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Abstract : This note provides a counterexample to a theorem announced in the last part of the
paper Analysis of direct searches for discontinuous functions, Mathematical Programming Vol. 133,
pp- 299-325, 2012. The counterexample involves an objective function f : R — R which satisfies all
the assumptions required by the theorem but contradicts some of its conclusions. A corollary of this
theorem is also affected by this counterexample. The main flaw revealed by the counterexample is the
possibility that a directional direct search method (dDSM) generates a sequence of trial points (zy)x
converging to a point z, where f is discontinuous and whose objective function value f(x.) is strictly
less than limy o f(2x). Moreover the dDSM generates no trial point in one of the two branches of f
near z,. This note also investigates the proof of the theorem to highlight the inexact statements in the
original paper. Finally this work concludes with a modification of the dDSM that allows to recover
the properties broken by the counterexample.

Keywords: Discontinuous optimization, direct search methods, generalized derivatives

Résumé : Cette note fournit un contre-exemple a un théoréme proposé dans la derniere partie de
Particle Analysis of direct searches for discontinuous functions, Mathematical Programming Vol. 133,
pp. 299-325, 2012. Le contre-exmple repose sur une fonction-objectif f : R — R qui satisfait toutes
les hypotheses requires par le théoréeme mais contredit certaines de ses conclusions. Un corollaire au
théoreme est également affecté par le contre-exemple. Le principal probleme révélé par le contre-
exemple est la possibilité qu'une méthode de recherche directe (dDSM) génére une suite d’optimiseurs
(zk )k convergeant vers un point . en lequel f est discontinue et telle que la valeur-objectif f(x,) est
strictement inférieure a limy o f(2x). De plus, la dDSM ne génére aucun point dans 'une des deux
branches de f au voisinage de x,. Cette note étudie également la preuve du théoréeme pour révéler
des affirmations incorrectes dans I’article initial. Enfin, ce travail propose une modifiation de la dDSM
permettant d’obtenir les propriétés cassées par le contre-exemple.

Mots clés: Optimisation discontinue, méthodes de recherche directe, dérivées généralisées
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1 Introduction

Derivative-free optimization is the mathematical field that focuses on nonsmooth optimization prob-
lems with lack of derivatives (see, e.g., [1, 3, 4]). The generic problem is
minimize flx) st xeq,

where f : R™ — R U {+o0} is nonsmooth and the feasible region 2 is a nonempty subset of R™. A
class of derivative-free algorithms well studied in the literature is the so-called directional Direct Search
Methods (ADSM). When f has bounded level sets, a dDSM generates a so-called refined point x. and
a set D of so-called refining unitary directions. In addition, when f is locally Lipschitz-continuous
at z,, it is known that the Clarke generalized derivative f¢& is nonnegative at x, in each refining
direction d € D N Hq(x.), where Hq(x,.) stands for the hypertangent cone to Q at x.. Relaxing
this last continuity assumption, and thus minimizing a possibly discontinuous objective function, is
challenging. The paper [5] settles several results about the behavior of a dDSM in that context.

The main results of this paper (precisely [5, Theorem 3.1] and [5, Theorem 3.2]) show that, if a
dDSM generates a refining subsequence satisfying f(xx) — f(x.), then the Rockafellar generalized
derivative f5, (applicable to discontinuous functions, as opposed to the Clarke generalized derivative)
is nonnegative at z, in all directions d € D N Tq(x,), where To(z.) stands for the tangent cone to 2
at z,. These important results extend the previous analyses to discontinuous functions.

At the end of the paper, two additional results (precisely [5, Theorem 4.1] and [5, Corollary 4.1])
attempt to derive sufficient conditions on the refining subsequence to guarantee that f(xzy) — f(zx).
Unfortunately, to the best of our knowledge, one of the statements from [5, Theorem 4.1] is incorrect,
which also affects the validity of [5, Corollary 4.1]. The present work focuses on this inexact statement.

