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activité à but lucratif ou pour un gain commercial;

• Peuvent distribuer gratuitement l’URL identifiant la publica-
tion.

Si vous pensez que ce document enfreint le droit d’auteur, contactez-
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Abstract : The procurement of freight services is an important element for the supply chain man-
agement of a shipper (i.e., a manufacturer or retailer) that sources transportation services from the
third-party logistics market. Motivated by a practical freight procurement problem faced by shippers,
we provide a holistic approach to designing freight procurement strategies for transportation-inventory
systems that captures the interconnections between freight procurement, transportation, and inven-
tory management. In view of the supply and demand uncertainties, we consider the problem in a
multi-stage decision process that complies with the revealing process of the uncertain data. In the
first stage, freight service contracts are procured for the entire planning horizon, while the delivery
quantities and inventory levels are determined in the subsequent stages. We introduce a mixed-integer
linear programming model for the multi-stage problem. To handle a large number of scenarios, we
propose a stochastic dual dynamic programming solution approach. The approach is further enhanced
through novel feasibility inequalities, optimality inequalities, and a primal-dual lifting method. Exten-
sive computational experiments are conducted and the results demonstrate that our approach scales
to instances with up to 109 scenarios and that the enhancement strategies significantly improve the
performance of the algorithm. We also show that our solution approach outperforms the methods
commonly adopted for solving similar problems.

Keywords: Freight procurement, transportation-inventory management, multi-stage stochastic opti-
mization, stochastic dual dynamic programming
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1 Introduction

The distribution and storage of commodities are critical activities for any company that acts as a shipper

in a supply chain. While some have their own capabilities, many shippers rely on the transportation

market (i.e., third-party logistics, 3PL) for distributing commodities. 3PL services play a vital part in

global trade and the 3PL market is valued at more than one trillion US dollars (USD) worldwide (Allied

Market Research 2019). To date, 80% of Fortune 500 companies and 96% of Fortune 100 companies

use some form of 3PL services (Akarca 2018). Moreover, given the current surge in shipping costs,

especially in the maritime sector (Page 2021), it is highly desirable for the shippers to leverage a

systematic optimization approach to optimize freight procurement.

In the transportation market, shippers procure freight services from carriers (i.e., 3PL service

providers). The basic elements in freight service procurement are lanes, and a lane is an origin-

destination pair with transportation demand over a period. Freight service procurement on a lane

is an auction process with shippers acting as auctioneers and carriers acting as bidders (Caplice and

Sheffi 2003, Lim et al. 2008). Results in the auction on a lane are capacity contracts negotiated between

the shipper and carriers who win the auction. A capacity contract specifies the number and schedule

of shipments to be performed by the carrier on the lane, the capacity of each shipment, as well as the

freight rate payable by the shipper. On top of capacity contracts, freight services for single shipments

can also be acquired from the spot transportation market. For serving the same lane, the freight rates

of capacity contracts are typically lower than those of the spot market.

Normally, the service period of a capacity contract on a lane ranges from several months to two years

(Sheffi 2004, Wu et al. 2021). Considering its long service period, typically, a capacity contract has to

be determined by a shipper without fully knowing the transportation demand on the lane. Therefore,

when determining the capacity contracts on a lane, the shipper should consider the uncertainty in

transportation demand and the necessary adjustments under different demand scenarios.

This paper introduces a joint freight procurement and transportation-inventory management prob-

lem (FPTMP) under supply and demand uncertainty faced by a shipper. We consider the problem

with a single commodity in a discrete and finite time horizon, where the distribution network con-

sists of multiple suppliers and multiple customers. Inventories can be stored at both the suppliers

and the customers but must be kept under the corresponding upper limits. Backlogging is allowed

both at the supply and demand sides. Freight services are purchased through capacity contracts that

must be negotiated in a contracting phase prior to the planning horizon. In the planning horizon, the
carriers, acting under such capacity contracts, distribute the commodity on the lanes in the distribu-

tion network. In addition, the shipper can also choose to transport the commodity through the spot

transportation market that is available on any lane at any time.

We consider the situation where the supply and demand information is uncertain and is gradually

disclosed to the shipper at different time periods during the planning horizon. We, therefore, consider

the resulting stochastic FPTMP (SFPTMP) under uncertainty in a multi-stage process. In the first

stage, freight service procurement decisions are made such that the capacity contracts between the

shipper and the carriers must be determined. The loading quantity for each shipment in the capacity

contracts, the volume to be transported using the spot market on each lane in each period, and the

inventory and backlog levels at the suppliers and customers are decided in the subsequent stages after

the supplies and demands in these stages become known. The objective of the problem is to minimize

the expected total cost incurred by procuring freight services, distributing the commodity, holding

inventories, and backlogging supplies and demands.

1.1 Background

This study is motivated by the transportation and inventory management of iron ore in a large Chinese

steel manufacturer. The manufacturer imports iron ore from loading ports near the mines in Australia
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and Brazil to unloading ports near its plants in China. Iron ore is purchased from the suppliers using

a hybrid of (i) long-term contracts that provide steady supplies in a period covering five to ten years

and (ii) short-term agreements based on real-time fluctuations in the market. We refer to Comtois and

Slack (2016) for a review of the global iron ore supply chain.

Inventories of iron ore can be stored at the yards of ore mines and steel plants. The manufacturer

buys freight services from bulk shipping companies, mainly through contracts of affreightment (COAs)

and voyage charters (VCs). COAs are capacity contracts in bulk shipping. The COAs for shipping

iron ore are typically signed or renewed at the beginning of a year and a COA typically covers a

service period of a year. Supply and demand information for an entire year is not fully known to the

manufacturer when signing the COAs. Nevertheless, historical supply and demand data for estimating

the distribution is available. In a COA, the shipping company is required to perform multiple shipments

between a pair of loading and unloading ports during the service period. For each shipment in a COA,

the shipping company is required to provide a ship with the same (or similar) capacity. The loading

times of the shipments in a COA can be specified in a shipment schedule agreed by both parties. In

practice, shipping companies typically require shipments in a COA to be fairly evenly spread over the

service period.

Unlike COAs, VCs are for single shipments. They are more flexible and can be obtained from the

spot market whenever shipping demands arise. Both COAs and VCs stipulate freight rates payable

by the shippers. For shipping cargoes between the same pair of ports, the freight rate in a COA is

typically much lower than that in a VC. We refer to Wu et al. (2021) for the conceptual descriptions of

COAs and VCs. For concrete examples of COAs and VCs, we refer the reader to the template contracts

for bulk cargo COAs (i.e., VOLCOA and GENCOA) and VCs (e.g., GENCON and NUVOY) and the

explanatory notes provided by BIMCO (2022), which is the largest international shipping association

representing shipowners.

1.2 Related literature

In addition to the aforementioned application in seaborne bulk shipping, similar problems also com-

monly arise in supply chains that, for example, use third-party trucking and airline services. Despite

their importance, to the best of our knowledge, no studies in the literature have to date considered the

FPTMP or the SFPTMP. In the FPTMP, decisions of commodity distribution, inventory and back-

log management, and freight service procurement are considered in an integrated manner. The most

closely related study in the literature is Bertazzi et al. (2015). In their considered problem, a single

commodity is shipped from a single supplier to multiple customers with stochastic demands in a finite

discrete-time planning horizon. Transportation between the supplier and the customers is outsourced

such that a 3PL carrier performs all deliveries on all lanes (with an unlimited capacity on each lane)

in one period at a fixed cost. The authors formulated the problem as a dynamic programming model.

In view of the curses of dimensionality, they proposed a matheuristic for solving the model. Our

study is different from theirs. In particular, in the SFPTMP, the capacities of shipments in capacity

contracts have to be decided prior to the shipping phase, which contains multiple decision stages, and

the transportation costs in the spot market are volume-dependent. In addition, we propose an exact

solution approach for the problem.

The SFPTMP is related to the transportation procurement problem (TPP), especially the TPP

under uncertainties. The TPP, also referred to as the winner determination problem (WDP) of freight

services, was introduced by Caplice and Sheffi (2003) who presented the first mixed-integer linear

programming (MILP) formulation for this problem. The TPP was later extended by Caplice et al.

(2005), Lim et al. (2006, 2008, 2012), and Hu et al. (2016). In these studies, transportation demand

on each lane was assumed to be deterministic and known in advance. The decisions considered were

to procure freight services (or select bids) from carriers to match the demands at the lowest cost.

Various practical issues were considered in these studies, including the limits on the total shipping

volume allocated to a carrier, the minimum shipping volume guarantees for carriers, the constraints
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on the number of carriers selected, the inclusion of spot market, the avoidance of imbalances in freight

cost allocation among carriers, as well as the consideration of transit times. The WDP with uncertain

lane demands was considered by Ma et al. (2010), Zhang et al. (2014), and Meng et al. (2015) under

the assumption that the distribution of the uncertain parameters is known and by Remli and Rekik

(2013) and Zhang et al. (2015) under the assumption that the distribution information is not fully

available. Remli et al. (2019) extended the work of Remli and Rekik (2013) by taking into account the

uncertainties in carriers’ capacities. Lee et al. (2021) studied a TPP in liner services with uncertain

demands. In their problem, on top of the freight costs, inventory holding costs were also considered to

capture the impacts of liner service schedules.

The SFPTMP is fundamentally different from the TPP. In the SFPTMP, the interdependencies

between transportation (including commodity delivery and inventory and backlog management) and

freight service procurement in a supply chain are fully considered. However, in the TPP, freight service

procurement is determined based on a given transportation plan on each lane in each period. For a

shipper who relies on 3PL services, solving the TPP instead of the SFPTMP would lead to suboptimal

solutions for its supply chain management. Besides, although uncertainty has been considered in the

TPP, to the best of our knowledge, all the relevant papers study the TPP under uncertainty in a

two-stage process, either by considering a single-period second stage problem (Ma et al. 2010, Remli

and Rekik 2013, Zhang et al. 2014, Meng et al. 2015, Remli et al. 2019) or by assuming the uncertain

information in all periods is fully disclosed at the beginning of the second stage (Lee et al. 2021).

Unlike these studies, we solve the SFPTMP in a multi-stage process that is more natural and realistic.

Some papers consider transportation procurement as a part of a shipper’s operations management

problem. Bertazzi et al. (2000) considered a shipment problem for a manufacturer where a set of prod-

ucts are shipped between an origin and a destination. The manufacturer should decide the frequencies

for shipping each product and the volume of each product in each shipment. With known production

rates, the considered objective is to minimize the sum of the inventory cost and the transportation cost

per unit time. Stecke and Zhao (2007) investigated an integrated production and transportation plan-

ning problem for a make-to-order manufacturing company with a commit-to-delivery business mode.

The production date of a product may affect the selection of transportation services for shipping it.

The objective is to determine the best production and shipment plan for a set of products. Lu et al.

(2017) considered a carrier portfolio problem in which a shipper transports and sells seasonal products

to an overseas market where the selling price declines over time. Freight services are procured from

carriers that deliver the products with distinct arrival schedules and freight rates. The objective is to

determine an optimal strategy for allocating the shipping quantities among the carriers that produces

the best expected profit. The SFPTMP is also different from these studies. In particular, in the

SFPTMP, freight procurement is a tactical decision that has “lasting effects” on a series of operational

decisions while it acts as one of the operational decisions considered in these studies. In addition, we

consider the problem in a multi-stage stochastic process, which further differentiates our research from

these studies where shippers make all decisions in a single stage.

1.3 Contributions

Our study makes five main contributions:

1. We study a joint freight procurement, transportation, and inventory control problem under sup-

ply and demand uncertainty. Such a problem commonly arises in the supply chain management

of a manufacturer or a retailer.

2. We develop a solution approach based on stochastic dual dynamic programming (SDDP) that

scales to instances with up to nine stages and 10 scenarios per stage (i.e., 109 scenarios).

3. We propose several computational enhancements for the SDDP approach: the use of feasibility

inequalities to avoid big-M coefficients in the formulations, optimality inequalities formulated
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based on smaller scenario trees, and a primal-dual lower bound lifting procedure based on stage-

wise convergence.

4. We conduct extensive experiments using instances generated from an existing benchmark suite

as well as real-world application data. The results demonstrate that our approach can well solve

instances with realistic scales and that our approach performs robustly under different problem

settings.

5. We make the code implementation, instances, and detailed results publicly available as a bench-

mark suite for the SFPTMP.

1.4 Outline

The remainder of this paper is structured as follows. We formally describe the SFPTMP in Section 2

and formulate it as a compact MILP model in Section 3. The SDDP approach for solving the problem

is described in Section 4. We explain the enhancement strategies for the SDDP approach in Section 5.

Computational experiments are reported in Section 6, followed by conclusions in Section 7. We provide

all mathematical proofs of the propositions and lemmas presented in this paper in Appendix A.

2 Problem description and notation

In the SFPTMP, a single commodity is shipped from a set of supply sites (suppliers) IS to a set

of demand sites (customers) ID over a discrete and finite time horizon which consists of a set T =

{1, 2, .., t} of periods. Let I = IS ∪ID be the set of all sites. The amount of the commodity produced

or required at site i ∈ I in period t ∈ T is denoted by di,t, where di,t ≥ 0 if i ∈ IS and di,t ≤ 0 if

i ∈ ID. Each site i ∈ I can hold an inventory not exceeding the upper bound denoted by qi and we

let q0
i denote the initial inventory at site i ∈ I at the beginning of the planning horizon. The unit

inventory holding cost in each period for site i ∈ I is denoted by hi. We assume that in each period,

the leftover supply (i.e., supply that cannot be stocked or shipped out) or unmet demand at site i ∈ I
can be backlogged but is penalized at the unit price ei. We assume that ei > hi, ∀i ∈ I.

Let L = {(i, j)|i ∈ IS , j ∈ ID} be the set of (directed) lanes between the supply and the demand

sites. The commodity can be shipped on any lane (i, j) ∈ L. For simplicity, we assume that it takes

oi,j ∈ Z+ periods to transport any amount of the commodity on lane (i, j) ∈ L in one shipment by

any means.

