The DRO models

are more robust to adverse events (and less impacted by variations on the realization of the uncertain

yield) with a CV of 2.92% for both models, followed by RO (CV of 2.97%), SPU (CV of 4.95%), and

finally SPU (CV of 8.11%). Therefore, in terms of average costs and a controlled environment (the

in-sample simulation), WDRO followed by MDRO present the best production plans, with the lowest

average costs and highest cost savings when compared to the other methodologies.
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Table 1 – Performance of the models when the simulation follows a uniform distribution

Model Exp. Cost 95th p.c. 99th p.cc Time CV

WDRO 1,432,243 1,508,904 1,536,600 0.37 2.92%
MDRO 1,433,744 1,512,217 1,540,049 0.45 2.92%
SPN 1,477,526 1,697,263 1,806,253 0.18 8.11%
SPU 1,417,972 1,548,363 1,579,840 0.16 4.95%
RO 1,456,837 1,538,831 1,565,853 0.01 2.97%

Table 2 reports the numerical results in an adverse production environment represented by the

out-of-sample simulation. In this case, the production plan given by SPN follows the same distribution

as the simulation, while SPU represents the case of misspecification of the production yield distribution

in the optimization stage. Although the expected value obtained with SPN is 0.4% (resp. 3.6%) lower

than the respective costs obtained with WDRO (resp. DRO), WDRO (resp. MDRO) reduces the

average expected cost by 3.4% (resp. 0.1%) compared to the RO plan, and by 6.9% (resp. 3.5%)

compared to SPU . In addition, WDRO (resp. MDRO) reduces the 95th percentile costs by 3% and

6.2% (resp. 0.1% and 3.1%) compared to RO and SPU , respectively, with a reduction in terms of 99th

percentile costs of about 2.9% and 5.9% (resp. 0.1% and 3%). In the same line, WDRO reduces the

95th and 99th percentile costs by 1.6% and 2.6%, respectively, when compared to SPN . Since WDRO

is the more conservative DRO plan, it proposes a feasible plan in the worst-case perspective of the

distribution. That justifies the overly conservatism of MDRO compared to SPN , yielding to higher

95th and 99th percentile costs, with an increase of about 1.3% and 0.2%, respectively. These results

confirm the robustness and effectiveness of the DRO models, especially the WDRO model to mitigate

uncertainties and minimize the overall costs in a fuzzy or unexpected environment simulated with the

out-of-sample framework.

Table 2 – Performance of the models when the simulation follows a normal distribution

Model Exp. Cost 95th p.c. 99th p.cc Time CV

WDRO 1,750,526 1,830,390 1,850,714 0.36 2.55%
MDRO 1,808,320 1,884,443 1,902,370 0.47 2.47%
SPN 1,743,162 1,859,418 1,898,707 0.13 3.91%
SPU 1,871,989 1,943,210 1,959,890 0.10 2.31%
RO 1,809,762 1,885,929 1,903,950 0.01 2.47%

Figure 3 reports the inventory and backorder levels of the production plans at the end of the pro-

duction horizon, for each method throughout the simulation. It shows that a robust strategy generally

results in the largest stock to protect against yield uncertainties to avoid stockouts. On the other

hand, the stochastic programs keep fewer items in stock compared to the DRO and RO. Compared

to RO, Figure 3 shows that DRO models achieve a better balance in inventory management activity.

As WDRO reduces the conservatism of a robust plan by considering the available distributional in-

formation, it leads to a lower inventory level, which implies a small increase in stockouts compared

to RO. However, like MDRO, it achieves a good balance in inventory management cost, which leads

to lower average costs despite a slightly higher amount of stockouts compared to RO. Figure 3 also

shows that SP models increase the risks of stock-outs to reduce the inventory and production costs,

while DRO plans produce a higher quantity of products which leads to higher demand satisfaction

and lower backorders. In addition, since fewer items are kept in stock, or suffer from stockouts, in

a case of misspecification of yield uncertain distribution (which is observed by the low variability in

the inventory and backorder levels at the end of the production horizon), the strategy adopted by the

DRO models achieves good cost savings.

