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Dépôt légal – Bibliothèque et Archives nationales du Québec, 2021
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The authors are exclusively responsible for the content of their research
papers published in the series Les Cahiers du GERAD. Copyright and
moral rights for the publications are retained by the authors and
the users must commit themselves to recognize and abide the legal
requirements associated with these rights. Thus, users:

• May download and print one copy of any publication from the
public portal for the purpose of private study or research;

• May not further distribute the material or use it for any profit-
making activity or commercial gain;

• May freely distribute the URL identifying the publication.
If you believe that this document breaches copyright please contact us
providing details, and we will remove access to the work immediately
and investigate your claim.



Les Cahiers du GERAD G–2021–81 – Revised ii

Abstract : Recently equal risk pricing, a framework for fair derivative pricing, was extended to
consider dynamic risk measures. However, all current implementations either employ a static risk
measure that violates time consistency, or are based on traditional dynamic programming solution
schemes that are impracticable in problems with a large number of underlying assets (due to the curse
of dimensionality) or with incomplete asset dynamics information. In this paper, we extend for the first
time a famous off-policy deterministic actor-critic deep reinforcement learning (ACRL) algorithm to
the problem of solving a risk averse Markov decision process that models risk using a time consistent
recursive expectile risk measure. This new ACRL algorithm allows us to identify high quality time
consistent hedging policies (and equal risk prices) for options, such as basket options, that cannot be
handled using traditional methods, or in context where only historical trajectories of the underlying
assets are available. Our numerical experiments, which involve both a simple vanilla option and a more
exotic basket option, confirm that the new ACRL algorithm can produce 1) in simple environments,
nearly optimal hedging policies, and highly accurate prices, simultaneously for a range of maturities
2) in complex environments, good quality policies and prices using reasonable amount of computing
resources; and 3) overall, hedging strategies that actually outperform the strategies produced using
static risk measures when the risk is evaluated at later points of time.

Acknowledgements: The authors are thankful to Marc Bellemare for valuable discussions. The
authors also gratefully acknowledge the financial support from the Canadian Natural Sciences and
Engineering Research Council [Grants RGPIN–2016–05208 and RGPIN–2014–05602], Compute Canada,
and the Canada Research Chair program.
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1 Introduction

Derivative pricing remains to be a challenging problem in finance when the markets are incomplete and

the derivatives are dependent on multiple underlying assets. The incompleteness of a market implies

that the price of a derivative cannot be uniquely determined by the standard replication argument, as

in such a market no self-financing hedging strategy exists that can perfectly replicate the payoffs of the

derivative. Many mechanisms have been proposed for pricing in an incomplete market but most were

developed from the perspective of a single trader. Unfortunately, a price that is set only according

to one party’s interest, e.g. a super-replication price that a seller may wish to charge, may not be

acceptable to the buyer and thus does not represent a plausible transaction price. Recently, a new

pricing scheme, known as Equal Risk Pricing (ERP), was proposed by Guo and Zhu (2017) and further

adapted to convex risk measures in the work of Marzban et al. (2020).

The scheme of ERP is built upon the idea of modelling separately the risk exposure of the buyer and

the seller of a derivative, and seeking a price that ensures that the risk exposure of both parties is the

same under their respective optimal self-financing hedging strategy. The price generated from ERP thus

has the merit of fairness to both parties. While ERP has its conceptual appeal, there remains a gap

between its general construct and the actual implementation. In particular, as shown in Marzban et al.

(2020), great care must be taken to define properly how risk should be measured in a dynamic hedging

setting in order to obtain hedging problems that are operationally meaningful and computationally

solvable. The work of Marzban et al. (2020) provides necessary analysis for solving the equal risk

pricing and hedging problem based on dynamic programming (DP). It is known however that DP

suffers from the issue of the curse of dimensionality, which restricts the applicability of the results in

Marzban et al. (2020). In addition, DP assumes the knowledge of a stochastic model that precisely

captures the dynamics of the markets, which may not be available in practice.

In the past decade, Deep Reinforcement Learning (DRL) has proven to be a powerful tool for solving

dynamic optimization problems when the number of state variables is large and/or when no stochastic

model is known for the underlying system dynamics. In particular, the recent works of Carbonneau

and Godin (2020) and Carbonneau and Godin (2021a) are the first that apply DRL to solve ERP

problems and they demonstrate the possibility of pricing a broad range of over-the-counter options

such as basket options. Unfortunately, the DRL approaches proposed in Carbonneau and Godin (2020)

and Carbonneau and Godin (2021a) can only be used in settings where the risk is measured according

to a static risk measure. This raises the serious issue that the hedging problem exploited by the ERP

could be time inconsistent, i.e. the hedging decisions planned for future state of the world may not be

considered optimal anymore once the state is visited. The violation of time consistency implies that

equal risk prices calculated based on static risk measures will assume a hedging policy that cannot be

implemented in practice, and thus are optimistically biased. From a numerical perspective, employing

a static risk mesure in ERP also limits the type of DRL algorithms that can be used to solve each

party’s hedging problem. Specifically, the authors of Carbonneau and Godin (2020) and Carbonneau

and Godin (2021a) employ a policy optimization scheme, a.k.a. Actor-Only RL (AORL) algorithm (see

Williams (1992) as an example of this method), while other approaches such as critic-only or actor-critic

algorithms (such as Mnih et al. (2015) and Silver et al. (2014) respectively) that rely on an equivalent

DP formulation remain out of reach.

In this paper, we seek to develop a DRL approach for solving a class of time-consistent ERP

problems under a convex risk measure.1 It is known that to ensure time consistency, a dynamic risk

measure should be employed to measure risk in a recursive fashion. In particular, motivated by the
theory of coherent risk measures, which identifies expectile risk measures as the only elicitable coherent

risk measures, we propose in this paper the use of dynamic expectile risk measures to formulate time

consistent ERP problems. The dynamic nature of risk measures suggests the consideration of an

1Note that in Carbonneau and Godin (2021b), which was made public shortly before this one, the authors deployed a
policy optimization algorithm for ERP under an expected utility framework that is time consistent yet violates translation
invariance.



Les Cahiers du GERAD G–2021–81 – Revised 2

Actor-Critic RL (ACRL) algorithm for solving the hedging problem. It turns out that the elicitability

property of expectile risk measures facilitates greatly the design of a model-free ACRL algorithm. The

convergence of this algorithm is also greatly improved due to the translation invariance property of the

risk measures.

Overall, we may summarize the contribution of this paper as follows:

• We present the first model-free DRL based algorithm for computing equal risk prices that rely on

option hedging strategies that are time-consistent. To reinforce the importance of this contribution,

we in fact demonstrate using a simple single asset two-period horizon option pricing problem how

equal risk prices might suffer from an optimistic bias when static risk measures are used (as in

Carbonneau and Godin (2020) and Carbonneau and Godin (2021a)). A side benefit from pricing

an option with maturity T using dynamic risk measures will be that we will easily obtain equal

risk prices for any other maturity T ′ < T .

• The ACRL algorithm that we propose is the first model-free DRL algorithm to naturally extend

the famous off-policy deterministic actor-critic method presented in Silver et al. (2014) to the risk

averse setting. Unlike the ACRL proposed in Tamar et al. (2015) and Huang et al. (2021) for

risk-averse DRL, which can employ up to five neural networks, our algorithm will only require

two deep neural networks: a policy network (actor) and a Q network (critic). While our policy

network will be trained following a stochastic gradient procedure similar to Silver et al. (2014), to

the best of our knowledge we are the first to leverage the elicitability property (i.e. existence

of a scoring function) of expectile risk measures and to propose a procedure for training the

“risk-to-go” Q network that is also based on stochastic gradient descent.

• We perform a comprehensive evaluation of the training efficiency, quality of option hedging

strategies, and quality of equal risk prices obtained using our ACRL algorithm on a synthetic

multi-asset geometric Brownian motion market model. In the simple case of vanilla option

pricing, we provide empirical evidence that ACRL provides nearly optimal hedging policies, and

highly accurate prices, simultaneously for a range of maturities. The latter is in sharp contrast

with approaches, such as in Carbonneau and Godin (2021a), that employ time inconsistent risk

measures and produce investment strategies that are visibly outperformed by the ACRL strategy

in terms of the risk measured as time to maturity reduces. This phenomenon is also observed,

although less prominently, in the context of a basket option over 5 underlying assets, where good

quality policies and prices are obtained using our ACRL algorithm using a reasonable amount of

computing resources.

Remark 1. While our work was the first that showed how the elicitability property of risk measures can

be exploited to design a deep model-free ACRL algorithm for solving time-consistent dynamic problems,

two other related works have appeared since its initial public release (see Marzban et al. (2021)). First,

Coache and Jaimungal (2022) generalizes the work of Tamar et al. (2015) and Huang et al. (2021) to

dynamic convex risk measures (instead of coherent ones) yet suffers from the similar issues as Tamar

et al. (2015), namely the need for a simulator that can be reinitialized at any given state, which makes it

“computationally expensive” or even “impracticable” in real world applications (see Coache et al. (2022)).

