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Abstract : We give an overview of the state of the art on the design and implementation of random
number generators for simulation and general Monte Carlo sampling in parallel computing environ-
ments. We emphasize the need for multiple independent streams and substreams of random numbers,
as well as the advantages (and potential pitfalls) of the increasingly popular counter-based and dy-
namically splittable generators. We look at recently-proposed constructions and software. We also
recall the basic quality criteria for good random number generators and their theoretical and empirical
testing. The paper outlines solutions and also raises issues that would require further study.
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1 Introduction

Random number generators (RNGs) are essential ingredients for stochastic simulation, machine learn-

ing, and scientific computing in general. Their aim is to imitate the realizations of independent random

variables uniformly distributed over the real interval (0, 1) or the binary set {0, 1} (L’Ecuyer, 1994b;

Knuth, 1998; L’Ecuyer, 1998, 2012). By applying appropriate transformations to these uniform ran-

dom numbers, one can obtain random variates from arbitrary distributions, as well as realizations of

stochastic processes and other types of random objects (Devroye, 1986; Hörmann et al., 2004; Asmussen

and Glynn, 2007). In particular, if U has the uniform distribution over (0, 1), denoted U ∼ U(0, 1),

and if F is the cumulative distribution function (cdf) of a univariate probability distribution, then

X = F−1(U) = inf{x ∈ R : F (x) ≥ U} is a random variable having the cdf F . Here we focus on how

to generate realizations of U .

One natural way to obtain random numbers is by using physical devices that produce a sequence of

“truly random” bits. One can take disjoint blocks of w bits to approximate U(0, 1) random variables

U , whose binary expansion is truncated to its first w bits. Examples of such devices are thermal noise

diodes, photon trajectory detectors, photon counters, and there are many others (L’Ecuyer, 2017;

Herrero-Collantes and Garcia-Escartin, 2017; Hurley-Smith and Hernandez-Castro, 2020). Some can

be accessed via /dev/random or /dev/urandom on Linux distributions. While such devices are needed

for cryptography, gambling machines, and loteries, they are not appropriate for applications where the

reproducibility of an exact sequence of random numbers is needed, possibly even on different computers

using different types of parallel architectures. This is typically the case for simulation or Monte Carlo

applications, e.g., for verification, for comparing similar systems with common random numbers, or in

optimization algorithms .

For this reason, and also because using physical devices is much less convenient than just writing

code, algorithmic RNGs are highly preferred for simulation. L’Ecuyer (1990, 1994) defines an algorith-

mic RNG as a structure (S, µ, f,U , g) where S is a finite set of states, µ is a probability distribution

on S to select the initial state (the seed) s0, f : S → S is the transition function (usually a bijection),

U is the output set, and g : S → U is the output function. At step i ≥ 1, the state is si = f(si−1) and

the output is ui = g(si) ∈ U . These ui are the so-called random numbers produced by the RNG. We

assume here that U = (0, 1) and we want to imitate independent U(0, 1) (uniform between 0 and 1)

random variables. In this definition, the function f defines a recurrence in the finite set S. For any

choice of s0, the sequence of states si is necessarily periodic and the period cannot exceed |S|, the

cardinality of S. For good RNGs, it is usually very close to that upper bound. An arbitrarily large

period can be obtained easily by taking a large enough S and a carefully chosen f , but a larger S also

means more memory space to store the state and more work to initialize or copy it, so a compromise

must be made. Sometimes, the recurrence has two or more large cycles. Then the initial state s0
determines which cycle is in use. For example, the MRG32k3a (L’Ecuyer, 1999a) has two cycles of

length near 2191.

This type of recurrence-based generator is inherently sequential: to follow the recurrence, one needs

si−1 to compute si and ui. This is not well-adapted to parallel computing. To launch thousands of

threads that can generate random numbers in parallel on a GPU card, for example, using a single

common sequence is totally ineffective. However, one can obtain multiple streams of random numbers

by running in parallel several copies of the same recurrence with different initial states. In particular,

one can use a large-period recurrence whose sequence is partitioned into long disjoint streams by

selecting appropriate starting points that are spaced far apart, obtained via a jump-ahead algorithm.

In many cases, there is a reasonably efficient algorithm to jump ahead directly from si to si+ν even for

a very large ν, in particular when f is defined by a linear recurrence; see L’Ecuyer and Côté (1991);

L’Ecuyer et al. (2002); Haramoto et al. (2008); Bradley et al. (2011) and the rng package in L’Ecuyer

(2016). But jumping ahead is usually slower than computing si from si−1 by a factor that can go from

about two (for RNGs with a reasonably small state) to a few thousands (for RNGs with a huge state,

which we do not recommend). It is slower because most recurrence-based generators are designed so
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that f can be computed quickly, but not necessarily its ν-fold composition for a large ν. Jumping

ahead repeatedly to find equally-spaced starting points is also an inherently sequential process. Doing

this sequentially for tens of thousands of starting points adds significant overhead, especially if we

repeat this process several times. Ideally, we want to compute all these starting points in one shot,

in parallel, and not do this too often (i.e., re-use the same streams). Jumping ahead by different

jump sizes to compute many starting points in parallel is doable (Bradley et al., 2011), but it requires

additional storage and is more complicated than a sequential process that always uses the same jump

size.

For most traditional recurrence-based RNGs, the function f transforms the state in a significant

way (this makes the jumping ahead more difficult), whereas the output function g is rather simple. An

opposite approach is to make f very simple and leave the complicated transformations to g. Counter-

based RNGs (CBRNGs) push this idea to an extreme: f just increases a c-bit counter by 1 (modulo

2c) and all the significant work is left to g. Jumping ahead then becomes trivial. In most versions,

g is also parameterized by a m-bit integer k called the key. That is, g has two arguments: the key

value k and the counter value i. One could also interpret (k, i) as a two-dimensional counter, or just

a (m+ c)-bit input. A simple way to obtain multiple streams is to have one stream for each key, with

the counter starting at 0.