Freight services for shipping the commodity are procured from the transportation market through

an auction process. In particular, the shipper first makes inquiries to carriers regarding their services

on the lanes in L. The carriers then respond by providing a group of bids on each lane. Capacity

contracts (e.g., COAs in sea transportation) for freight services are negotiated based on these bids. Let

Bi,j be the set of bids for lane (i, j) ∈ L. Let also B =
⋃

(i,j)∈L Bi,j . For any b ∈ B, we use i(b) ∈ IS

and j(b) ∈ ID to represent the supply site and the demand site associated with the bid. Each bid

b ∈ B contains a set Rb of shipments. Let R =
⋃
b∈BRb. Given any shipment r ∈ R, we use t1(r) and

t2(r), where t1(r), t2(r) ∈ T , to denote the periods in which the shipment starts and ends, respectively.

All shipments in one bid b ∈ B should have the same capacity, which can be any value within the

range [mb,mb] ⊆ R+. The freight rate for purchasing shipment capacities in bid b is denoted by fb.

Because all shipments in one bid share the same capacity, we let Fb = |Rb|fb denote the unit price

for purchasing capacities for all shipments in bid b ∈ B. Note that the cost for shipment capacity

purchase in a bid is incurred once the relevant capacity contract is settled, and it is independent of

the actual shipping volumes. On top of this fixed cost, without loss of generality, we further use gb to

represent the extra cost the shipper has to pay for each unit of the commodity transported through

any shipment in bid b ∈ B.
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In addition to capacity contracts, the shipper can also transport the commodity through the spot

market. Let ci,j be the unit cost for shipping the commodity on lane (i, j) ∈ L through the spot

market.

In practice, the supplies and demands, represented by parameters di,t, can be uncertain when the

capacity contracts are negotiated and the relevant information is typically disclosed gradually during

the planning horizon. To characterize the uncertainty in di,t, we define dt = (di,t|i ∈ I) and further

d = (dt|t ∈ T ). We assume that d evolves as a discrete-time stochastic process with finite support.

The process contains a set P = {1, ..., p} of stages. Each stage p ∈ P covers a set Tp = {tp, ..., tp} ⊆ T
of periods. We have

⋃
p∈P Tp = T and Tp ∩ Tp′ = ∅, ∀p, p′ ∈ P, p 6= p′.

At the beginning of each stage p ∈ P, the shipper observes the realization of the uncertain parame-

ters in (dt)
tp
t=1. The uncertainty of dt in a stage p ∈ P is captured through a set of possible realizations

(i.e., scenarios) of (dt)
tp
t=tp

which are denoted by Ωp and indexed by ω. For each stage p ∈ P, we let

dωi,t be the demand or supply generated at site i ∈ I in period t ∈ Tp under scenario ω ∈ Ωp. We

further assume that given any stage p ∈ P, the distribution of scenarios in this stage is independent

of the scenarios in other stages, and let %ω be the probability of scenario ω ∈ Ωp.

The full set of scenarios for all stages in the problem can be represented by a scenario tree, as

shown in Figure 1. The path from a node in stage 1 to a node in stage p, denoted by {ω1, ..., ωp},
where ωp ∈ Ωp, ∀p ∈ P, corresponds to a scenario ξ for a realization of the uncertain parameters

in d. Let Ξ be the set of all such scenarios. For each scenario ξ ∈ Ξ, let dξi,t denote the supply

or demand at site i ∈ I in period t ∈ T under this scenario. The probability of scenario ξ ∈ Ξ

is denoted by ρξ. For ease of presentation, in this paper, we will refer to scenarios in Ξ simply as

scenarios and refer to scenarios ω in any Ωp as stage scenarios. For each scenario ξ ∈ Ξ, we let

ωp(ξ) ∈ Ωp denote the index of the stage scenario in stage p ∈ P associated with this scenario.

To impose the non-anticipativity constraints in the SFPTMP, for each p ∈ P, we introduce the

set Λp = {(ξ1, ξ2) ∈ Ξ × Ξ|ωp′(ξ1) = ωp′(ξ2),∀p′ = 1, ..., p} which contains all pairs of scenarios

(ξ1, ξ2) ∈ Ξ× Ξ that are indistinguishable in stage p.

p = 1 p = 2 p = 3

Figure 1: Example of a scenario tree.

In the SFPTMP, the shipper can essentially make decisions in 1 + p stages. The first stage cor-

responds to the contracting phase prior to the disclosure of any supply-demand information in the

planning horizon whereas the (1 + p)-th decision stage corresponds to stage p in the information dis-

closure process when the information of supply and demand has been revealed up to this stage, where

p ∈ P. For simplicity, we refer to the first decision stage as stage 0 and let P+ = {0} ∪ P denote the

full set of decision stages.
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In stage 0, the shipper signs capacity contracts for freight services on the lanes. As in standard

COAs (BIMCO 2022), each contract, which is negotiated based on a bid, specifies the schedule of

the shipments, the capacity of each shipment, as well as the associated costs (including the fixed cost

for capacity purchase and the freight rate associated with variable shipping volumes) for the freight

services on a lane. In the subsequent stages, given the decisions made in the previous stages and the

observed supplies and demands in the current stage, the shipper determines how to: (i) allocate the

loading quantity for each shipment in the capacity contracts that starts in this stage, (ii) determine the

quantity to be transported through the spot market on each lane in each period within this stage, (iii)

control the inventory levels at each site in each period in this stage, and (iv) determine the backlogged

supply or demand at each site in each period in this stage.

The shipper faces costs from procuring freight services (through capacity contracts or spot mar-

ket), holding inventories, and handling backlogs. The objective is to formulate a joint freight service

procurement and transportation-inventory plan that yields the minimum expected total cost.

3 Model formulation

We model the SFPTMP via a space-time network that represents the physical lanes and the shipment

schedules simultaneously. Each node in the network is associated with a site i ∈ I and a period

t ∈ T , and each arc represents a potential shipment on a lane. Details of the network are explained in

Section 3.1 and the model formulated based on this network is given in Section 3.2.

3.1 Space-time network

To facilitate the formulation of the problem, we construct a space-time network G = (N ,A), where

N and A represent the set of nodes and the set of arcs, respectively. The node set N consists of

|T | copies of each site i ∈ I, i.e., N = {(i, t)|i ∈ I, t ∈ T}. Let N S = {(i, t) ∈ N|i ∈ IS}
and ND = {(i, t) ∈ N|i ∈ ID} be the sets of nodes associated with supply and demand sites,

respectively. The arc set is defined as A = A1 ∪ A2. The arc set A1 contains arcs that represent

shipments in capacity contracts and is defined as A1 =
⋃
b∈BA1

b , where for each bid b ∈ B, A1
b =

{((i, t1), (j, t2))|(i, t1), (j, t2) ∈ N , i = i(b), j = j(b), t1 = t1(r), t2 = t2(r), r ∈ Rb}. The arc set A2

represents the possibilities of transportation via shipments in the spot market and we have A2 =

{((i, t1), (j, t2))|t2 = t1 + oi,j , (i, t1) ∈ NS , (j, t2) ∈ ND}. Finally, corresponding to each stage p ∈ P,

we let Np = {(i, t) ∈ N|t ∈ Tp} and Ap = {((i, t1), (j, t2)) ∈ A|(i, t1) ∈ Np} represent the sets of nodes
and arcs associated with this stage, respectively.

For notational simplicity, we will use n and (i, t) interchangeably to represent a node and a and

((i, t1), (j, t2)) interchangeably to represent an arc. Given any node n ∈ N , the sets of its outgoing

and incoming arcs are written as

A+(n) = {((i, t1), (j, t2)) ∈ A|(i, t1) = n} and A−(n) = {((i, t1), (j, t2)) ∈ A|(j, t2) = n},

respectively.

With slight abuse of notation, we redefine some parameters in the problem to cast them into the

network structure. First, for each node n = (i, 1) ∈ N , let q0
n = q0

i be the initial inventory at node n

and for each node n = (i, t) ∈ N , let qn = qi be the upper bound of the inventory that can be stored

at this node. Second, we use dω,n = dωi,t to represent the supply or demand at node n = (i, t) ∈ Np
under stage scenario ω ∈ Ωp in any stage p ∈ P. We also use dξ,n = dξi,t to represent the supply or

demand at node n = (i, t) ∈ N under scenario ξ ∈ Ξ. Third, for each node n = (i, t) ∈ N let hn = hi
denote its unit inventory holding cost and let en = ei denote the unit penalty cost associated with the

backlogged supply or demand at this node. Finally, for each arc a ∈ A, we use ca to represent the unit
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(variable) transportation cost on this arc. For each a ∈ A, ca is set as:

ca =

{
gb, if a ∈ A1

b , b ∈ B,
ci,j , if a =

(
(i, t1), (j, t2)

)
∈ A2.

3.2 The compact model

We formulate the problem as a multi-stage stochastic optimization model in a compact form. Table 1

lists the decision variables used in the model.

Table 1: Decision variables in the SFPTMP.

Decision variables in stage 0:

xb binary variable, which equals 1 if and only if the shipper accepts bid b ∈ B.
yb continuous variable, which represents the capacity purchased by the shipper for each shipment in the capacity

contract associated with bid b ∈ B.

Decision variables in stages p ∈ P:

zξ,a continuous variable, which represents the volume of the commodity allocated on arc a ∈ A under scenario
ξ ∈ Ξ.

uξ,n continuous variable, which represents the inventory level at node n ∈ N under scenario ξ ∈ Ξ.
vξ,n continuous variable, which represents the volume of the supply or demand backlogged at node n ∈ N under

scenario ξ ∈ Ξ.

The SFPTMP can be formulated as an MILP model denoted by P as follows:

P = min
∑
b∈B

Fbyb +
∑
ξ∈Ξ

ρξ

(∑
n∈N

(hnuξ,n + envξ,n) +
∑
a∈A

cazξ,a

)
(1)

s.t. yb ≥ mbxb ∀b ∈ B (2)

yb ≤ mbxb ∀b ∈ B (3)

zξ,a ≤ yb ∀a ∈ A1
b ,∀b ∈ B,∀ξ ∈ Ξ (4)

uξ,n1
+ vξ,n1

= dξ,n1
+ uξ,n2

+ vξ,n2
−

∑
a∈A+(n1)

zξ,a ∀n1 = (i, t), n2 = (i, t− 1) ∈ NS ,∀ξ ∈ Ξ (5)

uξ,n + vξ,n = dξ,n + q0
n −

∑
a∈A+(n)

zξ,a ∀n = (i, 1) ∈ NS ,∀ξ ∈ Ξ (6)

uξ,n1
− vξ,n1

= dξ,n1
+ uξ,n2

− vξ,n2
+

∑
a∈A−(n1)

zξ,a ∀n1 = (i, t), n2 = (i, t− 1) ∈ ND,∀ξ ∈ Ξ (7)

uξ,n − vξ,n = dξ,n + q0
n +

∑
a∈A−(n)

zξ,a ∀n = (i, 1) ∈ ND,∀ξ ∈ Ξ (8)

uξ,n ≤ qn ∀n ∈ N ,∀ξ ∈ Ξ (9)

zξ1,a = zξ2,a ∀a ∈ Ap,∀(ξ1, ξ2) ∈ Λp,∀p ∈ P (10)

xb ∈ {0, 1} ∀b ∈ B (11)

yb ≥ 0 ∀b ∈ B (12)

uξ,n ≥ 0 ∀n ∈ N ,∀ξ ∈ Ξ (13)

vξ,n ≥ 0 ∀n ∈ N ,∀ξ ∈ Ξ (14)

zξ,a ≥ 0 ∀a ∈ A,∀ξ ∈ Ξ. (15)

The objective function (1) aims to minimize the expected total cost, including the cost of purchas-

ing freight services using capacity contracts, the expected cost of holding inventories and backlogging
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supplies or demands at the nodes, and the expected cost for sending flows on the arcs. Given a bid, con-

straints (2) and (3) set the lower bound and upper bound for the capacity of each shipment associated

with this bid. Constraints (4) ensure that under any scenario, the actual volumes of the commodity

allocated on the arcs associated with shipments in capacity contracts do not exceed their contractual

capacities. Constraints (5)–(8) define the relationship among inventory levels and backlogged quan-

tities at the nodes and the flow volumes allocated on the relevant arcs. Constraints (9) require the

inventory level at a node to not exceed its upper bound. Constraints (10) are non-anticipativity con-

straints. These constraints impose the requirement that the flows allocated on an arc in a stage under

any two scenarios ξ1 and ξ2 that are indistinguishable up to this stage must be identical. Finally,

constraints (11)–(15) define the domains for the decision variables.

It is mentionable that in P, the non-anticipativity requirements are imposed only on the flow

variables zξ,a, through constraints (10). The following proposition shows that constraints (10) are

sufficient to impose non-anticipativity requirements for the SFPTMP.

Proposition 1. Problem P satisfies the non-anticipativity requirements in the SFPTMP.

With a given scenario tree, the above formulation forms a deterministic optimization problem.

However, the scale of the problem grows exponentially with the number of stages (|P|) and the number

of scenarios in each stage (|Ωp|, p ∈ P). As a result, only very small instances of the SFPTMP can be

solved by applying a general-purpose optimization solver directly on the MILP model for P (refer to

Section 6.4.1). In the next section, we propose an SDDP approach for solving instances of large scale.

4 A stochastic dual dynamic programming approach

The SDDP approach was introduced by Pereira and Pinto (1991) and is an extension of the nested

Benders or L-shaped decomposition method proposed by Birge (1985). By exploiting the stage-wise

independence of the scenario tree, this algorithm decomposes the original problem into stage-wise

problems, approximates the cost of the problems in the subsequent stages through Benders cuts, and

converges in a finite number of steps to an optimal solution. For the analyses of the statistical properties

and convergence of the SDDP approach, we refer to Shapiro (2011).

The framework of the SDDP approach for solving the SFPTMP is presented in Algorithm 1. The

approach follows an iterative procedure and each iteration l in the approach consists of a sampling

step, a forward step, and a backward step. In the sampling step, we select a subset Ξl of scenarios

from Ξ.

In the forward step, we solve problem P under each sampled scenario ξ ∈ Ξl. Given a scenario,

P is decomposed into a set of problems, each corresponding to a stage p ∈ P+. A problem in stage

p ∈ P+ \ {p} is characterized by an expected cost-to-go function (or cost-to-go function for short) that

estimates the lower bound of the expected total cost incurred in the subsequent stages. Because the

probability distribution of the scenarios satisfies stage-wise independence, problems under different

scenarios in the same stage p ∈ P+ \ {p} share the same cost-to-go function. Let Ψp denote the cost-

to-go function for problems in stage p. On top of the cost-to-go function, given any scenario ξ ∈ Ξl,

the forward-step problem in any stage p ∈ P is also characterized by a set of state variables χ̄ξ,p−1

obtained by solving the associated problem in the previous stage, which is referred to as the parent

problem of this problem.