Figure 3 shows that DRO is less impacted by misestimation and variabilities in yields compared

to the stochastic programs. DRO models have larger lot sizes, which implies a larger stock of goods

and backorder levels as sporadic and as low as possible. DRO models and RO models have the lowest
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(a) Stock level at the end of the production horizon

(b) Stockout at the end of the production horizon

Figure 3 – Inventory levels of the simulated production plans

backorder levels and the largest stock of goods, even when the actual yield realizations are significantly

different from those extracted from the data. DRO models propose a strategy that balances between

robust optimization and stochastic programming methods, which generally leads to a higher stock level

than the solutions from SP and makes the occurrence of backorders more frequent than the solutions

from the traditional RO framework. In addition, DRO models remain robust despite the changes in

the uncertainty yield distribution.

Since DRO models use data-driven ambiguity sets, they provide more robust and cost-effective

production plans. Contrarily to SP , DRO models are not sensitive to the risk of misestimation of

the probability, since they provide a plan that performs better for contexts not considered within the

stochastic program formulation. Therefore, DRO solutions are still robust when the production yield

suddenly changes behavior. Therefore, the experimental results indicate that DRO plans have a better

cost-cutting strategy compared with robust optimization or stochastic program solutions, while they

are more immunized from errors in predictions.

4.4 Case study

The case study relies on data provided by a manufacturer of industrial equipment. We consider a

specific factory that produces a large number of variants of a sensitive part required in the finished

product. These parts have a very strict tolerance to ensure the longevity of the equipment sold to the

customer. To avoid deviations from specifications, the manufacturer currently tests all parts. When a

part does not meet the specifications, it is most often discarded. A discarded part cannot be replaced

by the production of a new one, because it would require ordering material from suppliers. The material

is specific to each part, and because the manufacturer produces a large number of variants, it does not

keep an unnecessary amount of material in stock.
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In this case study, we have the historical production yield rate data for 2 products in four different

scenarios (S = 4), namely : s1 when a machine is down ; s2 when a machine has a low battery ; s3 when

the temperature is normal ; and s4 when the temperature is low. We consider only the MDRO since

it can deal with these four different scenarios considering their conditional information independently.

Therefore, DRO considers the mean absolute ambiguity set. From the available data, for each scenario

s ∈ S we gather the available sample set which allows us to measure the average production yield

ρ̄its, the standard deviation of the production yield ρ̂its for all item i ∈ N and period t. These data

become the parameters of each scenario in our scenario-wise ambiguity set for MDRO. In addition,

we compute the upper and lower output yield limits given by ρits and ρ
its

, for all elements i ∈ N ,

in period t. These limits define the uncertainty set for the RO model and the support of the uniform

probability distribution for the SP model. Note that the uncertain yield in the three models (RO,

SP , and MDRO) has a bounded support that corresponds to the minimum and maximum measure of

production yields from the available data. To facilitate the analysis, we simulate the different models in

a space close to a uniform distribution. We compare the performance of the models with the simulation

results. We follow the same simulation process as presented in Section 4.1. We solve each model to

optimality and simulate 1000 scenarios to analyze the performance of the obtained production plans.

Table 3 reports the costs resulting from the simulation. In the table are given the overall costs,

standard deviation, and coefficient variation as well as computational time for 20 instances with 2 items

and 12 periods. We used the same table structure presented in Section 4.3, with which the models are

compared based on the average computational time from the optimization, and the expected value

along with the 95th and 99th percentile cost (p.c.) and the coefficient of variation CV of the costs

evaluated in the simulation framework.

Table 3 – Performance of the models in a real application

Model Exp. Cost 95th p.c. 99th p.cc Time CV

DRO 3,702,977 4,256,385 4,595,437 3.62 10%
SP 3,741,098 4,707,514 5,213,221 0.84 21%
RO 4,257,385 4,639,200 4,754,106 0.02 8%

Table 3 shows that DRO models outperform the stochastic program and the robust optimization

models for all criteria but the computational time, and the coefficient of variation for RO. Although RO

models are solved faster, DRO leads to more significant cost savings (since the expected costs and even

the 99th percentile costs with DRO are lower than the costs with RO) and higher robustness (since

its coefficient of variation is the lowest) in an average situation. The expected cost of DRO represents

a cost saving of 38.1K compared to SP , and around 554.4K compared to RO, which corresponds to

a decrease of approximately 1% and 15% respectively in the average costs. DRO also has a reduction

of 11% and 9% (which correspond to a cost saving of approximately 451.1K and 382.8K) on the