The CBRNG corresponds to the CTR (counter) mode of operation for block ciphers in cryptography

(Dworkin, 2001), which was included in particular in the advanced encryption standard (AES) (NIST,

2001; Daemen and Rijmen, 2002). Hellekalek and Wegenkittl (2003) proposed using AES in CTR

mode as a robust RNG for simulation, and noted the advantages of not having to generate the random

numbers in sequence: one can easily compute the output value(s) for any given pair (k, i) without

having to compute any other intermediate state. Hellekalek and Wegenkittl (2003) applied extensive

statistical testing to AES in various modes and could not detect any defect. On the other hand,

software implementations of AES are significantly slower than the fastest algorithmic RNGs (L’Ecuyer

and Simard, 2007). This motivated Salmon et al. (2011) to propose faster CBRNGs named ARS

and Threefry, obtained as simplifications of the cryptographic block ciphers AES and ThreeFish,

respectively, as well as a new CBRNG named Philox, designed to be fast while passing standard

batteries of statistical tests from L’Ecuyer and Simard (2007). In their experiments, they compared

the speeds and found that Philox was the fastest on GPUs, Threefry was the fastest on CPUs, and

AES was competitive only when implemented in hardware.

Certain applications require the dynamic creation of multiple streams in a random tree-like fashion,

with branches that evolve independently, without the control of a central monitor. That is, each stream

must be able to split by itself in two or more children streams that evolve independently after the split,

may split again, and these splits are not fully predictable. The notion of splittable streams discussed

in Section 4 is designed to cover this situation. It builds on the concept of splittable RNG proposed

by Claessen and Pa lka (2013) and can provide a tree of random numbers or a tree of streams.

Multiple streams of random numbers that act as independent virtual RNGs are useful not only for

parallel computing but also when running simulations on a single processor, for example to facilitate

the simulation of similar systems with well-synchronized common random numbers when comparing

alternative policies and for optimization (L’Ecuyer, 1994a; L’Ecuyer and Buist, 2006; Asmussen and

Glynn, 2007; Law, 2014). Often, each stream is also partitioned into substreams with equally-spaced

starting points, and tools are provided to jump ahead to the beginning of the next substream, jump

back to the beginning of the current substream, and jump back to the beginning of the stream (L’Ecuyer

et al., 2002; Karl et al., 2014; L’Ecuyer et al., 2015; L’Ecuyer, 2016). This jumping can be performed

independently for each stream, or for a group of streams together. As an illustration of why this is

useful, suppose we want to simulate a complex service system such as a large call center, a delivery

service, an emergency clinic, the ambulances in a city, a retail store, etc., where different types of

demands arrive randomly, service times are random, routing decisions must be made (which agent

answers this call, which nurse takes this patient, who will be served first, etc.), and we want to
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optimize the decision-making policy. For this, we need to simulate the system several times with each

of a large number of policies that we want to consider, and make sure that for each simulation run,

we use exactly the same random numbers at the same place (as much as possible) for all the policies

that we simulate. This is essential to reduce the variance of the differences between the estimated

performances across the different policies, and reduce the optimization error. For further details, see

for example Cez̧ik and L’Ecuyer (2008); Avramidis et al. (2010); Kleywegt et al. (2002); Shapiro et al.

(2014) and the references given there. To do this properly, we would normally create many independent

random streams, for example one stream to generate the arrivals for each type of “demand”, one stream

for each type of service time, etc. To make sure that for each simulation run, any given stream starts

from the same state for all considered policies, we use one substream for each run, and we reset all

streams to their next substream before each new run. We also reset all the streams to the beginning of

the first substream before considering a new policy. See L’Ecuyer and Buist (2006); L’Ecuyer (2015)

and the examples in L’Ecuyer (2016) for concrete illustrations. In a different setting, in a machine

learning application we may generate three types of tensors, X, Y , Z, and in a variant we may want

to add a new tensor type W , or remove Y , and we want the values generated for each type to remain

exactly the same, and also not depend on the order in which the types are generated. We can achieve

this by assigning a different random stream to each tensor type, and making sure that each type uses

the same stream in all versions.

Software facilities to manage multiple streams and substreams for recurrence-based RNGs have

been proposed, e.g., in L’Ecuyer and Côté (1991); L’Ecuyer et al. (2002); L’Ecuyer and Leydold (2005);

L’Ecuyer (2016), and are now widely used in stochastic simulation software designed for a single CPU,

including the commercial software displayed at the WSC. Some of them have been adapted for parallel

settings, including GPUs, usually with a central monitor that creates the streams (Demchik, 2011;

Barash and Shchur, 2014; Karl et al., 2014; L’Ecuyer et al., 2015). CBRNGs provide an alternative

avenue: each key gives a different stream and the counter determine the position in the stream. They

are convenient in particular when large arrays or tensors of random numbers are filled in parallel on

GPUs, since finding the appropriate counter value for each compute unit is much easier than for a

typical recurrence-based RNG.

We admit that there are applications for which the statistical quality of the RNG is not very

important. For example, if an RNG is used just for adding noise in an iterative optimization algorithm

to avoid getting stuck in local optima or to enhance exploration, it may not matter much if the random

numbers are not perfectly uniform and independent. A small short-range dependence may not matter,

for instance. Then, one may want to trade quality for speed. But in most simulation settings, it is

important to simulate the model with the correct distributions and dependence structures. Otherwise

the simulation might give wrong and misleading results, as shown in Ferrenberg et al. (1992); Tezuka

et al. (1993); L’Ecuyer (1997). To avoid such situations, it is important to understand very well the

structure of the RNG, ideally via a mathematical analysis. After that, large batteries of empirical

statistical tests can be applied (L’Ecuyer and Simard, 2007).

In the remainder, we discuss and compare these various types of constructions and give examples.