Second, following a key insight of our work, Coache et al. (2022) addresses this issue by exploiting

the conditional elicitability property of spectral risk measures. Their ACRL algorithm however

differs significantly from ours in two ways: it employs on-policy (rather than off-policy) learning and

optimizes a stochastic (instead of deterministic) policy. Both of these algorithmic choices are known to

lead to a poor usage of sample data (obtained either from a simulator or actual real world interactions).

Indeed, with off-policy learning, samples produced at each epochs of training are reused (unlike with

on-policy) in all following epochs when computing policy and value estimation updates thus reducing

the need for new samples and improving the usage of existing ones (see Mnih et al. (2015)). Silver

et al. (2014) further argues that stochastic policy gradient algorithms are data inefficient for tasks with

high-dimensional action spaces. Overall, this suggests that our ACRL algorithm has more practical
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value than those of Coache and Jaimungal (2022) and Coache et al. (2022), albeit being limited in its

current form to dynamic expectile risk measures.

The rest of this paper is organized as follows. Section 2 introduces equal risk pricing and illustrates

using a simple two-period pricing problem the practical issues related to using static risk measures for

option hedging and pricing. Section 3 adapts the ERP framework to the case of a dynamic expectile

risk measure and proposes the new ACRL algorithm. Finally, Section 4 presents and discusses our

numerical experiments.

2 Equal risk pricing and hedging under coherent risk measures

In this section, we provide a brief overview of ERP under coherent risk measures based on the recent

work of Marzban et al. (2020). We pay particular attention to the issue of time (in)consistency by

presenting an example that demonstrates numerically that employing a time-inconsistent static risk

measure can lead to an under-evaluation of the risk to which each party are actually exposed in practice.

2.1 ERP under coherent risk measures

The problem of ERP can be formalized as follows. Consider a frictionless market, i.e. no transaction

cost, tax, etc, that contains m risky assets, and a risk-free bank account with zero interest rate.

Let St : Ω → Rm denote the values of the risky assets adapted to a filtered probability space

(Ω,F ,F := {Ft}Tt=0,P), i.e. each St is Ft measurable. It is assumed that St is a locally bounded real-

valued semi-martingale process and that the set of equivalent local martingale measures is non-empty

(i.e. no arbitrage opportunity). The set of all admissible self-financing hedging strategies with the

initial capital p0 ∈ R is shown by X (p0):

X (p0) =

{
X : Ω→ RT

∣∣∣∣∣∃{ξt}T−1
t=0 , Xt = p0 +

t−1∑
t′=0

ξ⊤t′∆St′+1, ∀t = 1, . . . , T

}
,

where ∆St+1 := St+1 − St, the hedging strategy ξt ∈ Rm is a vector of random variables adapted

to the filtration F and captures the number of shares of each of the risky assets held in the portfolio

during the period [t, t+ 1], ξ⊤t ∆St′+1 is the inner product of the two random vectors, and Xt is the

accumulated wealth.

Let F ({St}Tt=1) denote the payoff of a derivative. Throughout this paper, we assume F ({St}Tt=1)

admits the formulation of F (ST ,YT ) where Yt is an auxiliary fixed-dimensional stochastic process that

is Ft-measurable. This class of payoff functions is common in the literature, (see for example Bertsimas

et al. (2001) and Marzban et al. (2020)). The problem of ERP is defined based on the following two

hedging problems that seek to minimize the risk of hedging strategies, one is for the writer and the

other is for the buyer of the derivative:

(Writer) ϱw(p0) = inf
X∈X (p0)

ρw(F (ST ,YT )−XT ) (1)

(Buyer) ϱb(p0) = inf
X∈X (−p0)

ρb(−F (ST ,YT )−XT ) , (2)

where ρw and ρb are two risk measures that capture respectively the writer and the buyer’s risk aversion.

In words, Equation (1) describes a writer that is receiving p0 as the initial payment and implements

an optimal hedging strategy for the liability captured by F (ST ,YT ). On the other hand, in (2) the

buyer is assumed to borrow p0 in order to pay for the option and then to manage a portfolio that will

minimize the risks associated to his final wealth F (ST ,YT ) +XT . With Equations (1) and (2), ERP

defines a fair price p∗0 as the value of an initial capital that leads to the same risk exposure to both

parties, i.e.

ρw(p∗0) = ρb(p∗0).
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Motivated by the theory of coherent risk measures (Artzner et al. (1999)), Marzban et al. (2020)

study the ERP problem by imposing the property of coherency to the risk measures ρw and ρb. Namely,

a risk measure is said to be coherent if it satisfies the following five conditions:

• Monotonicity: if X ≤ Z a.s. then ρ(X) ≤ ρ(Z)
• Subadditivity: ρ(X + Z) ≤ ρ(X) + ρ(Z)

• Positive homogeneity: If λ ≥ 0, then ρ(λX) = λρ(X)

• Translation invariance: If m ∈ R, then ρ(X +m) = ρ(X) +m

• Normalized risk: ρ(0) = 0.

It is well known that Value-at-Risk (VaR), a risk measure commonly applied in financial risk

management, is not coherent, whereas its convex counterpart, namely Conditional Value-at-Risk

(CVaR) is coherent. The application of CVaR in ERP can be found for example in Carbonneau and
Godin (2020). As one of the key results in ERP, Marzban et al. (2020) establishes that an equal

risk price p∗0 can actually be found by solving the writer and buyer’s hedging problem with no initial

payment, i.e. (1) and (2), separately. Namely, it can be calculated by the following result.

Theorem 1. Let ρw and ρb be two coherent risk measures. In the case where the equal risk price p∗0
exists, it can be calculated by

p∗0 = (ϱw(0)− ϱb(0))/2 ,

when ∞ > ϱw(0) ≥ ϱb(0) > −∞.

2.2 The issue of time inconsistency

As briefly mentioned in the introduction, measuring risk in a dynamic setting requires additional

care. The use of a coherent risk measure, without any further adaptation to a dynamic setting,

can lead to solutions that suffer from the issue of time inconsistency. The goal of this section is to

carefully demonstrate this point by presenting a numerical example that quantifies the impact of time

inconsistency. Our demonstration is inspired by the work of Rudloff et al. (2014), where the impact of

time inconsistency is discussed in a portfolio management problem. Here, we present an example based

on a vanilla option hedging problem.

In this example, we consider a stock price process modelled by a simple two-stage trinomial tree.

Specifically, the horizon spans t ∈ {0, 1, 2} and the probability space (Ω,F ,P) is such that Ω = {ωi}9i=1,

F1 := σ({{ωi}3i=1, {ωi}6i=4, {ωi}9i=7}), and all outcomes are equiprobable. The market contains a

risk-free asset (with a risk-free rate of zero) and a risky asset S which are used to hedge a vanilla

at-the-money call option on S2 with strike price K := S0. The details of the price process is shown

in Table 1. For simplicity, we set the initial capital for hedging to zero and employ a CVaR60% risk

measure for hedging.

When hedging the call-option using a static CVaR measure, the writer of the option solves the

following two-period optimization model:

min
ξ0,ξ1

CVaR60%((S2(ω)−K)+ − (S1(ω)− S0)ξ0 − (S2(ω)− S1(ω))ξ1(ω)) (3)

where (y)+ := max(y, 0) and K := S0. The optimal solution of this problem will prescribe purchasing

0.93 shares of the risky asset at time 0, i.e. ξ0 = 0.9341, using money borrowed at the risk-free rate (see

Table 1 for the optimal shares to hold at t = 1). The resulting CVaR60% is 26.36, implying that if the

writer charges the buyer with a price above 26.36, the writer would consider the price being sufficient

to cover the hedged risk of this call option.

Note that in the risk averse hedging problem (3), it is not clear what motivates the writer of the

option to implement the prescribed hedging strategy once new information is revealed at time t = 1. In
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particular, he/she might be curious to compare the prescribed strategy with the strategy that minimizes

the CVaR from the new perspective at t = 1, i.e., the following hedging problem:

min
ξ̄1

CVaRᾱ1((S2(ω)−K)+ − (S1(ω)− S0)ξ
∗
0 − (S2(ω)− S1(ω))ξ̄1(ω)|F1) , (4)

where ᾱ1 := 60% and where ξ∗0 = 0.9341, i.e. the optimal first stage solution in (3).

