Retour

G-2009-22

A Sharp Upper Bound on Algebraic Connectivity Using Domination Number

, et

référence BibTeX

Let G be a connected graph of order n. The algebraic connectivity of G is the second smallest eigenvalue of the Laplacian matrix of G. A dominating set in G is a vertex subset S such that each vertex of G that is not in S is adjacent to a vertex in S. The least cardinality of a dominating set is the domination number. In this paper, we prove a sharp upper bound on the algebraic connectivity of a connected graph in terms of the domination number and characterize the associated extremal graphs.

, 20 pages

Ce cahier a été révisé en décembre 2009

Axe de recherche

Applications de recherche

Publication

A sharp upper bound on algebraic connectivity using domination number
, et
Linear Algebra and its Applications, 432(11), 2879–2893, 2010 référence BibTeX