In Section 2, we review various ways of constructing multiple streams and substreams from recurrence-

based RNGs. Section 3 covers CBRNGs. Section 4 discusses dynamically splittable RNG streams. In

Section 5, we recall the main theoretical principles and quality criteria traditionally used for the design

algorithmic RNGs, and we sketch out similar principles and criteria for CBRNGs. In Section 6, we

discuss empirical statistical testing and standard test suites for RNGs, and tests for multiple streams

and CBRNGs. Section 7 gives a conclusion.

2 Recurrence-based RNG’s for parallel environments

Recurrence-based RNGs with multiple streams for parallel processors have been proposed in the past

and supporting software is available in many places. See L’Ecuyer (2015) and L’Ecuyer et al. (2017) for
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surveys. The most common design uses a single base RNG whose large period is partitioned into long

streams with equally spaced starting points, say at ν steps apart. Once the initial state (seed) of the

first stream is selected, the starting points of all other streams are fixed automatically. The creation of

new streams is managed by a central monitor. To find the starting point of the next (newly created)

stream, the monitor needs to jump ahead by ν steps in the recurrence. This is easily implemented for

linear transition functions f (L’Ecuyer, 1990; L’Ecuyer and Côté, 1991; L’Ecuyer, 1994b; Bradley et al.,

2011) and for RNGs that combine different types of linear components (L’Ecuyer and Granger-Piché,

2003). It also works well for nonlinear RNGs if the non-linearity is only in the output function g, for

example as in the RNGs of Vigna (2016), for which f is linear modulo 2 while g uses different types

of operations.

When f is linear, the jump-ahead time is roughly quadratic in k, the number of bits used to

represent the state, at least for k not too large. In particular, if the state is a k-bit vector and the

recurrence is linear modulo 2 (F2-linear), jumping ahead is achieved by multiplying the state by a k×k
binary matrix, in the finite field F2 (L’Ecuyer and Panneton, 2009). Then, one way to ensure a faster

jump ahead is to use an RNG based on the combination of smaller components. For example, the

LFSR113 of L’Ecuyer (1999c) combines four F2-linear components whose states have less than 32 bits,

using a XOR for the output. Its period length is near 2113. Jumping ahead then amounts to jump

ahead with the smaller 32-bit components only (L’Ecuyer, 2016). The MRG32k3a and MRG31k3p

also combine two linear components of about the same sizes, and the jumping ahead can be done for

the two components separately (L’Ecuyer et al., 2002).

For RNGs with a very large state, e.g., for the Mersenne Twister and the WELL (Matsumoto

and Nishimura, 1998; Panneton et al., 2006), and in other situations when jumping ahead may be

too slow or too inconvenient, one alternative is to choose the starting points (or “seeds”) randomly

and independently instead of equally spaced. If the period is long enough and the selection is truly

random, the chance of overlap may be really negligible. Specifically, if the period length is ρ and we

create s streams of length ` with independent random starting points, the probability that there is an

overlap somewhere never exceeds s2`/ρ (Vigna, 2020). For example, if ρ = 2128 and s = ` = 220, this

probability does not exceed 2−68, which is certainly negligible. This “random starting points” option

can also be convenient if we do not want to rely on a central monitor to create the streams, and/or if

we want to create many streams in parallel.

Unfortunately, with truly random starting points for the streams, the results are not reproducible.

They can be made reproducible if we replace the truly random seeds by a sequence of seeds generated

by a second RNG in a way that imitates independent random variables uniformly distributed over the

set of all admissible seeds. We call this sequence a seed schedule. It depends on the seed of the second

RNG, which we may assume is selected at random. To approximate the uniform distribution over the

set of all seeds, the state space of the second RNG must be at least as large as that of the first RNG,

otherwise some seeds are necessarily unreachable and the above formula for the probability of overlap

no longer holds. Nevertheless, the formula still provides an upper bound if we replace ρ by the number

of seeds that can be reached, assuming that they all have the same probability. For example, if the

period length is 2128 but the user only provides a (random) 64-bit seed, and s = ` = 220, we know that

the probability of overlap is smaller than s2`/264 = 1/16. In implementations, the state of the second

RNG is often taken much smaller than the state of the first RNG, in particular when the latter is very

large and it is too bothersome for the user to provide such a large seed explicitly and store it to be able

to replicate the experiment. A few successive output values from the second RNG are then taken to

fill out an initial state of the first one. The probability of picking the same seed twice is much higher

when we do this. If we pick s seeds at random uniformly from a pool of size r, the probability that

the seeds are not all distinct is approximately s2/2r when this quantity is close to 0. This corresponds

to the probability of at least one collision when throwing s points at random in r boxes (L’Ecuyer

et al., 2002). For instance, if s = 230 and r = 264, this probability is near 1/32, which is not totally

negligible, but this may still be acceptable for many applications: if one billion streams are used and
two of them are the same, it may be very unlikely to create visible bias for the application at hand.
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As an illustration, if one billion streams of random numbers are used to make the dropout decisions

when training a deep neural network (Srivastava et al., 2014), and if two of these streams turn out to

be the same, this is very unlikely to have a significant impact on the training.

When using a second RNG to seed the first one, we must be careful to avoid structural interaction

between these two RNGs (Matsumoto et al., 2007). One may argue that it is better to use a second

RNG having a different structure than the first. For example, if the first generator has an F2-linear

transition function f , the second one should not. In the extreme situation where the two RNGs have

the same transition function and the output function of the second one is the identity, the initial states

of successive streams will be same as the output sequence of the first stream, which is of course very

bad. If the two RNGs are too similar, bad behavior is also likely to happen. On the other hand, if

they both have the same type of linear structure, it may be possible to perform a theoretical analysis

of the mathematical structure of the points formed by values from different streams (see Section 5),

whereas if they don’t, we can only rely on empirical statistical testing for this.

