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Citation suggérée : M. Jafari Aminabadi, S. Séguin, I. Fofana, S.-E.
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Dépôt légal – Bibliothèque et Archives nationales du Québec, 2022
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auteurs conservent leur droit d’auteur et leurs droits moraux sur leurs
publications et les utilisateurs s’engagent à reconnâıtre et respecter
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Abstract : Hydropower producers participate in the electricity market by providing bids in the day-
ahead market auctions. Making good bids that obey all market rules and consider uncertain prices for
large, interconnected hydropower watercourses is challenging. This investigation aims to find bidding
strategies that attend to the market aspects and all constraints relevant to short-term hydropower
production. This paper presents a stochastic mixed-integer nonlinear model and a nonlinear heuristic
method for the bidding optimization problem and shows a comparison of the model’s performance in
two case studies. The comparison of the two models shows that their results are close and that the
heuristic method can reach the optimal solution after a few iterations. The numerical experiments
are also compared with results from the Short-term Hydro Optimization Program (SHOP), which is a
software used for operational planning in the Nordic electricity market.

Keywords: Bidding, Short-term hhydropower optimization, nonlinear programming, day-ahead mar-
ket
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1 Introduction

Hydropower is one of the largest renewable energy sources and is one of the cheapest, cleanest, and

most reliable sources of electricity production [1, 2]. Hydropower optimization is a nonlinear and non-

convex problem. The large size of the system and the uncertainty of some important input parameters

have made managing this system very complex [3, 4]. The deregulation of the electricity market and

increased competition has led to the development of decision-making tools in the electricity industry [5].

In addition, due to maximizing profits in the electricity market and creating a balance between current

and future profits, attending to uncertain parameters such as prices is necessary [6, 7]. The day-ahead

market is an essential part of the electricity market because it has the largest share of the market [8].

Due to the nature of this problem, the focus of this paper is to find the optimal strategy for day-ahead

market price-taker hydropower producers by using a mixed-integer nonlinear stochastic model and a

heuristic method. The models with integer variables are too computationally demanding; therefore, a

heuristic method also is used for this problem.

There is extensive research about optimal bidding; however, in the existing literature, the main

focus is thermal generation. Hydropower plants usually have low start-up costs and are flexible in

high ramping. For hydropower producers, optimal scheduling of water reservoir volume and releasing

water is very important. Due to the expansion of wholesale electricity markets around the world, the

importance of determining the optimal bidding in hydropower systems is increasing [9]. A multi-stage

stochastic Mixed-Integer Linear Programming (MILP) model to optimize bids for 2 hours ahead market

in Canada is presented in [10]. Operational constraints in the cascaded rivers and uncertain inflows and

prices are considered in the model. One of the essential research on optimizing bidding is presented by

Fleten et al. in the NordPool system [11]. The authors proposed a two-stage MILP in the day-ahead

markets with uncertain prices. This model provides a price-dependent bidding curve, and the Nordic

market rules and unit commitment decisions are included. In hydropower production aspects, the

net water head is ignored. This model is extended in [12], and the coordinated bidding optimizing

model is proposed by adding the intraday market. Another extension work of [11] is the multi-stage

approach presented in [13], which considers the bid decisions in the day-ahead and intraday markets

by integrating the short-term intraday with long-term inter-day decisions. The problem is defined as a

Markov decision process and is solved by using approximate dual dynamic programming. To evaluate

the stochastic bidding model in the interconnected river systems in [8], a stochastic MILP model

without considering the effect of the water head is presented. In this model, both the bidding problem

and the actual operational dispatch are modelled, and prices and inflows are considered uncertain.

Uncertainty increases the complexity of the problem, and it may be too difficult to find a solution in

MILP models, especially in large interconnected river systems; therefore, a stochastic linear model is

formulated instead of the MINLP model in [14]. In this study, the effect of the linear approximation

of start-ups on the quality of the results and the solution time is investigated. Another solution

method in the unit commitment problem that the power producers in the Nordic market have widely

used is Successive Linear Programming (SLP). In [15], an SLP model for operational stochastic short-

term hydropower with uncertain future prices and inflow for the Nordic power industry is presented.