A dDSM iteratively repeats a two-steps process formalized in [5, Algorithm 2.1]. First, an optional
Search step evaluates some points anywhere in R". Second, a mandatory Poll step samples f around
the current incumbent solution z; according to some chosen step parameter aj > 0 and set Dy of
directions. For a given sequence (xy; ax; D)ren, a so-called refining subsequence (indexed by K C N)
to a refined point x, and a set D of refining unitary directions mean that the three following conditions
are satisfied: (i) each iteration indexed by k € K is unsuccessful (that is, all Search and Poll trial
points fail to dominate the incumbent solution); (i) (xg)rex converges to . and (ag)rex converges
to 0; (iii) any direction in D is the limit of a subsequence of refining normalized directions (HZ—’ZH) keK,
where 0 # di € Dy for all k € K; C K. Following this terminology, [5, Theorem 4.1] and [5,
Corollary 4.1], plus [5, Assumption 2.1] and [5, Assumption 4.1] they rely on, are stated as follows.

[5, Assumption 2.1] The level set L(zg) = {z € @ : f(z) < f(zo)} is bounded. The
function f is bounded below on L(zg).

[5, Assumption 4.1] The function f is such that there exists a neighborhood B of x,
(a limit point of a refining subsequence) which admits a finite partition B = U5 B; such
that, for alli € {1,...,ng},

1. int(Bi) 7’5 (Z),
2. cl(B;) has the exterior cone property (see [5, Definition 4.1]),

3. f is Lipschitz-continuous in int(B;) and can be continuously extended from int(B;)
to 8BZ

[5, Theorem 4.1] Consider a refining subsequence (z)gex converging to =, € € (and
note that [5, Assumption 2.1] is required for the existence of such a subsequence). Assume
that f is lower semicontinuous at z, and satisfies [5, Assumption 4.1]. Let the sets of
refining directions for z, corresponding to any infinite subsequence of K be dense in the
unit sphere.
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If x, belongs to the interior of a partition set in {Bi,..., By}, then f&(z.;v) > 0 for all
refining directions v € Tq(z.) (assuming here also that Hqo(z.) is nonempty).

Otherwise, there exists a subsequence K’ C K and a partition set B’ € {By,..., By} such
that (i) (zx)kerx C cl(B’), (ii) there is an infinite number of poll points, corresponding to
iterates in K, in int(B’), and (iii) there is an infinite number of poll points, corresponding
to iterates in K, in R™\ cl(B’).

[5, Corollary 4.1] Under [5, Assumption 2.1] and the assumptions of [5, Theorem 4.1]
and when np = 2, there exists a subsequence K, C K and a partition set B, € {By, B2}
such that, when z, is in the border of the two partition sets,

1. B. satisfies the properties stated for B’ in [5, Theorem 4.1],
2. limke[(* f(l‘k) = f(x*)

The present note provides in Section 2 a counterexample to [5, Theorem 4.1] and [5, Corollary 4.1].
More precisely, Section 2.1 constructs an unconstrained optimization problem with a single-variable
real-valued objective function f : R — R, Section 2.2 proposes a specific dDSM instance, and Sec-
tion 2.3 shows that the counterexample satisfies all the assumptions required in [5, Theorem 4.1] and [5,
Corollary 4.1] but contradicts some of their conclusions. An analysis of the proofs of [5, Theorem 4.1]
and [5, Corollary 4.1] is provided in Section 3 to identify the incorrect steps.

A second objective of the present work is to propose in Section 4 an adaptation of [5, Algorithm 2.1]
which recovers the properties broken by the counterexample. Section 4.1 introduces this adaptation,
relying on a strategy proposed in [2]. It is based on the evaluation of a few additional points at
each iteration to asymptotically evaluate a dense set of points around z,, thus it evaluates points in
each branch of f near x, and reveals any discontinuity. This leads to Theorem 1, stated and proved
in Section 4.2, which claims results similar to [5, Corollary 4.1] under an assumption similar to [5,
Assumption 4.1] but without requiring ng = 2.

2 A single-variable unconstrained counterexample

The single-variable real-valued objective function f : R — R in this counterexample is illustrated
in the left part of Figure 1. It possesses local minima at x = g x 2¢ for each integer ¢ € Z. The
dDSM parameters are chosen so that each incumbent solution lies at one of these local minimizers and
the corresponding step parameters are sufficiently small so that each Poll step results in a failure. A
Search step is added only at odd-index iterations, generating a trial point at the next local minimizer to
the left of the current incumbent solution. The poll size parameter is halved at unsuccessful iterations,
and remains constant at successful ones. Hence, by construction, all even-index iterations fail, while

all odd-index iterations succeed, and the sequence of the incumbent solutions converges to the origin.