Instead of having an automatic system to select and manage the seeds as discussed so far, several

recent systems leave this task to the user. Each time we want a new stream, we must provide a

seed for this stream. Then the seeds are no longer random and the probabilities of overlap given

earlier do not apply. When asked for 4096 different seeds, users are very unlikely to draw those seeds

independently and uniformly over the set of all admissible seeds. Many may just give {1, 2, . . . , 4096},
for example, and the system should be designed to work well even in this case. One way of handling

this is to automatically apply a bijective transformation to the seeds provided by the user, e.g., with

a (simplified) block cipher. This is frequently used in the context of CBRNGs (see Section 3). But

even if we do this, some seeds are much more likely than others (the transformations of 1, 2, 3, . . . , for

example)! Applying these transformations also adds overhead, which can be significant if each stream

produces just a few random numbers. This option may give the user more flexibility to manage the

seeds, but this flexibility comes with the responsibility of making sure that the seeds are all different

and remembering them to ensure reproducibility.

As a concrete illustration, the TPUs at Google implement the xorshift128+ generator of Vigna

(2016) directly in hardware. This is an F2-linear recurrence-based RNG with period 2128 − 1. Each

TPU chip can run 64 copies of it in parallel. Jumping ahead by ν steps with this RNG could be

done by multiplying the current 128-bit state vector by a 128× 128 binary matrix that depends on ν,

modulo 2. But since the TPU is not adapted for this operation, the 64 initial states are obtained by

transforming a single seed (only two integers) given by the user, together with a counter, to imitate

64 “random initial states.” Note that one must be careful with the seed transformation. A naive idea

could be to do one transition of the xorshift128+ with initial states 1, 2, . . . , 64 (this is fast since the

RNG is already in hardware) and combine the results in some way with the seed provided by the user,

but this is not sufficient, because applying one round of the xorshift128+ to the small integers gives

numbers with many more zeros than ones. Google uses a more elaborate process to compute the 64

starting points in parallel, in terms of the given seeds.

For all these methods, the creation and assignment of streams should always be done at the logical

level, independently of the hardware, to ensure reproducibility. In particular, it should not be one

stream per processor or one stream per thread; see L’Ecuyer et al. (2017) for more discussion on this.

3 Counter-based RNG’s

Multiple streams can be trivially obtained by taking different keys (one per stream) for a CBRNG. For

each stream, the counter can simply start at zero. The keys can be distributed by a central monitor,

just like for recurrence-based RNGs, by using a key schedule (an ordered list of all possible keys), as

proposed by Salmon et al. (2011). Each time a new stream is requested, the monitor picks the next

key in the list. The key schedule can be specified for example by a recurrence-based RNG of period

near 2m over the set of m-bit integers, such as an LCG or an F2-linear recurrence as in (3), or even by
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another CBRNG that directly returns the ith key for each i. The latter is convenient because it can

provide many keys in parallel.

Conceptually, a key is like a seed for a recurrence-based RNG. The methods described in Section 2

to select a sequence of seeds can be used to select a sequence of keys. In case we do not want a central

monitor to manage a key schedule, we can think of drawing a new key at random uniformly over all 2m

possibilities, independently of the previous keys, each time a new stream must be created. If s streams

are created in this way, the probability that the s keys are not all distinct is approximately s2/2m+1.

For example, if s = 220 and m = 64, this probability is approximately 2−25, whereas for s = 230 it

is around 2−5 = 1/32 according to this approximation. To ensure reproducibility, the keys should

not be generated truly at random, but according to a deterministic mechanism. The selection and

management of keys can also be left to the user, with the same caveats as for the seeds in Section 2,

except that we do not have to worry for overlap of the streams, it suffices that the keys be distinct.

Multiple substreams (for each stream) can be defined by using a subset of the bits of either the key

or the counter to determine the substream. For example, one can use the c0 < c most significant bits

of the counter to determine the substream, and the remaining c1 = c− c0 bits for the position within

the substream. Navigating between substreams is then very easy, provided that the user is allowed

to give explicit values for the key and the counter. This can be generalized to multiple levels with

multidimensional counters.

Sometimes the CBRNG returns more than one output per value of (k, i). Then we need a secondary

counter (a third argument of g) to identify this output (Salmon et al., 2011). Specifically, for each pair

(k, i) ∈ {0, 1}m+c, the CBRNG computes y = g̃(k, i), which is a block of dw ≤ c bits, where d and w

are positive integers. This y can be computed directly for any pair (k, i) without generating any other

value. It is then interpreted as d blocks of w bits, and each of these blocks can be transformed into

a w-bit real number in [0, 1). We can use uk,i,j = g(k, i, j) to represent the jth output for the pair

(k, i), for j = 0, . . . , d− 1. In most papers on CBRNGs, it is assumed that dw = c and (usually) that

for each value of k, g̃(k, ·) is a bijection over the set of c-bit integers, so that each possible c-bit value

of y appears exactly once when the counter goes from 0 to 2c − 1. Here, we make the definition more

general to allow d = 1 and w < c, for example. When dw < c, we want that each value of y appears

exactly 2c−dw times. A weaker assumption would be that when the pair (k, i) runs over all its 2mc

possible values, each value of y appears exactly 2mc−dw times. For good constructions, there must be

a proof that this holds. Common choices of c and m are 64, 128, and 256, for example, while common

choices for w are 32 and 64.

This concept of CBRNG fits our earlier definition of algorithmic RNG if we take the pair (k, i)

as the state, f(k, i) = (k, (i + 1) mod 2c), and when d > 1 we slightly modify the definition to

view the output g(k, i) as the d-dimensional vector of U(0, 1) outputs produced from state (k, i).

Alternatively, we can define the state as (k, i, j), in which case we have the slightly more complicated

notation f(k, i, j) = (k, i + I[j = d − 1], (j + 1) mod d) where I denotes the indicator function, and

uk,i,j = g(k, i, j) is a single U(0, 1) output.

