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Abstract : In multi-robot missions, relative position and attitude information between robots is
valuable for a variety of tasks such as mapping, planning, and formation control. In this paper, the
problem of estimating relative poses from a set of inter-robot range measurements is investigated.
Specifically, it is shown that the estimation accuracy is highly dependent on the true relative poses
themselves, which prompts the desire to find multi-robot formations that provide the best estimation
performance. By direct maximization of Fischer information, it is shown in simulation and experiment
that large improvements in estimation accuracy can be obtained by optimizing the formation geometry
of a team of robots.

Keywords: Localization, state estimation, ultra-wideband, optimization, lie groups
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1 Introduction

The ability for a robot, or agent, to determine the relative position and attitude, collectively called

pose, of another robot is an important prerequisite in multi-robot team applications. Tasks such

as collaborative mapping, planning, and formation control usually require relative position or pose

information between the robots. This functionality has been achieved using various sensors, such as

cameras with object detection [1], or with infrared emitters/receivers [2].

Ultra-wideband (UWB) is a type of radio signal that can be timestamped with sub-nanosecond-level

accuracy at both transmission and reception [3]. As such, UWB is commonly used to obtain about

10-cm-accurate range (distance) measurements between a pair of UWB transceivers called tags. The

transceivers’ small size, weight, and cost make them an attractive sensor for many robotics applications,

including relative position estimation in multi-robot scenarios. By placing one or more tags on each

robotic agent, a completely self-contained relative positioning solution is possible [4, 5], which does not

depend on any external infrastructure such as static UWB tags, called anchors, or a motion capture

system.

In this theme of infrastructure-free relative position estimation, a wide variety of approaches exist

in the literature. For example, inertial measurement units (IMUs), visual odometry or optical flow

have been used along with a single UWB tag on each agent [6–10]. However, these single-tag-per-agent

approaches typically have a persistency of excitation (POE) requirement. That is, agents must be under

persistent relative motion for relative states to be observable [11, 12]. This can be energy intensive and

impractical, as a static or slowly-moving team of agents will have drifting position estimates. One way

to eliminate the POE requirement is to use visual detection of other agents, as in [13], which also uses

visual odometry and UWB ranging. Although their solution is accurate, visual object detection can be

computationally expensive, and the agents must periodically enter each other’s camera field-of-view.

Another class of approaches that do not require computer vision or POE is to have multiple tags

on some or all of the agents [14, 15]. We have recently proposed installing two UWB tags on each

agent [16], where we show that relative positions are observable from the range measurements alone.

When combined with an inertial measurement unit (IMU) and a magnetometer, the agents’ individual

attitudes can be estimated relative to a world frame, allowing relative positions to be resolved in the

world frame. However, magnetometer sensor measurements are substantially disturbed in the presence

of metallic structures indoors [17, 18], which degrades estimation accuracy. Another challenge is that

there are certain formation geometries that cause the relative positions to be unobservable, such as

when all the UWB tags lie on the same line [16]. This is closely tied to the well-known general

dependence of positioning accuracy on the geometry of the tags, and arises even with the presence of

anchors [19].

To avoid divergence of the state estimator, multi-robot missions relying on inter-robot range mea-

surements for relative position estimation must avoid these aforementioned unobservable formation

geometries. This imposes a constraint on planning algorithms. A planning solution to avoid un-

observable positions is proposed in [20], where a cost function based on the Cramér-Rao bound quanti-

fies the estimation accuracy as a function of robot positions. A similar approach is presented in [21] for

multi-tag robots. Limitations of these approaches include the requirement of the presence of anchors,

as well as the lack of explicit consideration of agent attitudes.

This contribution of the paper is a method for computing optimal formations for relative pose esti-

mation, especially in the absence of anchors. Furthermore, it is shown that with two-tag agents, both

the relative position and relative heading of the agents are locally observable from range measurements

alone. The problem setup is deliberately formulated in the agents’ body frames, thus being completely

invariant to any arbitrary world frame, eliminating the need for a magnetometer. This paper further

differs from [21] by using SE(n) pose transformation matrices to represent the relative poses, avoiding

the complications associated with angle parameterizations of attitude. This leads to the use of an on-

manifold gradient descent procedure to determine optimal formations. Simulations and experiments
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show that the variance of estimation error does indeed decrease as the agents approach their optimal

formations.

