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– Bibliothèque et Archives Canada, 2021

The publication of these research reports is made possible thanks
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Abstract : It is a challenge to sustain cooperation in a finite-horizon dynamic game. Since players
generally have an incentive to deviate to their noncooperative strategies in the last stage, a backward
induction argument leads them to defect from cooperation in all stages. In this paper, we propose two
payment schemes having some desirable properties, namely, individual rationality and stability, which
ensure that the players cooperate throughout the entire planning horizon. The setup and the results
are general, that is, they do not rest on particular specifications of the payoff functionals or the state
dynamics. We illustrate our results with a linear-quadratic dynamic game of pollution control.

Keywords: Dynamic games, sustainability of cooperation, payment schemes, individual rationality,
efficiency
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1 Introduction

Solving a cooperative game with a transferable utility amounts to determining the best outcome that

the grand coalition can achieve, by optimizing the (possibly weighted) sum of the players’ payoffs, and

allocating the optimal outcome to the players. The resulting strategy profile can be interpreted as the

operational clause of the agreement (or contract), while the sharing represents the financial clause. In

a one-shot game, both clauses are fulfilled simultaneously.

An additional concern comes up in a dynamic setting, namely, the durability (or sustainability)

of an agreement over time. The players must ensure that the agreed-upon decisions will be indeed

implemented as time goes by. As a cooperative strategy profile is typically not an equilibrium, i.e.,

the agreement is not self-enforced, a mechanism must be put in place to keep players from switching

to their noncooperative strategies before the agreement reaches its maturity.

In this paper, we propose two allocation schemes that sustain a cooperative agreement until its

deadline. Importantly, these schemes do not require any assumption about the structure of the dynamic

game or the functional forms, and are based on the following two groups of properties:

1. Continuation of cooperation at any stage of the game;

2. Feasible payments over time.

The first group includes two properties, namely, dynamic individual rationality (DIR), i.e., the

players are better off cooperating than playing noncooperatively in any subgame, and stability against

individual deviations (SAID), i.e., cooperation is an equilibrium in any subgame. Dynamic individual

rationality is often referred to as time consistency in the cooperative dynamic games literature, both

in discrete and continuous time; see, e.g., the surveys/tutorials in Zaccour (2008, 2017), Petrosyan

and Zaccour (2018), and Yeung and Petrosyan (2018). The stability against individual deviations

is the main piece in making cooperation a subgame-perfect equilibrium in both repeated games and

state-space dynamic games; see, e.g., Radner (1980), Benoit and Krishna (1985), and Tolwinski et al.

(1986). It is well known that, in general, it is not possible to construct a cooperative equilibrium in

finite-horizon games. Indeed, because the players have an incentive to defect from cooperation in the

last stage, then, by a simple backward induction argument, they end up defecting in all stages. As an

alternative, a subgame perfect ε-cooperative equilibrium can be considered, where ε is the maximum

benefit a player can achieve by individually deviating from cooperation; see, e.g., Mailath et al. (2005),

Parilina and Zaccour (2015a), and Flesch and Predtetchinski (2016). The payment schemes proposed

in the paper are deviation-free, that is, ε = 0.

The second set of properties (feasibility) defines the payments to the players in any stage of the

game, along the cooperative state trajectory. In most contributions to cooperative dynamic games,

banking part of the realized current payoffs for future payments is not possible, that is, the total

collective payoff must be fully allocated in each stage; see, e.g., Petrosjan and Danilov (1979), Yeung

and Petrosyan (2012), Parilina and Zaccour (2015b, 2016), Kuzyutin et al. (2019), Dahmouni et al.

(2019), and Gromova and Plekhanova (2019). We relax this constraint by allowing for savings for

future use. In experimental games, players are willing, in early stages, to sacrifice some gains in order

to keep cooperation running, but typically not towards the end of the game; see, e.g., Angelova et

al. (2013) and Bruttel and Friehe (2014). In our case, the savings realized in the earliest stages are

invested to boost the payments in last stages, which prevents deviation from cooperation.

The closest approach to ours is the so-called imputation distribution procedure (IDP). Defining an

IDP involves three steps: First, a cooperative game in characteristic function (CF) form is defined for

all subgames, including the whole game. Second, an agreed-upon imputation, e.g., the Shapley value

or an imputation in the core, is computed for all subgames. Finally, the payments over stages are

determined such that the players’ payoffs-to-go in any subgame belong to the same solution concept,

e.g., be the Shapley value in the cooperative subgame. The idea of an IDP was initially proposed for
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differential games in Petrosjan and Danilov (1979), and was later adapted to different classes of games,

e.g., games on networks (Petrosyan and Sedakov (2016)), multicriteria (Kuzyutin et al. (2018)), and

random planning horizon games (Gromova and Plekhanova (2018)).

There are two inherent difficulties in implementing an IDP, one conceptual, and the other com-

putational. The conceptual difficulty arises from the multiplicity of CFs, with each giving different

outcomes and having its pros and cons; see, e.g., Chander and Tulkens (1997), Germain et al. (2003),

Petrosjan and Zaccour (2003), Reddy and Zaccour (2016), and Gromova and Petrosyan (2017). The

implication is that choosing a CF becomes in itself a negotiation issue. The computational difficulty

is in the determination, at each stage, of 2m− 1 characteristic function values, where m is the number

of players. For instance, if the game involves 5 players and 10 stages, then 310 values must be com-

puted. This is far from being a computationally friendly task, especially if these values correspond to

equilibrium outcomes, the players are asymmetric and their payoff functions are highly nonlinear.

The difference between our payment schemes and an IDP is twofold. First, our payment schemes

are stable against individual deviation, a property that is generally not fulfilled by an IDP, as shown

in Petrosyan (2008) and Parilina and Tampieri (2018). Second, our payment schemes do not require

the introduction of a CF, and consequently they escape the two above mentioned difficulties. Still,

interestingly, we show that the proposed payments correspond to an imputation of a cooperative game

in the γ-characteristic function (see Chander and Tulkens (1997)).

In the literature on gradual investment (see, e.g., Admati and Perry (1991) and Marx and Matthews

(2000)), as in our paper, players behave cooperatively by choosing the investment level stage by stage

to contribute to a joint or social project. The rewards are cashed when the project is finished. In

this literature, the Nash equilibrium contribution policies and conditions to complete the project are

found. Here, we start by finding the cooperative strategy profile that maximizes the total joint profit.

Once this is done, the players’ behavior along the state trajectory becomes given, but the rewards

or payments are not fixed. The introduced payment schemes do not change players’ strategies, but

redefine the payoff functions to sustain cooperation and avoid possible players’ deviations.

The remainder of the paper is organized as follows. In Section 2, we describe the dynamic game

model, and in Section 3, we state some desirable properties of a payment scheme and provide several

results on the relationships between these properties. The two payment schemes are defined and

discussed in Section 4. We show that these payments are imputations of a cooperative game in

Section 5. An illustrative example is discussed in Section 6, and we briefly conclude in Section 8.

2 Elements of the game

We consider a finite-horizon deterministic dynamic game played on T = {0, 1, . . . , T} and defined by

the following elements1:

1. A set of players M = {1, 2, . . . ,m};
2. For each player i ∈M , a vector of control (or decision) variables ui (t) ∈ Ui ⊆ Rmi at t = 0, . . . ,

T − 1, where Ui is the set of admissible control values for Player i;

Let U =
∏
i∈M

Ui;

3. A vector of state variables x (t) ∈ X ⊂ Rq at time t ∈ T, where X is the set of admissible states

and where the evolution over time of the state is given by

x (t+ 1) = f (t, x (t) , u (t)) , x0 given, (1)

where u (t) ∈ U, t = 0, . . . , T − 1 and x0 is the initial state at t = 0;

1See Basar and Olsder (1999) and Haurie et al. (2012) for the description of different classes of dynamic and differential
games.
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4. A payoff functional for Player i ∈M ,

Ji (u;x0) =

T−1∑
t=0

ρtφi (t, x (t) , u (t)) + ρTΦi(x (T )), (2)

where ρ ∈ (0, 1) is the discount factor; u (t) = (u1 (t) , . . . , um (t)), and u is given by

u = {ui (t) ∈ Ui : t ∈ T\{T}, i ∈M}; (3)

φi (t, x (t) , u (t)) is the reward to Player i at t = 0, . . . , T − 1, and Φi(x (T )) is the reward to

Player i at terminal time T ;

5. An information structure that defines the information that is available to Player i ∈ M when

she selects her control vector ui (t) at time t ∈ T\{T};
6. A strategy ηi for Player i ∈M , which is an mi-dimensional vector-decision rule that defines the

control ui (t) ∈ Ui as a function of the information available at time t = 0, . . . , T − 1.