1.84
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p(x)
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Figure 1: The function f (left plot), and the polynomial p (right plot) used to construct f.



Les Cahiers du GERAD G-2022-56 3

2.1 Construction of the objective function

This section describes the construction of the discontinuous objective function f : R — R illustrated
in the left plot of Figure 1. On the closed interval R™, it is defined as the convex quadratic function
given by f(z) = (v +1)? — 2 for all z € R™. On the open interval R}, it is constructed from the
polynomial p : [1,2] — R illustrated in the right plot of Figure 1 and given by

p(z) = —18 + 60z — 6922 + 342° — 62* for all x € [1,2].

It satisfies p(1) = 1, p(2) = 2, p'(1) =p' (2) =p'(2) =0, p”(1) < 0, p”(2) <0, p” (3) > 0. Hence p
has a unique local minimizer at x = % and two local maximizers at the endpoints of the interval [1, 2].
The objective function f is constructed on R} by scaling the polynomial p. Precisely, f equals to 2p
on the interval 2 x [1, 2], to p on [1,2[, to £ on 3 x [1,2[ and, in general, to 2°p on the interval 2 x [1, 2]
with ¢ € Z. Hence, on each interval 2¢ x [1,2] with £ € Z, f has exactly three stationary points (given
by a unique local minimizer at x = % x 2% and two local maximizers at the endpoints).

To summarize, consider the unconstrained optimization problem (2 = R) given by

minimize f(x),

where
(x+1)2-2 ifz<0,

r) = for all z € R.
fle) 2%(%) if ¥ € 2¢ x [1,2[ with ¢ € Z,

Proposition 1. The function f satisfies [5, Assumption 2.1] and [5, Assumption 4.1] with x, = 0.

Proof. [5, Assumption 2.1] is satisfied and [5, Assumption 4.1] holds for z, = 0. Indeed, . = 0 has a

neighborhood B =] — 2, 2[ that can be partitioned as B = By U By with B; =] —2,0] and By =0, 2].
Then, for both i € {1,2}, int(B;) # 0, f is Lipschitz-continuous on B; and can be continuously
extended to 9B;, and cl(B;) has the exterior cone property. O

2.2 Construction of the dDSM instance

This section describes a dDSM instance to minimize f. The starting point is zg = g and the initial step
parameter is og = i. The Poll sets of directions are Dy, = {—1,1} for all ¥ € N. The step parameter
is updated as apy1 = ay if the iteration £k finds a better point than the incumbent solution xy,
and agq1 = % otherwise. The Search step generates no trial point when the iteration number £ is
even, and returns a single trial point ¢ = x; — 5oy when k is odd.

These parameters are chosen so that, at each even iteration k = 2¢ with ¢ € N, the incumbent
solution x4 is the local minimum of f on the interval 277 X [1, 2], the Poll step fails because all its
trial points lie in that interval, and the Search step running on the following odd iteration 2g + 1
generates the trial point corresponding to the next local minimizer on the left of 29, and located on the
interval 27(@+1) x [1,2]. Hence the sequence of incumbent solutions (z)ren converges to the origin,
the sequence of step parameters (ay)ren converges to 0, and both directions dy = —1 and dy = 1 are
considered at each even iteration. These claims are formalized in the next result.

Lemma 1. The sequences of incumbent solutions () and of step parameters («y)y satisfy

5 _ 1 _
Vg € N, I2q21><2 q:$2q+1, aquEXQ q:2042q+1.

At each even iteration k = 2¢ with ¢ € N, the Poll step fails after evaluating both trial points x4 +
Oéqu1 and Tog + Oéqug.
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Proof. The proof is done by induction over ¢ € N.