The proposed cost function is general to 2D or 3D translations, arbitrary measurement graphs, and

any number of arbitrarily-located tags. Moreover, the proposed cost function goes to infinity when the

agents approach unobservable configurations, meaning that its use naturally avoids such unobservable

formation geometries. For these reasons, the cost function is amenable to a variety of future planning

applications, such as to impose an inequality constraint on an indoor exploration planning problem.

The paper is outlined as follows. The problem setup, notation, and other preliminaries are described

in Section 2. The optimization setup and results are described in Section 3. The optimal formations

are evaluated experimentally in Section 4.

2 Problem setup, notation, and preliminaries

Consider N agents along with M ranging tags distributed amongst them. Let τ1, τ2, . . . , τM consist

of unique physical points collocated with the ranging tags. Let a1, . . . , aN represent reference points

on the agents themselves. The inter-tag range measurements are represented by a measurement graph

G = (V, E) where V = {1, . . . ,M} is the set of nodes, which is equivalent to the set of tag IDs, and

E is the set of edges corresponding to the range measurements. Defining the set of agent IDs as

A = {1, . . . , N}, it is convenient to define a simple “lookup function” ℓ : V → A that returns the agent

ID on which any particular tag is located. For example, if τi is physically on agent α, then ℓ(i) = α.

An example scenario with three agents using this notation is shown in Figure 1. A bolded 1 and 0
indicates an appropriately-sized identity and zero matrix, respectively.

1y

a2

a3

a1

τ2

τ1

τ6

τ3

τ4

Figure 1: Problem setup and notation used. Each agent possesses a reference point aα where α is the agent ID, as well
as two tags τi, τj , where i, j are the tag IDs. 1x and 1y are vectors which represent the x and y axis of Agent 1’s body
frame. Throughout this paper, the red agent is the arbitrary reference agent, and it will always be Agent 1 without loss
of generality.

2.1 State definition and range measurement model

Since the agents are rigid bodies, an orthonormal reference frame attached to their bodies can be

defined. A position vector representing the position of point z, relative to point w, resolved in the

body frame of agent α is denoted rzwα ∈ Rn. The attitude of the body frame on agent α relative to the
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body frame on agent β is represented with a rotation matrix Cαβ ∈ SO(n) such that rzwα = Cαβrzwβ .

The relative position and attitude between agents α and β, (raβaα
α ,Cαβ) define the relative pose between

them, and can be packaged together in a pose transformation matrix

Tαβ =

[
Cαβ raβaα

α

0 1

]
∈ SE(n). (1)

The exponential and logarithmic maps of the special Euclidean group SE(n) are denoted exp : se(n)→
SE(n) and ln : SE(n) → se(n), respectively, where se(n) is the Lie algebra of SE(n). The common

“wedge” operator (·)∧ : Rm → se(n) and “vee” operator (·)∨ : se(n) → Rm are also used [22], where

m is the degrees of freedom associated with SE(n). For a more thorough background on matrix Lie

groups, including expressions for the aforementionned operators, see [22, 23].

Throughout this paper, Agent 1 will be the arbitrary reference agent, such that the poses of all the

other agents are expressed relative to Agent 1

x = (T12, . . . ,T1N ). (2)

A generic range measurement between tag i and tag j is modelled as a function of the state x =

(T12, . . . ,T1N ) with

yij(x) = ||C1αrτiaα
α + raαa1

1 − (C1βrτjaβ

β + raβa1

1 )||+ vij , (3)

where α = ℓ(i), β = ℓ(j), and vij ∼ N (0, σ2
ij). This can be written compactly with the pose transfor-

mation matrices,

yij(x) =
∥∥∥∥DT1α

[
rτiaα
α

1

]
− DT1β

[
rτjaβ

β

1

]∥∥∥∥+ vij

≜ ∥DT1αpi − DT1βpj∥+ vij , (4)

where D = [1 0]. The state x = (T12, . . . ,T1N ), written here as a tuple of poses, is an element of a Lie

group of its own,

x ∈ SE(n)× . . .× SE(n) ≜ SE(n)N−1.