95th percentile costs when compared to RO and SP respectively. In terms of 99th percentile costs,

the reduction on the average cost corresponds to 13% (about 617.8K) and 3% (about 158.7K) of

the average costs compared to RO and SP , respectively. Regarding the computational time, Table 3

shows that the solver solves all models in less than a second. Therefore, scalability is not an issue. In

addition, the coefficient of variation of DRO is 10%, while the respective CV for the robust model is

8% and 21% for the SP model. This is not surprising, as a distribution-dependent model (SP ) is more

subject to large variations due to poor uncertainty estimation while a fully robust model (R0) seeks to

immunize the system from all types of uncertainties and with a feasible solution that remains robust

to any realization of uncertainty. As a result, the DRO model leads to a more cost-effective strategy

and a lower risk sensitivity compared to models highly dependent on good estimation of uncertainties

or highly conservative models.

Table 4 reports the characteristics of the simulated production plans. Column ∥X∥ gives the number

of items produced, while column ∥I∥ (resp. ∥B∥) shows the cumulative stock (resp. backorder) over

the production planning, column ∥IT ∥ (resp. column ∥BT ∥) gives the number of items kept on stock
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Table 4 – Characteristic of the production plans

Model ∥X∥ ∥I∥ ∥B∥ ∥IT ∥ ∥BT ∥ %∥Y ∥

DRO 52,758 35,787 1,013 2,237 110 64%
SP 51,887 27,794 1,415 1,565 223 72%
RO 57,021 50,535 555 5,844 - 75%

(resp. stockouts) at the end of the production horizon, and, finally, column ∥Y ∥ gives the frequency of

setup over the entire production horizon. DRO produces more than SP , which reduces the stockout at

the end of the production horizon, and it maintains a larger level of stocks over the production horizon

to balance the inventory management activities and to mitigate unexpected costs due to malfunctions

in quality assurance. Compared to RO, DRO reduces the amount to produce, which leads to a lower

inventory level at the expense of the possibility of stockouts (which is completely avoided at the end of

the production horizon with the plan given by RO). However, DRO plans still provide better inventory

flow than RO as DRO minimizes total costs with a balance between maintaining an inventory level

and accepting stockouts. Therefore, it is clear that DRO adopts a strategy to maintain a sufficient

amount of inventory to avoid cost overruns due to stockouts and to be able to satisfy all demands

regardless of dysfunctions in production performance.

5 Conclusion

This paper introduces a distributionally robust formulation for multi-item multi-period lot-sizing

under yield uncertainty. We consider the case where the probability distribution of the uncertain

yield takes value in a scenario-wise ambiguity set, and we reformulate the problem as a MILP. The

resulting model can easily be solved with a MILP solver. Our experimental results show that the

distributionally robust LSP model provides sufficiently robust production plans. These plans combine

a good cost-cutting strategy and a lower risk sensitivity to the variation of the production yield. Other

advantages of the event-wise distributionally robust optimization over the other considered approaches

are that the construction of the ambiguity set is data-driven, and it is free from strong assumptions

about uncertain parameter patterns. Further investigation is still needed to improve the quality of

the distributionally robust formulations and to reduce their sensitivity to large disturbances on the

uncertain production yield for adverse scenarios. In addition, the distributionally robust models can

suffer from scalability issues for very large instances and large ambiguity sets (i.e. when we increase the

number of scenarios and the size of the production horizon of the number of items to be processed).

Therefore, addressing large-size instances is envisaged, where a decomposition approach could help

modelers compute good distributionally robust production plans and obtain better bounds with less

computational effort. In addition, an extension of this distributionally robust model with a clustering-

based ambiguity set is envisaged to bring the proposed model closer to real-world applications and

cases where a probability distribution is difficult to estimate or is correlated for different items.

A Supplementary material

A.1 Counterpart reformulation for DRLSP constraints

In this section, we present the reformulation of the remaining constraints subject to uncertainties

from problem (4) in a robust fashion. For that, we assume that Slater’s condition and the strong duality

hold on each constraint, which helps us define the constraint in a robust counterpart form.