Iteration 0 starts with zg = g and ag = i. It is an even iteration and, therefore, there is no Search
step. The incumbent solution zg is a local minimizer on the interval [zg — ag, xo + ag] = [1, %] and,
therefore, the two candidates zg + agdy and xg 4+ apds generated by the Poll step fail to dominate zg.
Thus iteration 0 is unsuccessful, hence z1 = zg = % and ap = %ao = % x 271, Then the induction

statement holds for ¢ = 0.

Now consider ¢ € N,, and assume that the induction statement holds for ¢ — 1. This implies that
x 274 Tt is

iteration 2q — 1 starts with waq_1 = Ta(q—1)4+1 = % x 2=(a=1) and Q2g—1 = Qig(qg—1)41 =
x 2—(¢—1) _

an odd iteration, so the Search step generates the trial point to,_1 = Z2q—1 — dvgq—1 =

5 x 277 =5 x 279 This trial point satisfies f(taq_1) = % < f(x2g—1). Hence iteration 2¢ — 1
is a success and iteration 2¢ starts with xgq = t2q—1 = % x 277 and apq = pg—1 = % x 279, This
is an even iteration and, therefore, there is no Search step. The incumbent solution za, is a local
minimizer on the interval [zog — aq, Tog + 2] = 277 X [1, %] and then, the two candidates za, + agqds
and xo; + agqds generated by the Poll step fail to dominate xo,. Thus iteration 2¢ is unsuccessful,
hence z2q41 = T2g = g x 277 and agq41 = %Oégq = i x 2@t Then the induction statement holds

for ¢ € N, if it holds for ¢ — 1, which completes the proof. O

s s =

The sequence (zy;ar; Di)ren constructed above satisfies the requirements of [5, Theorem 4.1]
and [5, Corollary 4.1]. This claim is formalized in the next proposition.

Proposition 2. The sequence (zy;ax; Di)ken is a refining sequence which converges to the refined
point z, = 0 and the refining set of directions D = {—1,1} is dense in the unit sphere.

Proof. Lemma 1 proves that the sequence of incumbent solutions (xy)ren converges to x, = 0 and that
the sequence of poll parameters (o )ren converges to 0. Furthermore, for each even value of k, the Poll
step evaluates xp+ayd for all d € Dy, = {—1,1}. Thus the set of refining directions is D = {—1,1}. O

2.3 Contradiction to some conclusions of [5, Theorem 4.1] and [5, Corollary 4.1]

Propositions 1 and 2 show that the counterexample satisfies all the requirements of [5, Theorem 4.1]
and [5, Corollary 4.1]. In that context [5, Theorem 4.1] claims that there exist a subsequence (indexed
by K’ C N) and ¢ € {1,2} such that the Poll step fails at each iteration k € K’ and

xy € cl(By), xy € cl(B;),

. !/
(a): Vke K, { z), + apds € int(By), o + ogdy € R\ cl(By).

and  (b): VkeK', {

In addition [5, Corollary 4.1] asserts that
(€ Jim fla) = fa.).

In the counterexample, the sequence of poll trial points has no element in B; = ] — 2, 0] containing
the refined point x, = 0 on its border. Thus, the claim (a) holds while the claims (b) and (c) are false.
Indeed, by restricting to i = 2 (since xy, ¢ cl(By) for all k£ € N) and to the indexes K = 2N where the
Poll step fails, the claim (a) holds with any K’ C K. However, for any K’ C K, limgeg f(z) =0 #
—1 = f(z.) and the trial point x + ard; = 277 belongs to By for all k = 2¢g € K’ with ¢ € N. Hence
the claims (b) and (¢) are incorrect.

3 Analysis of the proof leading to incorrect conclusions

The current section investigates the proof of [5, Theorem 4.1] in its general context. In the paper [5],
this proof is divided into six paragraphs that are summarized in the following six steps. An additional
seventh step leads to [5, Corollary 4.1]. The error in the proof lies in the fifth step.
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Denote i € [1,np] such that x, belongs to the partition set B;. First, the authors restrict the proof
to the MADS algorithm since the proof can be easily adapted to other dDSM. Second, they address
the case where x, € int(B;). Third, when z, € 0B;, the authors address first the subcase where all
incumbent solutions xj, lie in the borders of the partition sets. In the remaining subcases, they extract
a subsequence (indexed by K; C K) such that z;, € int(B;) for all £ € K;. Since the set of refining
directions is dense in the unit sphere, they extract a second subsequence (indexed by K C K7) such
that, at any iteration k € K5, some Poll trial points belong to int(B;). Fourth, the authors create a
function f Lipschitz-continuously extending f from B; to cl(B;). To the best of our knowledge, these
four steps are all valid.