The group operation for SE(n)N−1 is the elementwise matrix multiplication of the pose matrices in

two arbitrary tuples, and the group inverse is the elementwise matrix inversion of the elements of the

tuple x. The ⊕ operator is defined here as

x⊕ δx =
(
T12 exp(δξ

∧
2 ), . . . ,T1N exp(δξ∧N )

)
, (5)

where δξi ∈ Rm, δx = [δξT2 . . . δξTN ]T ∈ Rm(N−1), and will be used throughout the paper.

3 Optimization

The goal is to find the relative agent poses that, with respect to some metric, provide the best relative

pose estimation results if the estimation were to be done exclusively using the range meas-urements.

The metric chosen in this paper is based on Fischer information and the Cramér-Rao bound, which

will be recalled here.

Definition 1 (Fischer information matrix [24]). Let y ∈ Rq be a continuous random variable that is

conditioned on a nonrandom variable x ∈ Rn. The Fischer information matrix (FIM) is defined as

I(x) = E

[(
∂ ln p(y|x)

∂x

)T(
∂ ln p(y|x)

∂x

)]
∈ Rn×n, (6)

where E[·] is the expectation operator and p(·) denotes a probability density function.
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Theorem 1 (Cramér-Rao Bound [24]). Let y ∈ Rq be a continuous random variable that is conditioned

on x ∈ Rn. Let x̂(y) be an unbiased estimator of x, i.e., E[e(x)] = E[x̂(y) − x] = 0. The Cramér-Rao

lower bound states that

E
[
e(x)e(x)T

]
≥ I−1(x). (7)

Theorem 2 (FIM for a Gaussian PDF). Consider the nonlinear measurement model with additive

Gaussian noise,

y = g(x) + v, v ∼ N (0,R). (8)

The Fischer information matrix is given by

I(x) = H(x)TR−1H(x), (9)

where H(x) = ∂g(x)/∂x.

The Cramér-Rao bound represents the minimum variance achievable by any unbiased estimator.

Hence, motivated by Theorem 1, an estimation cost function Jest is defined

Jest(x) = − ln det I(x), (10)

which will be minimized with the agent relative poses x as the optimization variables. The logarithm

of the determinant of I(x) is one option amongst many choices of matrix norms, such as the trace

or Frobenius norm. We have found the chosen cost function to behave well in terms of numerical

optimization and, most importantly, goes to infinity when the FIM becomes non-invertible. The state

x is locally observable from measurements y if the measurement Jacobian H(x) is full column rank,

which also makes the FIM full rank. As will be seen in Section 3.2, non-invertibility of the FIM also

corresponds to formations that result in unobservable relative poses, which should be avoided.

To create a measurement model in the form of (8), the range measurements are all concatenated

into a single vector

y(x) = [. . . yij(x) . . .]T︸ ︷︷ ︸
≜g(x)

+v, ∀(i, j) ∈ E , v ∼ N (0,R),

where R = diag(. . . , σ2
ij , . . .). It would be possible to directly descend the cost in (10) with an opti-

mization algorithm such as gradient descent, if not for the fact that the state x does not belong to

Euclidean space Rn but rather SE(n)N−1. As such, the expression ∂g(x)/∂x is meaningless unless

properly defined.

3.1 On-manifold cost and gradient descent

The modification employed in this paper is to reparameterize the measurement model by defining

x = x̄⊕ δx, leading to

y = g(x̄⊕ δx) + v ≜ ḡ(δx). (11)

The state x̄ will represent the current optimization iterate, which will be updated using δx.

Since the argument of the new measurement model ḡ(δx) now belongs to Euclidean space Rm(N−1),

it is possible to compute the “local” approximation to the FIM [25] at x = x̄ with I(x̄) = H(x̄)TR−1H(x̄)
where

H(x̄) =
∂g(x̄⊕ δx)

∂δx

∣∣∣∣
δx=0

,

and evaluate the cost function Jest(x̄) = − ln det I(x̄). Finally, an on-manifold gradient descent step

with step size γ can be taken with

x̄← x̄⊕
(
−γ ∂Jest(x̄⊕ δx)

∂δx

∣∣∣∣
δx=0

)T

. (12)
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The proposed gradient descent procedure is a standard approach to optimization on matrix mani-

folds [26]. From a differential-geometric point of view, an approximation to the FIM is computed in

the tangent space of the current optimization iterate x̄, which is a familiar Euclidean vector space. A

gradient descent step is computed in the tangent space, and the result is retracted back to the manifold

SE(n)N−1 using the retraction Rx̄(δx) = x̄⊕ δx.