Table 1 presents the optimal conditional hedging strategy ξ̄∗1 as a function of the information

revealed by F1. While it does appear that ξ̄∗1 agrees with ξ∗1 when ω ∈ {ωi}3i=1, the investment in

the risky asset ends up significantly reduced in the other two sets of outcomes. More importantly, we

established that in order to motivate the prescribed hedging strategy ξ∗1 , the risk aversion level used

in problem (4) would need to be in the range of [0.4580, 0.4585], when ω ∈ {ωi}6i=4, or [0.1992, 0.2],

when ω ∈ {ωi}9i=7. This confirms that ξ∗ is likely to be perceived as overly risky given the information

revealed at time t = 1. Ultimately, in the likely case where the writer decides to replace ξ∗1 with

ξ̄∗1 , one can establish that the overall exposition to risk from the perspective of t = 0 should have

rather been estimated to 27.94 instead of 26.36. This implies that employing a static risk measure here

underestimated the necessary coverage capital by 6%.

While this issue of time consistency has been discussed significantly in the recent years, a common

approach to overcome it is to employ a so-called dynamic risk measure as will be done in the following

section. In the context of this example, this would reduce to replacing problem (3) with:

min
ξ0,ξ1

CVaRα( CVaRα((S2(ω)−K)+ − (S2(ω)− S1(ω))ξ1(ω)− (S1(ω)− S0)ξ0|F1(ω)) ) , (5)

where α can be chosen to characterize the right level of risk aversion for the “dynamic conditional

value-at-risk measure”. This formulation ensures that the prescribed policy at time t = 1 remains

optimal (according to problem (4)) at the moment where it is actually implemented thus preventing

the necessary coverage capital from being under estimated.

Table 1: Example of a time inconsitent hedging strategy obtained from employing a static risk measure. ξ∗ is obtained by
solving problem (3), ᾱ1 is the risk aversion level that motivates ξ∗1 at t = 1, ξ̄∗1 is the actual investment prescribed by
CVaR60% at t = 1.

Atoms of F1

Price process Time inconsistent Optimal conditional
hedging strategy hedging strategy

S0(ω) S1(ω) S2(ω) ξ∗0 ξ∗1(ω) ᾱ1(ξ∗) ξ̄∗1(ω)

ω ∈ {ωi}3i=1 100 150 {270,150,75} 0.9341 0.8718 [0.4580,1.0000] 0.8718
ω ∈ {ωi}6i=4 100 100 {180,100,50} 0.9341 0.7665 [0.4580,0.4585] 0.6154
ω ∈ {ωi}9i=7 100 80 {120,80,64} 0.9341 0.5000 [0.1992,0.2000] 0.3571

3 ERP under dynamic expectile risk measure and an actor-critic
algorithm

While time consistent ERP problems can be formulated by employing dynamic risk measures and be

calculated, in principle, by solving a set of dynamic programming (DP) equations (Marzban et al.

(2020)), there remains the challenge of determining which dynamic risk measure one should employ

and how these equations might be solved in high dimension, i.e. multiple underlying assets. In this
section, we address the two issues by first motivating the use of dynamic expectile risk measures to

formulate time consistent ERP hedging problems and then presenting a Deep Reinforcement Learning

approach (DRL) for approximately solving this problems.
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3.1 Dynamic expectile risk measures and DP equations

Expectile has been proposed in the recent literature (see Bellini and Bignozzi (2015)) as a replacement

of VaR and CVaR given that it is not only coherent but also elicitable. It is known that VaR is not

coherent but is elicitable, whereas CVaR is coherent but is not elicitable. A risk measure is said to

be elicitable if it can be expressed as the minimizer of a certain scoring function, and this property is

found to be critical in practice due to the need of backtesting (Chen, 2018). In fact, expectile is the

only elicitable coherent risk measure. Recall the following definition of expectile.

Definition 1. (Bellini and Bernardino (2017)) The τ−expectile of a random liability X is defined as:

ρ̄(X) := argmin
q

(1− τ)E
[
(q −X)2+

]
+ τE

[
(q −X)2−

]
.

Like CVaR, expectile covers at one extreme the case of risk-neutrality, i.e. with τ = 1/2, and at

the other extreme the case of converging towards the worst-case risk, i.e. as τ → 1. Thus, expectile

also allows for modelling a wide spectrum of risk aversion. Using expectile as the basis, we define its

dynamic version as follows.

Definition 2. A dynamic recursive expectile risk measure takes the form:

ρ(X) := ρ̄0(ρ̄1(. . . ρ̄T−1(X))) ,

where each ρ̄(·) is an expectile risk measure that employs the conditional distribution based on Ft.

Namely,

ρ̄t(Xt+1) := argmin
q

(1− τ)E
[
(q −Xt+1)

2
+|Ft

]
+ τE

[
(q −Xt+1)

2
−|Ft

]
where Xt+1 a random liability measureable on Ft+1.

We apply dynamic expecile risk measures to formulate the two hedging problems in ERP. By
further imposing the following assumption that there exists a sufficient statistic process ψt such that

{(St,Yt, ψt)}Tt=0 satisfies the Markov property, we can obtain compact dynamic equations for them.

Assumption 1. [Markov property] There exists a sufficient statistic process ψt adapted to F such

that {(St,Yt, ψt)}Tt=0 is a Markov process relative to the filtration F. Namely, P((St+s,Yt+s, ψt+s) ∈
A|Ft) = P((St+s,Yt+s, ψt+s) ∈ A|St,Yt, ψt) for all t, for all s ≥ 0, and all sets A.

In particular, based on Proposition 3.1 and the examples presented in section 3.3 of Marzban et al.

(2020), together with the fact that both ρw and ρb are dynamic recursive expectile risk measures, the

Markovian assumption allows us to conclude that the ERP can be calculated using two sets of dynamic

programming equations. Specifically, on the writer side, we can define

V w
T (ST ,YT , ψT ) := F (ST ,YT ) ,

and recursively

V w
t (St,Yt, ψt) := inf

ξt

ρ̄(−ξ⊤t ∆St+1 + V w
t+1(St +∆St+1,Yt +∆Yt+1, ψt+1)|St,Yt, ψt) ,

where ρ̄(·|St,Yt, ψt) is the expectile risk measure that uses P(·|St,Yt, ψt). This leads to considering

ϱw(0) = V w
0 (S0,Y0, ψ0). On the other hand, for the buyer we similarly define:

V b
T (ST ,YT , ψT ) := −F (ST ,YT ) ,

and

V b
t (St,Yt, ψt) := inf

ξt

ρ̄(−ξ⊤t ∆St+1 + V b
t+1(St +∆St+1,Yt +∆Yt+1, ψt+1)|St,Yt, ψt) ,

with ϱb(0) = V b
0 (S0,Y0, ψ0). The following lemma summarizes how DP can be used to compute ERP.

Lemma 2. Under Assumption 1, the ERP that employs dynamic recursive expectile riks measure can

be computed as: p∗0 = (V w
0 (S0,Y0, ψ0)− V b

0 (S0,Y0, ψ0))/2.
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3.2 A novel expectile-based actor-critic algorithm for ERP

In this section, we formulate each option hedging problem as a finite horizon Markov Decision Process

(MDP) described with (S,A, r, P ). In this regard, the agent (i.e. the writer or buyer) interacts

with a stochastic environment by taking an action at ≡ ξt ∈ [−1, 1]m after observing the state

st ∈ S, which includes St, Yt, and ψt. Note that to simplify exposition, in this section we drop

the reference to the specific identity (i.e. w or b) of the agent in our notation. The action taken

at each time t results in the immediate stochastic reward that takes the shape of the immediate

hedging portfolio return, i.e. rt(st, at, st+1) := ξ⊤t ∆St+1 when t < T and otherwise of the option
liability/payout rT (sT , aT , sT+1) := F (ST ,YT )(1− 2 · 1{agent=writer}), which is insensitive to sT+1.

Finally, the Markovian exogeneous dynamics described in Assumption 1 are modeled using P as

P (st+1|st, at) = P(St+1,Yt+1, ψt+1|St,Yt, ψt). Overall, each of the two dynamic derivative hedging

problems presented in Section 3.1 reduce to a version of the following general risk averse reinforcement

learning problem:

ϱ(0) = V0(S0,Y0, ψ0) = min
π
Qπ

0 (s̄0, π0(s̄0)) ,

where s̄0 := (S0,Y0, ψ0) is the initial state in which the option is priced while

Qπ
t (st, at) := ρ̄(−rt(st, at, st+1) +Qπ

t+1(st+1, πt+1(st+1))|st) ,

Qπ
T (sT , aT ) := −rT (sT , aT , sT ), and where ρ̄ is an expectile risk measure. Equipped with these

definitions, we can now motivate our proposed extension of the model-free off-policy deterministic

ACRL algorithm to the general finite horizon risk-averse MDP setting. In doing so, we start with

a proposition that will provide the motivation for a stochastic gradient scheme to optimize a policy

network, while the optimization of a risk-to-go network will follow from the elicitability property of the

expectile risk measure.