Then, in the fifth paragraph, the authors aim to prove by contradiction that some of the Poll
points associated with iterations k € Ky do not belong to cl(B;). Their proof involves a function f
extending f from B; to R™ such that f = f on B;, f is Lipschitz-continuous on R™ and f is locally
strictly decreasing at any z € dB; in all directions belonging to a cone with nonempty interior. To the
best of our knowledge, the construction of f is valid. However, the authors consider a direction d on
which f is strictly decreasing at x, and erroneously claim that the Clarke derivative f&(z.;d) is thus
strictly negative. The error in the proof lies in this incorrect claim. Indeed, the fact that fis strictly
decreasing at x, in a direction d does not imply that fg(z*, d) is strictly negative (for example, the
single-variable function  — — |z| has a Clarke derivative equaling 1 at = = 0 in both directions d = 1
and d = —1). The following quote highlights the error.

[Erroneous claim in the fifth paragraph of the proof of [5, Theorem 4.1]] Let us
assume that all poll points associated with the refining subsequence belong to cl(B;). We
will see that this leads us to a contradiction. [...] Let f be the extended function (and L
its Lipschitz constant). We then obtain that

felzwv) =[] >0,

for all refining directions v, which is a contradiction since these directions are dense in the
unit sphere and f is locally strictly decreasing from x, along all directions in a cone of
nonempty interior.

The sixth paragraph, which considers the above claim as true, deduces that there exists a third
subsequence (indexed by K3 C Ks) for which the Poll step at iterations k € K3 generates trial
points ty = xp + agdy satisfying f(tx) > f(xx) and t; ¢ cl(B;). This concludes the proof of [5,
Theorem 4.1]. Finally a seventh paragraph, also relying directly on the above claim, leads to [5,
Corollary 4.1]. In the case np = 2, and arbitrarily denoting ¢ = 2, the authors claim that some poll
trial points belong to By and some to By for all k € K3. Then, the limit of the sequence (f(xk))kek,
equals f(z.) via the lower semicontinuity of f at z, and the failing Poll steps at iterations k € Kj.
To the best of our knowledge, these last two steps are incorrect without assuming the inexact claim
from the fifth paragraph. Therefore their conclusions are not valid in general.

4 An adapted dDSM to handle the counterexample

The counterexample introduced in Section 2 shows that a sequence of incumbent solutions generated
by a dDSM may approach a discontinuity without noticing its existence. Section 4.1 proposes an
adaptation of [5, Algorithm 2.1] (see Algorithm 1) which avoids this drawback, as shown by the new
convergence Theorem 1 stated and proved in Section 4.2.

4.1 A revised algorithm with a Revealing Poll step

This section adds a second Poll step to [5, Algorithm 2.1] to overcome the aforementioned drawback.
This so-called Revealing Poll step has been introduced in the literature as a part of the DISCOMADS
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algorithm [2] (which is a variant of a dDSM called the MADS algorithm) designed for a framework
differing from the present work (including additional mechanisms to push incumbent solutions away
from discontinuities). At each iteration, the Revealing Poll step evaluates at least one random
mesh point in a ball of constant radius centered at the current incumbent solution. Therefore, when
the sequence of incumbent solutions approaches a refined point z, at which f is discontinuous and
when the mesh becomes sufficiently fine, the Revealing Poll step eventually evaluates points in each
branch of f that has a nonempty interior near x,. This property allows to correct and to strengthen
the convergence analysis provided in [5], as shown in the next Section 4.2.

Algorithm 1 below encloses the addition of a Revealing Poll step to [5, Algorithm 2.1]. Precisely,
the Search step, the Poll step and the Step size parameter update follow [5, Algorithm 2.1].
Also, the forcing function p (assumed to be continuous and nondecreasing on Rt with p(t)/t — 0
as t N\, 0) is extracted from [5, Algorithm 2.1]. Hence the only novelty lies in the Revealing Poll
step, with its parameter R > 0 in the Initialization step.