Figure 2: All four plots show the value of the cost with varying agent position (right agent for two-agent scenario, top
agent for three-agent scenario), while maintaining fixed heading. The top row shows only the estmation cost Jest, while
the bottom row shows the total cost J including the collision avoidance term.

3.2 Cost function implementation

Creating an implementable expression for the cost function Jest(x̄) = − ln det
(
H(x̄)TR−1H(x̄)

)
even-

tually amounts to computing the Jacobian of the range measurement model (4) with respect to δξα
and δξβ . To see this,

H(x̄) =


...

Hij(x̄)
...

 ,

Hij(x̄) = [0 . . .Hij
α (x̄) . . .Hij

β (x̄) . . . 0],

where

Hij
α (x̄) ≜

∂yij(x̄⊕ δx)
∂δξα

∣∣∣∣
δx=0

,

Hij
β (x̄) ≜

∂yij(x̄⊕ δx)
∂δξβ

∣∣∣∣
δx=0

.

The row matrix Hij(x̄) ∈ R1×m(N−1) represents the Jacobian of a single range measurement yij with

respect to the full state perturbation δx. This resulting matrix will be zero everywhere except for two

blocks Hij
α (x̄) ∈ R1×m and Hij

β (x̄) ∈ R1×m, respectively located at the αth and βth block columns, and

have closed-form expressions derived in Appendix A.1.
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The cost function Jest is visualized for varying agent position in the top row of Figure 2, where the

red dot shows the minimum found within that view. Looking at the top-left plot of Figure 2, there

is a vertical line of high cost near the agent on the left, corresponding exactly to when all four tags

line up, leading to an unobservable formation. Similarly, the three-agent scenario in the top-right plot

of Figure 2 shows a high cost when the agents are nearly all on the same line, which is a situation

of near-unobservability. However, as can be seen in the top-left plot, the minimum is unacceptably

close to the left agent, which would cause them to collide. Indeed, we have observed that naively

descending the cost Jest alone leads to all the agents collapsing into each other. An explanation for

this behavior is that when agents are closer together, changes in attitude result in larger changes in the

range measurements, which increases Fischer information. Nevertheless, in practice, collisions must be

avoided, and this is done by augmenting the cost with an additional collision avoidance term Jcol(x),
such that the total cost J(x) is

J(x) = Jest(x) + Jcol(x), Jcol(x) =
∑

α,β∈A
α̸=β

Jαβ
col (x),

where a collision avoidance cost from [27] is used,

Jαβ
col (x) =

(
min

{
0,

∥∥raαaβ

1

∥∥2 −R2∥∥raαaβ

1

∥∥2 − d2

})2

. (13)

The term R represents an “activation radius” and d is the safety collision avoidance radius. In this

paper, the agent relative position is expressed as a function of pose matrices with

raαaβ

1 = DT1αb− DT1βb,

where D = [1 0], b = [0 1]T. The new cost function J is plotted on the bottom row of Figure 2, showing

the effect of the collision avoidance term. Finally, one is now ready to descend the cost directly with

x̄← x̄⊕
(
−γ ∂J(x̄⊕ δx)

∂δx

∣∣∣∣
δx=0

)T

. (14)

In this work, the Jacobian of Jest is computed numerically with finite difference [28], and the optimi-

zation is only done offline for the following reasons. The solution to the optimization problem is only

a function of some physical properties, the measurement graph G, and the number of robots N . For

any experiments that use the same hardware, the physical properties such as the safety radius, tag

locations, and measurement covariances, all remain constant. The measurement graph G can often

also be assumed to be constant and fully connected. Even though full-connectedness is not required in

the proposed approach, technologies such as UWB often have a ranging limit that is well beyond the

true ranges between all robots in the experiment. Hence, it is straightforward to precompute optimal

formations for varying robot numbers N with fully-connected measurement graphs, and to store the

solutions in memory onboard each robot. The computation time for this method, for 10 agents or less,

is on the order of a few minutes.