Tensorflow (2019) uses the PHILOX-4×32-10 CBRNG from Salmon et al. (2011), with m = 64,

c = 128, d = 4, and w = 32. It is implemented as a C++ class named PhiloxRandom, with a low-level

function that takes a pair (key, counter) as input, returns an array of four 32-bit unsigned integers,

and advances the counter by 1. At a higher level, Tensorflow offers two different types of functions

that use PhiloxRandom to fill a tensor with random numbers: the stateless functions take an explicit

seed as input and do not assume that the RNG has a “state,” whereas for the stateful functions, each

stream may have a “state” that corresponds to the value of its counter.

When calling a stateless function in Tensorflow, the user must provide a seed which is a pair of

32-bit or 64-bit integers. These integers are mapped by hidden transformations to four 32-bit unsigned

integers. Two of them are used for the 64-bit key and the other two for the 64 most significant bits

of the counter. If n random numbers are requested by the call, the lower (least significant) part of
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the counter goes from 0 to n − 1, and the n corresponding outputs are returned. Each time we call

the function with the same seed, it returns the same values. Note that the seed given by the user is

not directly used as a key, so if the user gives for example (0, 0), (0, 1), (0, 2), . . . as seeds in successive

calls, the corresponding keys will not be so simple. Even if they were, Salmon et al. (2011) say that

this is still safe, based on their statistical testing, thanks to the ten rounds of encoding used by Philox.

To control the streams, ensure that successive function calls produce different values, and also that

these values are reproducible, the user must manage the seeds explicitly.

The stateful functions use two seeds: a global seed that can be set by a separate function set seed

and affects all streams, and an (optional) operational seed given as a parameter to the function that

generates the numbers. This second seed also acts as a stream identifier: the system maintains a state

(the lower 64 bits of the counter) for each operational seed that is used. Whenever a given operational

seed is re-used in a function call to generate random variates, the counter associated to this particular

seed (or stream) continues moving ahead from its previous value. This provides a very similar setting

as in the RNGStreams package of L’Ecuyer et al. (2002) discussed earlier, except that here the streams

are identified only by numbers (the seeds) instead of being objects with names, and there are no

substreams. When a “stateful” generating function is invoked with no operational seed, the system

uses a default one if a global seed has been selected, and uses a random seed otherwise.

The CBRNGs considered by Salmon et al. (2011) are all inspired by cryptographic block ciphers.

They typically use several rounds of a simple encoding scheme. These rounds must be performed

sequentially (they cannot be done in parallel) so more rounds means a slower generator. But for sim-

ulation, machine learning, and statistical applications, one could perhaps replace these cryptographic

encoding schemes by transition functions that are typically used to design recurrence-based RNGs for

simulation. Fewer rounds may then be sufficient, leading to faster CBRNGs. For example, we may

consider the recurrences used for F2-linear generators (L’Ecuyer, 1999c; L’Ecuyer and Panneton, 2009;

Vigna, 2016; Blackman and Vigna, 2021), MRGs (L’Ecuyer et al., 1993; L’Ecuyer, 1996a, 1999a), mul-

tiply with carry (MWC) generators (Couture and L’Ecuyer, 1997; Goresky and Klapper, 2003), and

combinations of these, perhaps with fast nonlinear transformations at the input and/or output. It

may also be interesting to construct CBRNGs with d = 1 (instead of d = 4 as in Philox) because it

could facilitate synchronization in SIMD settings (with GPUs).

As an example of an attempt in this direction, Widynski (2020) proposes a fast CBRNG that uses

four rounds of squaring, in which both the key and the counter are of type uint64, and the output is

a uint32. The proposal passes standard empirical tests from L’Ecuyer and Simard (2007), but it fails

with only three rounds, and the method is highly heuristic. For example, there is no proof that for

a fixed key, all 232 outputs occur the same number of times when the counter goes from 0 to 264 − 1

(block ciphers do have this property). This probably depends on the key, and keys are not all equally

good. If the key is 0, the output is always 0. If the key is 1, then x = y is the counter, z = x+ 1, and

the first 216 − 1 outputs are all 0 when the counter starts at 0. More generaly, if the key is a small

integer k, the first b216/kc outputs (approximately) are 0. Thus, it we use 1, 2, . . . , s as the keys to

produce s streams, as often done in practice, the results will be very bad unless the keys are “hashed”

to random-looking values by another mechanism before being used. The author recognizes implicitly

that there are bad keys and suggests specific forms of keys that should be safer, but with no guarantee,

and this makes the method less convenient.

Hubbard (2019) proposes a CBRNG with a five-dimensional counter, for Excel, with 108 possible

input values. The output is an unsigned 32-bit integer, which is then converted to a real number

in (0, 1). The construction is ad hoc. It is unclear, for example, if each possible output appears

approximately 108/232 ≈ 20 times when the input goes over all possibilities.
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4 Splittable RNG’s

There are important applications for which each stream must be able to split dynamically and randomly

in two or more streams during the execution, and the occurrence of these splits is not fully predictable.

That is, we want a random tree of random numbers instead of just a linear streams. This type of

splitting is needed for particle simulations in high-energy physics, where each particle has its own

stream and the particles can split when they collide (Halton, 1989; Mascagni and Srinivasan, 2000).

It also occurs with particle filters in statistics (Andrieu et al., 2010), and in computer graphics with

the particles replaced by rays of light, which often split when they meet a surface (Zafar et al., 2010).

When the simulations run on parallel processors (e.g., on GPUs), invoking the central monitor each

time a new stream must be created in the tree can be too inefficient, and the results would not be

reproducible, since the order of the calls to the central monitor may change across replications. A

central monitor is not acceptable for this situation. We want a mechanism to create new streams as if

their starting points were drawn randomly and independently, and are fully reproducible in the sense

that each time we run the simulation, even on different hardware, we obtain exactly the same results.

The algorithmic RNG framework defined earlier can be expanded to cover this requirement. Instead

of having a single transition function f , we select two or more bijective transition functions f1, f2, . . . in

a way that for a random state si, the next states f1(si), f2(si), . . . behave as if they were independent

new random states, independent of si, and uniformly distributed over S. Whenever we want to split a

stream into d streams, we apply f1, . . . , fd to the current state to obtain the states of these d streams.