In the forward step of any iteration, we have one problem in stage 0, which is denoted by P0(Ψ0).

The forward step starts by solving this problem. Then, corresponding to each sampled scenario ξ ∈ Ξl,

we solve problems denoted by Pξ,p(χ̄ξ,p−1,Ψp) from stage p = 1 to stage p = p.

In the backward step, corresponding to each scenario ξ ∈ Ξl, a subproblem denoted by

Qξ,ω,p(χ̄ξ,p−1,Ψp) is created for each stage scenario ω ∈ Ωp in each stage p ∈ P. We solve the

dual of these problems to generate valid cuts for updating the cost-to-go functions.
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Finally, the SDDP approach terminates when the lower bound is stable or when a preset time limit

is reached. In the following subsections, we explain the details of each step.

Algorithm 1 Stochastic Dual Dynamic Programming (SDDP).

1: Initialize: LB ← −∞, l← 1, and initial cost-to-go functions Ψp, p ∈ P+

2: while Some stopping criterion is not satisfied do
3: /*Sampling step*/
4: Sample a set of scenarios Ξl ⊆ Ξ
5: /*Forward step*/
6: Solve the problem P0(Ψ0)
7: Collect χ̄ξ,0, ∀ξ ∈ Ξl

8: Set LB equal to the optimal value of P0(Ψ0)
9: for ξ ∈ Ξl do

10: for p = 1, ..., p do
11: Solve the problem Pξ,p(χ̄ξ,p−1,Ψp)
12: Collect χ̄ξ,p
13: end for
14: end for
15: /*Backward step*/
16: for ξ ∈ Ξl do
17: for p = p, ..., 1 do
18: for ω ∈ Ωp do
19: Solve the dual of problem Qξ,ω,p(χ̄ξ,p−1,Ψp)
20: end for
21: Update Ψp−1 by adding valid cuts
22: end for
23: end for
24: l← l + 1
25: end while

4.1 The sampling step

In the sampling step of iteration l, a subset of scenarios (denoted by Ξl) is sampled from the original

set Ξ. We have |Ξl| ≤ |Ξ|. The scenarios in Ξl are sampled randomly from the original scenario set Ξ

based on the distribution {ρξ : ξ ∈ Ξ}.

4.2 The forward step

In the forward step of iteration l, the problem P is solved under each scenario ξ ∈ Ξl, and given a

scenario ξ, the problem is decomposed into |P+| subproblems, each corresponding to a decision stage.

We let P0 denote the first-stage problem, and let Pξ,p denote the problems in stages p ∈ P under each

scenario ξ ∈ Ξl.

As a problem in a stage is partially defined by the decisions made in the previous stages, the

communication between problems in different stages must be carefully established. Also, because of

the stage-wise solution procedure, such inter-stage communication only exists between problems in

adjacent stages. In particular, given a scenario ξ ∈ Ξl, the problem Pξ,p in any stage p ∈ P, is

characterized by the solution of its parent problem i.e., problem Pξ,p−1 or P0. In the following, we

explain the state variables obtained by solving a problem in the forward step that are used to define

the problem in the next stage.

To begin with, given a scenario ξ ∈ Ξl, the capacities of shipments in the capacity contracts

parameterized in problem Pξ,p in any stage p ∈ P should remain consistent with those determined in

the parent problem in stage p − 1. We let ȳξ,p−1 = (ȳξ,p−1,b|b ∈ B) be the vector of such capacities

obtained by solving the parent problem.

In addition, suppose p ≥ 2, then the problem Pξ,p (for any ξ ∈ Ξl) is also subject to the inventory

levels, backlogged supplies or demands of certain nodes, and the flows of certain arcs that are deter-

mined in its parent problem. In order to characterize this information, we define the following sets of
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nodes and arcs that are critical for transferring information between stages. First, for the nodes, we let

Ñp = {n|n = (i, tp) ∈ Np} denote the set of nodes whose inventory levels and backlogged supplies or

demands are passed on to the next stage, ∀p ∈ P\{p}. Especially, for stage 0, we define Ñ0 = {(i, 0)|i ∈
I}. Second, as for the arcs, we use

−→
A (p1,p2) = {a|a = (n1, n2) ∈ A, n1 ∈ Np1 , n2 ∈ Np2} to represent

the set of arcs directed from nodes in stage p1 to nodes in stage p2, where p1, p2 ∈ P and p2 > p1.

Further, ∀p ∈ P, let Ãp =
⋃p
p1=1

⋃p
p2=p+1

−→
A (p1,p2) be set of arcs that link nodes n ∈

⋃p
p1=1Np1

with

nodes n ∈
⋃p
p2=p+1Np2

. Also, we especially have Ã0 = ∅ and Ãp = ∅.

Based on these sets of nodes and arcs, for problem Pξ,p (where p ∈ P and ξ ∈ Ξl), we define the

following state variables that are determined in its parent problem (i.e., Pξ,p−1 or P0) and affect this

problem. First, for each node n ∈ Ñp−1, we let ūξ,p−1,n and v̄ξ,p−1,n denote the inventory level and

the backlogged quantity at node n that are determined by solving the parent problem in stage p− 1.

Especially, for p− 1 = 0, we define ūξ,0,n = q0
i and v̄ξ,0,n = 0, ∀n = (i, 0) ∈ Ñ0. Besides, for each arc

a ∈ Ãp−1, we use z̄ξ,p−1,a to represent the flow on this arc determined by solving the parent problem.

Let ūξ,p = (ūξ,p,n|n ∈ Ñp), v̄ξ,p = (v̄ξ,p,n|n ∈ Ñp), and z̄ξ,p = (z̄ξ,p,a|a ∈ Ãp). To further simplify the

notation, we define χ̄ξ,p = ((ȳξ,p)
>, (ūξ,p)

>, (v̄ξ,p)
>, (z̄ξ,p)

>)>.

In the following, given a scenario ξ ∈ Ξl in iteration l of the SDDP, we first describe the formulation

of problem P0 in the first stage (biding stage) and then explain the formulation of problems Pξ,p,

∀p ∈ P in the shipping stages.

4.2.1 The problem in the bidding stage

Decisions made in the problem in the bidding stage (i.e., P0) include the selection of bids and the

purchase of capacities for the shipments associated with the bids. The associated decision variables

are given in the vectors x = (xb|b ∈ B) and y = (yb|b ∈ B). The problem is also formulated based on

a cost-to-go function, denoted by Ψ0(y), which is defined as follows:

Ψ0(y) = min{η0 :

η0 ≥ 0, (16)

η0 ≥ (µk0 + (νk0)>y), ∀k ∈ K0}. (17)

Problem P0 can be formulated as the following MILP model:

P0(Ψ0) = min
x,y,η0

∑
b∈B

Fbyb + η0 (18)

s.t. (2), (3), (11), (12), (16), (17).

Objective function (18) minimizes the sum of the cost of capacity purchase and the value of the

cost-to-go function.

Let y∗ be the vector of optimal solution values of the y variables obtained by solving the above

model. We then obtain χ̄ξ,0 for characterizing the problems in stage 1 by letting ȳξ,0,b = y∗b , ∀b ∈
B,∀ξ ∈ Ξl.

4.2.2 Problems in the shipping stages

In stage p ∈ P of the shipping stages, we solve a problem denoted by Pξ,p under scenario ξ ∈ Ξl in the

forward step of iteration l. The problem aims at determining the inventory levels and the backlogging

strategies for the nodes in the set Np and allocating flows on the arcs in the set Ap. Decision variables

used for formulating the problem can be partitioned into three groups.

The first group consists of variables in the following vectors: uξ,p = (uξ,n|n ∈ Np), vξ,p =

(vξ,n|n ∈ Np), and zξ,p = (zξ,a|a ∈ Ap). These variables control inventory levels, determine back-

logged quantities, and allocate flows for the nodes and arcs in Np and Ap, respectively.
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Variables in the second group are auxiliary variables that make local copies of the variables

determined in the parent problem of Pξ,p. In particular, we use the set of variables in vector

y′ξ,p = (y′ξ,p,b|b ∈ B) to represent the “copied” capacity of each shipment in the bids. Besides, for

the nodes n ∈ Ñp−1, we use variables in u′ξ,p = (u′ξ,p,n|n ∈ Ñp−1) and v′ξ,p = (v′ξ,p,n|n ∈ Ñp−1),

respectively, as the local copies of the inventory and backlogging decisions determined in the parent

problem of Pξ,p. Finally, for each arc a ∈ Ãp−1, we introduce the variable z′ξ,p,a to copy the flow

allocated on it and let z′ξ,p = (z′ξ,p,a|a ∈ Ãp−1).

The decision variables in the third group are used for ensuring the feasibility of problem Pξ,p. In

particular, given any two stages p1 and p2 such that p1, p2 ∈ P, p1 < p, and p2 = p, the flows on the

arcs in the set
−→
A (p1,p2) are determined in the problem in stage p1 without explicitly considering the

inventory restrictions for the corresponding head nodes in Np in stage p. This is insufficient to ensure

feasibility of problem Pξ,p as such flows can lead to inventories at certain nodes in Np exceeding their

upper bounds. To avoid such infeasibility issues, we introduce decision variables wξ,n for the nodes

n ∈ Np ∩ ND which represent the amounts of overflowed inventories (i.e., inventories beyond qn) at

these nodes. Let wξ,p = (wξ,n|n ∈ Np ∩ND).

Finally, for notational simplicity, we use Xξ,p to represent the vector that includes all the decision

variables from these three groups in problem Pξ,p.

Problem Pξ,p is also characterized by a cost-to-go function denoted by Ψp(Xξ,p) which is defined

as follows:

Ψp(Xξ,p) = min{ηξ,p :

ηξ,p ≥ 0, (19)

ηξ,p ≥ µkp + (νkp)>Xξ,p, ∀k ∈ Kp}. (20)

Especially, we have Kp = ∅, if p = p.

We are now ready to present the formulation for problem Pξ,p, which is a linear programming (LP)

model written as follows:

Pξ,p(χ̄ξ,p−1,Ψp) = min
Xξ,p,ηξ,p

∑
n∈Np

(hnuξ,n + envξ,n) +
∑
a∈Ap

cazξ,a +M
∑

n∈Np∩ND
wξ,n + ηξ,p (21)

s.t. (19),(20)

zξ,a ≤ y′ξ,p,b ∀a ∈ A1
b ∩ Ap,∀b ∈ B (22)

uξ,n1
+ vξ,n1

= dξ,n1
+ uξ,n2

+ vξ,n2
−

∑
a∈A+(n1)

zξ,a

∀n1 = (i, t), n2 = (i, t− 1) ∈ Np ∩N S (23)

uξ,n1 + vξ,n1 = dξ,n1 + u′ξ,p,n2
+ v′ξ,p,n2

−
∑

a∈A+(n1)

zξ,a

∀n1 = (i, tp) ∈ Np,∀n2 = (i, tp−1) ∈ Ñp−1,∀i ∈ IS (24)

uξ,n1 − vξ,n1 + wξ,n1 = dξ,n1 + uξ,n2 − vξ,n2 +
∑

a∈A−(n1)∩Ãp−1

z′ξ,p,a +
∑

a∈A−(n1)∩Ap

zξ,a

∀n1 = (i, t), n2 = (i, t− 1) ∈ Np ∩ND (25)

uξ,n1 − vξ,n1 + wξ,n1 = dξ,n1 + u′ξ,p,n2
− v′ξ,p,n2

+
∑

a∈A−(n1)∩Ãp−1

z′ξ,p,a +
∑

a∈A−(n1)∩Ap

zξ,a

∀n1 = (i, tp) ∈ Np,∀n2 = (i, tp−1) ∈ Ñp−1,∀i ∈ ID (26)

uξ,n ≤ qn ∀n ∈ Np (27)
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y′ξ,p,b = ȳξ,p−1,b ∀b ∈ B (28)

u′ξ,p,n = ūξ,p−1,n ∀n ∈ Ñp−1 (29)

v′ξ,p,n = v̄ξ,p−1,n ∀n ∈ Ñp−1 (30)

z′ξ,p,a = z̄ξ,p−1,a ∀a ∈ Ãp−1 (31)

uξ,n ≥ 0 ∀n ∈ Np (32)

vξ,n ≥ 0 ∀n ∈ Np (33)

zξ,a ≥ 0 ∀a ∈ Ap (34)

wξ,n ≥ 0 ∀n ∈ Np ∩ND, (35)

where M in the objective function (21) is a sufficiently large constant.

The objective function (21) minimizes the sum of four terms, including (i) the total inventory

holding cost and the total backlogging cost at the nodes in Np, (ii) the total shipping cost for sending

flows on the arcs in Ap, (iii) the total penalty cost associated with overflowed inventories at the demand

nodes, and (iv) the value of the cost-to-go function. Constraints (22) set upper bounds for the flows

on the arcs associated with shipments in the bids. Constraints (23) and (24) track the inventory

levels and backlogged supplies at the nodes associated with the supply sites in stage p. Similarly,

constraints (25) and (26) track the inventory levels, backlogged demands, and overflowed inventories

at the nodes associated with the demand sites in stage p. Constraints (27) require that the inventory

stored at each node be maintained under the upper limit. Constraints (28)–(31) link the decision

variables determined in the parent problem with their local copies in problem Pξ,p. The last four sets

of constraints define the domains of the decision variables.

Finally, let X∗ξ,p be the vector of the solution values of the decision variables in Xξ,p obtained by

solving Pξ,p. If p < p, we obtain χ̄ξ,p, which will be used for defining problem Pξ,p+1, through the

following equalities:

ȳξ,p,b = y′,∗ξ,p,b ∀b ∈ B,

ūξ,p,n = u∗ξ,n ∀n ∈ Ñp,

v̄ξ,p,n = v∗ξ,n ∀n ∈ Ñp,

z̄ξ,p,a = z∗ξ,a ∀a ∈ Ãp ∩ Ap,

z̄ξ,p,a = z′,∗ξ,p,a ∀a ∈ Ãp \ Ap.