Nevertheless, a distributed, real-time implementation is required for varying measurement graphs,

which is likely to arise in the presence of obstacles that block line-of-sight. Such a scenario requires

simultaneously satisfying obstacle avoidance constraints and perhaps other planning objectives, which

is beyond the scope of this paper.

3.3 Optimization results

The gradient descent in (14) is performed with a step size of γ = 0.1, an activation radius of R = 2 m,

and a safety radius of d = 1 m. Each agent has two tags located at

rτiaα
α = [0.2 0.2]T, and rτjaα

α = [0.2 − 0.2]T,
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where α = ℓ(i) = ℓ(j) and the units are in meters. Figure 3 shows quadcopter formations at conver-

gence for 3, 4, 5, and 10 agents, each with a fully-connected measurement graph G, except for edges

corresponding to two tags on the same agent. The results shown here are intuitive, with the three-

and four-agent scenarios corresponding to an equilateral triangle and square, respectively. However,

with increasing agent numbers, regular polygon formations are no longer optimal, as can be seen in

the five- and ten-agent scenarios.

Since the treatment in this paper is general to an arbitary measurement graph G, provided the FIM

remains maximum rank, optimization is also performed for a non-fully-connected measurement graph.

The results for this along with a 3D scenario are shown in Figure 4. In 3D, the robot relative poses

are represented with elements of SE(3), but with four degrees of freedom corresponding to the three

translational components and heading. This is because two-tag robots are used in these simulations,

making relative roll and pitch between robots unobservable without more sensors. Hence, roll and pitch

are excluded from the optimization and their values are fixed to zero. Moreover, from an application

standpoint, both ground vehicles and quadcopter-type aerial vehicles only have heading as a rotational

degree of freedom available for planning.

The cost function J has many local minima associated with the various geometric symmetries

contained in the problem. That is, for two-tag agents, a “flip” of 180 degrees in heading for each

agent leads to a local minimum, as do symmetries in the formation positions. The solutions presented

are the result of a trial-and-error process with hand-picked initial guesses, where all local minimums

encountered in this process provided sufficiently low covariance. Therefore, it can be argued that

finding the global minimum is not necessary, especially if only avoiding the unobservable formations

of high cost is required.

3.4 Validation on a least squares estimator

To validate the claim that descending the cost improves the estimation performance, a non-linear

least-squares estimator is used. At regular iterates x̄ of the optimization trajectory, a small 2000-trial

Monte Carlo experiment is performed, where in each trial a set of range measurements are generated

with y = g(x̄) + v, v = N (0,R). Then, an on-manifold Gauss-Newton procedure [23] is used to solve

x̂ = argmin
x

1

2

N∑
α=2

∥∥ln(CT
1αČ1α)

∨∥∥2
P̌α

+
1

2
∥y− g(x)∥2R , (15)

where ∥e∥2M = eTM−1e denotes a squared Mahalanobis distance, and an attitude prior with “mean”

Č1α and covariance P̌α is also included for each agent. It turns out that minimization of only the second

term in (15) yields unacceptably poor estimation performance, as the solution often converges to local

minimums depending on the initial guess. The inclusion of a low-covariance attitude prior, which is

practically obtained by dead-reckoning on-board gyroscope measurements, is critical for obtaining low

estimation error.

Figure 6 shows the value of the cost throughout the optimization trajectory, as well as the mean

squared estimation error over the K = 2000 Monte Carlo trials per optimization step. The true

agent poses are initialized in a near-straight line, as shown in Figure 5, and the covariances used are

R = 0.121 m2, P̌α = 0.082 rad2. The mean squared estimation error (MSE) is calculated with

MSE =
1

K

K∑
k=1

δξTδξ, δξ =

 ln(T̄−1
12 T̂12)

∨

...

ln(T̄−1
1N T̂1N )∨

 , (16)

and shows a clear correlation with the cost function. This provides evidence for the fact that descending

the proposed cost function also reduces the estimation error.
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Figure 3: Final locally optimal formations for 3, 4, 5, and 10 agents, with the optimization paths shown in blue.

Figure 4: (left) Optimal formation with sparse measurement graph. (right) Optimal formation with 3D position and
heading as design variables.