We can identify f1 with f , so f1(si) is the next state of the current stream, while fj(si) gives a new

stream for each j > 1. The key issue is how to select these bijective functions fj . They can be the

transition functions of RNGs having the same state space but totally different recurrence structures,

for example. In particular, they can be d different block ciphers. To simplify, one can just take d = 2

and split several times when more new streams are required.

Claessen and Pa lka (2013) proposed a more specific design for a splittable RNG in the form of a

binary tree, where each node either returns a random number or splits in two children nodes, but not

both. Conceptually, each node of the tree is identified by a string of ` bits if the node is at level `;

a 0 means we go left and a 1 means we go right in the tree, at each level. The nodes that return

a random number must be leaves in the tree (they have no descendant). Storing explicitly the bit

string that leads to each node would require too much memory and overhead, so to make it practical

and efficient, the authors use an iterated hashing scheme, known as a Merkle-Damgøard construction,

which compresses the representations as follows. The bit string that identifies each node is cut out in
blocks of b bits. The authors take b = 64. A compression (hash) function f : {0, 1}2b → {0, 1}b is

selected, as well as an initial b-bit seed (initial key) h0. We start at the beginning of the first b-bit

block m0. Whenever a split occurs, we make two copies of the current block mi and add one bit: a 0

for the left branch and a 1 for the right branch. This give two new nodes with blocks m′i and m′′i . If

these new blocks now have b bits, we apply the compression function to each of them to compute the

new b-bit keys h′i+1 = f(hi,m
′
i) and h′′i+1 = f(hi,m

′′
i ), and these two paths move to their next blocks

mi+1 which are now empty. This way, the current information (or “state”) at any given node is always

less than 2b bits.

For the compression function f , the authors use a block cipher that returns fk(x) = f(k, x) for a

b-bit string x with a b-bit key k. That is, hi is used as the encoding key in the proposed scheme. The

choice of f is important for the quality of the scheme. Their implementation uses a 256-bit version of

the Threefish block cipher. For the output mapping, the same hash function is applied to the current

state (hi,mi). This yields the b-bit block f(hi,mi) which is then transformed to an unsigned 32-bit

integer output.

The authors report no empirical test results but they say their proofs give “strong randomness

guarantees under assumptions commonly made in cryptography.” These guarantees come in the form

of upper bounds on the discrepancy between the RNG’s output and truly independent random numbers
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that can be observed by any computer program that runs in reasonable time. These upper bounds hold

under plausible but unproven assumptions make in cryptography, which are asymptotic as b → ∞.

That is, the randomness is good if b is large enough, but it is unclear what size is large enough. In

particular, there is no proof that b = 64 is large enough for the RNG to pass all reasonable statistical

tests. So in the end, the method is heuristic, like most other RNGs.

A version of this method has been adopted in JAX (Bradbury et al., 2021) a high-performance

system developed for machine learning. It uses the Threefry-2× 32− 20 algorithm from Salmon et al.

(2011) as a hash function and the splitting can be in more than two new streams at a time. A stream,

or state, is represented by a 64-bit key. An initialization function takes an integer seed and returns an

initial key (the root of the tree). The split function takes a key and returns two or more new keys,

whereas “rand” (to be replaced by the name of the distribution) functions generate tensors of random

numbers from a given distribution, using the given key. A counter that starts at 0 is used internally to

distinguish the entries of the tensor and its values are combined with the key in the hashing function

to generate the numbers. Two or more calls to rand with the same key will always return the same

value, so we must call both split and rand each time we want to generate new random numbers.

The successive splittings form an inherently sequential process, but produce a tree whose branches can

evolve in parallel. This time, in contrast to the previous descriptions, we have a tree of keys instead

of a tree of random numbers. With each key (at each node), we can generate a large tensor of random

numbers. The splitting does bring overhead if we generate only one (or a few) random number(s) at

a time and never use the same key for both split and rand, but when filling large tensors using the

counter, the overhead is minimal and the RNG is essentially as fast as the underlying Threefry.

5 Theory and quality criteria for algorithmic RNG’s

The theoretical analysis of recurrence-based RNGs has been done traditionally by making sure that the

period is long enough (this is usually the easy part) and by computing certain measures of uniformity

for the vectors of successive output values produced by the RNG, and sometimes also non-successive

values at specified lags, from all possible seeds. This goes as follows (L’Ecuyer, 1994b, 2012). Select s

integers 0 ≤ i1 < · · · < is, put I = {i1, . . . , is}, and consider the multiset

ΨI = {u = (ui1 , . . . , uis) : s0 ∈ S} (1)

where the ui are defined as in the introduction. It is a multiset in the sense that all vectors that

appear more than once (if any) are counted as many times as they appear. For the special case where
I = {0, . . . , s− 1}, this is the multiset of all vectors of s successive output values that can be produced

by the RNG, for all possible initial states. For more general index sets I, ΨI contains vectors of values

that are at specified lags, not necessarily successive. Ideally, we would like the vector u = (ui1 , . . . , uis)

to have the (continuous) uniform distribution over the unit hypercube (0, 1)s. But each ΨI is a finite

multiset, and if we pick a seed at random uniformly over all possible seeds, we get that u has the

uniform distribution over ΨI . This can provide a good approximation of the ideal continuous uniform

distribution only if ΨI covers the hypercube (0, 1)s very uniformly (evenly). To be able to rigorously

assess this uniformity for concrete generators, we need measures of uniformity that can be computed

efficiently without generating all the points of ΨI explicitly (because this multiset is too large). Such

computable measures exist for RNGs based on linear recurrences as outlined below (see Knuth (1998);

L’Ecuyer (1996b,a, 1999a); L’Ecuyer and Panneton (2009); L’Ecuyer (2012); L’Ecuyer et al. (2020))

as well as for certain types of combined nonlinear generators (L’Ecuyer and Granger-Piché, 2003). Of

course, the measure of uniformity of ΨI cannot be computed for all possible index sets I, because there

are too many. It can be computed for sets I of successive values up to a certain dimension, and for

other sets I deemed important. For example, if we want to define multiple streams whose successive

starting points in the main sequence are spaced by ν steps, it would make sense to consider sets I

of the form I = {0, ν, 2ν, . . . } or I = {0, 1, 2, ν, ν + 1, ν + 2, 2ν, 2ν + 1, 2ν + 2, . . . }, for example. The

choice of index sets could also be adapted to the way the random numbers would be used in a target
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application. Note that for I = {0}, ΨI is simply g(S), the image of S by g. It is usually easy to verify

the uniformity of this multiset over the interval (0, 1).