4.3 The backward step

When all the forward-step problems for each sampled scenario ξ ∈ Ξl are solved in iteration l, the

backward step starts from the last stage p = p. It then moves backward, stage by stage, until reaching

stage p = 1. In each stage, a set of problems are solved. The goal of the backward step is to update

the cost-to-go functions for problems in the forward step.

4.3.1 Problems in backward step

In iteration l of the SDDP, for each sampled scenario ξ ∈ Ξl, we solve |Ωp| problems in the backward

step in stage p ∈ P. Each of the problems corresponds to a stage scenario ω ∈ Ωp in stage p in the

original scenario tree. Let Qξ,ω,p denote the problem that is associated with scenario ξ ∈ Ξl and stage

scenario ω ∈ Ωp in stage p ∈ P in the backward step.

Given ξ ∈ Ξl, and ω ∈ Ωp in stage p ∈ P, problem Qξ,ω,p and problem Pξ,p in the forward step are

characterized by the same set of state variables obtained by solving the parent problem Pξ,p−1 (or P0)

and the same cost-to-go function (i.e., χ̄ξ,p−1 and Ψp).
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The decision variables for Qξ,ω,p include those contained in the vector Xω,p and variable ηω,p.

Here, there are one-to-one correspondences between variables in Xω,p and those in Xξ,p of problem

Pξ,p in the forward step. To be more specific, for every variable defined for the scenario ξ in Xξ,p,

there is a corresponding variable in Xω,p defined for the stage scenario ω. In addition, ηω,p represents

the value returned by the cost-to-go function Ψp.

By respectively replacing the variables in Xξ,p and ηξ,p and the parameters in dξ,p = (dξ,n|n ∈ Np)
with their counterparts in Xω,p, ηω,p, and dω,p = (dω,n|n ∈ Np) in constraints (19),(20), (22)–(27)

and (32)–(35), problem Qξ,ω,p can be formulated as the following LP model:

Qξ,ω,p(χ̄ξ,p−1,Ψp) = min
Xω,p,ηω,p

∑
n∈Np

(hnuω,n + envω,n) +
∑
a∈Ap

cazω,a +M
∑

n∈Np∩ND
wω,n + ηω,p (36)

s.t. (19),(20), (22)− (27), (32)− (35)

y′ω,p,b = ȳξ,p−1,b ∀b ∈ B (37)

u′ω,p,n = ūξ,p−1,n ∀n ∈ Ñp−1 (38)

v′ω,p,n = v̄ξ,p−1,n ∀n ∈ Ñp−1 (39)

z′ω,p,a = z̄ξ,p−1,a ∀a ∈ Ãp−1. (40)

Constraints (37)–(40) link the relevant decision variables in this problem with parameters in χ̄ξ,p−1

which are obtained by solving problem Pξ,p−1 (or P0).

4.3.2 Update of cost-to-go functions

In the SDDP, we solve the dual problem of Qξ,ω,p, denoted by Dξ,ω,p, ∀p ∈ P, ω ∈ Ωp, ξ ∈ Ξl to

generate valid inequalities for updating the cost-to-go functions. In particular, by solving Dξ,ω,p to

optimality, let ζξ,ω,p be the optimal objective function value of Dξ,ω,p, and let φξ,ω,p,b (∀b ∈ B), πξ,ω,p,n
(∀n ∈ Ñp−1), $ξ,ω,p,n (∀n ∈ Ñp−1), and θξ,ω,p,a (∀a ∈ Ãp−1) be the optimal solution values of the

dual variables associated with constraints (37)–(40), respectively. Given these results, we update the

cost-to-go functions as follows.

First, for the cost-to-go function Ψ0 in stage 0, the following set of inequalities are valid:

η0 ≥
∑
ω∈Ω1

%ωζξ,ω,1 +
∑
ω∈Ω1

%ω
∑
b∈B

φξ,ω,1,b(yb − ȳξ,0,b) ∀ξ ∈ Ξl. (41)

Let K+
0 denote the set of these inequalities. We update the cost-to-go function Ψ0(y) by letting

K0 = K0 ∪ K+
0 .

Similarly, for any scenario ξ′ ∈ Ξ, we obtain the following set of valid inequalities for the cost-to-go

functions Ψp in stage p ∈ P \ {p}:

ηξ′,p ≥
∑

ω∈Ωp+1

%ωζξ,ω,p+1 +
∑

ω∈Ωp+1

%ω
∑
b∈B

φξ,ω,p+1,b(y
′
ξ′,p,b − ȳξ,p,b)

+
∑

ω∈Ωp+1

%ω
∑
n∈Ñp

πξ,ω,p+1,n(uξ′,n − ūξ,p,n) +
∑

ω∈Ωp+1

%ω
∑
n∈Ñp

$ξ,ω,p+1,n(vξ′,n − v̄ξ,p,n)

+
∑

ω∈Ωp+1

%ω
∑

a∈Ãp∩Ap

θξ,ω,p+1,a(zξ′,a − z̄ξ,p,a)

+
∑

ω∈Ωp+1

%ω
∑

a∈Ãp\Ap

θξ,ω,p+1,a(z′ξ′,p,a − z̄ξ,p,a) ∀ξ ∈ Ξl.

(42)

Let K+
p denote the set of inequalities (42) for problems in stage p ∈ P \ {p}. We update the cost-to-go

functions Ψp(Xξ′,p) by letting Kp = Kp ∪ K+
p .
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5 Enhancements to the SDDP approach

In this section, we describe several important enhancements to the SDDP approach proposed in the

previous section.

5.1 Feasibility inequalities

To avoid infeasibilities caused by arc flows between stages, in any iteration l of the SDDP, variables

wξ,n and wω,n are used in the formulation of problems Pξ,p, and Qξ,ω,p, ω ∈ Ωp, p ∈ P, ξ ∈ Ξl to

capture the inventory overages on the demand sites. These variables are penalized with large costs

(big-M) in the objective functions. The use of big-M terms leads to poor solutions generated in the

forward step and weak cuts for cost-to-go functions obtained in the backward step. To resolve this

issue, we propose using valid inequalities to impose the feasibility of the stage-wise problems without

using auxiliary variables. These inequalities are derived as follows.

Consider any site i ∈ ID. Let di,p1,t be its minimum amount of demand accumulated from the first

period in stage p1 (i.e., tp1
) to any period t ∈ Tp2

where p1, p2 ∈ P and p2 ≥ p1 under all scenarios

ξ ∈ Ξ. di,p1,t can be calculated by:

di,p1,t =

p2−1∑
p=p1

max
ω∈Ωp

tp∑
t′=tp

dωi,t′ + max
ω∈Ωp2

t∑
t′=tp2

dωi,t′ . (43)

Using these minimum accumulated demands, we have the following Lemma.

Lemma 1. The following inequalities are valid for problem P:

uξ,n1 − vξ,n1 +

t2∑
t=tp+1

∑
n=(i,t)∈N

p∑
p′=1

∑
a∈A−(n)∩Ap′

zξ,a + di,p+1,t2 ≤ qn2

∀n1 = (i, tp), n2 = (i, t2) ∈ ND, t2 ≥ tp+1,∀p ∈ P \ {p},∀ξ ∈ Ξ.

(44)

Based on Lemma 1, we derive the following inequalities (45) that are valid for problems Pξ,p, where

p ∈ P \ {p} and ξ ∈ Ξ:

uξ,n1
− vξ,n1

+

t2∑
t=tp+1

∑
n=(j,t)∈N

∑
a∈A−(n)∩Ap

zξ,a+

t2∑
t=tp+1

∑
n=(j,t)∈N

∑
a∈A−(n)∩Ãp−1

z′ξ,p,a + dj,p+1,t2 ≤ qn2

∀n1 = (j, tp), n2 = (j, t2) ∈ ND,∀((i, t1), (j, t2)) ∈ Ãp.

(45)

Recall that Ãp = ∅. By incorporating inequalities (45) into problems Pξ,p, where p ∈ P and ξ ∈ Ξ,

we reformulate the problems as

P′ξ,p (χ̄ξ,p−1,Ψp) = min
X′ξ,p,ηξ,p

∑
n∈Np

(hnuξ,n + envξ,n) +
∑
a∈Ap

cazξ,a + ηξ,p (46)

s.t. (19), (20), (22)− (24), (27)− (34), (45)

uξ,n1
− vξ,n1

= dξ,n1
+ uξ,n2

− vξ,n2
+

∑
a∈A−(n1)∩Ãp−1

z′ξ,p,a +
∑

a∈A−(n1)∩Ap

zξ,a

∀n1 = (i, t), n2 = (i, t− 1) ∈ Np ∩ND (47)

uξ,n1
− vξ,n1

= dξ,n1
+ u′ξ,p,n2

− v′ξ,p,n2
+

∑
a∈A−(n1)∩Ãp−1

z′ξ,p,a +
∑

a∈A−(n1)∩Ap

zξ,a

∀n1 = (i, tp) ∈ Np,∀n2 = (i, tp−1) ∈ Ñp−1,∀i ∈ ID, (48)

whereX ′ξ,p is the vector of all decision variables for P′ξ,p, which is obtained by removing the w variables

from Xξ,p.
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Proposition 2. Problems P′ξ,p are always feasible, ∀p ∈ P, ∀ξ ∈ Ξ.

Similarly, problems Qξ,ω,p in the backward step can also be reformulated to remove big-M terms

in the objective functions. In particular, for any problem Qξ,ω,p in the backward step, where ω ∈ Ωp,

p ∈ P, and ξ ∈ Ξ, let X ′ω,p be the updated vector of decision variables. The vector X ′ω,p contains

all decision variables except the w variables in the vector Xω,p. Then, by adapting constraints (19),

(20), (22)–(24), (27)–(34), (45), (47), and (48) which are formulated based on variables in X ′ξ,p and

parameters in dξ,p to their counterparts formulated based on variables in X ′ω,p and parameters in dω,p,

we reformulate problem Qξ,ω,p as

Q′ξ,ω,p (χ̄ξ,p−1,Ψp) = min
X′ω,p,ηω,p

∑
n∈Np

(hnuω,n + envω,n) +
∑
a∈Ap

cazω,a + ηω,p (49)

s.t. (19), (20), (22)− (24), (27)− (34), (37)− (40), (45), (47), (48).

Proposition 3. Problems Q′ξ,ω,p are always feasible, ∀ω ∈ Ωp, ∀p ∈ P, ∀ξ ∈ Ξ.

With Propositions 2 and 3, in any iteration l of the SDDP, we solve problems P′ξ,p instead of Pξ,p
in the forward step and the dual problems of Q′ξ,ω,p instead of Qξ,ω,p in the backward step, where

ω ∈ Ωp, p ∈ P, and ξ ∈ Ξl.

5.2 Optimality inequalities

In the SDDP, the quality of the lower bound depends on the quality of the cost-to-go functions

which are obtained by solving problems Qξ,ω,p in the backward step. Note that problems Qξ,ω,p are

parameterized by solutions obtained from solving problems P0 and Pξ,p in the forward step. Therefore,

having high-quality solutions for problems P0 and Pξ,p is critical for generating high-quality cost-to-go

functions. However, due to the stage-wise solution procedure, especially in the initial iterations of the

SDDP, both the lower bound and solutions of problems in the forward step tend to have low quality.

To address these issues, we propose to lift the lower bound and to drive problems P0 and Pξ,p to

generate high-quality solutions by using optimality inequalities. In particular, for problem P0 or Pξ,p,

the associated optimality inequalities estimate the lower bound of the cost incurred in the subsequent

stages, in response to the decisions made in the current stage. Our method of generating optimality

inequalities is inspired by Theorem 1 in Chapter 10 of Birge and Louveaux (2011), which derives a

valid lower bound of a multi-stage stochastic liner program based on consistent partitions of the stage

scenarios. We extend this idea by constructing an approximate scenario tree for each stage p ∈ P+\{p}
based on which the optimality inequalities are formulated.

5.2.1 Approximate scenario tree construction

For generating the optimality inequalities, for each stage p ∈ P+ \ {p} in the original scenario tree

(original tree), we construct an approximate scenario tree (approximate tree), denoted by Tp.

Each approximate tree Tp, p ∈ P+ \ {p}, consists of a set P̂p of stages, where P̂p = {p + 1, .., p}.
There is a set Ω̂k of stage scenarios in stage k ∈ P̂p of the approximate tree Tp. Each stage scenario

ω̂ ∈ Ω̂k maps a subset of stage scenarios in Ωk in the original tree, which is denoted by Ωk(ω̂) ⊆ Ωk.

For any k ∈ P̂p and p ∈ P+ \ {p}, the mapping between ω̂ ∈ Ω̂k and ω ∈ Ωk satisfies:⋃
ω̂∈Ω̂k

Ωk(ω̂) = Ωk,

Ωk(ω̂1) ∩ Ωk(ω̂2) = ∅, ∀ω̂1, ω̂2 ∈ Ω̂k, ω̂1 6= ω̂2.

Given a stage scenario ω̂ ∈ Ω̂k in stage k ∈ P̂p of an approximate tree Tp, we set its realization

probability %̂ω̂ as %̂ω̂ =
∑
ω∈Ωk(ω̂) %ω. The supply or demand of each node n ∈ Nk under stage scenario

ω̂ ∈ Ω̂k, denoted by d̂ω̂,n, is set as d̂ω̂,n =
∑
ω∈Ωk(ω̂)

%ω
%̂ω̂
dω,n.
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For an approximate tree Tp, any path in the form of {ω̂p+1, ..., ω̂p} in the tree, where ω̂k ∈ Ω̂k,

represents an approximate scenario. Let Ξ̂p be the set of approximate scenarios associated with Tp.

For each ξ̂ ∈ Ξ̂p, we denote by ω̂k(ξ̂) ∈ Ω̂k the index of the stage scenario in stage k ∈ P̂p associated

with this scenario in the approximate tree Tp. Accordingly, the probability of each scenario ξ̂ ∈ Ξ̂p,

denoted by ρ̂ξ̂, is calculated by ρ̂ξ̂ =
∏
k∈P̂p %̂ω̂k(ξ̂). The supply or demand of any node n ∈ Nk

for any k ∈ P̂p in the scenario tree Tp under scenario ξ̂ ∈ Ξ̂p is denoted by d̂ξ̂,n and is set equal

to d̂ω̂k(ξ̂),n. Further, for each scenario tree Tp, p ∈ P+ \ {p}, we define the set Λ̂p,k = {(ξ̂1, ξ̂2) ∈
Ξ̂p × Ξ̂p|ω̂k′(ξ̂1) = ω̂k′(ξ̂2),∀k′ = p + 1, ..., k} which contains all pairs of scenarios (ξ̂1, ξ̂2) ∈ Ξ̂p × Ξ̂p
that are indistinguishable in stage k ∈ P̂p in the approximate tree.