Figure 5: Trajectory taken during optimization with superimposed 1σ equal-probability contours corresponding to the
Cramér-Rao bound. The ellipsoids for the starting positions are too large to fit in the figure.
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Figure 6: Cost function, along with various metrics of a least-squares estimator, obtained from 2000 Monte-Carlo trials
at various points during the optimization. In the bottom two plots, the red squares denote the average norm of the
respective estimation errors.

4 Experimental Evaluation

An estimator is also run with three PX4-based Uvify IFO-S quadcopters in order to experimentally

validate the claim that descending the proposed cost function results in improved estimation perfor-

mance. The quadcopters start by flying in a line formation and, after 30 seconds, proceed to a triangle

formation computed using the proposed framework for another 30 seconds, as shown in Figure 7. Fig-

ure 8 shows the position estimation error using the least-squares estimator presented in Section 3.4.

Real gyroscope measurements are used to obtain an attitude prior at all times. Range measurements

are synthesized with a standard deviation of 10 cm using ground truth vehicle poses obtained from a

motion capture system. The UWB tags are simulated to be 17 cm apart, corresponding to extremities

of the propeller arms. As can be seen in Figure 8, moving to the optimal triangle formation, from one

of the worst starting formations results in a 68% reduction in estimation variance.

Figure 7: (top) Three quadcopters in an initial straight line formation. (bottom) Quadcopters in an optimal triangle
formation.
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Figure 8: Experimental results using a least squares estimator. From 0 s to 30 s, the quadcopters are in a line formation
and the average positioning error is 0.77 m. From 30 s to 60 s, the quadcopters are in an optimal formation and the
average positioning error is 0.22 m, a 68% reduction.

5 Conclusion

This paper shows, in both simulation and experiment, that range-based relative state estimation

performance can be substantially improved by a proper choice of formation geometry. The largest

improvements are obtained when the robots move away from unobservable formations.

The generalizability of the cost function makes it appropriate for use beyond direct minimization.

For instance, consider using this function to impose an inequality constraint on an application-oriented

planning problem, such as indoor exploration. Using an inequality constraint would allow robots

the freedom to move within the feasible region in order to accomplish tasks such as infrastructure

inspection, yet still avoid the “worst” formations with very high cost, which could cause problematically

large state estimation errors. Future work may tackle a scenario similar to this, including developing

a distributed computation scheme for the proposed cost function.

Appendix

A.1 Measurement model Jacobian

Let yij(x) = yij(x̄)+δyij ≜ ȳij+δyij , T1α = T̄1α exp(δξ∧α), T1β = T̄1β exp(δξ
∧
β ), and vij = 0. The terms

δyij , δξα, δξβ are assumed to be small quantities, which motivates, for example, the approximation

exp(δξ∧α) ≈ 1 + δξ∧α. Equation (4) becomes

(ȳij + δyij)
2 =

(
DT̄1α(1 + δξ∧α)pi − DT̄1β(1 + δξ∧β )pj

)T (DT̄1α(1 + δξ∧α)pi − DT̄1β(1 + δξ∧β )pj

)
,

(A.1)

which, after expanding and neglecting higher-order terms, leads to

2ȳijδyij = 2(pT
i T̄T

1αDT − pT
j T̄T

1βDT)DT̄1αδξ
∧
αpi + 2(pT

j T̄T
1βDT − pT

i T̄T
1αDT)DT̄1βδξ

∧
βpi. (A.2)
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Next, it is straightforward to define a simple operator (·)⊙, as per [23], such that ξ∧p = p⊙ξ. Rear-

ranging (A.2) yields

δyij =
(pT

i T̄T
1αDT − pT

j T̄T
1βDT)

ȳij
DT̄1αp⊙

i δξα −
(pT

i T̄T
1αDT − pT

j T̄T
1βDT)

ȳij︸ ︷︷ ︸
≜ρT

ij

DT̄1βp⊙
j δξβ . (A.3)

The term ρij is the physical unit direction vector between tags i and j, resolved in Agent 1’s body

frame. From (A.3) it then follows that

∂yij
∂δξα

= ρT
ijDT̄1αp⊙

i ,
∂yij
∂δξβ

= −ρT
ijDT̄1βp⊙

j .
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