If the players agree to cooperate, then they will maximize their joint payoff

J (u;x0) =
∑
i∈M

Ji (u;x0) . (4)

Let u∗ (t) = (u∗1 (t) , . . . , u∗m (t)) , t = 0, . . . , T − 1 be the control paths that solve the optimal control

problem (4), subject to the state Equations (1). Denote by J∗(x0) the outcome of the joint optimization

problem. If this solution is implemented throughout the game, then Player i gets the following before-

side-payment outcome (BSPO):

J∗i (x0) =

T−1∑
t=0

ρtφi (t, x∗ (t) , u∗ (t)) + ρTΦi(x
∗ (T )), (5)

where x∗ (t) is the solution to the state equation

x (t+ 1) = f (t, x (t) , u∗ (t)) , x0 given. (6)

If one interprets the cooperative solution as a contract between the players, then the control paths

u∗ (t) , t = 0, . . . , T − 1 represent the operational clause of this contract. That is, each player agrees to

implement, at each period t, the action that realizes the collectively optimal payoff

J∗ (x0) =
∑
i∈M

J∗i (x0).

Further, the BSPO of Player i may not be larger than the outcome she can secure by acting alone.

Therefore, the contract must also include a financial clause specifying the payments that the players

will receive at each period. For such a clause to be agreeable to all players, it must satisfy some

requirements, e.g., individual rationality and fairness. In Section 4, we introduce a payment scheme

that has desirable properties.

The alternative (and benchmark) to cooperation is a noncooperative mode of play. In such event,

the players seek a feedback Nash equilibrium, in which Player i gets the following outcome:

Jnci (x0) =

T−1∑
t=0

ρtφi (t, xnc (t) , unc (t)) + ρTΦi(x
nc (T )), (7)

where xnc (t) and unc (t) , t = 0, . . . , T − 1 are the state and control trajectories, respectively.
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We make the following assumptions:

A1: If cooperation breaks down at any intermediate period τ > 0, i.e., the strategy profile in τ

is different from the cooperative one u∗(τ), then the players switch to their Nash equilibrium

strategies in the remaining subgame (in periods τ + 1, τ + 2, . . ., T − 1) with the initial state

being x∗ (τ).

A2: There exists a unique feedback Nash equilibrium in each subgame, or a device for selecting one

equilibrium if there are many.

The first assumption is quite natural and typical in the literature on cooperative dynamic games;

see, e.g., Petrosyan and Zaccour (2018). It simply states that the players start by cooperating. The

second assumption is meant to avoid equilibrium selection, an issue that is well beyond the objective

of this paper.

Remark 1. The uniqueness of the joint-optimization solution requires, as usual, strict concavity of the

objective function and the control set must be compact and convex. When the multistage game has

a normal form representation, the conditions for uniqueness of Nash equilibrium are the same as for

games with continuous payoffs with constraints as established in Rosen (1965). For the class of linear-

quadratic dynamic games, which is widely used in applications, the conditions of the existence and

uniqueness of the Nash equilibrium in open-loop and feedback information structures can be found in

Basar and Olsder (1999), Jank and Abou-Kandil (2003).

3 Properties of a payment scheme

Let u−i (t) = (u1 (t) , . . . , ui−1 (t) , ui+1 (t) , . . . , um (t)). Denote by pi (t) the payment that Player

i ∈ M receives in period t ∈ T under the cooperative mode of play. We shall refer to the vector

(pi(t) : i ∈ N, t ∈ T) as a payment scheme P. In practice, any payment scheme is based on some

desirable properties. Here, we state the following six properties, and then define schemes that satisfy

different combinations of them:

P1: Feasibility. P is feasible if

∑
i∈M

pi(t) ≤
∑
i∈M

φi (t, x∗ (t) , u∗ (t)) +

t−1∑
τ=0

1

ρt−τ

∑
i∈M

(
φi (τ, x∗ (τ) , u∗ (τ))− pi(τ)

)
, (8)

for all t ∈ T \ {T}, and

∑
i∈M

pi(T ) ≤
∑
i∈M

Φi (x∗ (T )) +

T−1∑
τ=0

1

ρT−τ

∑
i∈M

(
φi (τ, x∗ (τ) , u∗ (τ))− pi(τ)

)
(9)

for t = T .

P2: Dynamic individual rationality (DIR). P is dynamically individually rational if

T∑
τ=t

ρτ−tpi(τ) ≥ Jnci (t, x∗ (t)), (10)

for all t ∈ T and all i ∈ M , where Jnci (t, x∗ (t)) is the Nash equilibrium outcome of Player i in

the subgame starting at period t with state x∗ (t).

P3: Stability against individual deviation (SAID). P is stable against individual deviation if

T∑
τ=t

ρτ−tpi(τ) ≥ max
ui(t)∈Ui

{
φi
(
t, x∗ (t) , (u∗−i (t) , ui (t))

)
+ ρJnci (t+ 1, x̂ (t+ 1))

}
:= BRi(t, x

∗ (t)), (11)
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for all t ∈ T and all i ∈M , where BRi(T, x
∗ (T )) := Φi (x∗ (T )) and

x̂ (t+ 1) = f(t, x∗(t),
(
u∗−i (t) , ûi (t)

)
),

where ûi (t) is Player i’s optimal control that solves the maximization problem in (11).

P4: Efficiency. P is efficient if ∑
i∈M

T∑
t=0

ρtpi(t) =
∑
i∈M

J∗i (x0). (12)

P5: Stage budget balance (SBB). P is stage budget balanced if∑
i∈M

pi(t) =
∑
i∈M

φi (t, x∗ (t) , u∗ (t)) , t ∈ T \ {T}, (13)∑
i∈M

pi(T ) =
∑
i∈M

Φi (x∗ (T )) . (14)

P6: Minimal required savings (MRS). P satisfies the property of minimal required savings if

t∑
τ=0

1

ρt−τ

∑
i∈M

(
φi (τ, x∗ (τ) , u∗ (τ))− pi(τ)

)
=−

T−1∑
τ=t+1

ρτ−t
∑
i∈M

(
φi (τ, x∗ (τ) , u∗ (τ))− pi(τ)

)
− ρT−t

∑
i∈M

(
Φi (x∗ (T ))− pi(T )

)
(15)

for all t ∈ T \ {T}.

These properties deserve few comments. In (8), the first term on the right-hand side (RHS) is the

total collective reward at time t. The difference φi (τ, x∗ (τ) , u∗ (τ)) − pi(τ) represents the shortage

that Player i consents to at time τ . (Note that this shortage can take any sign.) So, the second term on

the RHS of (8) is the capitalized value of the sum of shortages. Therefore, the condition in (8) states

that the total payments at t should not exceed the total cooperative reward at t plus this capitalized

value. In particular, at t = 0, this condition, which takes the form∑
i∈M

pi(0) ≤
∑
i∈M

φi (0, x0, u
∗ (0)) ,

requires that the total payments do not exceed the total optimal collective payoff at that period. The

difference
∑
i∈M

φi (0, x0, u
∗ (0))−

∑
i∈M

pi(0) represents the saving that is invested for later use.

For the payment scheme to be individually rational at any time t, the payment-to-go to any player i,

given by the left-hand side (LHS) of (10), must be at least equal to her noncooperative payoff-to-go in

the subgame starting from the cooperative state x∗ (t) (RHS of (10)).