Two important classes of RNGs for which the uniformity of the multisets ΨI can be measured

because they have a regular mathematical structure are the linear multiple recursive generators (MRGs)

and the F2-linear generators. MRGs are based on a linear recurrence of the form

xi = (a1xi−1 + · · ·+ akxi−k) mod m and ui = xi/m, (2)

for some coefficients a1, . . . , ak in {−m+ 1, . . . , 0, 1, . . . ,m− 1}, with ak 6= 0, k a positive integer, and

m a large integer, usually a prime, in which case the period can be mk − 1 by selecting the coefficients

properly. Another case of interest is when k = 1, m = 2e for some integer e (often 32 or 64), and a

constant term c is added in the recurrence, so we get

xi = (a1xi−1 + c) mod m.

The period is m = 2e if and only if c is odd and a1 mod 4 = 1 (Knuth, 1998, Page 17). For an MRG,

each multiset ΨI has a lattice structure: it is the intersection of an integral lattice with the semi-open

unit hypercube [0, 1)s. With the constant c, the lattice is shifted, but we still have a lattice structure.

This implies that all the points of ΨI lie in limited number of equidistant parallel hyperplanes. There

are algorithms to compute the distance between the successive hyperplanes and also the minimal

number of hyperplanes that contain all the points (Knuth, 1998; L’Ecuyer and Couture, 1997). For

good uniformity, the number of hyperplanes must be large and the distance between them must be

small, and this can be used to define figures of merit (Knuth, 1998; L’Ecuyer, 1999b). MRGs and

combined MRGs selected on the basis of these types of criteria are proposed in L’Ecuyer (1999a) and

L’Ecuyer and Touzin (2000), for example.

The F2-linear RNGs use only linear operations modulo 2. At step i, we have

xi = Axi−1 mod 2, yi = Bxi mod 2, ui =

w∑
`=1

yi,`−12−`, (3)

where xi is a k-bit state, yi = (yi,0, . . . , yi,w−1)T a w-bit output, k and w are positive integers, A

and B are binary matrices, and ui ∈ [0, 1) is the returned output. These RNGs also have a lattice

structure, but in a space of formal series (L’Ecuyer, 1994b; Tezuka, 1995). This implies that for certain

collections of dyadic rectangular boxes of equal sizes that partition [0, 1)s, for any index set I, some

boxes are empty and all non-empty boxes contain the same number of points from ΨI . When there

is no empty box, which we prefer, the points are said to be equidistributed for this partition. For

each I, equidistribution can be verified by using the lattice structure and linear algebra. A measure

of uniformity can be computed based on these results for selected sets I (L’Ecuyer, 1999c; Panneton

et al., 2006; L’Ecuyer and Panneton, 2009).

If the seeds are not equally spaced but follow a seed schedule s̃0, s̃1, s̃2, . . . determined by a second

RNG with state space S2 and random initial state σ0 ∈ S2, we may consider multisets Ψ of the form

Ψ = {u = (g(s̃0), g(f(s̃0)), g(f(f(s̃0))), . . . , g(s̃1), g(f(s̃1)), g(f(f(s̃1))), . . . , ) : σ0 ∈ S2} (4)

where we take a few successive outputs (e.g., 1 to 5) from the first seed, then a few from the second

seed, etc. It may be possible to assess the mathematical structure of this set if the two RNGs have the

same type of linear structure (e.g., both F2-linear), but otherwise it is likely to be too complicated, so

one would have to rely on empirical testing only.

This type of theoretical structural analysis is also difficult to apply to CBRNGs which use highly

nonlinear encoding, but it could be applied if we use some form of linear function g. To do it, we need

to determine how the sets I and ΨI would be defined. The role of I is to select point coordinates that

are likely to interact in some applications, and for which the independence matters. To simplify the
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notation, we assume in the following that d = 1, although our discussion can be easily extended to

d > 1. One relevant choice would to define I as before and look at the uniformity of ΨI for one key k

at a time. That is, we would replace the multiset ΨI by

Ψk,I = {u = (g(k, (i1 + i) mod 2w), . . . , g(k, (is + i) mod 2w)) : 0 ≤ i < 2w}. (5)

Ideally, we would like to show that this multiset has good uniformity for each key. A second interesting

choice is to construct the points by using successive keys for a fixed counter value. If K = {κ1, . . . , κs}
denotes an index set for the keys and let ϕ(κj +κ) denote the (κj +κ)th key in the key schedule. The

following set corresponds to a fixed counter value i and a random starting point κ for the key schedule:

ΨK,i = {u = (g(ϕ(κ1 + κ) mod 2m, i), . . . , g(ϕ(κs + κ) mod 2m, i)) : 0 ≤ κ < 2m}. (6)

We can also consider multisets defined by interleaving the indices in various ways; for example, the

first s1 < s coordinates of the points of ΨK,0, then the next s1 coordinates of the points of ΨK,1, etc.

Many other possibilities can be tested, to look for structural defects.

6 Statistical testing

Global mathematical measures of uniformity as mentioned in the previous section cannot always be

computed, and in the best case they can be computed only for a small subset of index sets I. Thus,

the theoretical analysis of the structure must be supplemented by empirical statistical tests, which

try to detect observable non-uniformity or lack of independence by examining output values from the

generators. Various tests and batteries of tests have been designed over the last 80 years or so; see

Knuth (1998); L’Ecuyer and Simard (2007); L’Ecuyer (2017) and the many references given there.