5.2.2 Deriving optimality inequalities

The optimality inequalities for problems P0 and Pξ,p in the SDDP are generated based on the ap-

proximate trees Tp, where p ∈ P+ \ {p} and ξ ∈ Ξ. Given an approximate tree Tp and its associated

approximate scenario set Ξ̂p (p ∈ P+ \ {p}), the associated optimality inequalities make use of the

following additional variables:

ẑ
ξ̂,a

continuous variable, which represents the volume of the commodity allocated on arc a ∈ Ak, k ∈ P̂p under

scenario ξ̂ ∈ Ξ̂p;

û
ξ̂,n

continuous variable, which represents the inventory level at node n ∈ Nk, k ∈ P̂p under scenario ξ̂ ∈ Ξ̂p;

v̂
ξ̂,n

continuous variable, which represents the volume of the supply or demand backlogged at node n ∈ Nk,
k ∈ P̂p under scenario ξ̂ ∈ Ξ̂p.

Note that for stage p = 0, we have P̂0 = P. For problem P0, we have the following valid inequalities:

η0 ≥
∑
ξ̂∈Ξ̂0

ρ̂ξ̂

(∑
n∈N

(
hnûξ̂,n + env̂ξ̂,n

)
+
∑
a∈A

caẑξ̂,a

)
(50)

ẑξ̂,a ≤ yb ∀a ∈ A1
b ,∀b ∈ B,∀ξ̂ ∈ Ξ̂0 (51)

ûξ̂,n1
+ v̂ξ̂,n1

= d̂ξ̂,n1
+ ûξ̂,n2

+ v̂ξ̂,n2

−
∑

a∈A+(n1)

ẑξ̂,a ∀n1 = (i, t), n2 = (i, t− 1) ∈ NS ,∀ξ̂ ∈ Ξ̂0 (52)

ûξ̂,n + v̂ξ̂,n = d̂ξ̂,n + q0
n −

∑
a∈A+(n)

ẑξ̂,a ∀n = (i, 1) ∈ NS ,∀ξ̂ ∈ Ξ̂0 (53)

ûξ̂,n1
− v̂ξ̂,n1

= d̂ξ̂,n1
+ ûξ̂,n2

− v̂ξ̂,n2

+
∑

a∈A−(n1)

ẑξ̂,a ∀n1 = (i, t), n2 = (i, t− 1) ∈ ND,∀ξ̂ ∈ Ξ̂0 (54)

ûξ̂,n − v̂ξ̂,n = d̂ξ̂,n + q0
n +

∑
a∈A−(n)

ẑξ̂,a ∀n = (i, 1) ∈ ND,∀ξ̂ ∈ Ξ̂0 (55)

ûξ̂,n ≤ qn ∀n ∈ N ,∀ξ̂ ∈ Ξ̂0 (56)

ẑξ̂1,a = ẑξ̂2,a ∀a ∈ Ak,∀(ξ̂1, ξ̂2) ∈ Λ̂0,k,∀k ∈ P̂0 (57)

ûξ̂,n1
− v̂ξ̂,n1

+

t2∑
t=tp+1

∑
n=(j,t)∈N

∑
a∈A−(n)

ẑξ̂,a + dj,p+1,t2 ≤ qn2
∀n1 = (j, tp), n2 = (j, t2) ∈ ND,

∀((i, t1), (j, t2)) ∈ Ãp,∀p ∈ P \ {p},

∀ξ̂ ∈ Ξ̂0 (58)

ûξ̂,n ≥ 0 ∀n ∈ N ,∀ξ̂ ∈ Ξ̂0 (59)
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v̂ξ̂,n ≥ 0 ∀n ∈ N ,∀ξ̂ ∈ Ξ̂0 (60)

ẑξ̂,a ≥ 0 ∀a ∈ A,∀ξ̂ ∈ Ξ̂0. (61)

Proposition 4. The optimality inequalities (50)–(61) are valid for problem P0.

Moreover, for problems Pξ,p with p ∈ P \ {p} and ξ ∈ Ξ, we have the following valid inequalities:

ηξ,p ≥
∑
ξ̂∈Ξ̂p

ρ̂ξ̂

∑
k∈P̂p

( ∑
n∈Nk

(
hnûξ̂,n + env̂ξ̂,n

)
+
∑
a∈Ak

caẑξ̂,a

) (62)

ẑξ̂,a ≤ y
′
ξ,p,b ∀a ∈ A1

b ∩ Ak,∀k ∈ P̂p,∀b ∈ B,∀ξ̂ ∈ Ξ̂p (63)

ûξ̂,n1
+ v̂ξ̂,n1

= d̂ξ̂,n1
+ ûξ̂,n2

+ v̂ξ̂,n2
−

∑
a∈A+(n1)

ẑξ̂,a

∀n1 = (i, t), n2 = (i, t− 1) ∈ Nk ∩N S ,∀k ∈ P̂p,∀ξ̂ ∈ Ξ̂p (64)

ûξ̂,n1
+ v̂ξ̂,n1

= d̂ξ̂,n1
+ uξ,n2

+ vξ,n2
−

∑
a∈A+(n1)

ẑξ̂,a

∀n2 = (i, tp), n1 = (i, tp+1) ∈ NS ,∀ξ̂ ∈ Ξ̂p (65)

ûξ̂,n1
− v̂ξ̂,n1

= d̂ξ̂,n1
+ ûξ̂,n2

− v̂ξ̂,n2

+
∑

a∈A−(n1)∩Ãp−1

z′ξ,p,a +
∑

a∈A−(n1)∩Ap

zξ,a +
∑
k∈P̂p

∑
a∈A−(n1)∩Ak

ẑξ̂,a

∀n1 = (i, t), n2 = (i, t− 1) ∈ Nk ∩ND,∀k ∈ P̂p,∀ξ̂ ∈ Ξ̂p (66)

ûξ̂,n − v̂ξ̂,n = d̂ξ̂,n1
+ uξ,n2 − vξ,n2

+
∑

a∈A−(n1)∩Ãp−1

z′ξ,p,a +
∑

a∈A−(n1)∩Ap

zξ,a +
∑
k∈P̂p

∑
a∈A−(n1)∩Ak

ẑξ̂,a

∀n2 = (i, tp), n1 = (i, tp+1) ∈ ND,∀ξ̂ ∈ Ξ̂p (67)

ûξ̂,n ≤ qn ∀n ∈ Nk,∀k ∈ P̂p,∀ξ̂ ∈ Ξ̂p (68)

ẑξ̂1,a = ẑξ̂2,a ∀a ∈ Ak,∀(ξ̂1, ξ̂2) ∈ Λ̂p,k,∀k ∈ P̂p (69)

ûξ̂,n1
− v̂ξ̂,n1

+

t2∑
t=tk+1

∑
n=(j,t)∈N

 ∑
a∈A−(n)∩Ãp−1

z′ξ,p,a +
∑

a∈A−(n)∩Ap

zξ,a +
∑
k′∈P̂p

∑
a∈A−(n)∩Ak′

ẑξ̂,a


+dj,k+1,t2 ≤ qn2

∀n1 = (j, tk), n2 = (j, t2) ∈ ND,∀((i, t1), (j, t2)) ∈ Ãk,∀k ∈ P̂p \ {p},∀ξ̂ ∈ Ξ̂p (70)

ûξ̂,n ≥ 0 ∀n ∈ Nk,∀k ∈ P̂p,∀ξ̂ ∈ Ξ̂p (71)

v̂ξ̂,n ≥ 0 ∀n ∈ Nk,∀k ∈ P̂p,∀ξ̂ ∈ Ξ̂p (72)

ẑξ̂,a ≥ 0 ∀a ∈ Ak,∀k ∈ P̂p,∀ξ̂ ∈ Ξ̂p. (73)

Proposition 5. The optimality inequalities (62)–(73) are valid for problem Pξ,p, where p ∈ P \{p} and

ξ ∈ Ξ.

5.3 Primal-dual lifting

In this section, we propose a framework that lifts the cost-to-go functions through inequalities that

are generated by iteratively solving the correlated (primal) problems in the forward step and (dual)

problems in the backward step.
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In any iteration l of the SDDP, given a forward-step problem Pξ,p in stage p ∈ P \ {p} under

scenario ξ ∈ Ξl, let η∗ξ,p be the optimal solution value of variable ηξ,p of the problem, and let ζ∗ξ,ω,p+1

be the optimal objective function values of the dual backward-step problems Dξ,ω,p+1, ∀ω ∈ Ωp+1. The

primal-dual lifting method strengthens Pξ,p by iterating between solving problem Pξ,p and problems

Dξ,ω,p+1 (ω ∈ Ωp+1) to generate inequalities (42) for the cost-to-go function Ψp until a local convergence

is reached such that we have:

η∗ξ,p ≥ (1− ε)
∑

ω∈Ωp+1

%ωζ
∗
ξ,ω,p+1, (74)

where ε ∈ [0, 1] is a preset parameter.

Note that convergence is guaranteed due to the limited number of extreme points of the polyhedral

feasible regions for the problems Dξ,ω,p+1 (Benders 1962).

Similarly, this lifting procedure is also used to lift Ψ0 of problem P0 in the SDDP. However, solving

MILP models can be time-consuming. To speed this up, in the primal-dual lifting procedure for P0,

we fix the value of decision variables xb at x∗b , for each b ∈ B. Here, x∗b represents the optimal values of

variables xb returned by solving P0 before the lifting procedure. Hence, P0 is solved as an LP model

in the lifting procedure.

6 Computational experiments

We have performed extensive computational experiments to confirm the applicability and effectiveness

of our model and algorithm. In this section, we first introduce the experimental settings in Section 6.1.

Section 6.2 explains how the testing instances were generated. We then present the computational

results, which consist of two parts. In the first part (Section 6.3), we examine the impacts of the

enhancement techniques on the performance of the SDDP approach. In the second part (Section 6.4),

we compare the performance of the approach with that of other commonly used solution methods.

Interested readers can find our code implementation, data sets used, detailed results, and associated

user instructions at https://github.com/LingxiaoWu2021/SFPTMP.

6.1 Computational settings

In order to provide a thorough computational assessment of our proposed SDDP approach, we have

implemented the following four variants of the SDDP approach:

1. S0 solves the problem using the basic SDDP approach proposed in Section 4;

2. S1 is similar to S0 but also uses the feasibility inequalities of Section 5.1;

3. S2 is similar to S1 but also uses the optimality inequalities of Section 5.2;

4. S3 is similar to S2 but also uses the primal-dual lifting strategy of Section 5.3.

6.1.1 Implementation details

To alleviate the computational burden of solving the MILP model of problem P0 in the SDDP, all

variants of the approach were implemented in a three-phase framework. In the first phase, the inte-

grality constraints of P0 are dropped. In the second phase, integrality constraints on P0 are imposed.

In the last phase, we solve problem P0 with the (final) updated cost-to-go function Ψ0 to obtain the

final lower bound and solutions to P0.

We set the sample size |Ξl| = 16 for any iteration l in the SDDP approaches and the value of

parameter ε used in the primal-dual lifting in S3 was set to 1%. To construct the approximate trees

https://github.com/LingxiaoWu2021/SFPTMP
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in S2 and S3, we let

|Ω̂k| =


2, if k ∈ P̂0 and k ≤ 3,

2, if k = p+ 1 ∈ P̂p, ∀p ∈ P \ {p},
1, otherwise.

The stopping criteria are as follows. The first (resp. second) phase terminates when (i) the

improvement of the lower bound (LB) between adjacent iterations is within 0.1% in any 10 continuous

iterations or (ii) the computational time reaches 30 (resp. 100) minutes. The time limit for solving

the MILP model of P0 in any iteration of any phase is set to 20 minutes.

We implemented our algorithms in C++, and all the experiments were conducted on the Cedar

cluster of Compute Canada with 16GB of RAM in a Linux environment. We used CPLEX 12.6.3 for

solving the MILP and LP models.

In each iteration l of the SDDP, the method solves |Ξl| independent problems in the forward step

in each stage p ∈ P. Meanwhile, for each sampled scenario ξ ∈ Ξl, |Ωp| independent problems are

solved in each stage p ∈ P in the backward stage. To speed up our approach, we solve multiple inde-

pendent problems simultaneously by using parallel computing. In the experiments, the independent

problems were solved in a 16-thread environment (i.e., at most 16 independent problems were solved

simultaneously). Meanwhile, we also let CPLEX run on 16 threads when solving the MILP model of

problem P0 in the SDDP.

6.1.2 Lower bounds and upper bounds

In order to evaluate the performance of an approach, we derive the lower bound (LB) and upper bound

(UB) obtained by the approach for an instance as follows.

Let Z∗0 and δ be the (sub)optimal objective function value and the optimality gap obtained by

solving problem P0 in the third phase of the SDDP approach. Let also y∗ be the solutions of yb
variables obtained by solving this problem.

The lower bound of the instance is calculated as LB = Z∗0 (1 − δ). To obtain the upper bound,

a sample set Ξ′ ⊆ Ξ is created. If |Ξ| ≤ 10, 000, we let Ξ′ = Ξ. Otherwise, we independently and

randomly sample 10,000 scenarios from Ξ to construct Ξ′. The probability of each scenario ξ ∈ Ξ′ is

set as ρ′ξ =
ρξ∑
ξ∈Ξ′ ρξ

. Then, for each scenario ξ ∈ Ξ′ we solve problems P′ξ,p in each stage p ∈ P with

the given y∗. For deriving the upper bounds obtained by approaches S0 and S1, these problems are

solved without the optimality inequalities (62)–(73) while we solve problems with those inequalities

for deriving the upper bounds obtained by approaches S2 and S3.

Let γ∗ξ,p and η∗ξ,p be the optimal objective function value and the optimal solution value of ηξ,p
obtained by solving problem P′ξ,p, respectively. We let Z∗ξ,p = γ∗ξ,p − η∗ξ,p, which represents the total

cost associated with the decisions made in stage p under scenario ξ. Let also µξ =
∑
p∈P Z

∗
ξ,p,

µ̂ =
∑
ξ∈Ξ′ ρ

′
ξµξ, and σ2 = 1

|Ξ′|−1

∑
ξ∈Ξ′(µξ − µ̂)2.