Les Cahiers du GERAD G–2024–12 22

A.1.1 Reformulation for constraints (3b)

If Slater’s condition holds on constraints (3b), then constraints (3b) is equivalent to

H0
its + hitdiτ ≥ sup

Λ
ρρρ⊤ccc3its +mmm⊤ccc4its

∀(ρρρ,mmm) ∈ Ws;

i ∈ N ; t ∈ T ;

s ∈ S

where Λ = ρρρ,mmm, {ξξξj}j∈(N×T )|m| , ρρρ ∈ [ρρρ,ρρρ], gjs(ξj) ≤ mj , (ξξξj) = ρ, ∀j ∈ (N × T )|m|. Note that ccc3its is

given in (7) and c4itjs = −H
′′

itjs.

c3itkls =

{
hitXil −H

′

itils, if i = k, l ≤ t

−H
′

itils, otherwise
(7)

If we reformulate the supremum in terms of the dual infimum for a scenario s ∈ S, we obtain :

sup
Λ

ρρρ⊤ccc3its +mmm⊤ccc4its = inf
Λ′

ρρρ
⊤
ηηη3its − ρρρ⊤ηηη4its +

∑
j∈(N×T )|m|

λ2
jsg

∗
js

(www2
js

λ2
js

)
where Λ′ = ηηη3its, ηηη

4
its,λλλ

2
its ≥ 0, {www2

js}j∈(N×T )|m| , ccc
4
its+λλλ2

its = 0,
∑

j∈(N×T )|m|
www2

js = ccc3its−ηηη3its+ηηη4its. Note

that ξξξj = ρρρ, mmm = gggs(ρρρ) + 1, and λ2
jsg

∗
js

(
www2

js

λ2
js

)
is the perspective function of the conjugate function of

g∗js on (www2
js, λ

2
js) for j ∈ (N×T )|m|. As a consequence, we can replace constraints (3b) with constraints

(6g)–(6k) in our final reformulation.

A.1.2 Reformulation for constraints (3c)

If Slater’s condition holds on constraints (3c), then constraints (3c) is equivalent to

H0
its − bitdiτ ≥ sup

Λ
ρρρ⊤ccc5its +mmm⊤ccc6its

∀(ρρρ,mmm) ∈ Ws;

i ∈ N ; t ∈ T ;

s ∈ S

where Λ = ρρρ,mmm, {ξξξj}j∈(N×T )|m| , ρρρ ∈ [ρρρ,ρρρ], gjs(ξj) ≤ mj , (ξξξj) = ρ, ∀j ∈ (N × T )|m|. Note that ccc5its is

given in (8) and c6itjs = −H
′′

itjs.

c5itkls =

{
−bitXil −H

′

itils, if i = k, l ≤ t

−H
′

itils, otherwise
(8)

If we reformulate the supremum in terms of the dual infimum for a scenario s ∈ S, we obtain :

sup
Λ

ρρρ⊤ccc5its +mmm⊤ccc6its = inf
Λ4

ρρρ
⊤
ηηη5its − ρρρ⊤ηηη6its +

∑
j∈(N×T )|m|

λ3
jsg

∗
js

(www3
js

λ3
js

)
where Λ′ = ηηη5its, ηηη

6
its,λλλ

3
its ≥ 0, {www3

js}j∈(N×T )|m| , ccc
6
its + λλλ3

its = 0,
∑

j∈(N×T )|m|
www3

js = ccc5its − ηηη5its + ηηη6its.

Note that ξξξj = ρρρ,mmm = gggs(ρρρ)+1, and λ3
jsg

∗
js

(
www3

js

λ3
js

)
is the perspective function of the conjugate function

of g∗js on (www3
js, λ

3
js) for j ∈ (N × T )|m|. As a consequence we can reformulate constraints (3c) as

constraints (6l)–(6p) in our final reformulation.
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A.1.3 Reformulation for constraints (3d)

If Slater’s condition holds on constraints (3d), then constraints (3d) is equivalent to

H0
its ≥ sup

Λ
ρρρ⊤ccc7its +mmm⊤ccc8its

∀(ρρρ,mmm) ∈ Ws;

i ∈ N ; t ∈ T ;

s ∈ S

where Λ = ρρρ,mmm, {ξξξj}j∈(N×T )|m| , ρρρ ∈ [ρρρ,ρρρ], gjs(ξj) ≤ mj , (ξξξj) = ρ, ∀j ∈ (N × T )|m|. Note that

ccc7itkls = H
′

itkls and c8itjs = −H
′′

itjs.