The stability against individual deviation of the payment scheme P means that the cooperative

payoff-to-go of Player i, in the subgame starting at (any) t with initial state value x∗ (t) (LHS of (11)),

is at least equal to what she can obtain by deviating unilaterally. The control ûi (t) is the best reply

(hence, the notation BRi(t, x
∗ (t))) of Player i to u∗−i (t). By Assumption A1, after the deviation

is identified, the game is played noncooperatively from t + 1 onward, with the initial state given by

x̂ (t+ 1) = f
(
t, x∗ (t) , (u∗−i (t) , ûi (t))

)
(RHS in inequality (11)).

Efficiency guarantees that the total of the discounted payments to the players is equal to the

total joint-maximization payoff. That is, subsidies and wastages are ruled out under P. The SBB

property stipulates that the stage’s optimal joint payoff be fully allocated to the players. Finally, the

MRS property means that the total capitalized savings at any time t is equal to what is required to

implement the payment scheme in the rest of the game.
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We note that DIR and SAID imply that

T∑
τ=t

ρτ−tpi(τ) ≥ max {Jnci (t, x∗ (t)), BRi(t, x
∗ (t))} . (16)

Further, the inequalities (8), (9), (10), and (11) would have the opposite sign if the players minimized

their objective functionals.

The following propositions establish some relationships between feasibility, SBB, efficiency and

MRS.

Proposition 1. If a payment scheme P = (pi (t) : i ∈M, t ∈ T) is feasible, then

∑
i∈M

T∑
t=0

ρtpi(t) ≤
∑
i∈M

J∗i (x0). (17)

Proof. Assume P is feasible and consider the difference∑
i∈M

T∑
t=0

ρtpi(t)−
∑
i∈M

J∗i (x0) =

T−1∑
t=0

ρt
∑
i∈M

(pi(t)− φi(t, x∗(t), u∗(t))) + ρT
∑
i∈M

(pi(T )− Φi(x
∗(T ))

≤
T−1∑
t=0

ρt
∑
i∈M

(pi(t)− φi(t, x∗(t), u∗(t))) + ρT
T−1∑
t=0

1

ρT−t

∑
i∈M

(
φi (t, x∗ (t) , u∗ (t))− pi(t)

)
= 0,

which proves (17).

Proposition 2. If a payment scheme is stage-budget balanced, then it satisfies the Efficiency, Feasibility,

and MRS properties.

Proof. Suppose P is SBB. Computing
∑
i∈M

T∑
t=0

ρtpi(t), we get

∑
i∈M

T∑
t=0

ρtpi(t) =

T∑
t=0

ρt
∑
i∈M

pi(t) =

T−1∑
t=0

ρt
∑
i∈M

φi (t, x∗ (t) , u∗ (t)) + ρT
∑
i∈M

Φi (x∗ (T ))

=
∑
i∈M

J∗i (x0),

which shows Efficiency.

If P is SBB, then the feasibility condition in (8) becomes∑
i∈M

pi(t) ≤
∑
i∈M

φi (t, x∗ (t) , u∗ (t)) ,

and in (9) becomes ∑
i∈M

pi(T ) ≤
∑
i∈M

Φi (x∗ (T )) ,

which hold with equality for an SBB scheme.

Finally, if P is SBB, then for any t ∈ T \ {T}, we have∑
i∈M

(
φi (t, x∗ (t) , u∗ (t))− pi(t)

)
= 0,

which implies that the equality in (15) is trivially satisfied.



Les Cahiers du GERAD G–2021–77 7

Proposition 3. If a payment scheme satisfies the minimal required savings property, then it is efficient.

Proof. If P satisfies MRS, then at t = 0, (15) becomes

∑
i∈M

(
φi (0, x0, u

∗ (0))− pi(0)
)

=−
T−1∑
τ=1

ρτ
∑
i∈M

(
φi (τ, x∗ (τ) , u∗ (τ))− pi(τ)

)
− ρT

∑
i∈M

(
Φi (x∗ (T ))− pi(T )

)
,

that can be rewritten as

∑
i∈M

J∗i (x0) =
∑
i∈M

T∑
τ=0

ρτφi (τ, x∗ (τ) , u∗ (τ)) + ρT
∑
i∈M

Φi (x∗ (T )) =
∑
i∈M

T∑
t=0

ρtpi(t),

which proves that P is efficient.

We add three observations: First, obviously, Feasibility does not imply MRS. Second, an efficient

payment scheme does not necessarily satisfy MRS. Finally, an efficient payment scheme may not be

feasible. To illustrate, consider the following simple scheme:

p′i(t) =

{
J∗i (x0), if t = 0,

0, otherwise.

It is clearly efficient but not feasible if, for at least one time t = 1, . . . , T − 1, we have∑
i∈M

φi (t, x∗ (t) , u∗ (t)) > 0.

4 Payment schemes

To start, we define a (preliminary) payment scheme that satisfies the Feasibility, DIR and SAID

properties.

Definition 1. A feasible payment scheme that satisfies

T∑
τ=t

ρτ−tpi(τ) = max{Jnci (t, x∗ (t));BRi(t, x
∗ (t))}, for any t ∈ T,

is called a minimal payment scheme and is denoted Pmin.

Put differently, if it exists, a scheme Pmin satisfies the feasibility property, and DIR holds with

equality, which implies the SAID property if Jnci (t, x∗ (t)) ≥ BRi(t, x∗ (t)), or SAID holds with equality,

implying the DIR property if Jnci (t, x∗ (t)) < BRi(t, x
∗ (t)). A Pmin scheme guarantees that the players

have no incentive to deviate along the cooperative state trajectory.

To construct Pmin, we proceed backward from the terminal time T , simultaneously satisfying DIR

and SAID, and next checking if Feasibility is verified. The steps are as follows:

1. Let t = T . Set

pi(T ) := Φi(x
∗
T ), for all i ∈M. (18)

Properties DIR and SAID are trivially satisfied for t = T .
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2. Let t = T − 1. For all i ∈M , set

pi(T − 1) := max{Jnci (T − 1, x∗ (T − 1))− ρpi(T );BRi(T − 1, x∗ (T − 1))− ρpi(T )}
= max{Jnci (T − 1, x∗ (T − 1));BRi(T − 1, x∗ (T − 1))} − ρpi(T ). (19)

Properties DIR and SAID are satisfied by construction for t = T − 1.

3. Consider any period t = T − 2, . . . , 0. Define the payments pi(t), i ∈M , as

pi(t) := max{Jnci (t, x∗ (t));BRi(t, x
∗ (t))} −

T∑
τ=t+1

ρτ−tpi(τ). (20)

Properties DIR and SAID are satisfied by construction for t ∈ {T − 2, . . . , 0}.
4. Check the Feasibility condition, that is, the inequalities in (8) and (9). If it is satisfied for all

t ∈ T, then a Pmin exists and is defined by (18)–(20); otherwise, no Pmin exists.

If a Pmin exists, then we can construct a first payment scheme that satisfies the Feasibility, DIR,

SAID, and Efficiency properties, and a second one that additionally satisfies MRS.

Remark 2. In the next two propositions, we introduce two different payment schemes, assuming that

a minimal payment scheme exists. A natural question is what can be done if this isn’t the case? Two

approaches can be followed: (i) drop either the DIR or SAID property, which implies a decrease in the

payments to players at all stages, but the last; or, (ii) determine the range of the discount factor for

which a minimal payment scheme exists.

4.1 A first payment scheme

The construction of the first payment scheme P1 is based on the following proposition and its con-

structive proof:

Proposition 4. If a Pmin = (pi(t) : i ∈M, t ∈ T) exists, then the following payment scheme exists and

satisfies the Feasibility, DIR, SAID, and Efficiency properties:

P1



For t = 0, . . . , T − 1,
p′i(t) := pi(t).