Proposition 3. Let π̄ be an arbitrary reference policy and µ an arbitrary distribution over the initial

state s0, such that there is a strictly positive probability on all of A for each state, and has a strictly

positive probability of reaching all of S for all t ≥ 1 when starting from s̄0.
2 For any π∗ that satisfies

π∗ ∈ argmin
π

E t̃∼{0,...,T}
st+1∼P (·|st,π̄t(st))

[Qπ
t̃ (st̃, πt̃(st̃))] (6)

where s0 := s̄0 and t̃ is uniformly drawn, we necessarily have that π∗ ∈ argminπ Q
π
0 (s̄0, π0(s̄0)) hence

ϱ(0) = Qπ∗

0 (s̄0, π
∗
0(s̄0)).

Proof. We start by proving first that given any π∗ that satisfies (6), it must also satisfy

π∗ ∈ argmin
π

E(t,s)∼β [Q
π∗

t (s, πt(s))] , (7)

where β captures the distribution of (t̃, st̃) used in (6). We do so by contradiction. Let’s assume that

there exists a π̄ such that

E(t,s)∼β [Q
π∗

t (s, π̄t(s))] < E(t,s)∼β [Q
π∗

t (s, π∗
t (s))] .

Then, one can design the following policy:

π̄∗
t (s) :=

{
π̄t(s) if Qπ∗

t (s, π̄t(s)) < Qπ∗

t (s, π∗
t (s))

π∗
t (s) otherwise.

Using a recursive argument, one can show that Qπ̄∗

t (st, at) ≤ Qπ∗

t (st, at) for all t and (st, at) pair. In

this recursion, we start with:

Qπ̄∗

T (sT , aT ) = −rT (sT , aT , sT ) = Qπ∗

T (sT , aT ) .

2In our option hedging problem, given that st is entirely exogenous, the distribution of st+1 is unaffected by π̄, which
can therefore be chosen arbitrarily.
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Moreover, for all t < T , and (st, at) pairs, we have that:

Qπ̄∗

t (st, at) = ρ̄(−rt(st, at, st+1) +Qπ̄∗

t+1(st+1, π̄
∗(st+1))|st)

≤ ρ̄(−rt(st, at, st+1) +Qπ∗

t+1(st+1, π̄
∗(st+1))|st)

≤ ρ̄(−rt(st, at, st+1) +Qπ∗

t+1(st+1, π
∗(st+1))|st) = Qπ∗

t (st, at),

where we first used Qπ̄∗

t+1(st, at) ≤ Qπ∗

t+1(st, at), then exploited the definition of π̄∗
t . With this result in

hand we can obtain that for all t and st

Qπ̄∗

t (st, π̄
∗
t (st)) ≤ Qπ∗

t (st, π̄
∗
t (st)) ≤ Qπ∗

t (st, π̄t(st)),

where we again used the definition of π̄∗. Finally, we must therefore have that:

E(s,t)∼β [Q
π̄∗

t (s, π̄∗
t (s))] ≤ E(s,t)∼β [Q

π∗

t (s, π̄t(s))] < E(s,t)∼β [Q
π∗

t (s, π∗
t (s))]

which leads to a contradiction, hence (7) must hold.

Next, applying the interchangeability property (see Shapiro (2017)) to equation (7) and using the

fact that the β distribution puts positive probability on all time periods and all sub-regions of S ×A,
we know that the following necessarily hold:

π∗
t (s) ∈ argmin

a
Qπ∗

t (s, a), ∀s ∈ S,∀t ∈ {0, . . . , T} .

Our last step involves using recursion to show that π∗ ∈ argminπ Q
π
t (st, πt(st)) for all t and all st.

We start once more at t = T where for all sT :

Qπ∗

T (sT , π
∗
T (s)) = min

aT

Qπ∗

T (sT , aT ) = min
aT

−rT (sT , aT , sT ) ≤ Qπ
T (sT , πT (sT )), ∀π.

And then recursively for all t < T and all st,,

Qπ∗

t (st, π
∗
t (st)) = min

at

Qπ∗

t (st, at)

= min
at

ρ̄(−rt(st, at, st+1) +Qπ∗

t+1(st+1, π
∗
t+1(st+1))|st)

≤ min
at

ρ̄(−rt(st, at, st+1) +Qπ
t+1(st+1, πt+1(st+1))|st) ∀π

≤ ρ̄(−rt(st, πt(st), st+1) +Qπ
t+1(st+1, πt+1(st+1))|st) ∀π

≤ min
π
Qπ

t (st, πt(st)).

In the context of a deep reinforcement learning approach, we can employ a procedure based on

off-policy deterministic policy gradient (Silver et al., 2014) to optimize (6). Specifically, given a policy

network πθ, we wish to optimize:

min
θ

E t̃∼{0,...,T−1}
st+1∼P (·|st,π̄t(st))

[Qπθ

t̃ (st̃, π
θ
t̃ (st̃))] ,

using a stochastic gradient algorithm. In doing so, we rely on the fact that:

∇θE t̃∼{0,...,T−1}
st+1∼P (·|st,π̄t(st))

[Qπθ

t̃ (st̃, π
θ(st̃))]

= E t̃∼{0,...,T−1}
st+1∼P (·|st,π̄t(st))

[
∇θQ

πθ

t̃ (st̃, a)
∣∣∣
a=πθ

t̃
(st̃)

+ ∇aQ
πθ

t̃ (st̃, a)∇θπ
θ
t̃ (st̃)

∣∣∣
a=πθ

t̃
(st̃)

]
≈ E t̃∼{0,...,T−1}

st+1∼P (·|st,π̄t(st))

[
∇aQ

πθ

t̃ (st̃, a)∇θπ
θ
t̃ (st̃)

∣∣∣
a=πθ

t̃
(st̃)

]
.
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Note that in the above equation, we have dropped the the term that depends on ∇θQ
πθ

t̃
as is commonly

done in off-policy deterministic gradient methods and usually motivated by a result of Degris et al.

(2012), who argue that this approximation preserves the set of local optima in a risk neutral setting, i.e.

ρ(·) := E[·]. While we do consider as an important subject of future research to extend this motivation

to general recursive risk measures, our numerical experiments (see Section 4.3) will confirm empirically

that the quality of this approximation permits the identification of nearly optimal hedging policies.

Given that we do not have access to an exact expression for Qπθ

t̃
(st̃, a), this operator needs to be

estimated directly from the training data. Exploiting the fact that ρ is a utility-based shortfall risk
measure, we get that:

Qπ
t (st, at) ∈ argmin

q
Est+1∼P (·|st,at)

[
ℓ
(
q + r(st, at, st+1)−Qπ

t+1(st+1, πt+1(st+1))
)]

where ℓ(y) := ((1− τ)1{y > 0} − τ1{y ≤ 0})y2 is the score function associated to the τ -expectile risk

measure (see Definition 1). As explained in Shen et al. (2014), in a tabular MDP environment one can

apply the following stochastic gradient step:

Q̂t(st, at)← Q̂t(st, at)− α∂ℓ(Q̂t(st, at) + rt(st, at, st+1)− Q̂t+1(st+1, πt+1(st+1)) ,

where ∂ℓ(y) := 2((1− τ)max(0, y)− τ max(0,−y)) is the derivative of ℓ(y), within a properly designed

Q-learning algorithm and have the guarantee that Q̂t(st, at) will almost surely converge to Qπ
t (st, at)

for all t, st, and at.

In the non-tabular setting, we replace Q̂π
t (st, at) with two estimators: i.e. the “main” network

Qπ
t (st, at|θQ) for the immediate conditional risk and the “target” network Qπ

t (st, at|θQ
′
) for the next

period’s conditional risk. The procedure consists in iterating between a step that attempts to make

the main network Qπ
t (st, at|θQ) a good estimator of ρ(−r(st, at, st+1) + Qπ

t+1(st+1, at+1|θQ
′
)) and a

step that replaces the target network Qπ
t (st, at|θQ

′
) with a network more similar to the main one

Qπ
t (st, at|θQ). The former is achieved, similarly as with the policy network, by searching for the optimal

θQ according to:

min
θQ

E t̃∼{0,...,T−1}
st+1∼P (·|st,π̄t(st))

[ℓ(Qπ
t̃ (st̃, π̄t̃(st̃)|θ

Q) + r(st̃, π̄t̃(st̃), st̃+1)−Qπ
t̃+1(st̃+1, πt̃+1(st̃+1)|θQ

′
))] ,

which suggests a stochastic gradient update of the form:

θQ ← θQ−α∂ℓ(Qπ
t̃ (st̃, π̄t̃(st̃)|θ

Q)+r(st̃, π̄t̃(st̃), st̃+1)−Qπ
t̃+1(st̃+1, πt̃+1(st̃+1)|θQ

′
))∇θQQπ

t̃ (st̃, π̄t̃(st̃)|θ
Q).

These two types of updates are integrated in our proposed expectile-based actor-critic deep RL (a.k.a.