If we reformulate the supremum in terms of the dual infimum for a scenario s ∈ S, we obtain :

sup
Λ

ρρρ⊤ccc7its +mmm⊤ccc8its = inf
Λ′

ρρρ
⊤
ηηη7its − ρρρ⊤ηηη8its +

∑
j∈(N×T )|m|

λ4
jsg

∗
js

(www4
js

λ4
js

)
where Λ′ = ηηη7its, ηηη

8
its,λλλ

4
its ≥ 0, {www4

js}j∈(N×T )|m| , ccc
8
its + λλλ4

its = 0,
∑

j∈(N×T )|m|
www4

js = ccc7its − ηηη7its + ηηη8its.

Note that ξξξj = ρρρ,mmm = gggs(ρρρ)+1, and λ4
jsg

∗
js

(
www4

js

λ4
js

)
is the perspective function of the conjugate function

of g∗js on (www4
js, λ

4
js) for j ∈ (N × T )|m|. As a consequence, we can reformulate constraints (3d) as

constraints (6q)–(6s) in our final reformulation.

A.2 The robust LSP with yield uncertainty model

Based on the robust single-item LSP with uncertain production yield proposed by [31], the multi-

item lot-sizing problem under yield uncertainty is given as follows :

min
∑
i∈N

∑
t∈T

sitYt + vitXit +Hit

s.t. :

Hit ≥ hit max
ρ̃∈Uit

[
t∑

τ=1

(ρ̃iτXiτ − diτ )

]
∀t ∈ T ; i ∈ N

Ht ≥ −bit max
ĩρ∈Uit

[
t∑

τ=1

(ĩρτXiτ − diτ )

]
∀t ∈ T ; i ∈ N

Xit ≤ MitYit ∀t ∈ T ; i ∈ N

Xit, Hit ≥ 0 ∀t ∈ T ; i ∈ N

Yit ∈ {0, 1} ∀t ∈ T ; i ∈ N

where ρ̃̃ρ̃ρ mapped by an affine rule that bounds its realization to a range centered on its nominal value ρ̄̄ρ̄ρ

and spread by its maximum deviation ρ̂̂ρ̂ρ. The uncertain production yield is represented in the budgeted

uncertainty set Uit where a budget Γ controls the size of the uncertainty set according to the decision

maker’s sensitivity to risk. Thus, for each item i in each period t, the uncertain production yield ρ̃it
belongs to Uit that is given by Uit = {−1−1−1 ≤ ZZZt

i ≤ 111 :
∑t

τ=1 |Ztiτ | ≤ Γt}.

A.3 The stochastic programming LSP with yield uncertainty model

Similar to the model proposed in the appendix from [31], we propose a scenario-based stochastic

program to represent the multi-item lot-sizing problem under yield uncertainty. To represent the static

strategy, we rely on the two-stage formulation, where only the inventory and backorder levels react to

the different scenarios.
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We consider a set Ω of possible yield scenarios, where each scenario ω has a probability pω of

realization. ρωit is the realization of the uncertain yield for item i in period t and scenario ω. The

two-stage stochastic program for the LSP with uncertain yield is given as follows :

min
∑
ω∈Ω

pω
∑
t∈T

∑
i∈N

sitYit + vitXit + hitI
ω
it + bitB

ω
it

s.t. :

Iωit −Bω
it = Iωit−1 −Bω

it−1+

ρωitXit − dit
∀t ∈ T ; i ∈ N ; s ∈ Ω

Xit ≤ MitYit ∀t ∈ T ; i ∈ N

Xit, I
ω
t , B

ω
t ≥ 0 ∀t ∈ T ; i ∈ N ; s ∈ Ω

Yit ∈ {0, 1} ∀t ∈ T ; i ∈ N

To better represent the realization of the uncertain yield, we need to generate as many scenarios

as possible. However, to avoid the drawbacks of scalability issues, such as prohibitive computational

time, we generate the scenarios with a Monte Carlo approach. Thus, the yield rate is randomly drawn

from a uniform distribution with support [ρ̄it − ρ̂it; ρ̄it + ρ̂it] over 200 scenarios.

A.4 Mixed-Integer Mean Absolute distributionally robust formulation

This section presents the mean absolute distributionally robust formulation (MDRLSP), where the
mean absolute ambiguity set FM given in Section 3.1.1 replaces the general scenario-wise ambiguity

set F in problem (6). As the support function for FM is given by δ∗
(
(zzzρ, zzzm)|Qk

)
= ρ̄ρρ⊤s zzzρ + ρ̂ρρ⊤s zzzm,

MDRLSP in problem (9) :

min
∑
i∈N

∑
t∈T

(
sitYit + vitXit

)
+ γ

s.t.