For t = T,
p′i(T ) := pi(T ) + σi(T ),
with σi(T ) ≥ 0 for any i ∈M,

and
∑
i∈M σi(T ) =

∑T−1
τ=0

1
ρT−τ

∑
i∈M

(
φi (τ, x∗ (τ) , u∗ (τ))− pi(τ)

)
.

(21)

Proof. Suppose Pmin exists. Then, it is uniquely defined by (18)–(20). Now, we construct an efficient

payment scheme that satisfies the Feasibility, DIR, and SAID properties.

Pmin = (pi(t) : i ∈M, t ∈ T) satisfies Feasibility, so for any t ∈ T \ {T} we have

∑
i∈M

pi(t) ≤
∑
i∈M

φi (t, x∗ (t) , u∗ (t)) +

t−1∑
τ=0

1

ρt−τ

∑
i∈M

(
φi (τ, x∗ (τ) , u∗ (τ))− pi(τ)

)
,

and for t = T we have∑
i∈M

pi(T ) ≤
∑
i∈M

Φi (x∗ (T )) +

T−1∑
τ=0

1

ρT−τ

∑
i∈M

(
φi (τ, x∗ (τ) , u∗ (τ))− pi(τ)

)
,

Now, define the new payments

p′i (t) =

{
pi(t), if t ∈ T \ {T},
pi(t) + σi(t), if t = T,

(22)
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where σi(T ) is such that σi(T ) ≥ 0 for any i ∈M and

∑
i∈M

σi(T ) =

T−1∑
τ=0

1

ρT−τ

∑
i∈M

(
φi (τ, x∗ (τ) , u∗ (τ))− pi(τ)

)
.

The above equation means that the players redistribute the savings by time T at this period according

to some allocation rule. Therefore, the payments p′i(t), for i ∈ M coincide with those defined by

Pmin, but at the terminal time. As p′i (t) = pi(t), t ∈ T \ {T}, then the DIR and SAID properties are

obviously satisfied. As Feasibility is also satisfied by construction, it remains to show Efficiency, i.e.,

to have ∑
i∈M

T∑
t=0

ρtp′i (t) =
∑
i∈N

J∗i (x0). (23)

Substituting for p′i(t) from (22) into the LHS of (23), we easily obtain that

∑
i∈M

T∑
t=0

ρtp′i(t) =

T−1∑
t=0

ρt
∑
i∈M

φi (t, x∗ (t) , u∗ (t)) + ρT
∑
i∈M

Φi (x∗ (T )) =
∑
i∈M

J∗i (x0).

We make the following observations: First, compared to the minimal payment scheme, P1 is efficient

(Pmin is not). Second, the payment scheme defined above is not unique, because the vector σ (T ) =

(σ1(T ), . . . , σm(T )) is not uniquely defined. Third, the existence of Pmin, which implies the existence

of P1, depends on the discount factor ρ. The lower the value of ρ, the less savings are attractive. This

result is straightforward to interpret through the lens of the folk theorem, i.e., for cooperation (or

collusion) to be sustained, the discount factor must be high enough. Finally, the early-stage savings

used to make the final payment ensure the sustainability of the agreement till the terminal date.

4.2 A second payment scheme

The first payment scheme requires that the savings only be distributed at the terminal date. Now,

we relax this obligation by allowing the allocation of savings over time along the cooperative state

trajectory. The second payment scheme P2, defined in the next proposition, satisfies the additional

MRS property.

For t = 1, . . . , T − 1, denote by B(t) the amount of savings needed to make payments in period t

and future time periods. This amount is defined by

B(t) :=

[
ρB(t+ 1) +

∑
i∈M

(pi(t)− φi (t, x∗ (t) , u∗(t)))

]+
, (24)

that is, B (t) is equal to the RHS expression if it is positive, and zero otherwise. In (24), pi(t) is a

payment of a minimal payment schemed defined by (18)–(20). We let B (T ) := 0. For all i ∈ M and

t = 0, . . . , T − 1, denote by ξi (t) the nonnegative number satisfying∑
i∈M

ξi(t) =
∑
i∈M

(φi(t, x
∗ (t) , u∗(t))− pi(t))− ρB(t+ 1).

Recall that pi(t) is the payment in Pmin uniquely defined by (18)–(20).
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Proposition 5. If a Pmin = (pi(t) : i ∈M, t ∈ T) exists, then the following payment scheme exists and

satisfies Feasibility, DIR, SAID, Efficiency, and MRS:

P2



For t = T :
p′′i (t) := pi(T );

For t = T − 1, . . . , 1 :

p′′i (t) =


pi(t), if

∑
i∈M

(φi(t, x
∗ (t) , u∗(t))− pi(t))− ρB(t+ 1) < 0,

pi(t) + ξi(t), if
∑
i∈M

(φi (t, x∗ (t) , u∗(t))− pi(t))− ρB(t+ 1) ≥ 0,

where ξi(t) ≥ 0 s.t.
∑
i∈M

ξi(t) =
∑
i∈M

(φi(t, x
∗ (t) , u∗(t))− pi(t))− ρB(t+ 1);

For t = 0 :
p′′i (0) = pi(0) + ξi(0),
where ξi(0) ≥ 0 s.t.

∑
i∈M

ξi(0) =
∑
i∈M

(φi(0, x0, u
∗(0))− pi(0))− ρB(1),

where B(t) is recurrently defined by (24) with terminal condition B(T ) = 0.

Proof. Suppose that Pmin exists and is defined by (18)–(20). We construct a payment scheme P2

backwards from t = T to t = 0 as follows:

t = T : At the terminal time, set p′′i (T ) = pi(T ), i.e., the payment to any player is the same as in Pmin.

This implies

B(T ) := 0.

t = T − 1, . . . , 1: Set

p′′i (t) =


pi(t), if

∑
i∈M

(φi(t, x
∗ (t) , u∗(t))− pi(t))− ρB(t+ 1) < 0,

pi(t) + ξi(t), if
∑
i∈M

(φi(t, x
∗ (t) , u∗(t))− pi(t))− ρB(t+ 1) ≥ 0,

where ξi(t) ≥ 0 is such that
∑
i∈M

ξi(t) =
∑
i∈M

(φi(t, x
∗ (t) , u∗(t))− pi(t))− ρB(t+ 1).

t = 0: By the feasibility property, which is satisfied for the minimal payment scheme, we have∑
i∈M

(φi(0, x0, u
∗(0))− pi(0))− ρB(1) ≥ 0.

The payment to Player i at time 0 is given by

p′′i (0) = pi(0) + ξi(0),

with ξi(0) ≥ 0 subject to∑
i∈M

ξi(0) =
∑
i∈M

(φ0(0, x0, u
∗(0))− pi(0))− ρB(1).

By construction, the MRS property is satisfied, which implies Efficiency by Proposition 3. We need

to prove Feasibility, DIR, and SAID. At any time t, the proposed payment p′′(t) is equal to or greater

than p(t) defined in the Pmin for which the DIR and SAID properties are satisfied. Now we prove

Feasibility. Consider the Feasibility property for t = 0:∑
i∈M

p′′i (0) ≤
∑
i∈M

φi (0, x0, u
∗ (0)) ,

which is obviously satisfied because p′′i (0) = pi(0) + ξi(0), where∑
i∈M

(pi(0) + ξi(0)) ≤
∑
i∈M

φi(0, x0, u
∗(0))
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by construction. Then consider t = 1: we have

p′′i (1) =


pi(1), if

∑
i∈M

(φi(1, x
∗ (1) , u∗(1))− pi(1))− ρB(2) < 0,

pi(1) + ξi(1), if
∑
i∈M

(φi (1, x∗ (1) , u∗(1))− pi(1))− ρB(2) ≥ 0,

where ξi(1) ≥ 0 s.t.
∑
i∈M

ξi(1) =
∑
i∈M

(φi(1, x
∗ (1) , u∗(1))− pi(1))− ρB(2).

When
∑
i∈M

(φi(1, x
∗ (1) , u∗(1))− pi(1))− ρB(2) < 0, the payment p′′i (1) equals the payment in the

minimal scheme, and Feasibility is satisfied as the minimal scheme is feasible.