Algorithm 1 Directional direct-search method (following [5, Algorithm 2.1], except for the additional Revealing Poll step)

Initialization
Choose zg € Q with f(xzg) < 400, g > 0, 0 < f1 < B2 < 1, v > 1 and a constant radius R > 0 for the
Revealing Poll step. Let D be a (possibly infinite) set of positive spanning sets.
fork=0,1,2, ... do
Search step
Define a finite (possibly empty) set S C R™. Denote t; € argmin{f(zx) — p(||t — zk||) : t € S N Q}. If
f(tr) < f(zg) — p(||t — zk]), set xx+1 = tx and skip the next two steps.

Revealing Poll step
Randomly define a nonempty finite set D according to the uniform independent distribution over the closed
ball of radius R centered at 0. Denote P = {z} +d:d € D} and ty € argmin{f(xzx) — p(|[t —2x||) : t €
PrNQY. If f(te) < f(or) — p(llt — zk||), set £x1 =t and skip the next Poll step.

Poll step
Choose Dy, € D. Denote Py, = {x) + ard : d € D} and t) € argmin{ f(zr) — (||t — zx|]) : t € P, N Q}. If
ftr) < f(zk) — p(||t — zk]|), then set z41 = tg. Otherwise, set zp41 = xk.

Step size parameter update

If 141 # o, increase the step size parameter as agy1 € [y, voy]. Otherwise strictly decrease the step size
parameter as agy1 € [510%7 Bgak}.

Algorithm 1 evaluates the trial points P, = P U Py and trial directions Dy, = Dj U Dy, at each
unsuccessful polling iteration £ € N. Hence, the definition of a refining sequence is adapted as follows.
A refining subsequence (xy;auy; Di)rerx with corresponding refined point x. and set D of refining
unitary directions satisfy the three following conditions: (i) f(t) > f(xr) — (||t — zk]|) for all ¢t €
Sk UPy; (ii) (z1)kex converges to . and (o )rex converges to 0; (iii) any direction in D is the limit
of a subsequence of refining normalized directions (”Z—’;H) kek, where 0 # d, € Dy for all k€ K1 C K.

4.2 Analysis of the revised algorithm

Algorithm 1 inherits the properties of [5, Algorithm 2.1] since the Revealing Poll step can be viewed
as a specific Search step. This section proves that Algorithm 1 has an additional asymptotic result
sufficiently strong to correct and generalize [5, Theorem 4.1] and [5, Corollary 4.1]. This result is
stated below as Theorem 1 and is based on the next Lemma 2, which is similar to [2, Lemma 4.12],
and on Assumption 1 which replaces [5, Assumption 4.1]. In the sequel, B,.(z) denotes the closed ball
of R™ of radius r > 0 centered at € R™, and S™ denotes the unit sphere in R™.

Lemma 2. Let (zp;ar; Dk)rex be a refining subsequence generated by Algorithm 1 with refined
point z, and set D of refining unitary directions. The set Upec x Py is almost surely dense in the closed
ball Br(z.) and D is almost surely dense in S™.
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Proof. This result is proved in [2, Lemma 4.12] in the case of the MADS algorithm. The current proof
focuses on the general case of a dDSM. Let € > 0.

First, let w € S™ and let us prove that B.(u) contains a direction d € D. Recall that each element
of the infinite set Upcx D], is drawn from the uniform independent distribution on Bgr(0). Then,
almost surely there exists an infinite subset of K denoted L such that for all £ € L, the random
event {”%:ll” :d € D} NB.(u) # 0 happens. Let (Hg—:”)keL with di, € Dj, and Hg—:” € B.(u) forallk € L.

Since B.(u) is a compact set, (ﬁﬁ)kGL has an accumulation unitary direction d belonging to DN B, (u).