γ ≥ 1

S

∑
s∈S

∑
i∈N

∑
t∈T

ρ̄itsβ
′
its +

1

S

∑
s∈S

∑
i∈N

∑
t∈T

ρ̂itsβ
′′
its +

1

S

∑
s∈S

αs (9a)

αs ≥
∑
i∈N

∑
t∈T

(
ρitη

1
its − ρ

it
η2
its

)
−

∑
i∈N

∑
t∈T

(
η1
its − η2

its

)
ρ̄its

+
∑

i,k∈N

∑
l,t∈T

H
′
itklsρ̄its +

∑
i∈N

∑
t∈T

(
H0

its − β
′
itsρ̄its

) ∀s ∈ S (9b)

w1
kls ≤ −

∑
i∈N

∑
t∈T

H
′′
itkls + β

′′
kls ∀k ∈ N ; l ∈ T ; s ∈ S (9c)

−w1
kls ≤

∑
i∈N

∑
t∈T

H
′
itkls + η1

kls − η2
lks ∀k ∈ N ; l ∈ T ; s ∈ S (9d)

−w1
kls ≤

∑
i∈N

∑
t∈T

H
′
itkls − η1

kls + η2
lks ∀k ∈ N ; l ∈ T ; s ∈ S (9e)

H0
its ≥ −hit

t∑
l=1

(diτ )

N∑
k=1

T∑
l=1

ρklη
3
itkls −

N∑
k=1

T∑
l=1

ρ
kl
η4
itkls

−
N∑

k=1

T∑
l=1

H
′
itklsρ̄kls −

N∑
k=1

T∑
l=1

η3
itklsρ̄kls

+

N∑
k=1

T∑
l=1

η4
itklsρ̄kls +

t∑
l=1

hitXilρ̄ils

∀i ∈ N ; t ∈ T ; s ∈ S (9f)

w2
itkls −H

′′
itkls ≤ 0 ∀i, k ∈ N ; t, l ∈ T ; s ∈ S (9g)

−H
′
itkls ≤ w2

itkls + η3
itkls − η4

itkls ∀i, k ∈ N ; k ̸= i; t, l ∈ T ; s ∈ S (9h)
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−H
′
itils ≤ w2

itils + η3
itils − η4

itils ∀i ∈ N ; t, l ∈ T ; l > t; s ∈ S (9i)

−H
′
itils ≤ w2

itils + η3
itils − η4

itils − hitXil ∀i ∈ N ; t, l ∈ T ; l ≤ t; s ∈ S (9j)

H
′
itkls ≤ w2

itkls − η3
itkls + η4

itkls ∀i, k ∈ N ; k ̸= i; t, l ∈ T ; s ∈ S (9k)

H
′
itils ≤ w2

itils − η3
itils + η4

itils ∀i ∈ N ; t, l ∈ T ; l > t; s ∈ S (9l)

+H
′
itils ≤ w2

itils − η3
itils + η4

itils + hitXil ∀i ∈ N ; t, l ∈ T ; l ≤ t; s ∈ S (9m)

H0
its ≥ bit

t∑
l=1

(diτ ) +

N∑
k=1

T∑
l=1

ρklη
5
itkls −

N∑
k=1

T∑
l=1

ρ
kl
η6
itkls

−
N∑

k=1

T∑
l=1

H
′
itklsρ̄kls −

N∑
k=1

T∑
l=1

η5
itklsρ̄kls

+

N∑
k=1

T∑
l=1

η6
itklsρ̄kls −

t∑
l=1

(bitXil)ρ̄ils

∀i ∈ N ; t ∈ T ; s ∈ S (9n)

w3
itkls −H

′′
itkls ≤ 0 ∀i, k ∈ N ; t, l ∈ T ; s ∈ S (9o)

−H
′
itkls ≤ w3

itkls + η5
itkls − η6

itkls ∀i, k ∈ N ; k ̸= i; t, l ∈ T ; s ∈ S (9p)

−H
′
itils ≤ w3

itils + η5
itils − η6

itils ∀i ∈ N ; t, l ∈ T ; l > t; s ∈ S (9q)

−w3
itils ≤ −H

′
itils + η5

itils − η6
itils + bitXil ∀i ∈ N ; t, l ∈ T ; l ≤ t; s ∈ S (9r)