If
∑
i∈M

(φi (1, x∗ (1) , u∗(1))− pi(1)) − ρB(2) ≥ 0, then we prove that Feasibility property is also

satisfied for t = 1. We need to prove this:∑
i∈M

p′′i (1) ≤
∑
i∈M

φi (1, x∗ (1) , u∗ (1)) +
1

ρ

∑
i∈M

(
φi (0, x∗ (0) , u∗ (0))− p′′i (0)

)
.

Substituting the expressions of p′′i (1) and p′′i (0), we can rewrite the last inequality as follows:∑
i∈M

(pi(1) + ξi(1)) ≤
∑
i∈M

φi (1, x∗ (1) , u∗ (1)) +
1

ρ

∑
i∈M

(
φi (0, x∗ (0) , u∗ (0))− (pi(0) + ξi(0))

)
,

or equivalently∑
i∈M

ξi(1)−
∑
i∈M

(φi (1, x∗ (1) , u∗ (1))− pi(1)) ≤ 1

ρ

∑
i∈M

(
φi (0, x∗ (0) , u∗ (0))− (pi(0) + ξi(0))

)
,

and substituting expression for
∑
i∈M ξi(1), that is,∑

i∈M
ξi(1) =

∑
i∈M

(φi(1, x
∗ (1) , u∗(1))− pi(1))− ρB(2),

and we obtain

−ρB(2) ≤ 1

ρ

∑
i∈M

(
φi (0, x∗ (0) , u∗ (0))− (pi(0) + ξi(0))

)
,

which is true, as the expression in the LHS is nonpositive and the one in the RHS is nonnegative. We
can easily prove Feasibility for any t = 2, . . . , T in the same way.

Therefore, for the scheme defined by p′′(t), all these properties (Feasibility, DIR, SAID, Efficiency,

and MRS) are satisfied.

To interpret P2, let

∆t ,

[∑
i∈M

(φi(t, x
∗ (t) , u∗(t))− pi(t))

]
− ρB(t+ 1),

where pi(t) is defined by (18)–(20). The first square-bracketed term represents the difference between

the realized total optimal reward and the total payments at t. The second term (ρB(t+ 1)) is the

discounted value of the amount available for borrowing at the next period. If ∆t is negative, then set

the payment to Player i at time t at its minimum value, in a Pmin sense, that is, p′′i (t) = pi(t). If

∆t ≥ 0, then add a nonnegative allocation ξi(t), with
∑
i∈M

ξi(t) = ∆t.

As for P1, we note that the payment scheme P2 is not unique. Again, the reason is that the vector

ξ (t) = (ξ1(t), . . . , ξm(t)) is not uniquely defined for any period t. Indeed, the players can choose any

procedure to share the savings.
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Remark 3. The main difference between the two payment schemes is that P2 satisfies the Minimal

required savings property (P6), but P1 does not. Property P6 requires to determine the payments

along the cooperative trajectory, which implies that P2 is more demanding computationally speaking

than P1. On the other hand, the players gets more in the earlier periods under P2 than under P1. The

timing of payments may be an important attribute in some contexts, e.g., when the players are involved

in different projects and revenues from the one under consideration are needed for the other projects.

We illustrate the construction of the two payment schemes P1 and P2 with a finitely repeated

Prisoner’s Dilemma game. Clearly, it is a simplified version of the dynamic game defined in Section 2,

because no state dynamics are involved in a repeated game. Still, the example allows us to show

the computations involved in P1 and P2, and highlight the impact of some parameter values on the

existence of the minimal payment scheme.

Example 1. Consider the two-player Prisoner’s Dilemma (PD) with payoff matrix

Player 2
Deny Confess

Player 1 Deny (a, a) (c, b)
Confess (b, c) (d, d)

with b > a > d > c and 2a > c+ b.

Let the PD be repeated in periods T = {1, . . . , T}, and let ρ be the common discount factor.

Obviously, the cooperative strategy profile consists in both players choosing strategy ”Deny” in any

period t ∈ T. We denote this profile by u∗ = (u∗1,u
∗
2), where u∗i = (u∗i (t) = ”Deny”, t ∈ T), i = 1, 2.

Player i’s cooperative payoff is given by

J∗i = a
(
1 + ρ+ ρ2 + . . .+ ρT−1

)
= a

1− ρT

1− ρ
, i = 1, 2.

The Nash equilibrium (which is also subgame perfect) strategy profile is unc = (unc1 ,unc2 ), where

unci = (unci (t) = ”Confess”, t ∈ T), i = 1, 2. Player i’s payoff in the Nash equilibrium is

Jnci = d
(
1 + ρ+ ρ2 + . . .+ ρT−1

)
= d

1− ρT

1− ρ
, i = 1, 2.

The Nash equilibrium payoff in a subgame starting in any t is

Jnci (t) = d
(
1 + ρ+ ρ2 + . . .+ ρT−t

)
= d

1− ρT−t+1

1− ρ
, i = 1, 2.

Now, we compute BRi(t), which is the maximal payoff that player i can achieve by one-stage deviation

in period t. Taking into account assumption A1, we obtain

BRi(t) = b+ d
(
ρ+ ρ2 + . . .+ ρT−t

)
= b+ d

ρ− ρT−t+1

1− ρ
= b+ d

ρ(1− ρT−t)
1− ρ

, i = 1, 2.

Clearly, BRi(t) > Jnci (t) for any time t = 1, . . . , T and i = 1, 2.

First, we find the conditions under which the minimal payment scheme Pmin exists. In order to

do this, we calculate the payments by (18), (19) and (20). (We correct for the fact that here the

players also choose strategies at the terminal stage, whereas they do not in our game setting given in

Section 2.) The payments defining Pmin are

pi(T ) = max{BRi(T ), Jnci (T )} = BRi(T ) = b,

pi(T − 1) = max{BRi(T − 1), Jnci (T − 1)} − ρpi(T ) = b+ ρd− ρb = (1− ρ)b+ ρd,

pi(T − 2) = max{BRi(T − 2), Jnci (T − 2)} − ρpi(T − 1)− ρ2pi(T ) = (1− ρ)b+ ρd,

pi(t) = (1− ρ)b+ ρd, t = T − 3, . . . , 1.

We verify if this payment scheme is feasible and check inequality (8) for any period t = 1, . . . , T :
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For t = 1: 2((1− ρ)b+ ρd) ≤ 2a, which is equivalent to

ρ ≥ b− a
b− d

. (25)

For t = 2, . . . , T − 1: the feasibility condition is

2((1− ρ)b+ ρd− a) ≤ 1

ρ
2(a− (1− ρ)b− ρd) + . . .+

1

ρt−1
2(a− (1− ρ)b− ρd),

which is equivalent to

((1− ρ)b+ ρd− a)

(
1 +

1

ρ
+ . . .+

1

ρt−1

)
≤ 0,

and is satisfied for any t = 2, . . . , T − 1 when (25) is true.

For t = T : the feasibility condition is

2(b− a) ≤ 1

ρ
2(a− (1− ρ)b− ρd) + . . .+

1

ρT−1
2(a− (1− ρ)b− ρd),

which is equivalent to
ρ− ρT

1− ρT
≥ b− a
b− d

. (26)

As ρ−ρT
1−ρT ≤ ρ for any ρ ∈ (0, 1), then condition (26) is stronger than (25). So, for feasibility of the

payment scheme, condition (26) should be satisfied.

Moreover, ρ−ρ
T

1−ρT → ρ when T →∞. We can easily notice that the larger the duration of the game,

the smaller discount factor that is required to satisfy the feasibility condition (26). For example, if

b = 15, a = 10, d = 4, we have the following conditions for existence of the minimal payment scheme

depending on the duration of the game:

T = 2 T = 3 T = 4 T = 5 T = 9 T →∞
ρ ≥ 0.83 ρ ≥ 0.54 ρ ≥ 0.48 ρ ≥ 0.47 ρ ≥ 0.455 ρ ≥ 0.4545

If b = 15, a = 12, d = 11, we have the following conditions for existence of the minimal payment

scheme depending on the duration of the game:

T = 2 T = 3 T = 4 T = 5 T = 7 T = 9 T →∞
∅ ∅ ∅ ρ ≥ 0.89 ρ ≥ 0.8 ρ ≥ 0.78 ρ ≥ 0.75

The last table demonstrates that for T = 2, 3, 4, Pmin does not exist.