Second, let y € Br(z«), and let us prove that there is a Revealing Poll trial point € Ugex P
that belongs to B.(y). Since x, is a refined point of (zx)krex, there exists a subsequence (indexed
by K7 C K) such that ||zx — x| N\, 0 with & € K;. Thus, there exist another subsequence (indexed
by K> C Kj) such that the distance d(y, Br(2x)) N\ 0 and an index kg € K such that d(y, Br(zx)) < §
forallk € K5 ={k:k € Ko, k > ko}. Then, denoting ©) = int(Br(x.)NB:(y)NBr(zy)) for all k € K3
and vol(-) the volume of a set, one has

vol (BR(l‘k) \ O) < vol (BR(xko) \ 6190)

0 # int(O) = O, C Bgr(xr) and 0 vol (Br (1)) < vol (Br(r,)

IN

< 1,

for all k € K3. Indeed, O is a nonempty open subset of Br(zy) for all k¥ € K3. The second inequality
follows from vol(Br(zx)) = vol(Br(zk,)) and Br(zk) \ Or = Br(zr) \ (AU B:(y)) and ||z — 2] 0
for all k € K5. The first and third inequalities follow from 0 < vol(Bgr(xr) \ Ok) < vol(Br(zk)), since
Oy, is an open set included in Br(zy) for all k € K.

Denoting Ej the random event P N Oy # () conditionally to z; for any k € Kj, the proof is
complete if at least one of the events (Fj)rer, happens. The probability of any of the events Ej is

vol(BR(azk)\@k)>#P’: > 17V01(BR($ko)\@ko) — ¢ >0,

vol (Br(z)) vol (Br(zk,))
where #P; > 1 denotes the number of trial points in the Revealing Poll step at iteration k.

Thus, for any k£ € K3, P(E)) is bounded below by a strictly positive constant c¢. Since moreover
the events (Fk)rek, are all independent, then almost surely at least one of them happens. O

P(Ey) = 1(

Assumption 1. Any refined point has a neighborhood B with a finite partition B = U}:5, B; satisfying
the first and third statements of [5, Assumption 4.1] and cl(B;) = cl(int(B;)) for each i € [1,ng].

Assumption 1 replaces [5, Assumption 4.1], changing the requirement involving the exterior cone
property on each branch of f by a requirement that no branch has a meagre subset non-adherent to
its interior. Then, with the Revealing Poll step and Lemma 2, the following Theorem 1 holds.

Theorem 1. Under [5, Assumption 2.1] and Assumption 1, let . €  be the refined point and D be the
set of refining unitary directions of a refining subsequence (zy; ax; Di)rex generated by Algorithm 1.

Then D is almost surely dense in S™. If f is lower semicontinuous at x,, then the partition set B, €
{B1,...,Bny} for which z, € B, satisfies

1. if z, € int(B.), then limgex f(xr) = f(xx) and f&(z.;d) > 0 for all d € DN To(z.);
2. otherwise z, € 0B, and there exists a subsequence (indexed by K, C K) such that x; € cl(By)
for all k € K., limgek, f(zx) = f(xx), and Ugek, Pk is almost surely dense in B N Bgr(z.).

Proof. The first three steps mentioned in Section 3 remain valid in the present framework. The
remaining steps are not required. Thanks to these three steps, the proof is restricted to p = 0, the case
where x, € int(B,) is proved and, when z, € dB,, there exists a subsequence (indexed by K; C K)
such that z, € cl(B,) for all £ € K;. Recall that, in contrary to the proof of [5, Theorem 4.1]
and [5, Corollary 4.1], the set of trial points at any iteration k € N is P, = P] U Py instead of P.
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Set K, = K;. Lemma 2 ensures that D is almost surely dense in the unit sphere. Hence, it suffices to
show that Ugeg, Py is dense in B N Br(x.), and that f. = limgeg, f(zx) equals f(z.).

First, let us prove that Ugex, Py, is almost surely dense in B N Bgr(z.) and in B, N Br(z.). Recall
that, for any sets S; and Sq, c1(S1 N S2) = cl(S1) Ncl(S2) when 951 NOS2 C 9(S1 N S2), and note that
O(int(B)) N A(int(Br(z+))) C d(int(B) Nint(Br(z.))) and 0B N OBr(xz.) C (B N Br(x)). Note also
that Assumption 1 leads to cl(int(B)) = cl(B). Then, Lemma 2 guarantees that Uxck, Pk is dense in
cl(int(B N Br(zy))) = cl(int(B) N int(Br(z.)) = cl(int(B)) Ncl(int(Br(z.))) = cl(B) Ncl(Br(z.)) =
c(BNBr(x.)). Then Ugck, Pk is dense in BNBg(x,). The second claim holds by a similar argument.