ACRL) algorithm. A first version, Algorithm 1, is designed for a model-based environment where one
can simulate trajectories according to P (·|st, at) from state s̄0. One may note that in each episode,

the reference policy π̄t is updated to be a perturbed version of the main policy network in order to

focus the accuracy of the main critic network Q(s, a|θQ) value and derivatives on actions that are

more likely to be produced by the main policy network. We also choose to update the target networks

using convex combinations operations as is done in Lillicrap et al. (2015) in order to improve stability

of learning. A second more general version of ACRL, designed for data-driven environments with

possibly action-dependant state dynamics, is presented in Appendix A and mimics the original DDPG

by generating minibatches using a replay buffer.

Remark 2. We note that in our problem, P (st+1|st, at) = P (st+1|st, a′t)=P(St+1,Yt+1, ψt+1|St,Yt, ψt),

meaning that the action is not affecting the distribution of state in the next period. This is a direct

consequence of using a translation invariant risk measure, which eliminates the need to keep track of the

accumulated wealth in the set of state variables as explained in Marzban et al. (2020) and allows the

reward function to provide an immediate signal regarding the quality of implemented actions. In the

context of our deep reinforcement learning approach, we observed that convergence speed is improved in

training due to this property. Furthermore, the fact that this property makes the dynamics exogenous

lifts the need for keeping a replay buffer, which is also known to affect negatively convergence speed.
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Algorithm 1 Actor-critic RL algorithm for the dynamic recursive expectile option hedging problem with known dynamic
model (ACRL).

Randomly initialize the main actor and critic networks’ parameters θπ and θQ

Initialize the target actor and critic networks: θπ
′ ← θπ , θQ

′ ← θQ

for j = 1 : #Episodes do
Randomly select t ∈ {0, 1, ..., T − 1}
Sample a minibatch of N triplets {(sit, ait, sit+1)}Ni=1 from P (·|st, π̄t(st)), where

π̄t(st) := πt(st|θπ) +N (0, σ)

Set the realized losses yit as

−rt(sit, ait, sit+1) +Qt+1(s
i
t+1, πt+1(s

i
t+1|θπ

′
)|θQ

′
)

Update the main critic network θQ as:

θQ − α
1

N

N∑
i=1

∂ℓ(Qt(s
i
t, a

i
t|θQ)− yit)∇θQQt(s

i
t, a

i
t|θQ)

Update the main actor network θπ as:

θπ − α
1

N

N∑
i=1

∇aQt(s
i
t, a|θQ)|a=πt(s

i
t|θπ)∇θππt(s

i
t|θπ)

Update the target networks:

θQ
′
← αθQ + (1− α)θQ

′
,

θπ
′
← αθπ + (1− α)θπ

′ (8)

end for

Remark 3. It is worth noting that while there has been a large number of DRL approaches recently

proposed to address risk averse MDP using coherent risk measures, to the best of our knowledge all of

those that are model-free, except for two exceptions, consider a law invariant risk measure (i.e. a static

risk measure) applied on the discounted sum of total rewards (see Castro et al. (2019); Singh et al.

(2020); Urṕı et al. (2021); Bisi et al. (103765, 2022)). Such methods therefore suffer from the issues

identified in Section 2.2. The two exceptions consist of Tamar et al. (2015) and Huang et al. (2021)

who propose ACRL algorithms to deal with general dynamic law-invariant coherent risk measures.

While being applicable to a wider range of dynamic risk measures, the two algorithms either assume
that it is possible to generate samples from a perturbed version of the underlying dynamics, or rely on

training three additional neural networks (namely a state distribution reweighting network, a transition

perturbation network, and a Lagrangean penalisation network) concurrently with the actor and critic

networks. Furthermore, only Huang et al. (2021) was to this date implemented yet only tested on

toy tabular problem involving 12 states and 4 actions where it produced questionable performances.3

While our approach can only be used with the dynamic expectile risk measure, it offers a much simpler

implementation that naturally extends DDPG to the risk averse setting. Section 4 will present a real

application of this approach on an option hedging problem involving a portfolio of 6 different assets.

4 Experimental results

In this section we provide two different sets of experiments that are run over one vanilla and one

basket option. We will compare both algorithmic efficiency and quality, in terms of pricing and hedging
strategies, of the dynamic risk model (DRM), which employs a dynamic expectile risk measure and

is solved using our new ACRL algorithm, and the static risk model (SRM), which employs a static

3At the time of writing this paper, the risk averse implementation of this algorithm was unable to recommend an
optimal risk neutral policy in a deterministic setting, while the risk neutral implementation produced policies that were
outperformed by risk averse ones in a stochastic setting.
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expectile measure and is solved using an AORL algorithm similar to Carbonneau and Godin (2021a).

All experiments are done using simulated price processes of five risky assets: AAPL, AMZN, FB, JPM,

GOOGL. The price paths are simulated using correlated Brownian motions considering the empirical

mean, variance, and the correlation matrix of five reference stocks (APPL, AMZN, FB, KPM, and

GOOGL) over the period that spans from January 2019 to January 2021. The vanilla option will be

over AAPL while the basket option will contain all five stocks. In both cases, the maturity of the option

will be one year and the hedging portfolios will be rebalanced on a monthly basis. Table 2 provides the

descriptive statistics of our underlying stochastic process.

Table 2: Stock data including the mean, standard deviation, and the correlation matrix.

AAPL AMZN FB JPM GOOGL

S0 78.81 1877.94 221.77 137.25 1450.16
µ -0.0015 -0.0017 -0.0001 0.0006 -0.0004
σ 0.0298 0.0243 0.0295 0.0345 0.0246

AAPL 1.0000 0.7133 0.7744 0.5383 0.7680
AMZN 0.7133 1.0000 0.6903 0.2685 0.6837
FB 0.7744 0.6903 1.0000 0.4807 0.8054
JPM 0.5383 0.2685 0.4807 1.0000 0.6060
GOOGL 0.7680 0.6837 0.8054 0.6060 1.0000

In what follows, we first explain the network architecture of our ACRL model, which is composed of

an actor and a critic network. Then, the training procedure of the network under the conditional risk

measurement using unconditional assessment of risk is elaborated. We also numerically demonstrate

the benefit of exploiting translation invariance in an option hedging problem using RL, which is for a

different purpose than what is previously shown by Marzban et al. (2020) in a DP setting. Finally, the

main numerical results of the paper is presented for pricing and hedging a vanilla and a basket option,

where the advantages of having a time consistent risk measurement compared to time inconsistent

approach is illustrated. In particular, we first focus on the vanilla option to show the precision of our

approach by bench-marking its results against a discretized DP model and then extend the results to

the case of basket options.

4.1 Actor and critic network architecture

Our implementation of the ACRL algorithm involves two networks, one for the actor and one for
the critic, both of which are presented in Figure 1. Since the numerical experiments assume that

the underlying assets of the options follow a Brownian motion process, the model only needs to

consider the most recent price for each asset to make investment decisions and the time to maturity.

Consequently, the input state to each of the actor and critic networks includes the logarithm of each

asset’s cumulative return, and the time remaining until maturity, which together correspond to an

input vector of dimension m+ 1.

The actor network is composed of three fully connected layers where the number of neurons are

considered to be k = 32 in the first two layers and then maps back to the number of assets in the last

layer so that the model generates the investment policy accordingly for each asset. The activation

functions in our networks are considered to be tanh functions. In the last layer, this implies that the

actions will lie in [−1, 1]m.

The critic network is operating on the same state information, while the m dimensional action

information vector is only concatenated to the output of the third layer. The first three layers of

the critic network follow the same structure as the actor network in terms of the number of neurons,

then after concatenating the action into the network, the two fully connected layers following the

concatenation maps the number of neurons again to k = 32. Finally, the last layer is a fully connected

layer with one neuron to make sure that the output is a scalar representing the approximated Q value

function.



Les Cahiers du GERAD G–2021–81 – Revised 12

Figure 1: The architecture of the actor and critic networks in ACRL algorithm.

4.2 ACRL training procedure for DRM and the role of translation invariance

We now explain the training procedure employed for the actor and critic networks in the DRM.

Recall that in an SRM setting, overfitting of any DRL algorithm can be controlled by measuring the

performance of the trained policy on a validation data set using an empirical estimate of the risk-averse

objective as validation score. Unfortunately, this is no longer possible in the case of DRMs since the

risk measure relies on conditional risk measurements of the trajectories produced by our policy. In

theory, estimates of such conditional measurements could be obtained by training a new critic network

using the validation set (while maintaining the policy fixed to the trained one). In practice, this is

highly computationally demanding to perform in the training stage and raises a new issue of how to

control overfitting of the validation score estimate. Our solution for this problem is to rely on using

a static risk measure as validation score. Given that it is unclear how to best replace a dynamic

expectile risk measure with a static one, we choose to compute a set of validation scores that report

the performance for a set of static expectiles at risk levels that are larger or equal to the risk level

of the DRM. Relying on higher risk levels is motivated by the fact that dynamic expectile measures

capture a more risk averse attitude than their static counterpart at the same risk level τ . Figure 2(a)

and (b) show examples of learning curves for the validation performance of a DRM when trained to

hedge the writer and buyer positions of a vanilla option at a risk level of τ = 90%. In this experiment,
it appears that convergence roughly happens at all levels of τ ≥ 90%. This approach is applied in all of

our experiments for choosing the optimal number of episodes. We also note that both our training

and validation sets included 1000 trajectories from the underlying geometric Brownian motion process.