If condition (26) holds, then payment schemes P1 and P2 can be constructed by Propositions 4

and 5. In P1, the payments for all non-terminal periods are the same as in Pmin, and all savings from

non-terminal periods are given to the players at the terminal stage. So, we need to define the payment

at the terminal stage, that is,

p′i(T ) = pi(T ) + σi(T ) = b+ σi(T ),

where

σ1(T ) + σ2(T ) =

T−1∑
τ=1

1

ρT−τ
2(a− (1− ρ)b− ρd) + 2(a− b)

=
2

ρT−1(1− ρ)

(
(b− d)(ρ− ρT )− (b− a)(1− ρT )

)
.

As the game is symmetric, it makes sense to assume that

σ1(T ) = σ2(T ) =
1

ρT−1(1− ρ)

(
(b− d)(ρ− ρT )− (b− a)(1− ρT )

)
.
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Finally, the payments of P1 are

P1



For t = 1, . . . , T − 1,
p′i(t) := (1− ρ)b+ ρd.

For t = T,
p′i(T ) := b+ σi(T ),
with σi(T ) ≥ 0 for any i = 1, 2,
and σ1(T ) + σ2(T ) = 2

ρT−1(1−ρ)
(
(b− d)(ρ− ρT )− (b− a)(1− ρT )

)
.

The payments in scheme P2 are the following:

P2



For t = T :
p′′i (T ) := b; and B(T ) := 2(b− a);

For t = T − 1, . . . , 2 :

p′′i (t) =


(1− ρ)b+ ρd, if ρ+ ρ2 + . . .+ ρT−t < b−a

a−d , and

B(t) = 2[b− a− (ρ+ ρ2 + . . .+ ρT−t)(a− d)];

(1− ρ)b+ ρd+ ξi(t), if ρ+ ρ2 + . . .+ ρT−t ≥ b−a
a−d , and

B(t) = 0,

where ξi(t) ≥ 0, i = 1, 2 s.t. ξ1(t) + ξ2(t) = 2[a− b+ ρ(b− d)− ρB(t+ 1)];

For t = 1 :
p′′i (1) = (1− ρ)b+ ρd+ ξi(1),
where ξi(1) ≥ 0, i = 1, 2 s.t. ξ1(1) + ξ2(1) = 2[a− b+ ρ(b− d)− ρB(2)].

We note that the computations for the second payment scheme are more complicated, but for both

schemes the payments are well defined.

For the set of parameters b = 15, a = 10, d = 4, T = 4, if ρ ≥ 0.48, then the minimal payment

scheme exists. For ρ = 0.9, we calculate the payments in schemes P1 and P2 and report them in

Table 1. The first two rows correspond to scheme P1, where the first line represents the general form

of the payments, and the second line gives the payments assuming symmetry of players and dividing

equally the savings. We can notice that players gets 5.1 at the first three stages, then obtain all savings

at the last stage, that is, a payment of 28.215 in t = 4. While in the second scheme (last two rows), at
the first two stages they obtain the maximal payment, that is, 10 in symmetric case, and they start

making savings at stage 3. So, a player gets 5.5 at t = 3, and finally obtain 15 at the last stage. Both

payment schemes satisfy efficiency property, and in any scheme the total discounted sum of players’

payoffs is 68.78.

Table 1: Payments in schemes P1 and P2.

t = 1 t = 2 t = 3 t = 4

P1 5.1 5.1 5.1 15 + σi(4)
σ1(4), σ2(4) ≥ 0

σ1(4) + σ2(4) = 26.43

P1 5.1 5.1 5.1 28.215
(symmetric)

P2 5.1 + ξi(1) 5.1 + ξi(2) 5.1 + ξi(3) 15

ξ1(1), ξ2(1) ≥ 0 ξ1(2), ξ2(2) ≥ 0 ξ1(3), ξ2(3) ≥ 0
ξ1(1) + ξ2(1) = 9.8 ξ1(2) + ξ2(2) = 9.8 ξ1(3) + ξ2(3) = 0.8

P2 10 10 5.5 15
(symmetric)
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5 Link to cooperative games

We discussed in the introduction the differences between our payment schemes and an imputation

distribution procedure. Here, we make a link between our payment schemes P1, P2 and an imputation

of a cooperative game (M,v), where v (K) : 2M → R is the characteristic function satisfying v (∅) = 0,

and K ⊆ M . The value that any coalition K can achieve depends on the behavior of the players

outside the coalition. Here, we retain the so-called γ characteristic function (CF), that is, v (K) is

the Nash equilibrium outcome of K in the noncooperative game between coalition K (acting as one

player) and the left-out players (i.e., players in M\K) acting individually. Finally, we recall that the

set of imputations Y (or allocations) is defined by

Y =

{
(y1, . . . , ym) | yi ≥ v ({i}) ,∀i and

m∑
i=1

yi = v (M)

}
.

So, for a vector y = (y1, . . . , ym) to be an imputation, it must be (i) individually rational, i.e., each

player must, under cooperation, receive at least what she can get by acting alone, i.e., yi ≥ v ({i}) ,∀i;
and (ii) efficient, i.e., the grand coalition’s total payoff v (M) must be fully allocated.

Denote by y(0, x0) an imputation in the game starting at t = 0 with an initial state value x0.

Similarly, let v(0, x0, {i}) be the γ-CF value of Player i in the game.

Proposition 6. Consider a payment scheme P1 = (p′i(t) : i ∈M, t ∈ T) satisfying the Feasibility, DIR,

SAID, and Efficiency properties defined in Proposition 4. Then, the vector y(0, x0) ∈ Rm defined by

yi(0, x0) =

T∑
τ=0

ρτp′i(τ), i = 1, . . . ,m, (27)

is an imputation of the γ-CF cooperative game starting at time 0 with initial state x0.

Proof. To show that y(0, x0) is an imputation in the game, we need to prove that it is individually

rational, that is,

yi(0, x0) ≥ v(0, x0, {i}).
Adopting the γ-CF, we need to find the Nash equilibrium in the game when players of coalition K act

as a single player and other players act as singletons. Therefore, v(0, x0, {i}) = Jnci (0, x0). As DIR

property is satisfied for P1, then

yi(0, x0) =

T∑
τ=0

ρτp′i(τ) ≥ Jnci (0, x0) = v(0, x0, {i}).

The second condition for the imputation to be satisfied is efficiency, i.e.,∑
i∈M

ξi(0, x0) = v(0, x0,M),

which follows from the Efficiency property of P1.

Remark 4. We note that the imputation defined by (27) may coincide with a specific cooperative

solution, e.g., the equal surplus division, the Shapley value, or belongs to the γ-core. Finding a one-

to-one correspondence between our schemes and the solutions of a cooperative game is not our focus.

Still, the fact that both payment schemes define the vectors of total payoffs that are the imputations

of a corresponding cooperative game makes them even more attractive.

Proposition 7. Consider a payment scheme P2 = (p′′i (t) : i ∈ M, t ∈ T) satisfying the Feasibility,

DIR, SAID, Efficiency, and MRS properties defined in Proposition 5. Then, the vector y(0, x0) ∈ Rm
given by

yi(0, x0) =

T∑
τ=0

ρτp′′i (τ), i = 1, . . . ,m, (28)
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is an imputation of the γ-CF cooperative game starting at time 0 with initial state x0.

Proof. The proof is similar to the proof of Proposition 6, and the individual rationality of y(0, x0)

follows from the DIR property satisfied for P2. The Efficiency of the payment scheme P2 implies the

efficiency of the imputation y(0, x0).