Second, let us prove that limgeg, f(zr) = f(z.). The sequence (f(zx))kek, is decreasing and
bounded below, thus it converges, and f. > f(x.) by lower semicontinuity of f at x.. Moreover,
assuming that f, > f(x,) raises a contradiction. Indeed it implies that f(xy) > f(z4) + ¢ for some
e >0and all k € K. Then inf{f(x) : ¢ € Uper,Pr} > f(xx) + € since f(x) > f(xy) for all k € K,
and « € Pg. Thus inf{f(z) : v € (Uger.Pr) N Bs} > f(x.) + €. This contradicts the continuity at z.
of the restriction of f to B, since Uge i, Pk is almost surely dense in B, N Br(x.). O

Following [5, Theorem 4.1], its corollary [5, Corollary 4.1] attempts to provide sufficient conditions
to guarantee that a dDSM generates a refining sequence (zx)rex with a refined point x, satisfy-
ing limgex f(zr) = f(xx). Theorem 1 recovers this property. It also guarantees that, for any value
of np, an infinite subset of each branch of f near x, is evaluated, while [5, Corollary 4.1] claims this
property under the restriction ng = 2. Note that Theorem 1 is established under Assumption 1 which
replaces [5, Assumption 4.1] (precisely the exterior cone property is replaced by the assumption that
cl(Bi) = cl(int(B;)) for each 7). Finally Theorem 1 also ensures the density of the set of refining di-
rections, which is required in [5, Theorem 3.2] but not ensured by [5, Corollary 4.1]. Consequently [5,
Theorems 3.1 and 3.2] remain usable.

4.3 Algorithm 1 handles the counterexample

This section shows how Algorithm 1 handles the counterexample constructed in Section 2, thanks to the
Revealing Poll step. Consider the dDSM constructed in Section 2.2 with the addition of a Revealing
Poll step which generates a single trial point per iteration with the polling radius R > 0 chosen as R = 2
for the ease of presentation. This instance of Algorithm 1 satisfies the next Proposition 3, proving
that the counterexample constructed in Section 2 is addressed. The proof of this proposition can be
adapted to remain valid with any polling radius R > 0.

Proposition 3. The aforementioned instance of Algorithm 1 almost surely generates a refining subse-
quence of (zx; ag; Di)ren with the refined point 2, = —1 (the global minimizer of f) and D = {-1,1}
as the set of refining unitary directions.

Proof. Denote I = [—1/2—1,0] and note that f(z) < 0 if and only if 2 € I. If there exists ky € N such
that zy, € I, then all incumbent solutions z, with k > ko belong to I as well, and thus Algorithm 1
necessarily converges to x, = —1 since it is the only point satisfying some optimality conditions on I.
Hence it suffices to prove that the index kg almost surely exists.

At any even iteration k € 2N, the Revealing Poll step is executed and the incumbent solution

satisfies x < xg = % Then, if z; > 0, the Revealing Poll step has a probability 27% > 2_4“ = %
to generate a trial point ¢ € [z — 2,0] C [-2,0] C I which would imply that z+; = ¢, € I. Thus
there almost surely exists ky € N such that x; € I, which concludes the proof. O

5 Discussion

This work proposes a counterexample to a result announced in [5] on direct search methods applied
to discontinuous functions. It shows in the one-dimensional case that a dDSM may converge to a
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point of discontinuity without noticing it, since it evaluates points in only one of the branches of the
function near the refined point. This counterexample may be generalized to any dimension. The paper
also identifies the incorrect step in the proof and proposes an algorithmic modification that recovers
the validity of the results presented in [5]. Future works could improve this modified algorithm in
order to save some evaluations of the function. Another perspective for future works could consist in
analyzing additional hypotheses on the objective function and on the domain to preserve the validity
of the results without modifying the algorithm.
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