H
′
itkls ≤ w3

itkls − η5
itkls + η6

itkls ∀i, k ∈ N ; k ̸= i; t, l ∈ T ; s ∈ S (9s)

H
′
itils ≤ w3

itils − η5
itils + η6

itils ∀i ∈ N ; t, l ∈ T ; l > t; s ∈ S (9t)

−w3
itils ≤ −H

′
itils − η5

itils + η6
itils − bitXil ∀i ∈ N ; t, l ∈ T ; l ≤ t; s ∈ S (9u)

H0
its ≥

i−1∑
k=1

T∑
l=1

ρklη
7
itkls −

i−1∑
k=1

T∑
l=1

ρ
kl
η8
itkls −

i−1∑
k=1

T∑
l=1

H
′
itklsρ̄kls

−
i−1∑
k=1

T∑
l=1

η7
itklsρ̄kls +

i−1∑
k=1

T∑
l=1

η8
itklsρ̄kls

∀i ∈ N ; t ∈ T ; s ∈ S (9v)

w4
itkls −H

′′
itkls ≤ 0 ∀i, k ∈ N ; t, l ∈ T ; s ∈ S (9w)

−H
′
itkls ≤ w4

itkls + η7
itkls − η8

itkls

∀i, k ∈ N ; t, l ∈ T ;

s ∈ S
(9x)

H
′
itkls ≤ w4

itkls − η7
itkls + η8

itkls ∀i, k ∈ N ; t, l ∈ T ; s ∈ S (9y)

Xit ≤ MitYit ∀i ∈ N ; t ∈ T (9z)

Xit, ηηη
1
s, ηηη

2
s, ηηη

3
its, ηηη

4
its, ηηη

5
its, ηηη

6
its, ηηη

7
its, ηηη

8
its ≥ 0 ∀i ∈ N ; t ∈ T ; s ∈ S

H0
its,HHH

′
its,HHH

′′
its,www

1
s ∈ R,www2

its,www
3
its,www

4
its ∈ R, γ,βββ ∈ R(N×T ),ααα ∈ RS ∀i ∈ N ; t ∈ T ; s ∈ S

Yit ∈ {0, 1} ∀i ∈ N ; t ∈ T

A.5 Mixed-Integer Wasserstein distributionally robust formulation

If the Wasserstein ambiguity set FW given in Section 3.1.2 replaces the general scenario-wise ambi-

guity set F in problem (6), we obtain the Wasserstein distributionally robust formulation (WDRLSP).

The support function for FW is given by

δ∗
(
(zzzρ, zm)|Qk

)
=

{
θzm, if zzzρ = 000
∞, otherwise

As a result, the WDRLSP is given in (10) :

min
∑
i∈N

∑
t∈T

(
sitYit + vitXit

)
+ γ
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s.t.

γ ≥ 1

S

∑
s∈S

+θβ (10a)

αs ≥
∑
i∈N

∑
t∈T

(
ρitη

1
its − ρ

it
η2
its

)
−

∑
i∈N

∑
t∈T

(
η1
its − η2

its

)
ρ̂its

+
∑

i,k∈N

∑
l,t∈T

H
′
itklsρ̂its +

∑
i∈N

∑
t∈T

H0
its

∀s ∈ S (10b)

w1
kls ≤ −

∑
i∈N

∑
t∈T

H
′′
its + β ∀s ∈ S (10c)

−w1
kls ≤

∑
i∈N

∑
t∈T

H
′
itkls + η1

kls − η2
lks ∀k ∈ N ; l ∈ T ; s ∈ S (10d)

−w1
kls ≤

∑
i∈N

∑
t∈T

H
′
itkls − η1

kls + η2
lks ∀k ∈ N ; l ∈ T ; s ∈ S (10e)

H0
its ≥ −hit

t∑
l=1

(diτ )

N∑
k=1

T∑
l=1

ρklη
3
itkls −

N∑
k=1

T∑
l=1

ρ
kl
η4
itkls

−
N∑

k=1

T∑
l=1

H
′
itklsρ̂kls −

N∑
k=1

T∑
l=1

η3
itklsρ̂kls

+

N∑
k=1

T∑
l=1

η4
itklsρ̂kls +

t∑
l=1

hitXilρ̂ils

∀i ∈ N ; t ∈ T ; s ∈ S (10f)