6 Example

We illustrate our results with an example of transboundary pollution control. The model is a discrete-

time version of the infinite horizon game in Van der Ploeg and de Zeeuw (1992).2

Denote by M = {1, . . . ,m} the set of players representing countries, and by T = {0, . . . , T} the set

of time periods. Production activities in each country generate revenues and, as a by-product, pollutant

emissions, e.g., CO2. Denote by Qi(t) Player i’s production of goods and services at time t ∈ T, and by

ui(t) the resulting emissions at time t ∈ T \ {T}, with ui(t) = hi (Qi(t)), where hi (·) is an increasing

function satisfying hi (0) = 0. Assuming a monotone increasing relationship between production and

revenues, we can express the revenues, denoted by Ri, directly as a function of emissions. We adopt

the following specification:

Ri (ui(t)) = αiui(t)−
1

2
βi (ui(t))

2
, (29)

where αi is a positive parameter for any i ∈M .

Denote by u(t) = (u1(t), . . . , um(t)) the profile of countries’ emissions at time t ∈ T \ {T}, and

by x(t) the stock of pollution at this time. The evolution of this stock is governed by the following

difference equation:

x(t+ 1) =(1− δ)x(t) +
∑
i∈M

ui(t), t = 0, . . . , T − 1, (30)

x(0) =x0, (31)

where the initial state x0 is given, and δ ∈ (0, 1) is a rate of pollution absorption by Mother Nature.

Each country suffers an environmental damage cost due to pollution accumulation. We assume

that this cost is an increasing, convex function in this stock and retain the quadratic form Di(x(t)) =

ci(x(t))2, i ∈M , where ci is a strictly positive parameter.

Denote by ρ ∈ (0, 1) the discount factor. Assume that Player i ∈ M maximizes the following

objective functional:

Ji(x,u) =

T−1∑
t=0

ρt (Ri (ui(t))−Di(x(t))) + ρTΦi(x(T )),

subject to (30), and ui(t) ≥ 0 for all i ∈ M and any t ∈ T \ {T}, where x = {x(t) : t ∈ T} is a state

trajectory.

Let the payoff function of Player i at the terminal time T

Φi(x(T )) = −dix(T ).

Substituting Φi(x(T )), Ri (u(t)) , and Di(x(t)) by their values, we get

Ji(x,u) =

T−1∑
t=0

ρt
(
αiui(t)−

1

2
βi (ui(t))

2 − ci(x(t))2
)
− ρT dix(T ).

2For a background on this class of games, see the survey in Jørgensen et al. (2010).
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We use the following parameter values in the numerical illustration:

M = {1, 2, 3}, T = {0, 1, . . . , 5},
x0 = 0, ρ = 0.9, δ = 0.4,

α1 = 30, α2 = 29, α3 = 28,

β1 = 3, β2 = 4, β3 = 4.5,

c1 = 0.15, c2 = 0.10, c3 = 0.05,

d1 = 0.15, d2 = 0.10, d3 = 0.05

We consider the game with a feedback information structure, assuming the linear form of strategies

and linear-quadratic form of the value functions in a state variable. Solving the joint maximization

problem, we obtain the control (emissions) trajectories and the corresponding state values given in

Table 2. The total payoff of the grand coalition in the game is 747.492.

Table 2: Cooperative control trajectories u∗i (t), i ∈M , t ∈ T \ {T}, and cooperative state trajectory x∗ (t), t ∈ T.

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

u∗1 (t) 4.8191 4.0563 4.2195 5.5987 9.9100
u∗2 (t) 3.3643 2.7922 2.9146 3.9490 7.1825
u∗3 (t) 2.7683 2.2597 2.3685 3.2880 6.1622
x∗ (t) 0 10.9517 15.6792 18.9101 24.1818 37.7638

First, we define the minimal payment scheme. Recall that the payments in this scheme are given

by (18)–(20). Next, we verify the feasibility condition given by (8) and (9). Table 3 contains the

values used for determining the minimal payment scheme. In the first three rows one can find the

Table 3: The computations for the numerical example.

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

BR1(t, x∗t ) 214.603 175.072 156.162 125.418 57.179 −5.665
BR2(t, x∗t ) 188.254 150.199 125.728 95.755 43.245 −3.776
BR3(t, x∗t ) 241.121 197.081 157.577 113.599 56.171 −1.888

Jnc
1 (t, x∗t ) 163.692 110.159 96.975 92.719 57.166 −5.665
Jnc
2 (t, x∗t ) 160.828 113.624 90.737 75.289 43.237 −3.776
Jnc
3 (t, x∗t ) 229.723 181.512 142.274 104.325 56.167 −1.888

p1(t) 57.038 34.526 43.286 73.957 62.277 −5.665
p2(t) 53.075 37.044 39.549 56.834 46.644 −3.776
p3(t) 63.748 55.262 55.338 63.045 57.871 −1.888∑
i∈M

pi(t) 173.861 126.832 138.173 193.835 166.792 −11.329∑
i∈M

φi(t, x
∗(t), u∗(t)) 244.934 178.190 147.357 164.736 166.779∑

i∈M
Φi(x

∗(T )) −11.329∑
i∈M

(φi(t, x
∗(t), u∗(t))− pi(t)) 71.073 51.358 9.184 −29.099 −0.013∑

i∈M
(Φi(x

∗(T ))− pi(T )) 0.000

Savings by t 71.073 130.328 153.993 142.005 157.770 175.300

payoffs that players can obtain by individually deviating from the cooperative state trajectory, i.e.,

BR1(t, x∗(t)), BR2(t, x∗(t)), BR3(t, x∗(t)) used in the SAID property. The next three rows give the

Nash equilibrium outcomes for subgames starting from cooperative states x∗ (t), i.e., Jnc1 (t, x∗ (t)),

Jnc2 (t, x∗ (t)), Jnc3 (t, x∗ (t)). They are used in the DIR property. We should notice that the best reply

payoffs are larger than the ones in the Nash equilibria, BRi(t, x
∗(t)) ≥ Jnci (t, x∗ (t)) for any i ∈ M
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and any t ∈ T. Therefore, the definition of the minimal payment scheme pi(t) by equations (18)–(20)

results in the following:

pi(t) := BRi(t, x
∗ (t))−

T∑
τ=t+1

ρτ−tpi(τ),

with boundary condition

pi(T ) := Φi(x
∗ (T )).

The components of the minimal payment scheme pi(t) are given in Table 3 for any t ∈ T and i ∈ M .

We can easily compare the total payments to the players
∑
i∈M

pi(t) with the total payoffs they earn at

time t ∈ T \ {T}, that is,
∑
i∈M

φi(t, x
∗(t), u∗(t)) (the differences

∑
i∈M

(φi(t, x
∗(t), u∗(t))− pi(t)) are also

presented in Table 3). We conclude that, at the beginning of the game (t = 0, 1, 2) the total players’

payoff is larger than the total payments in the minimal scheme, so there is no deficit. But at time

t = 3, 4 the situation is the opposite (the differences are −29.099 and −0.013 for t = 3 and t = 4,

respectively), so the players need to borrow money from the previous periods. The savings by period t

given by
t∑

τ=0

1

ρt−τ

∑
i∈N

(φi(t, x
∗(t), u∗(t))− pi(t)),

are represented in the last row of Table 3. We notice that, for any t, these savings are positive, which

means that the feasibility conditions (8) and (9) are satisfied and that the minimal payment scheme

Pmin defined by (pi(t) : i ∈ N, t ∈ T) exists.

Now, we present two payment schemes defined in Propositions 4 and 5. According to P1, the

payments are defined by (21) and organized in such a way that, until the terminal time, the payments

are equal to the corresponding payments in the minimal scheme Pmin, but at the terminal time,

all savings (here of 175.300) are allocated to the players at time t = 5. The first payment scheme

is defined in Table 4. By Proposition 4, the first payment scheme satisfies the Feasibility, DIR,

SAID, and Efficiency properties. The payment scheme defined in Table 4 is nonunique because of the

nonuniqueness in defining σ1(5), σ2(5), σ3(5) given in the last column of the table.

Table 4: The first payment scheme.