This implies that the training procedure used in these experiments can naturally extend to settings

where only historical data is available.

We close this section with a short discussion about the role of the translation invariance property of

dynamic risk measures. In particular, the work of Marzban et al. (2020) explains how without this

property, the dynamic programming equations need to keep track of the wealth accumulated since

t = 0 using an additional state variable that gets only employed at t = T . More importantly, without

translation invariance, the MDP representation ends up only having a reward at t = T thus preventing

the ACRL algorithm from receiving quick feedback about the quality of the actions that it is proposing.

To illustrate the effect of this property, we compared the convergence of the training process for the

ACRL algorithm under both form of DP representation of the buyer’s DRM. Namely, Figure 3 presents

the learning curves of ACRL with immediate rewards as described in Section 3.2, while (b) presents the

learning curves for an implementation in which all the rewards are delayed (using an additional state

variable) until t = T . These figures clearly show that the MDP with immediate rewards is much easier

to train than the delayed rewards MDP. In particular, not only does this model converge in less number

of episodes, it also ends up converging to a better solution: the immediate rewards MDP converges to a

risk of -0.59 for the buyer (0.91 for the writer), while with delayed rewards it converges to -0.41 (1.01).
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(a) ACRL for DRM’s writer (b) ACRL for DRM’s buyer

(c) AORL for SRM’s writer (d) AORL for SRM’s buyer

Figure 2: Learning curves of the DRM and SRM for an at-the-money vanilla call option on AAPL when a 90% expectile
measure is used. The graphs show the validation scores for a range of static expectile measures with risk level ranging
from 90% to 99%.

(a) With immediate rewards (b) With delayed rewards

Figure 3: Learning curves of the ACRL algorithm for the buyer’s DRM when using (a) the immediate rewards versus (b)
delayed rewards in the hedging of a vanilla call at-the-money option.

4.3 Vanilla call option pricing and hedging

In our first set of experiments, we consider pricing and hedging an at-the-money vanilla call option

on AAPL. We should first note that solving a hedging problem, e.g. DRM, for a vanilla option is not

particularly difficult since the number of state variables in this case is small. It is possible to obtain

(approximately) optimal solutions by dynamic programming (Marzban et al. (2020)). Our purpose

of considering the case of vanilla option is twofold. First, it provides a useful basis for checking the



Les Cahiers du GERAD G–2021–81 – Revised 14

accuracy of solutions obtained from our deep reinforcement learning (DRL) methods against the “true”

optimal solutions, namely by comparing against the DP solutions. Such an accuracy check would

be useful for justifying our use of DRL later in this paper as a general means to evaluate hedging

performance and calculate the equal risk price (which becomes necessary for problems that cannot be

solved by DP such as the case of basket options discussed in the next section). Second, the setting

of a vanilla option also allows us to provide a more accurate comparison between DRM and SRM

and demonstrate the advantage of the former, i.e. the benefit of time-consistent hedging policies,

particularly when options with different time to maturity need to be considered.

To proceed, we first detail how the experiments are conducted. First, the initial price of the

underlying stock AAPL is always set to be 78.81, and the hedging portfolio is rebalanced on a monthly
basis. Options with different time to maturity are considered, ranging from one month to one year. We

generate from a Brownian motion three sets of price trajectories with one year time window, one for

training, one for validation, and one for testing, and each consists of 1000 trajectories. In the training

phase, we solve both DRM and SRM for the writer and buyer’s hedging problems using the longest

maturity time, i.e. one year, as the hedging horizon. In solving the DRM, a policy and a critic network

are trained using ACRL, whereas in solving the SRM, only a policy network is trained using AORL.

See also Section 4.2 regarding how the validation is done to guide the training. Figure 2 presents the

learning curves for the training of the hedging policies of the DRM and the SRM with a risk level of

τ = 90%. SRM appears to have a faster rate of convergence than DRM, which might not be surprising
given that the architecture of SRM is simpler.4 It is however worth noting that the issue of time

inconsistency for SRM implies that it can potentially produce poor quality policies and prices when the

maturity of the option is modified unless it is completely retrained for each type of maturity. This is

not the case for DRM and will be further discussed below.

With the trained DRM and SRM policy networks for a fixed 1 year maturity and risk aversion level

τ ∈ {75%, 90%, 95%}, we can evaluate the writer and the buyer’s (out-of-sample) risk exposure over a

pre-specified time horizon so as to calculate the corresponding ERP. We consider the following three

metrics for measuring the realized risk under different hedging policy and explain the methods used for

calculating the metrics:

• Out-of-sample static expectile risk : Given a trained policy network, use the testing data to

calculate the static expectile risk obtained when hedging the option using this policy. This is the

metric that should be minimized by the SRM.

• RL based out-of-sample dynamic expectile risk estimation: Use the testing data to train only the

critic network in ACRL for evaluating the out-of-sample dynamic risk. In particular, by fixing

the policy network in ACRL to a trained policy network, the critic network trained based on

testing data provides an estimate of the out-of-sample dynamic expectile risk. To speed up the

training of the critic network, one may initialize the critic network using the network trained

previously with the training data. This is an estimate of the metric minimized by the DRM.

• DP based out-of-sample dynamic expectile risk estimation: Given a trained policy network,

evaluate the “true” dynamic expectile risk by solving the dynamic programming equations, under

the fixed policy, using a high precision discretization of the states, actions, and transitions. Note

that this metric is available neither for the case of basket option nor in a data-driven environment

where the stochastic process is unknown.

We note that our RL based estimate of out-of-sample dynamic risk is a novel concept, which refers to

the calculation of dynamic risk based on testing data. This is possible, as explained above, by training

only the critic network using ACRL on the test data. This metric is especially relevant given that

classical methods for calculating dynamic risk, such as our DP based estimate, assume full knowledge

of the stochastic model that captures the dynamics of an underlying system, i.e. stock price, and

require the resolution of dynamic programming equations, which is known to suffer from the curse of

4The policy network at SRM model is exactly the actor network of DRM, while the quality of actions are directly
evaluated in the absence of a trained critic network.
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dimensionality. Consequently, such methods can no longer be used when the DP equations require a

large state space, as can be the case with basket options, or when the description of the underlying

stochastic process is unknown.

In our experiments, we apply the second and third metric to the trained DRM policies and the

first metric to both the trained DRM and SRM policies. In the former case, we are interested in

demonstrating that the RL based out-of-sample expectile risk estimate is an accurate metric. Namely,

we will compare the RL based estimate against the “true” DP based estimate. In the latter case, we

will shed light on how the DRM policy performs when evaluated according to other metrics that are

also of interest to practitioners. In particular, the static expectile risk measure, despite its issue of time

inconsistency, can still have its intuitive appeal as a metric, and one may be interested in knowing how
a DRM policy performs against this metric as compared to an SRM policy.

Figure 4 summarizes the evaluations of out-of-sample dynamic risk for DRM policies trained for

1 year maturity then applied to options of different maturities ranging from 12 months to 2 months.

One can observe that the risk of the writer decreases monotonically for options of shorter maturities,
whereas the risk of the buyer increases monotonically. This is consistent with the fact that there is less

uncertainty for a shorter hedging horizon, which favors the writer’s risk exposure more than the buyer’s

when considering an at-the-money option. This also provides the evidence that the DRM policies,

albeit only trained based on the longest time to maturity, i.e. one year, can be well applied to hedge

options with shorter time to maturity and be used to draw consistent conclusion. The observation
that the DRM policies remain good policies for problems with shorter time to maturity testifies of the

value of using a time consistent hedging model. Another important observation one can make is that

the RL based out-of-sample dynamic risk estimate is generally very close to the DP based estimate

across all conditions. The difference between the two appears to be more noticeable for the case of high

risk aversion, i.e. τ = 95% and long time to maturity, but the difference remains minor overall. This

observation allows us to confirm the accuracy of our RL based out-of-sample dynamic risk estimation

procedure as a replacement for the DP based estimation in settings where the latter cannot be used.