Finally, for the case with |Ξ| ≤ 10, 000, we set UB =
∑
b∈B Fby

∗
b + µ̂, which is the “true” upper

bound for the instance. For the case with |Ξ| > 10, 000, we set UB =
∑
b∈B Fby

∗
b + µ̂ + 1.96 σ2√

|Ξ′|
,

which represents a 95%-confidence statistical upper bound for the instance. Given LB and UB, the

optimality gap of the instance is calculated by GAP = 100(UB − LB)/LB.

6.2 Instance generation

To test the performance of the SDDP approaches, we used 150 instances. These instances were

generated based on 10 seeds. Each seed represents a deterministic FPTMP instance (i.e., an SFPTMP

instance with a sole scenario). Of the 10 seeds, five were adapted from the instances originally created
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by Papageorgiou et al. (2014) for the maritime inventory routing problem (MIRP) and the other five

were generated based on the real manufacturing and iron ore transportation data from a large steel

manufacturer. We refer to the five MIRP-based seeds as type-I seeds and those based on the real data

as type-II seeds.

In each seed, a period represents one week. For generating the SFPTMP instances, we let each

stage contain six periods. Given each seed, we generated 15 SFPTMP instances. In each instance, we

let the number of stages |P| ∈ {3, 6, 9} and set the number of stage scenarios at each stage |Ωp| = 10.

The stage scenarios in any Ωp (p ∈ P) were generated by a Monte-Carlo simulation in which the

demand of each demand site i ∈ ID in each period t ∈ T is independent and generated through

the uniform distribution U [d̄it(1 −∆), d̄it(1 + ∆)], where d̄it is the nominal demand in the seed and

∆ ∈ {0.1, 0.2, 0.3, 0.4, 0.5} is a selected deviation ratio.

Details of the seeds and the settings of other parameters in the SFPTMP instances are explained

in Appendix B.

6.3 Impacts of enhancements

To investigate the impacts of the enhancement strategies proposed in Section 5, we have implemented

approaches S0, S1, S2, and S3 to solve the instances. The results are reported in Table 2. In this table,

the results of five instances that were generated based on the same type of seeds and share the same ∆

and |P| are reported as a group. The first two columns show the type of seeds and the settings of ∆ and

|P| of an instance group. Columns LB, UB, GAP report the average lower bound, the average upper

bound, and the average optimality gap generated by each solution method for solving the instances

in a group, respectively. In these columns, we use boldface to indicate the best results. Finally, the

average computational times are presented in column TIME.

The feasibility inequalities remove big-M parameters from the formulation. By comparing the re-

sults of the approaches S0 and S1 in Table 2, we can see that for most instances, the usage of these

inequalities leads to a dramatic decrease in the optimality gaps. Besides, the optimality inequalities

improve the lower bounds and upper bounds and also contribute to substantial decreases in the op-

timality gaps. Finally, we can see that S3, which uses the primal-dual lifting technique, reports the

best lower bounds and secures the smallest optimality gaps for most instance groups. The technique

is of greater value for instances with longer planning horizons and greater uncertainties in demand

and supply.

As for the solution time, the SDDP approach converges more quickly after the incorporation of

feasibility inequalities and optimality inequalities. However, the use of the primal-dual lifting technique

does slow down the solution procedure. Nevertheless, as a tactical problem, the SFPTMP is solved

only once during a long period (several months or a year), such computational times (all less than 30

minutes) are acceptable.

6.4 Comparisons with alternative methods

We next compare the performance of the SDDP approach with that of three alternative solution

methods, including a commonly used optimization solver (CPLEX) solving the MILP model and two

benchmark methods that simulate common decision policies used in practice.

6.4.1 Comparisons with CPLEX

We adopted CPLEX (under the computational settings described in Section 6.1.1) on the MILP model

of problem P to solve the instances. Table 3 summarizes the results produced by CPLEX and S3. We

first measure the sizes of the MILP model for the instances in different groups by reporting the average

numbers of variables and constraints in columns #V and #C, respectively. Column UBG reports the
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Table 2: Computational results of the SDDP algorithms.

ST |P| ∆
LB (×103) UB (×103) GAP (%) TIME (s)

S0 S1 S2 S3 S0 S1 S2 S3 S0 S1 S2 S3 S0 S1 S2 S3

I 3 0.1 174.1 199.0 200.5 200.6 233.6 204.0 201.7 201.7 38.9 2.5 0.6 0.6 54.5 40.7 57.1 105.4
I 3 0.2 181.8 199.9 201.0 201.3 223.1 204.5 203.0 203.0 26.7 2.3 1.0 0.9 63.9 33.7 47.1 151.6
I 3 0.3 192.7 201.5 202.2 202.7 216.8 206.1 205.1 205.4 16.6 2.4 1.4 1.3 94.3 40.9 49.1 192.5
I 3 0.4 194.3 202.7 202.9 203.7 214.3 206.3 206.8 205.7 13.0 1.8 2.0 1.0 94.2 35.1 47.4 186.7
I 3 0.5 211.8 212.8 212.9 213.8 218.0 217.3 216.9 216.9 3.0 2.1 1.9 1.5 114.6 40.9 48.8 264.4

Average 190.9 203.2 203.9 204.4 221.2 207.6 206.7 206.5 19.6 2.2 1.4 1.1 84.3 38.3 49.9 180.1

I 6 0.1 273.8 325.0 328.5 328.6 425.2 339.0 330.9 331.0 67.9 4.2 0.8 0.8 411.0 186.1 86.0 151.4
I 6 0.2 249.1 326.5 329.3 330.1 497.0 338.0 334.5 334.3 107.2 3.6 1.6 1.3 130.0 269.7 167.7 1079.0
I 6 0.3 293.7 333.6 335.8 337.3 425.5 345.6 342.5 342.7 57.3 3.6 2.0 1.6 596.4 207.0 168.3 612.9
I 6 0.4 298.4 337.2 337.7 340.0 421.6 347.9 347.0 346.4 49.0 3.2 2.8 1.9 531.2 240.3 144.9 772.2
I 6 0.5 310.3 336.6 336.6 339.5 376.0 348.1 347.4 345.5 30.2 3.4 3.2 1.8 562.9 175.4 177.4 818.5

Average 285.1 331.8 333.6 335.1 429.1 343.7 340.5 340.0 62.3 3.6 2.1 1.5 446.3 215.7 148.8 686.8

I 9 0.1 263.6 459.3 466.1 466.4 698.6 482.1 469.7 470.0 214.9 5.0 0.8 0.8 453.3 572.6 194.0 438.0
I 9 0.2 241.8 462.9 468.3 469.1 854.7 482.7 475.5 475.7 267.3 4.3 1.6 1.4 218.9 427.7 350.3 689.0
I 9 0.3 317.3 468.0 472.5 475.1 691.1 490.6 485.0 484.7 140.3 4.9 2.7 2.0 537.3 530.0 496.7 1570.4
I 9 0.4 349.1 475.6 477.0 481.0 676.7 494.7 493.4 492.3 111.8 4.1 3.5 2.4 464.0 473.4 419.8 1377.2
I 9 0.5 325.8 482.2 482.6 487.6 711.4 500.5 501.8 497.6 139.9 3.8 4.0 2.1 609.6 425.0 296.3 1239.9

Average 299.5 469.6 473.3 475.8 726.5 490.1 485.1 484.0 174.9 4.4 2.5 1.8 456.6 485.7 351.4 1062.9

II 3 0.1 24.0 24.0 24.0 24.0 25.0 24.2 24.0 24.0 4.6 0.8 0.2 0.2 86.3 73.0 25.3 52.7
II 3 0.2 24.2 24.2 24.2 24.2 24.2 24.2 24.2 24.2 0.0 0.0 0.3 0.3 63.5 72.2 28.1 52.1
II 3 0.3 25.2 25.3 25.3 25.3 25.3 25.7 25.3 25.3 0.4 1.5 0.3 0.1 76.6 86.0 39.1 62.2
II 3 0.4 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.2 0.0 0.0 0.1 0.1 79.5 77.9 48.5 70.3
II 3 0.5 24.6 24.6 24.6 24.6 24.6 24.6 24.8 24.6 0.0 0.0 0.6 0.0 61.5 58.3 53.6 70.6

Average 24.6 24.6 24.6 24.6 24.9 24.8 24.7 24.7 1.0 0.5 0.3 0.2 73.5 73.5 38.9 61.6

II 6 0.1 74.1 74.4 74.4 74.4 76.3 75.9 74.6 74.6 3.0 2.0 0.2 0.2 231.5 304.1 54.2 67.9
II 6 0.2 75.4 75.4 75.9 75.9 79.3 80.9 76.4 76.4 5.0 7.3 0.7 0.7 297.9 373.9 87.9 114.5
II 6 0.3 76.1 76.1 76.0 76.2 77.0 78.4 76.4 76.3 1.1 3.1 0.5 0.2 259.7 291.9 105.4 147.1
II 6 0.4 79.7 79.8 80.0 80.1 83.5 84.7 80.3 80.3 4.7 6.1 0.3 0.3 270.6 295.1 123.7 220.2
II 6 0.5 77.9 77.8 77.8 77.8 78.0 78.2 78.4 78.3 0.1 0.5 0.8 0.6 244.0 205.5 172.9 189.0

Average 76.7 76.7 76.8 76.9 78.8 79.6 77.2 77.2 2.8 3.8 0.5 0.4 260.7 294.1 108.8 147.8

II 9 0.1 118.7 119.3 119.2 119.2 124.4 122.5 119.6 119.6 5.0 2.8 0.4 0.4 549.5 689.7 128.5 157.3
II 9 0.2 119.1 119.3 120.6 120.7 127.3 131.9 121.4 121.4 6.8 10.5 0.6 0.6 603.9 652.1 140.0 243.9
II 9 0.3 120.6 119.9 122.2 122.1 139.1 133.9 123.9 123.7 15.2 11.8 1.4 1.2 654.5 556.4 306.6 319.1
II 9 0.4 125.7 125.3 127.5 127.6 135.9 143.3 129.2 128.8 8.3 14.7 1.4 0.9 782.2 675.5 477.9 642.3
II 9 0.5 120.8 120.5 121.7 121.7 135.7 125.2 124.0 122.7 12.0 4.0 1.9 0.8 757.0 697.9 499.1 746.8

Average 121.0 120.9 122.2 122.3 132.5 131.4 123.6 123.2 9.5 8.8 1.1 0.8 669.4 654.3 310.4 421.9

average gaps (in percentage) of the upper bounds obtained by S3 against those obtained by CPLEX.

Because there are more than 4.3×108 variables and 6.8×109 constraints in any instance with |P| ≥ 6,

CPLEX can only solve instances with three stages and it is unable to produce the results for larger

instances due to memory issue.

The results in Table 3 indicate that CPLEX can solve small-scale instances, obtaining optimal

solutions in reasonable computational times. Meanwhile, the SDDP approach can also obtain high-

quality solutions to these instances but in significantly shorter computational times. Furthermore, as

shown in Table 2, for instances that are out of the capacity of CPLEX, the SDDP approach serves as

a highly reliable and efficient alternative.

6.4.2 Comparisons with other benchmark methods

We have also compared the performance of the SDDP approach with that of two benchmark solu-

tion methods. The first method (BM1) simulates a decision policy ignoring capacity contracts, and
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Table 3: Computational results of CPLEX and S3.

ST |P| ∆ Model Size LB (×103) UB (×103) GAP (%) TIME (s) UBG (%)

#V (×103) #C (×103) CPLEX S3 CPLEX S3 CPLEX S3 CPLEX S3

I 3 0.1 793.5 10085.8 201.1 200.6 201.1 201.7 0.0 0.6 1815.7 105.4 0.3
I 3 0.2 795.7 10253.6 201.9 201.3 201.9 203.0 0.0 0.9 1416.2 151.6 0.6
I 3 0.3 796.1 10146.9 203.7 202.7 203.7 205.4 0.0 1.3 1932.8 192.5 0.8
I 3 0.4 794.3 10118.1 204.7 203.7 204.7 205.7 0.0 1.0 1572.0 186.7 0.5
I 3 0.5 795.7 10241.9 215.0 213.8 215.0 216.9 0.0 1.5 1508.8 264.4 0.9

Average 795.1 10169.3 205.3 204.4 205.3 206.5 0.0 1.1 1649.1 180.1 0.6

II 3 0.1 433.5 6971.8 24.0 24.0 24.0 24.0 0.0 0.2 600.3 52.7 0.1
II 3 0.2 432.9 6968.5 24.2 24.2 24.2 24.2 0.0 0.3 455.2 52.1 0.3
II 3 0.3 430.7 6812.4 25.3 25.3 25.3 25.3 0.0 0.1 339.0 62.2 0.1
II 3 0.4 432.1 6946.1 25.2 25.2 25.2 25.2 0.0 0.1 370.6 70.3 0.1
II 3 0.5 432.3 6920.2 24.6 24.6 24.6 24.6 0.0 0.0 328.3 70.6 0.0

Average 432.3 6923.8 24.6 24.6 24.6 24.7 0.0 0.2 418.7 61.6 0.1

the second method (BM2) is a deterministic solution construction approach that simulates a myopic

decision policy. In particular, when applying BM1 to solve an instance, we run S3 in which the x

variables in problem P0 are set to zero. Besides, when applying BM2 to solve an instance, we first

solve a deterministic version of problem P formulated based on the average demands and supplies.

Then, in each stage p ∈ P, we solve a problem that is defined solely by the state variables obtained

in previous stages and the observed stage scenario (without any cost-to-go functions). Note that to

ensure feasibility, the feasibility inequalities (defined in Section 5.1) are incorporated in problems in

stages p ∈ P.

For an instance, the upper bound obtained by BM1 or BM2 is derived using a large set of scenarios

generated by the method as described in Section 6.1.2. To evaluate the savings generated by the SDDP

approach, in Table 4 we report the average gaps of the upper bounds produced by S3 against those

produced by BM1 and BM2, respectively, in columns UBG1 and UBG2.

Table 4: Improvements generated by SDDP against the benchmark methods.