H0
its ≥ bit

t∑
l=1

(diτ ) +

N∑
k=1

T∑
l=1

ρklη
5
itkls −

N∑
k=1

T∑
l=1

ρ
kl
η6
itkls

−
N∑

k=1

T∑
l=1

H
′
itklsρ̂kls −

N∑
k=1

T∑
l=1

η5
itklsρ̂kls

+

N∑
k=1

T∑
l=1

η6
itklsρ̂kls −

t∑
l=1

(bitXil)ρ̂ils

∀i ∈ N ; t ∈ T ; s ∈ S (10g)

w2
its −H

′′
its ≤ 0 ∀i ∈ N ; t ∈ T ; s ∈ S (10h)

−H
′
itkls ≤ w2

its + η3
itkls − η4

itkls ∀i, k ∈ N ; k ̸= i; t, l ∈ T ; s ∈ S (10i)

−H
′
itils ≤ w2

its + η3
itils − η4

itils ∀i ∈ N ; t, l ∈ T ; l > t; s ∈ S (10j)

−H
′
itils ≤ w2

its + η3
itils − η4

itils − hitXil ∀i ∈ N ; t, l ∈ T ; l ≤ t; s ∈ S (10k)

H
′
itkls ≤ w2

its − η3
itkls + η4

itkls ∀i, k ∈ N ; k ̸= i; t, l ∈ T ; s ∈ S (10l)

H
′
itils ≤ w2

its − η3
itils + η4

itils ∀i ∈ N ; t, l ∈ T ; l > t; s ∈ S (10m)

+H
′
itils ≤ w2

its − η3
itils + η4

itils + hitXil ∀i ∈ N ; t, l ∈ T ; l ≤ t; s ∈ S (10n)

w3
its −H

′′
its ≤ 0 ∀i ∈ N ; t ∈ T ; s ∈ S (10o)

−H
′
itkls ≤ w3

its + η5
itkls − η6

itkls ∀i, k ∈ N ; k ̸= i; t, l ∈ T ; s ∈ S (10p)

−H
′
itils ≤ w3

its + η5
itils − η6

itils ∀i ∈ N ; t, l ∈ T ; l > t; s ∈ S (10q)

−w3
its ≤ −H

′
itils

+η5
itils − η6

itils + bitXil

∀i ∈ N ; t, l ∈ T ; l ≤ t; s ∈ S (10r)

H
′
itkls ≤ w3

its − η5
itkls + η6

itkls ∀i, k ∈ N ; k ̸= i; t, l ∈ T ; s ∈ S (10s)

H
′
itils ≤ w3

its − η5
itils + η6

itils ∀i ∈ N ; t, l ∈ T ; l > t; s ∈ S (10t)

−w3
its ≤ −H

′
itils − η5

itils + η6
itils − bitXil ∀i ∈ N ; t, l ∈ T ; l ≤ t; s ∈ S (10u)
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H0
its ≥

i−1∑
k=1

T∑
l=1

ρklη
7
itkls −

i−1∑
k=1

T∑
l=1

ρ
kl
η8
itkls −

i−1∑
k=1

T∑
l=1

H
′
itklsρ̂kls

−
i−1∑
k=1

T∑
l=1

η7
itklsρ̂kls +

i−1∑
k=1

T∑
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∀i ∈ N ; t ∈ T ; s ∈ S (10v)

w4
its −H

′′
its ≤ 0 ∀i ∈ N ; t ∈ T ; s ∈ S (10w)

−H
′
itkls ≤ w4

its + η7
itkls − η8

itkls ∀i, k ∈ N ; t, l ∈ T ; s ∈ S (10x)

H
′
itkls ≤ w4

its − η7
itkls + η8

itkls ∀i, k ∈ N ; t, l ∈ T ; s ∈ S (10y)

Xit ≤ MitYit ∀i ∈ N ; t ∈ T (10z)

Xit, ηηη
1
s, ηηη

2
s, ηηη

3
its, ηηη

4
its, ηηη

5
its, ηηη

6
its, ηηη

7
its, ηηη

8
its ≥ 0 ∀i ∈ N ; t ∈ T ; s ∈ S

H0
its,HHH

′
its, H

′′
its, w

1
s ∈ R, w2

its, w
3
its, w

4
its ∈ R, γ,βββ ∈ R(N×T ),ααα ∈ RS ∀i ∈ N ; t ∈ T ; s ∈ S

Yit ∈ {0, 1} ∀i ∈ N ; t ∈ T
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