Figure 6 reports the out-of-sample static risk for both SRM policies and DRM policies. The results

are interesting and perhaps surprising. First, unlike the consistent behavior observed in the case of

dynamic risk, i.e. Figure 4, the static risk of SRM policies for the seller (resp. buyer) may increase

(resp. decrease) when hedging an option with shorter maturity. The possibility that a seller’s policy

may actually increase risk when applied to an option with shorter maturity is clearly problematic

when the underlying asset follows a geometric brownian motion with positive drift, as it is inconsistent

with the fact that there is less uncertainty (and lower expected value) regarding the payout of such

options. This inconsistency occurs because the SRM policies are only trained based on the longest time

to maturity, i.e. one year, and they cannot be well applied, unlike for the case of DRM policies, to

problems with shorter time to maturity due to the violation of the time consistency property. It is

clear from the figures that the SRM policies can be far from the optimal policies when applied to a

shorter time to maturity. On the other hand, the DRM policies can actually be found not only to

outperform SRM policies in terms of static risk exposure but also to generate consistent results across

time, i.e. risk decreases (resp. increases) for the seller (resp. buyer) as the time to maturity decreases.

This can be somewhat surprising, as the DRM policies are optimized based on dynamic risk measures

rather than the static ones, but the policies can still perform well when evaluated according to static

risk measures. Overall, the results presented in Figure 6 best showcase the strength of time consistent

policies and why such policies are important to consider in settings where risk needs to be re-evaluated

across different time points or maturity dates.5 We suspect that the possibility that SRM policies may

not account properly for risk aversion at some future time point or for other range of option maturities

should seriously hinder their use in practice.

5Indeed, recall that the example in Section 2.2 demonstrated that the fact that SRM was time inconsistent implied
that its policy might not remain a reasonable risk averse policy at future time points. This phenomenon is implicitly
observed in Figure 6 given that the MDP is stationary so that the risk measured for a maturity t is exactly equal to the
risk measured at time T − t when St = S0.
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(a) Writer, τ = 75% (b) Buyer, τ = 75%

(c) Writer, τ = 90% (d) Buyer, τ = 90%

(e) Writer, τ = 95% (f) Buyer, τ = 95%

Figure 4: The out-of-sample dynamic risk imposed to the two sides of a vanilla at-the-money call option over AAPL (with
maturity ranging from 12 months to 0 months) under the DRM policy trained for a 12 months maturity and at different
risk levels τ ∈ {75%, 90%, 95%}.

In order to be more precise about results presented in Figures 4 and 6, we detail in Table 3 all

the numerical results for the case of high risk aversion, i.e. τ = 90% , along with the equal risk

prices calculated based on RL based out-of-sample dynamic risk estimate and based on the discretized

DP (referred as True ERP).6 One first confirm that the RL based estimateof ERP is a high quality

approximation of the true ERP in this vanilla option pricing setting, with a maximum approximation

error of 0.01 over all maturity dates. Moreover, we can see that the prices for the SRM polices are

generally higher than the prices for the DRM polices. The observation is that while DRM policies are

less risky than SRM policies across different time to maturity, it is the writer that benefits more from

6Note that in a purely data-driven setting, the ERP could either be estimated using the in-sample trained critic
network, or by calculating our RL based estimate using some freshly reserved data to reduce overfitting biases.
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the use of DRM than the buyer. This could be related to the fact that the writer’s loss due to the

option payout is unbounded while the option protects the buyer from losses. This in turns implies that

the writer’s risk exposure is larger in this transaction. Thus, the choice of a policy can be more critical

to the writer than the buyer. As the risk exposure of the writer decreases more than for the buyer, this

leads to lower ERP price for DRM policies.

(a) Writer, τ = 75% (b) Buyer, τ = 75%

(c) Writer, τ = 90% (d) Buyer, τ = 90%

(e) Writer, τ = 95% (f) Buyer, τ = 95%

Figure 5: The out-of-sample static risk imposed to the two sides of a vanilla at-the-money call option over AAPL (with
maturity ranging from 12 months to 2 months) under the DRM and SRM policies trained for a 12 months maturity and at
different risk levels τ ∈ {75%, 90%, 95%}.

Finally, Figure 7 presents the optimal policies of the two models (i.e., DRM and SRM), together

with the actual optimal policy of DRM, obtained using a high precision dynamic program (referred as

DP-DRM). Each subfigure shows the policy as a function of current price (x-axis) and time period
(colors). The figure further confirms that the policies of both DRM and SRM follow a similar pattern as

DP-DRM, which ensures the quality of implementation of both AORL for SRM and ACRL for DRM.
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(a) Writer, τ = 75% (b) Buyer, τ = 75%

(c) Writer, τ = 90% (d) Buyer, τ = 90%

(e) Writer, τ = 95% (f) Buyer, τ = 95%

Figure 6: The out-of-sample static risk imposed to the two sides of a vanilla at-the-money call option over AAPL (with
maturity ranging from 12 months to 2 months) under the DRM and SRM policies trained for a 12 months maturity and at
different risk levels τ ∈ {75%, 90%, 95%}.

4.4 Basket options

In our second set of experiments, we extend the application of ERP pricing framework to the case of

basket options where traditionnal DP solution schemes are not computationally tractable. In particular,

we consider an at-the-money basket option with the strike price of 753$ on five underlying assets:

AAPL, AMZN, FB, JPM, and GOOGL, where the option payoff is determined by the average price of

the underlyings. Similarly to the case of the vanilla option, the rebalancing of the portfolio is happening

once per month, options with different maturities from one month to twelve months are considered,
and three sets of price trajectories are used for training, validation, and testing the models. We train
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Table 3: The out-of-sample dynamic and static 90%-expectile risk imposed to the two sides of vanilla at-the-money call
options over AAPL, with maturities ranging from 12 to 0 months, when hedged using the DRM and the SRM policies
trained at risk level τ = 90% and for a 12 months maturity. Associated ERPs under the DRM are also compared to the
“true” ERP measured using a discretized MDP.

Time to maturity

Policy Est.† 12 11 10 9 8 7 6 5 4 3 2 1

Dynamic 90%-expectile risk

Writer’s DRM
RL 0.77 0.73 0.69 0.65 0.62 0.58 0.53 0.48 0.45 0.38 0.29 0.23
DP 0.75 0.71 0.68 0.65 0.61 0.57 0.53 0.49 0.43 0.38 0.31 0.23

Buyer’s DRM
RL -0.22 -0.21 -0.20 -0.19 -0.18 -0.16 -0.15 -0.13 -0.11 -0.09 -0.07 -0.05
DP -0.23 -0.22 -0.21 -0.20 -0.18 -0.17 -0.16 -0.14 -0.12 -0.11 -0.08 -0.06

Static 90%-expectile risk

Writer’s SRM ED 0.55 0.54 0.54 0.53 0.53 0.53 0.52 0.50 0.48 0.46 0.41 0.31
Writer’s DRM ED 0.56 0.54 0.52 0.50 0.47 0.44 0.42 0.39 0.36 0.33 0.29 0.24

Buyer’s SRM ED -0.35 -0.33 -0.30 -0.27 -0.23 -0.20 -0.17 -0.13 -0.09 -0.07 -0.07 -0.06
Buyer’s SRM ED -0.36 -0.34 -0.32 -0.30 -0.28 -0.26 -0.24 -0.21 -0.18 -0.14 -0.11 -0.06

Equal risk prices with DRM

True ERP 0.49 0.47 0.45 0.42 0.40 0.37 0.34 0.31 0.28 0.24 0.19 0.14

DRM RL 0.50 0.47 0.45 0.42 0.40 0.37 0.34 0.31 0.28 0.24 0.18 0.14
SRM RL 0.49 0.46 0.44 0.43 0.40 0.38 0.35 0.33 0.30 0.27 0.24 0.22
† Estimation (Est.) is either made based on reinforcement learning (RL), discretized dynamic programming (DP),
or with the empirical distribution (ED).

the ACRL and AORL networks for a one year basket option and then use the same policy network for

hedging options with shorter time to maturity.

Our first observation in this set of experiments relates to the training time of the model for the

basket option with five assets. Figure 8 presents the convergence of the training of the ACRL model

under τ = 90%. When comparing to the case of the vanilla option, the convergence rate appears to

have a similar behavior, i.e., the number of episodes and the time spent on each episode is similar for

both the case of the writer and the buyer. This is important as it indicates that the training time

might not be very sensitive to the number of assets, while traditional DP approaches are known to

become intractable when the option is written on multiple assets.

In this section, dynamic risk is estimated using the RL based estimator described in Section 4.3

given that the DP estimator requires too much computations and that the RL based one was shown

to provide a relatively high precision estimation of the “true” dynamic risk. Following this, in

Figure 9 (a) and (b) we present the dynamic risk obtained from applying the DRM policy on the test

data when the model is trained for a one year maturity option. Hedging risk using the same trained

policy is presented for 12 different options with maturity ranging from 0 to 12 months. Similar to the

vanilla option case, the dynamic risk of the writer is monotonically decreasing as we get closer to the

maturity of the option, which can be attributed to the reduced probability that the average price of the

assets significantly diverges from the initial average (i.e., the strike price of the option). On the other

side, i.e. for the buyer of the option, although overall the risk is increasing to zero as the maturity gets

closer to zero, for longer time to maturities we observe some degradation of risk. We attribute this

behavior to the estimation error of the RL based dynamic risk estimator.