ST |P| ∆ UBG1(%) UBG2(%) ST |P| ∆ UBG1(%) UBG2(%)

I 3 0.1 19.8 31.9 II 3 0.1 31.2 3.9
I 3 0.2 19.1 26.7 II 3 0.2 31.1 11.0
I 3 0.3 18.9 27.3 II 3 0.3 29.1 15.5
I 3 0.4 18.2 25.0 II 3 0.4 28.9 11.5
I 3 0.5 16.7 25.5 II 3 0.5 30.4 11.6

Average 18.5 27.3 Average 30.1 10.7

I 6 0.1 24.3 35.3 II 6 0.1 27.8 9.6
I 6 0.2 23.6 37.4 II 6 0.2 25.7 33.6
I 6 0.3 22.4 42.6 II 6 0.3 25.7 15.6
I 6 0.4 21.6 37.1 II 6 0.4 23.3 30.4
I 6 0.5 21.5 39.4 II 6 0.5 24.3 25.1

Average 22.7 38.3 Average 25.4 22.9

I 9 0.1 26.2 45.2 II 9 0.1 26.5 27.9
I 9 0.2 25.6 38.3 II 9 0.2 25.5 21.5
I 9 0.3 24.4 36.1 II 9 0.3 24.3 31.7
I 9 0.4 23.8 41.7 II 9 0.4 21.3 36.9
I 9 0.5 23.2 39.8 II 9 0.5 24.9 23.6

Average 24.7 40.2 Average 24.5 28.3

As we can see from Table 4, compared to transporting all commodities through the spot market

(as in BM1), securing long-term capacities with the carriers helps reduce the total cost for a shipper

by 19% to 31%. Besides, unlike the SDDP approach, in BM2, the SFPTMP is solved by overlooking
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the distributions of uncertain demands and supplies and the interconnection between decision stages.

Therefore, the outperformance of S3 against BM2 demonstrates the value of multi-stage stochastic

optimization for solving the SFPTMP.

The cost distributions in the solutions generated by the methods are presented in Table 5. In

this table, we report the distribution of the cost components in the average total cost obtained by

each method for solving instances with the same type of generation seeds and |P|. Columns Bidding,

Spot Market, Inventory, and Backlog report the percentages of the costs associated with procuring

capacities from the bids, transporting in the spot market, holding inventories, and managing backlogs,

respectively, in the total costs. Note that for instances generated from the first type of seeds, we have

zero unit inventory costs at all sites, which explains the zero values in column Inventory for these

instances.

Table 5: Cost distributions generated by the benchmark methods and S3.

ST |P| Bidding(%) Spot Market(%) Inventory(%) Backlog(%)

S3 BM1 BM2 S3 BM1 BM2 S3 BM1 BM2 S3 BM1 BM2

I 3 44.3 0.0 31.0 19.9 71.9 20.0 0.0 0.0 0.0 35.8 28.1 49.0
I 6 54.1 0.0 32.5 20.1 81.1 19.4 0.0 0.0 0.0 25.8 18.9 48.1
I 9 59.6 0.0 35.6 18.3 84.3 16.7 0.0 0.0 0.0 22.1 15.7 47.7

Average 52.7 0.0 33.1 19.4 79.1 18.7 0.0 0.0 0.0 27.9 20.9 48.3

II 3 78.0 0.0 55.6 18.2 97.8 9.9 0.7 0.3 0.5 3.1 1.8 13.0
II 6 63.4 0.0 47.3 23.6 91.0 17.8 0.4 0.1 0.4 12.6 8.8 45.4
II 9 63.7 0.0 49.1 23.2 91.0 16.8 0.3 0.1 0.5 12.7 8.8 71.4

Average 68.4 0.0 50.7 21.7 93.3 14.8 0.4 0.2 0.5 9.5 6.5 43.3

As is shown in Table 5, S3 generates the highest proportions in the total costs for securing capacities

from the bids, indicating that it achieves the highest efficiency in freight procurement. Meanwhile,

because of the high shipping costs in the spot market, transportation contributes 71.9% to 97.8% of

the total costs obtained by BM1. Finally, we can see that BM2, which overlooks interactions between

the decision stages, is associated with the highest proportions of inventory and backlogging costs.

We have further analyzed the structures of the solutions generated by the benchmark methods

and S3. In particular, given any solution of an instance, we calculate the average per-period aggregate

distribution volume in all shipments, that in shipments under capacity contracts, and that in shipments

from the spot market. We also calculate the average per-period aggregate inventory level at all supply

sites and that at all demand sites as well as the average per-period aggregate backlog at all supply sites

and that at all demand sites. In Tables 6 to 8 we report the averages of these values derived from the

solutions generated by the methods for each set of instances with the same type of generation seeds

and |P|.

We can see from Table 6 that the total shipment volumes generated by all methods are similar.

S3 reports the highest proportions of shipment volumes under capacity contracts, followed by BM2

and then BM1. As shown in Tables 7 and 8, BM1 generates the lowest backlog levels for all groups

of instances and it also generates the lowest inventory levels at the supply sites for instances with

type-II generation seeds (where inventories at the supply sites incur non-zero costs). This is because

compared to capacity contracts, shipments in the spot market are more flexible. Hence, commodities

can be transported from the supply side to the demand side in a more timely manner, avoiding the

costly inventories or backlogs on both sides. Finally, we can also find that the myopic solution policy

(BM2) leads to the highest backlog levels on both sides.
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Table 6: Shipment volumes generated by the benchmark methods and S3.

ST |P| Total Capacity Contracts Spot Market

S3 BM1 BM2 S3 BM1 BM2 S3 BM1 BM2

I 3 1864.1 1828.5 1837.2 1455.4 0.0 1321.8 408.7 1828.5 515.4
I 6 1815.6 1795.3 1800.4 1441.0 0.0 1303.7 374.6 1795.3 496.8
I 9 1830.7 1816.3 1821.7 1483.8 0.0 1368.5 346.9 1816.3 453.1

Average 1836.8 1813.4 1819.8 1460.1 0.0 1331.4 376.7 1813.4 488.4

II 3 65.7 64.8 65.7 57.3 0.0 57.9 8.4 64.8 7.8
II 6 88.4 87.6 87.0 70.3 0.0 66.5 18.1 87.6 20.4
II 9 93.0 91.9 91.0 74.8 0.0 70.7 18.2 91.9 20.3

Average 82.4 81.4 81.2 67.5 0.0 65.1 14.9 81.4 16.2

Table 7: Inventory levels generated by the benchmark methods and S3.

ST |P| Supply Sites Demand Sites

S3 BM1 BM2 S3 BM1 BM2

I 3 1762.5 1533.4 2076.2 921.4 1820.5 699.5
I 6 1640.0 1354.7 2080.3 1032.6 1954.6 766.4
I 9 1554.6 1286.4 2030.2 1121.6 2016.2 840.0

Average 1652.4 1391.5 2062.2 1025.2 1930.4 768.6

II 3 90.0 66.8 106.4 101.7 130.9 94.5
II 6 80.8 33.0 121.1 98.0 147.2 84.7
II 9 66.6 24.2 136.5 106.0 150.1 79.5

Average 79.1 41.3 121.3 101.9 142.7 86.2

Table 8: Backlog levels generated the benchmark methods and S3.

ST |P| Supply Sites Demand Sites

S3 BM1 BM2 S3 BM1 BM2

I 3 1481.6 887.1 1828.9 559.6 535.2 878.3
I 6 1264.4 650.5 1652.1 412.3 378.4 894.4
I 9 1204.6 598.6 1575.2 369.9 348.2 886.4

Average 1316.9 712.1 1685.4 447.3 420.6 886.4

II 3 0.0 0.0 0.0 0.7 0.6 4.2
II 6 0.0 0.0 0.0 4.5 4.2 21.7
II 9 0.0 0.0 0.0 4.8 4.5 36.0

Average 0.0 0.0 0.0 3.3 3.1 20.6

7 Conclusions

In this study, we have introduced an SFPTMP in the supply chain management of a shipper that

sources freight services from the 3PL carriers. We have formulated the problem as a multi-stage

stochastic programming model and have developed an SDDP approach for solving the model. To

improve the performance of the approach, we have derived feasibility inequalities and optimality in-

equalities for the stage-wise problems and have proposed a primal-dual lifting procedure.

Extensive computational experiments have been performed. The results show that the enhancement

strategies can significantly improve the performance of the approach and that the approach can obtain

near-optimal solutions to instances of realistic scale. We have also compared the performance of the

SDDP approach and other solution methods and the results attest to the greater effectiveness and

efficiency of SDDP against its counterparts.
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The current study can be extended in several ways. First, while this study assumes that the

distribution of the uncertain parameters is given, it can be unknown in practice. Hence, it would be

interesting to develop robust optimization methods for solving the FPTMP under uncertainty such

that the distribution information of uncertain parameters is not fully available. Second, this study

assumes that the commodity can be shipped on a lane at any volume via the spot market under a

constant freight rate and with no fixed cost. Future studies may consider the case in which spot-market

transportation incurs a fixed cost and has a volume-dependent freight rate.

A Mathematical proofs

This section presents the proofs to the lemmas and propositions introduced in the main text.

A.1 Proof of Proposition 1

Let x∗ = (x∗b |b ∈ B), y∗ = (y∗b |b ∈ B), z∗ = (z∗ξ,a|a ∈ A, ξ ∈ Ξ), u∗ = (u∗ξ,n|n ∈ N , ξ ∈ Ξ), and

v∗ = (v∗ξ,n|n ∈ N , ξ ∈ Ξ) be the vectors for the values of variables xb, yb, zξ,a, uξ,n, and vξ,n in an

optimal solution (denoted by X∗) of P. We have the following lemma.

Lemma A.1. X∗ satisfies the following equalities:

min{v∗ξ,n, qn − u∗ξ,n} =0 ∀n ∈ NS ,∀ξ ∈ Ξ, (A.1)

min{u∗ξ,n, v∗ξ,n} =0 ∀n ∈ ND,∀ξ ∈ Ξ. (A.2)

Proof of Lemma A.1. Supposing (A.1) do not hold, for some n ∈ N S , we must have u∗ξ,n < qn and

v∗ξ,n > 0. Let σ = min{v∗ξ,n, qn − u∗ξ,n}. We have σ > 0.

Consider a solution (denoted by X ′) for problem P in which uξ,n = u∗ξ,n+σ and vξ,n = v∗ξ,n−σ and

other variables remain the same as in X∗. It is easy to check that X ′ is feasible. Let Z ′ and Z∗ denote

objective function values associated with X ′ and X∗, respectively. We have Z ′ − Z∗ = (hn − en)σ.

Because hn < en, Z ′ − Z∗ < 0, which is a contradiction of the optimality of X∗. Therefore, (A.1)

must hold for any optimal solution of P.

The process to show that (A.2) must hold for any optimal solution of P is similar, and thus we

omit it here.

Proof of Proposition 1. From the definition of Λp, we have (ξ1, ξ2) ∈ Λp if and only if (ξ1, ξ2) ∈ Λp′ ,

∀p′ ∈ {1, ..., p}, where p ∈ P. Then, given any (ξ1, ξ2) ∈ Λp and p ∈ P, due to constraints (10), one

must have

z∗ξ1,a =z∗ξ2,a ∀a ∈ Ap′ ,∀p′ ∈ {1, ..., p}. (A.3)

It is therefore easy to infer that∑
a∈A+(n)

z∗ξ1,a =
∑

a∈A+(n)

z∗ξ2,a ∀n ∈ Np,∀p′ ∈ {1, ..., p}, (A.4)

∑
a∈A−(n)

z∗ξ1,a =
∑

a∈A−(n)

z∗ξ2,a ∀n ∈ Np,∀p′ ∈ {1, ..., p}. (A.5)

Further, combining these two equations with constraints (5)–(8) gives us:

u∗ξ1,n + v∗ξ1,n =u∗ξ2,n + v∗ξ2,n ∀n ∈ Np ∩N S ,∀p′ ∈ {1, ..., p}, (A.6)

u∗ξ1,n − v
∗
ξ1,n =u∗ξ2,n − v

∗
ξ2,n ∀n ∈ Np ∩ND,∀p′ ∈ {1, ..., p}. (A.7)
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Finally, from the results in Lemma A.1 and equations (A.6) and (A.7), it is easy to infer that

u∗ξ1,n =u∗ξ2,n ∀n ∈ Np,∀p′ ∈ {1, ..., p}, (A.8)

v∗ξ1,n =v∗ξ2,n ∀n ∈ Np,∀p′ ∈ {1, ..., p}. (A.9)

Therefore, by solving P to optimality, we have identical decisions under scenarios ξ1, ξ2 ∈ Λp in any

stage p′ ∈ {1, ..., p}. This completes the proof.

A.2 Proof of Lemma 1

Proof of Lemma 1. Given any site i ∈ ID, let ω̄ip = arg maxω∈Ωp

∑tp
t=tp

dωi,t, and let

ω̄ip,t = arg maxω∈Ωp

∑t
t′=tp

dωi,t′ , where t ∈ Tp and p ∈ P.

Given any stages p1, p2 ∈ P with p2 > p1 and a period t2 ∈ Tp2
, for any i ∈ ID, let Ξ0 be the set

of scenarios such that ∀ξ ∈ Ξ0, ωp(ξ) = ω̄ip, ∀p ∈ {p1 + 1, ..., p2 − 1} and ωp2(ξ) = ω̄ip2,t2 . By summing

constraints (7) for site i under any scenario ξ0 ∈ Ξ0 over all periods t′ ∈ {tp1+1, ..., t2} we have

uξ0,n2
− vξ0,n2

=uξ0,n1
− vξ0,n1

+ d̄i,p1+1,t2 +

t2∑
t′=tp1+1

∑
n=(i,t′)∈N

∑
a∈A−(n)

zξ0,a ∀ξ0 ∈ Ξ0, (A.10)

where n1 = (i, tp1
) and n2 = (i, t2).