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

p′1(t) 57.038 34.526 43.286 73.957 62.277 −5.665 + σ1(5)
p′2(t) 53.075 37.044 39.549 56.834 46.644 −3.776 + σ2(5)
p′3(t) 63.748 55.262 55.338 63.045 57.871 −1.888 + σ3(5)

Conditions

∑
i∈M

σi(5) = 175.300,

σi(5) ≥ 0, ∀i ∈M

The second payment scheme is introduced in Proposition 5. Its definition requires the computation

of the amounts borrowed B(t) from the previous savings to make the payments at time t. The values

of B(t) are given in Table 5. At time periods when B(t) = 0, the players do not set anything aside for

future payments, i.e., the condition∑
i∈M

(φi(t, x
∗ (t) , u∗(t))− pi(t))− ρB(t+ 1) ≥ 0,

is satisfied and the players redistribute the amount∑
i∈M

ξi(t) =
∑
i∈M

(φi(t, x
∗ (t) , u∗(t))− pi(t))− ρB(t+ 1),
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at time t if it is positive. The values

∑
i∈M

ξi(t) =

[∑
i∈M

(φi(t, x
∗ (t) , u∗(t))− pi(t))− ρB(t+ 1)

]+
are given in Table 5.

Table 5: The second payment scheme.

t t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

B(t) 0 0 17.016 29.111 0.013 0∑
i∈M

ξi(t) 71.073 36.044 0 0 0 0

p′′1 (t) 57.038 + ξ1(0) 34.526 + ξ1(1) 43.286 73.957 62.277 −5.665
p′′2 (t) 53.075 + ξ2(0) 37.044 + ξ2(1) 39.549 56.834 46.644 −3.776
p′′3 (t) 63.748 + ξ3(0) 55.262 + ξ3(1) 55.338 63.045 57.871 −1.888

Conditions
∑

i∈M
ξi(0) = 71.073,

∑
i∈M

ξi(1) = 36.044,

ξi(0) ≥ 0, ∀i ∈M ξi(1) ≥ 0, ∀i ∈M

By Proposition 5, the second payment scheme satisfies the Feasibility, DIR, SAID, Efficiency, and

MRS properties. The payment scheme defined in Table 5 is nonunique because of the nonuniqueness

in defining ξi(0), i ∈M and ξi(1), i ∈M given in Table 5. We show that the minimal required savings

(MRS) property is satisfied for the second payment scheme. P2 satisfies the property of minimal

required savings if condition (15) is true for all t ∈ T \ {T}, that is,

t∑
τ=0

1

ρt−τ

∑
i∈M

(
φi (τ, x∗ (τ) , u∗ (τ))− p′′i (τ)

)
=−

T−1∑
τ=t+1

ρτ−t
∑
i∈M

(
φi (τ, x∗ (τ) , u∗ (τ))− p′′i (τ)

)
− ρT−t

∑
i∈M

(
Φi (x∗ (T ))− p′′i (T )

)
for payment scheme P2 defined by p′′i (t).

Table 6 provides the values in the LHS and RHS of (15) for all t ∈ T \ {T}. We can easily see from

Table 6 that the values in the LHS and RHS are equal for any t ∈ T \ {T}.

Table 6: Verification of the MRS property for the second payment scheme P2.

t LHS RHS

0 0 0
1 15.314 15.314
2 26.200 26.200
3 0.012 0.012
4 0 0

7 Existence of the minimal payment scheme

It is not possible to derive workable conditions for the existence of Pmin without referring to the data

of the game, e.g., the functional forms, the duration and other parameter values. In this section, we

provide some hints regarding the issue of existence of Pmin.

For the repeated PD game in Section 4, we derive sufficient conditions under which Pmin exists.

The results allow for the following two observations:



Les Cahiers du GERAD G–2021–77 20

1. The duration of the game should be sufficiently long for the minimal payment scheme Pmin to

exist. Further, the longer this duration, the larger is the interval of the discount factor under

which Pmin exists. For one set of parameters and short game duration (2, 3, or 4 periods), Pmin

does not exist for any discount factor values.

2. For a given game duration, Pmin exists only if the discount factor exceeds a certain threshold

value. The larger the discount factor, the lower is this threshold and the easier is to satisfy the

conditions for existence of Pmin. This observation is in line with the results on existence of a

subgame perfect equilibrium in infinitely repeated games.

Now, we discuss the existence conditions of Pmin for the game analyzed in Section 6. To illustrate,

let us reconsider this game retaining the same parameter values, but letting T = 2, that is, T = {0, 1, 2}.
The control (emissions) trajectories and the corresponding state values are given in Table 7. The total

payoff of the grand coalition in the game is 538.53. To check for the existence of Pmin, we make the

Table 7: Cooperative control trajectories u∗i (t), i ∈M , t ∈ T \ {T}, and cooperative state trajectory x∗ (t), t ∈ T.

t = 0 t = 1 t = 2

u∗1 (t) 7.02188 9.91
u∗2 (t) 5.01641 7.1825
u∗3 (t) 4.23681 6.16222
x∗ (t) 0 16.2751 33.0198

required calculations and report them in Table 8. As we can see, the Feasibility property does not

hold. In particular, for t = 0, the feasibility condition∑
i∈M

(φi (0, x0, u
∗ (0))− pi(0)) ≥ 0,

is not satisfied as the LHS expression is equal to −13.311. The conclusion is that the planning horizon

is too short to make the necessary savings to support cooperation, i.e., to satisfy the SAID property.

Similar computations lead to the conclusion that Pmin does not exit for T = 3, but it exists for any

T ≥ 4. This lower bound to have the existence of Pmin provides a clear guide to the design of a

cooperative contract. This observation is similar to the one made regarding the repeated PD game.

Table 8: The computations for the numerical example.

t = 0 t = 1 t = 2

BR1(t, x∗t ) 234.957 105.801 −4.9530
BR2(t, x∗t ) 167.477 75.660 −3.3020
BR3(t, x∗t ) 149.418 72.379 −1.6510

Jnc
1 (t, x∗t ) 219.986 105.789 −4.9530
Jnc
2 (t, x∗t ) 158.107 75.652 −3.3020
Jnc
3 (t, x∗t ) 145.172 72.375 −1.6510

p1(t) 139.736 110.259 −4.9530
p2(t) 99.383 78.632 −3.3020
p3(t) 84.277 73.865 −1.6510∑
i∈M

pi(t) 323.396 262.755 138.173∑
i∈M

φi(t, x
∗(t), u∗(t)) 310.085 262.743∑

i∈M
Φi(x

∗(T )) -9.90594∑
i∈M

(φi(t, x
∗(t), u∗(t))− pi(t)) −13.311 −0.012∑

i∈M
(Φi(x

∗(T ))− pi(T )) 0
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8 Concluding remarks

In this paper, we proposed two payment schemes that ensure the sustainability of cooperation in

dynamic games. We reiterate that their definitions do not require any particular assumption on the

structure of the game, that is, on the functional forms of the payoff functionals and state dynamics.

Our contribution is a starting point for further developments on the design of payment schemes to

sustain cooperation in dynamic games. The following developments are clearly of interest:

1. The design of similar payment schemes to sustain cooperation in differential games and in mul-

tistage games, including discrete-time stochastic games and dynamic games played over event

trees.

2. The idea of credibility of punishing a deviator can be used to define new properties of the payment

schemes. That is, the deviator is punished only if it is in the best interest of the other players to

do so.

3. One may verify which properties from P1–P6 are satisfied for the payment schemes P1 and P2

when the utilities do explicitly depend on time, that is, they are given by vi(φi(t, x
∗(t), u∗(t)))

for all t ∈ T = {0, 1, . . . , T − 1} and vi(Φi(T, x
∗(T ))), for i ∈M .

4. It is interesting to investigate how the ideas pursued here can be extended to infinite-horizon

dynamic games. Intuitively, the longer the horizon, the easier to sustain cooperation. However,

the absence of a terminal condition leads to a conceptual difficulty in defining the terminal

payments.
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