In order to have a view of risk that is not perturbed by estimation errors, we also compare the

static risk under DRM and SRM as we did for vanilla options. Figure 10(a) and (b) shows the static

risk under τ = 90%. One can first recognize the same monotone convergence to zero of the two sides of
the options. However, contrary to the case of the vanilla option, the difference between the static risk

performance of DRM and SRM policies are rather similar for all maturity times. It therefore appears

that in these experiments with a basket option, both SRM and DRM produce similar polices. One
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possible reason could be that the range of “optimal” risk averse investment plans, whether using DRM

or SRM, is more limited. Indeed, while for the vanilla option, we observed that the optimal policies

generated investments in the range [0, 1] and [-1, 0] for the writer and the buyer respectively, for the

basket option we observed wealth allocations that are more concentrated around 0.20 (i.e. the uniform

portfolio known for its risk hedging properties) and -0.20 for each of the 5 assets asset respectively.

Finally, similar to the vanilla option case, Table 4 presents more details on the results used to produce

Figures 9 and 10, along with the equal risk prices computed based on our RL based out-of-sample

dynamic risk estimator. The higher ERP price for the SRM policy is an obvious observation in this

table, which again can be attributed to the better performing (in terms of dynamic risk) hedging policy

produced by ACRL for the DRM, compared to the policy produced by AORL for the SRM.

Table 4: The out-of-sample dynamic and static 90%-expectile risk imposed to the two sides of basket at-the-money call
options over AAPL, AMZN, FB, JPM, and GOOGL, with maturities ranging from 12 to 0 months, when hedged using the
DRM and the SRM policies trained at risk level τ = 90% and for a 12 month maturity. Associated ERPs under the DRM
are also compared.

Time to maturity

Policy Est.† 12 11 10 9 8 7 6 5 4 3 2 1

Dynamic 90%-expectile risk

Writer’s DRM RL 3.92 3.62 3.38 3.15 2.95 2.72 2.48 2.25 2.00 1.70 1.39 1.10
Buyer’s DRM RL -0.48 -0.49 -0.51 -0.52 -0.50 -0.49 -0.48 -0.48 -0.47 -0.37 -0.33 -0.29

Static 90%-expectile risk

Writer’s SRM ED 2.43 2.36 2.28 2.16 2.08 1.97 1.91 1.76 1.61 1.45 1.26 0.94
Writer’s DRM ED 2.38 2.28 2.18 2.06 1.96 1.86 1.76 1.64 1.51 1.39 1.20 0.92

Buyer’s SRM ED -1.31 -1.24 -1.15 -1.01 -0.94 -0.85 -0.75 -0.66 -0.56 -0.48 -0.36 -0.22
Buyer’s SRM ED -1.39 -1.32 -1.24 -1.13 -1.07 -0.98 -0.88 -0.78 -0.66 -0.56 -0.40 -0.23

Equal risk prices with DRM

DRM RL 2.20 2.06 1.95 1.84 1.73 1.61 1.48 1.37 1.24 1.04 0.86 0.70
SRM RL 2.23 2.10 2.01 1.91 1.79 1.65 1.52 1.39 1.21 1.03 0.92 0.82
† Estimation (Est.) is either made based on reinforcement learning (RL), discretized dynamic programming (DP),
or with the empirical distribution (ED).

5 Conclusion

In this paper, we developed and implemented the first deep reinforcement learning algorithm for

calculating equal risk prices under time consistent dynamic risk measures. This algorithm exploits the

elicitability property of the expectile risk measure to extend in a natural way the famous off-policy

deterministic actor-critic method presented in Silver et al. (2014) to the risk averse setting. Our

numerical experiments confirmed that it can identify risk averse hedging strategies of good quality

and be used to estimate the ERP, simultaneously for a range of maturities, using a reasonable amount

of computational resources in conditions where traditional DP methods are impracticable. We also

demonstrated important issues regarding the implementability of hedging strategies that are based

on static (time inconsistent) risk measures. Namely, both our illustrative example and two numerical

experiments demonstrated how the time consistent policy produced using the DRM might in fact appear

preferable to the investor (from the point of view of the time inconsistent static risk measure) as the

risk is measured at later points of time, i.e. with shorter maturity. Overall, as the first paper that is

considering option pricing under ERP using time consistent dynamic risk measures, we only evaluated

the performance of our model in a synthetic environment using simple neural network architectures. It

would be interesting to further examine the performance of Algorithm 2 using real market data with

the objective of producing a purely data-driven option pricing scheme.
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(a) DRM’s writer (b) DRM’s buyer

(c) SRM’s writer (d) SRM’s buyer

(e) DP-DRM’s writer (f) DP-DRM’s buyer

Figure 7: Comparison of the optimal DRL policies obtained for DRM and SRM (with 90% expectile measures) to the
discretized DP solution (DP-DRM) for an at-the-money vanilla call option on AAPL with a one year maturity. Each figure
presents the sampled actions in our simulated trajectories as a function of the AAPL stock value. The strike price is marked
at 78.81.
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(a) Writer (b) Buyer

Figure 8: Learning curves of the ACRL algorithm for the writer and buyer’s DRM for a basket at-the-money call option
over AAPL, AMZN, FB, JPM, and GOOGL at the risk level τ = 90%. The graphs show the validation scores for a range of
static expectile measures with risk level ranging from 90% to 99%.

(a) Writer (b) Buyer

Figure 9: The out-of-sample dynamic risk imposed to the two sides of a basket at-the-money call option over AAPL,
AMZN, FB, JPM, and GOOGL at the risk level τ = 90% (as maturity ranges from 12 to 0 months) under a DRM policy
trained for a 12 months maturity.

(a) Static risk, writer (b) Static risk, buyer

Figure 10: The out-of-sample static risk imposed to the two sides of a basket at-the-money call option over AAPL, AMZN,
FB, JPM, and GOOGL at the risk level τ = 90% (as maturity ranges from 12 to 0 months) under the DRM and SRM
policies trained for a 12 months maturity.
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A Adapting DDPG to handle dynamic expectile risk measures

We include below the extension of deep deterministic policy gradient (DDPG) algorithm to a risk

averse MDP that employs a dynamic expectile risk measure. In bold we highlight the modification to

DDPG that is due to the use of a dynamic expectile risk measure. Note that after assuming that the

information about t is included in the state, we drop the subscript t notation to increase similarity

with Lillicrap et al. (2015). For completeness, we make precise that the original DDPG uses ∂ℓ(y) := y

while this risk averse DDPG, with risk level τ , uses ∂ℓ(y) := 2((1− τ)max(0, y)− τ max(0,−y)). Note
that the two approaches are equivalent (up to a scaling of the gradient) when τ := 0.5.

Algorithm 2 General risk averse deep deterministic policy gradient.

Randomly initialize the main actor and critic networks’ parameters θπ and θQ

Initialize the target actor, θπ
′ ← θπ , and critic, θQ

′ ← θQ, networks
Initialize replay buffers R
for j = 1 : #Episodes do

Initialize a random process N for action exploration;
Receive initial observation state s0
for t = 0 : T − 1 do

Select action at = πt(st|θπ) +Nt

Execute at and observe reward rt and new state st+1

Store transition (st, at, rt, st+1) in R
Sample a minibatch of N transitions {(siti , a

i
ti
, riti , s

i
ti+1)}Ni=1 in R

Set the realized losses yi := −riti +Q(siti+1, π(s
i
ti+1|θπ

′
)|θQ′

)
Update the main critic network:

θQ← θQ −α
1

N

N∑∑∑
i=1

∂ℓ(Q(siti , a
i
ti
|θQ)− yi)∇

θQQ(siti , a
i
ti
|θQ)

where ∂ℓ(y) := 2((1− τ)max(0, y)− τ max(0,−y))
Update the main actor network: θπ ← θπ − α 1

N

∑N
i=1∇aQ(siti , a|θ

Q)|a=π(siti
|θπ)∇θππ(s

i
ti
|θπ)

Update the target networks: θQ
′ ← αθQ + (1− α)θQ

′
, θπ

′ ← αθπ + (1− α)θπ
′

end for
end for

The algorithm assumes an online environment in which the initial state s0 is drawn from some

distribution µ (satisfying the assumption of Proposition 3) and a policy can be deployed over a horizon

of T periods. In our option hedging problem, this can be achieved using historical data of the stochastic

process St since the latter is assumed exogenous. Namely, one can first randomly sample a starting

point t0 in the historical data and compute the trajectory s0, a0, r0, s1, a1, r1, , . . . , sT obtained on an
arbitrary policy based on the observed historical evolution St0 ,St0+1, . . . ,St0+T . Due to the use of

a replay buffer R, the algorithm can also be used in context where the state transitions are affected

by the policy, namely in hedging problems with transactions cost where the state space must include

information about the state of the portfolio.
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