Because vξ0,n2
≥ 0 and zξ0,a ≥ 0, ∀a ∈ A−(n) the following inequality holds:

uξ0,n2
≥ uξ0,n1

− vξ0,n1
+ d̄i,p1+1,t2 +

t2∑
t′=tp1+1

∑
n=(i,t′)∈N

p1∑
p′=1

∑
a∈A−(n)∩Ap′

zξ0,a ∀ξ0 ∈ Ξ0. (A.11)

Due to constraints (9), we have

uξ0,n1
− vξ0,n1

+ d̄i,p1+1,t2 +

t∑
t′=tp1+1

∑
n=(i,t′)∈N

p1∑
p′=1

∑
a∈A−(n)∩Ap′

zξ0,a ≤ qn2
∀ξ0 ∈ Ξ0. (A.12)

Further, given any ξ0 ∈ Ξ0, let Ξ(ξ0) ⊆ Ξ be the set of scenarios such that Ξ(ξ0) = {ξ ∈ Ξ|ξ =

ξ0 ∨ (ξ, ξ0) ∈ Λp1
}. From Proposition 1, we have

uξ,n1
− vξ,n1

+ d̄i,p1+1,t2 +

t∑
t′=tp+1

∑
n=(i,t′)∈N

p1∑
p′=1

∑
a∈A−(n)∩Ap′

zξ,a ≤ qn2
∀ξ ∈ Ξ(ξ0),∀ξ0 ∈ Ξ0.

(A.13)

In addition, the structure of the scenario tree implies that
⋃
ξ0∈Ξ0 Ξ(ξ0) = Ξ, and the final result

follows directly.

A.3 Proof of Proposition 2

Proof of Proposition 2. We show that problem P′ξ,p, where p ∈ P and ξ ∈ Ξ, is feasible by constructing

a feasible solution (S) to the problem as follows.

First, in S, we let zξ,a = 0, ∀a ∈ Ap. In the sequel, for the solution to be feasible, we must have

uξ,n2
=ūξ,p−1,n1

+ v̄ξ,p−1,n1
+

t∑
t′=tp

∑
n=(j,t′)∈N

dξ,n − vξ,n2

∀n1 = (j, tp−1), n2 = (j, t) ∈ N ,∀j ∈ IS ,∀t ∈ Tp,

(A.14)



Les Cahiers du GERAD G–2022–19 27

uξ,n2
=ūξ,p−1,n1

− v̄ξ,p−1,n1
+

t∑
t′=tp

∑
n=(j,t′)∈N

(dξ,n +
∑

a∈A−(n)∩Ãp−1

z̄ξ,p−1,a) + vξ,n2

∀n1 = (i, tp−1), n2 = (j, t) ∈ N ,∀j ∈ ID,∀t ∈ Tp.

(A.15)

To show that such a feasible S exists, it suffices to show that for any n2 = (j, t) ∈ Np there exists

a vξ,n2 ≥ 0 such that:

ūξ,p−1,n1
+ v̄ξ,p−1,n1

+

t∑
t′=tp

∑
n=(j,t′)∈N

dξ,n − vξ,n2
≥ 0, (A.16)

ūξ,p−1,n1 + v̄ξ,p−1,n1 +

t∑
t′=tp

∑
n=(j,t′)∈N

dξ,n − vξ,n2 ≤ qn2
, (A.17)

if j ∈ IS and

ūξ,p−1,n1
− v̄ξ,p−1,n1

+

t∑
t′=tp

∑
n=(j,t′)∈N

(dξ,n +
∑

a∈A−(n)∩Ãp−1

z̄ξ,p−1,a) + vξ,n2
≥ 0, (A.18)

ūξ,p−1,n1
− v̄ξ,p−1,n1

+

t∑
t′=tp

∑
n=(j,t′)∈N

(dξ,n +
∑

a∈A−(n)∩Ãp−1

z̄ξ,p−1,a) + vξ,n2
≤ qn2

, (A.19)

if j ∈ ID, where n1 = (j, tp−1) ∈ N .

One can easily verify that inequalities (A.16)–(A.19) hold as long as we have:

ūξ,p−1,n1
− v̄ξ,p−1,n1

+

t∑
t′=tp

∑
n=(j,t′)∈N

(dξ,n +
∑

a∈A−(n)∩Ãp−1

z̄ξ,p−1,a) ≤ qn2
(A.20)

for the case j ∈ ID.

Note that dξ,n ≤ 0, ∀n ∈ ND and qn2
= qj , ∀n2 = (j, t) ∈ ND. Hence, if p = 1, we have Ã0 = ∅

and (A.20) holds directly as long as the original problem P is feasible. If p > 1, (A.20) holds if we

have:

ūξ,p−1,n1
− v̄ξ,p−1,n1

+

t∑
t′=tp

∑
n=(j,t′)∈N

∑
a∈A−(n)∩Ãp−1

z̄ξ,p−1,a +

t∑
t′=tp

∑
n=(j,t′)∈N

dξ,n ≤ qn2

∀n1 = (i, tp−1), n2 = (j, t2) ∈ ND,∀((i, t1), (j, t2)) ∈ Ãp−1.

(A.21)

By definition, we have
∑t
t′=tp

∑
n=(j,t′)∈N

dξ,n ≤ d̄j,p,t. Therefore, from constraints (45), we have

that (A.20) is valid for P′ξ,p with p > 1. This completes the proof.

A.4 Proof of Proposition 3

The proof is similar to that of Proposition 2 and is thus omitted here.
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A.5 Proof of Proposition 4

Proof of Proposition 4. Given any feasible solution (x,y) from stage 0, consider the problems R(x,y)

and R̂(x,y) which are formulated as follows:

R(x,y) = min
∑
ξ∈Ξ

ρξ

(∑
n∈N

(hnuξ,n + envξ,n) +
∑
a∈A

cazξ,a

)
s.t.(4)− (10), (13)− (15),

(A.22)

R̂(x,y) = min
∑
ξ̂∈Ξ̂0

ρ̂ξ̂

(∑
n∈N

(
hnûξ̂,n + env̂ξ̂,n

)
+
∑
a∈A

caẑξ̂,a

)
s.t.(51)− (61).

(A.23)

One can easily verify that these problems are feasible and bounded. Let Z1 and Z2 denote the

optimal objective function values of R and R̂, respectively. Then, because of Theorem 1 in Chapter 10

of Birge and Louveaux (2011), we have Z2 ≤ Z1. The validity of the optimality inequalities (50)–(61)

follows directly from the result.

A.6 Proof of Proposition 5

The proof is similar to that of Proposition 4 and is thus omitted here.

B Details of instance generation

In this section, we first introduce the methods for creating the two types of seeds and then explain

how the supply data were generated in the instances.

B.1 Generation of type-I seeds

The type-I seeds were generated based on five instances selected from the instance set provided by

Papageorgiou et al. (2014) for the maritime inventory-routing problem (MIRP). In each of the five

selected MIRP instances, there are one supply port and eight demand ports. Each instance covers a

planning horizon of 360 days and the (deterministic) daily supply or demand generated at each port

is provided.

We proceed as follows to convert an MIRP instance into a type-I seed. To begin with, each supply

(demand) port in the MIRP instance corresponds to a supply (demand) site in a seed. Second, in each

seed, we let a period t ∈ T contain seven consecutive days (a week) and the planning horizon consists

of 54 periods (378 days). The nominal demand d̄it at site i ∈ ID in period t ∈ T is set equal to the

sum of the daily demands of the corresponding port that are associated with period t in the MIRP

instance (we set the daily demands of the days later than the 360th day equal to those of the 360th

day in the MIRP instance).

Other parameters in a seed were generated as follows. We set the initial inventory (q0
i ) and the

maximum inventory level (qi) at each site i ∈ I to the same values as those of the corresponding port

in the associated MIRP instance. We let the unit inventory cost hi = 0, ∀i ∈ I, which is consistent

with the setting in the MIRP instances. For any site i ∈ I, its unit backlogging cost is set as ei = 0.05,

if i ∈ IS and ei = 1.1(maxj∈IS cj,i), if i ∈ ID, where cj,i is the unit spot-market transportation cost

on lane (j, i) ∈ L.

The commodity can be shipped on the lane between any supply site and any demand site. We let

the shipping time oi,j = dōi,j/7e for all (i, j) ∈ L, where ōi,j (in days) is the travel time between the
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corresponding ports in the associated MIRP instance. The unit spot-market transportation cost on

each lane (i, j) ∈ L is set as ci,j = 0.0005DISi,j , where DISi,j represents the distance (km) between

the corresponding ports in the original MIRP instance.

The bids were created as follows. Each bid is characterized by a shipment capacity range and a

shipment frequency. Let C be the maximum of the vessel capacities in the original MIRP instance,

and let Qj = min{C, qj}, ∀j ∈ I. For generating the bids on a lane (i, j) ∈ L, three shipment capacity

ranges were used, which are [b0.25Qjc, b0.5Qjc], [b0.5Qjc+ 1, b0.75Qjc], and [b0.75Qjc+ 1, bQjc]. We

also used three shipping frequencies, where the intervals between two consecutive shipments in a bid

are set to two, four, and six periods. There are thus nine combinations of capacity ranges and shipping

frequencies, and for each combination, we generate a bid. Hence, we have |Bi,j | = 9, ∀(i, j) ∈ L. The

freight rate fb of a bid b ∈ Bi,j was set as follows:

fb =


0.8ci,j , if [mb,mb] = [b0.25Qjc, b0.5Qjc],
0.7ci,j , if [mb,mb] = [b0.5Qjc+ 1, b0.75Qjc],
0.6ci,j , if [mb,mb] = [b0.75Qjc+ 1, bQjc].

Further, the variable transportation cost in each bid b ∈ B was set as gb = 0. Moreover, as for the

shipment schedules, given any bid b, the start time of its first shipment was randomly selected from the

set of periods {1, 2, 3} and the start times of subsequent shipments were set according to the shipping

frequency. The number of shipments in the bid was set to the maximum number of shipments that

can be completed within the planning horizon, which was determined by the start time of the first

shipment, the shipping frequency, and the transportation time of a shipment in the bid.

B.2 Generation of type-II seeds

We use the manufacturing and iron ore transportation data from a large steel manufacturer in China

and synthetic data to generate the five type-II seeds.

The studied steel manufacturer has two plants (plants j1 and j2) in China. From 2015 to 2019,

the manufacturer consumed some 4,700 to 5,300 thousand tonnes of iron ore each year. Iron ore is

obtained from the suppliers (mines) in Australia (supplier i1) and Brazil (supplier i2). Iron ore from

suppliers i1 and i2 is loaded at the Port of Port Hedland in Australia and the Port of Tubarao in

Brazil, respectively, and iron ore for plants j1 and j2 is unloaded at the Port of Tianjin and the Port

of Tangshan in China, respectively. We thus have four lanes for shipping the iron ore. The shipping

times and spot market transportation costs for these lanes were set as in Table B.1.

Table B.1: Shipping times and spot-market transportation costs.

Lane Supplier Plant oi,j (days) ci,j (USD per tonne)

1 i1 j1 14 25
2 i1 j2 14 25
3 i2 j1 42 55
4 i2 j2 42 55

Iron ore can be stored at the yards of both the suppliers and the plants. Considering the large

capacities of yards of the mines, we assume that there are infinite capacities for holding the iron ore

at the supply sites. We also assume that the initial inventories of the iron ore supplies in the suppliers

are zero. As for the capacities of the yards at plants j1 and j2, we have qj1 = 200 and qj2 = 150

thousand tonnes, respectively. We assume that the initial inventories in plants j1 and j2 are 100 and

75 thousand tonnes, respectively.

To promote fast delivery, the inventory holding costs at suppliers were set to be 0.1 USD per tonne

per week. Since the yards in the plants are owned by the manufacturer, we set zero inventory holding
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costs at the plants. The backlogging costs were set as 0.2 and 60 USD per tonne per period at the

suppliers and the plants, respectively.

Accordingly, each type-II seed has the same distribution network as in the real case. Further, to

generate the bids for the capacity contracts on the lanes in a seed, we used four shipment capacity

ranges ([mb,mb]), including [40, 65], [66, 100], [101, 150], and [151, 200] thousand tonnes, which are

in accordance with the capacities of Handymax bulk carriers, Panamax bulk carriers, and small and

large Capesize bulk carriers, respectively. We also used four shipment frequencies, where the intervals

between two consecutive shipments on a lane were two, four, six, and eight periods respectively. For

each lane, we generated 16 bids, each corresponding to a combination of a capacity range and a

frequency. The freight rate fb of a bid b ∈ Bi,j was set as follows:

fb =


0.8ci,j , if [mb,mb] = [40, 65],

0.7ci,j , if [mb,mb] = [66, 100],

0.6ci,j , if [mb,mb] = [101, 150],

0.5ci,j , if [mb,mb] = [151, 200].

Other parameters regarding the bids were generated in the same way described in Appendix B.1.

In each seed, the planning horizon contains 54 periods and each period represents a week. The

nominal demands in each period in each seed were generated by referring to the historical weekly iron

ore consumption data of the manufacturer in a unique one-year period from 2015 to 2019.

B.3 Settings of supplies in the instances

In any SFPTMP instance, supplies are generated only in the first period (tp) in any stage p ∈ P. That

is, we let dωi,t = 0, ∀t ∈ Tp \ {tp}, ∀p ∈ P, ∀i ∈ IS .

For SFPTMP instances generated from type-I seeds, we assume that supplies and demands are

balanced in each stage. In particular, in any of these instances, given a stage p ∈ P and a stage

scenario ω ∈ Ωp, the supply produced in the (sole) supply site in period tp under this scenario was set

equal to −
∑
i∈ID

∑
t∈Tp d

ω
i,t.

Supplies in the instances generated from type-II seeds were set to mimic the iron ore procurement

strategy of the manufacturer. In particular, supplies of iron ore come from two sources: long-term pur-

chase contracts (LPCs) and short-term agreements (SAs). The manufacturer imports approximately

1,200 and 900 thousand tonnes of iron ore through LPCs per year from suppliers i1 and i2, respec-

tively. The volume in an LPC is evenly produced by the mine within the contractual period and SAs

are used only when supplies from the LPCs cannot meet the demand in a certain period. While the

manufacturer has LPCs with both suppliers, all SAs come from supplier i1.

In this context, for an instance, we let dlpci1,p and dlpci2,p denote the supplies provided by the suppliers

in stage p ∈ P for the LPCs and let dsa,ωp be the supplies from SAs under stage scenario ω ∈ Ωp in this

stage. Then, we let dωi1,tp = dlpci1,p + dsa,ωp , where dsa,ωp = max{0,−
∑
t∈Tp(dωj1,t + dωj2,t)− d

lpc
i1,p
− dlpci2,p},

and dωi2,tp = dlpci2,p, where ω ∈ Ωp and p ∈ P.
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