Each test takes successive output values from the RNG, then computes the value taken by a test

statistic T , as well as the probability that T takes a value as large (or as small) as the one it took,

under the null hypothesis H0 that the outputs are truly uniform and independent. This probability

is called the p-value, and the RNG fails the test when it is much too small (e.g., less than 10−10).

Good practice is to report each p-value, and not only “fail” or “pass”. When a suspicious p-value

is encountered, e.g., between 10−10 and 10−3, it is recommended to run the same test again with a

disjoint part of the sequence, and perhaps with a larger sample size, to see if the suspicious value was

obtained just by chance (this happens) or if it indicates a real defect (if the very small p-value shows

up again systematically). Usually, at least with recurrence-based RNGs, things clarify very quickly.

For a concrete example of a statistical test, recall that the hypothesis H0 that we want to test is

equivalent to saying that for any integer t > 0, any tuple of t successive output values has the uniform

distribution over (0, 1)t. A very natural way to test this is to partition this unit cube into k = dt

small subcubes by partitioning each axis (0, 1) in d intervals of length 1/d, then generate n disjoint

t-dimensional tuples from the generator and count how many fall in each subcube, say Xj in subcube

j for j = 0, . . . , k− 1. Under H0, the expected number falling in any given subcube is n/k, and if n/k

is not too small, the chi-square test statistic T =
∑k−1
j=0 (Xj − n/k)2/(n/k) follows approximately the

chi-square distribution with k − 1 degrees of freedom, and can be used for the test. This is a serial

test. To get more bang for the buck, i.e., more points for the same number of outputs, one can use

overlapping t-tuples: the next t-tuple is obtained by shifting the coordinates of the current one by 1

and adding one fresh coordinate. Then T no longer has a chi-square distribution, but another related

test statistic can be used (Good, 1953). One drawback of these tests is that one should have n ≥ k (at

least) for the approximation to be good, whereas we may want a larger k to detect “finer” departures

from uniformity, and this implies larger values of k. To resolve this, the collision test uses k � n

and computes the number of times a point falls in a subcube that was already visited (the number C

of collisions) instead of T . This can also be done with overlapping. Other test statistics can also be

defined as functions of these Xj (L’Ecuyer et al., 2002).

Several types of statistical tests for RNGs, as well as selected batteries of tests, have been proposed

and implemented. They can be classified (mostly) in two categories: those testing RNGs that imitate
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independent U(0, 1) random numbers, and those designed to test binary sequences that are supposed

to imitate independent random bits. The most popular and exhaustive test suites nowadays can be

found in TestU01 (L’Ecuyer and Simard, 2007): the Crush batteries for U(0, 1) random numbers, and

Rabbit and Alphabit for binary sequences. RNGs that pass the Crush batteries are often qualified

as Crush-resistant (Salmon et al., 2011). Note that the current Crush batteries only look at the 30

most significant bits of the U(0, 1) outputs. A new 64-bit version of TestU01 (under development) will

permit one to test up to 64 bits per integer output and 53 bits per floating-point output. As mentioned

earlier, the Philox counter-based RNG and the xorshift128+ used in Tensorflow passed these tests

successfully. However, the xorshift128+ fails some tests that focus only on the least-significant bits

(Lemire and O’Neill, 2019), so one should be careful not to use these bits in a “significant” way.

Statistical tests for RNGs have been traditionally designed for a single output sequence. For RNGs

with multiple streams and substreams (including splittable, counter-based, etc.), it is also important

to test the dependence between those streams. For that, one can construct sequences that take a few

values from each stream for a certain number of streams, in a round-robin fashion, as for the theoretical

analysis in Section 5. For example, one can use successive values as defined in (4) for a fixed number

of streams (a power of 2 from 16 to 1024, for example), take a fixed number of values per stream

(from 1 to 8, for example), and return to the first stream after the last one. For counter-based RNGs,

one can define a sequence in the same way by taking a few counter values par key, or just fixing the

key and advancing the counter. Repeating the latter with various keys may permit one to detect bad

keys. See Section 2.2.1 of Salmon et al. (2011) for other relevant ideas. In brief, batteries of tests for

counter-based RNGs need to be further developed.

For splittable RNGs, we know how to compute the probability of no collision (no key appears

twice in the splitting process) when all new keys are independent random integers from the uniform

distribution over the key space. But in practice, the sequence of keys is often a deterministic function

of a small seed. It would then be relevant to test for the absence of collisions for “popular” seeds such

as 123, for example.

Empirical testing can never prove that an RNG is foolproof. It is somewhat like hunting moose in

a wood: if you get no moose after a day, it does not prove that there is no moose in the wood. Same

thing if you get no moose after waiting 100 days at the same spot: you may be at the wrong spot!

Likewise, if your favorite RNG passes a given test battery, this does not prove that it passes all tests.

It it passes a set of tests with huge sample sizes, that takes days to run, it may still fail a different test

that runs in a few minutes. Hence the relevance of theoretical tests. But empirical testing rightfully

increases confidence and is also necessary.

7 Conclusion

We gave an overview of popular approaches to obtain multiple streams of random numbers for Monte

Carlo methods: partitioning the sequence of a large-period recurrence-based RNG into segments of

equal lengths, generating random starting points, using a counter-based RNG with a different key

for each stream, and using a splittable RNG. Each one has strengths and weaknesses, and is used in

some current software. Simulation software traditionally uses the first one. Current implementations

of the last two use mostly block cipher encodings, often simplified, but with many rounds that must

be applied sequentially. Other types of functions could lead to faster generators and this should be

explored. Parallel RNGs have also been designed in the form of vectorized constructions, where the

state and output are vectors of fixed size. Some run on massively parallel array processors or field

programmable gate arrays. These interesting directions are not discussed here; we refer the reader to

L’Ecuyer et al. (2017) and the references therein.
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