This method has been implemented in SHOP, and the nonlinear head effect is modelled. In [16], the

stochastic SLP model is used to optimize the power production in the hydropower bidding problem;

a greedy algorithm is also presented to reduce the bid matrix. The water released is linked to power

production by a piecewise linear concave production function for each generator. This study has shown

that the problem size and computational time grow with the number of scenarios. The deterministic

and stochastic models to obtain a bidding strategy are compared in [17]. Based on the results, the

stochastic method has a better outcome for participants in the day-ahead market than deterministic

models, as found in [8, 10, 11], and [15].

Nonlinear and nonconvex relationships are between decision variables such as water height, water

discharge and production efficiency in the hydropower problem. Dynamic programming can handle

nonlinearity and nonconvexity, but in large problems, finding the solution is hard, which is called ”the
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curse of dimensionality.” Therefore, in most hydropower optimization problems, either the nonlinear

effects are ignored or linear approximation methods reported in the literature [9, 18].

SHOP is an optimization model for scheduling hydroelectric power plants for daily operations that

is provided as a software by SINTEF Energy Research. The model can handle various operational,

physical and market constraints in complex hydro systems [19, 20]. The solution process in SHOP

consists of two parts: unit commitment and unit load dispatch. The decision of turbines on /off in each

period is determined by the unit commitment problem. The process is that the MILP problem with an

estimation of the reservoir trajectories is solved. Then a number of iterations are performed to stabilize

the head changes. The volume and water head of the reservoir are updated after each iteration, and

this process continues until the stop conditions are met, and the unit commitment problem is solved.

In the second part, the linear problem, unit load dispatch, is activated. The binary variables obtained

in the unit commitment problem are fixed, and an LP model is used to obtain exact generation [21].

As reflected in the literature, mixed integer models have been widely used in the bidding optimiza-

tion problem. In often studies, linearization and approximation techniques have been used to solve

the problem. This paper presents a two-stage Mixed-Integer Nonlinear Programming (MINLP) for

the price-taker producers in the day-ahead bidding based on the Nordic market. Instead of lineariza-

tion and discretization, the maximum power output surface of the water discharge and volume of the

reservoir for each turbine combination is used, leading to a nonlinear representation of the functions.

This model considers the operational constraints of power production in the hydropower system and

market rules. However, the existence of integer variables and their combination with stochastic pro-

gramming raises the complexity of the problem. The contribution of this article is that an MINLP

model is introduced to optimize bidding for the day-ahead market. Also, a heuristic method to solve

the hydropower stochastic MINLP bidding problem by solving problems with less complexity in an

iterative process is presented. The heuristic method can reach the right result in a short time. The two

methods, more precisely an exact MINLP and the heuristic MINLP, are compared on datasets from

the Nordic market and show that the average income in the MINLP model is slightly better in the

examined cases, but the average solution time in the heuristic method is shorter. In some instances,

the MINLP model could not find a solution.

This paper is organized as follows: The MINLP model and the bidding structure in the day-

ahead market are described in Section 2. In Section 3, a two-stage mixed integer nonlinear stochastic

model, as well as an iterative heuristic method for solving the two-stage nonlinear bidding problem,

are presented. In Section 4, the results of the case studies are provided, and the result for two cases

are compared with SHOP to evaluate the models, and the conclusions are presented in Section 5.

2 Short-term hydropower scheduling and bidding problem

Short-term hydropower scheduling prepares the optimal strategy for daily operational plans. In order

to achieve the desired performance, producers are looking to maximize revenues or minimize costs [22].

There are several methods for short-term hydropower optimization problems that can be divided into

two general categories: exact methods and heuristic methods [23]. MILP models [5, 24] are widely

used because some binary decisions, such as start-ups/shutdown and active units, cause the model to

have integer variables. In addition, the efficiency of the turbine depends on water discharge and water

head, which makes the problem model nonlinear [9, 25]. Also, short-term planning can be modelled in

terms of plant-based or unit-based. In the plant-based models, the problem is based on the aggregation

of the plant level, and in the unit-based models, the operational and physical conditions like turbine

efficiency and limitations of the dispatch of the unit are considered [18]. The combination of turbines in

operation can be used, which causes that in addition to all the advantages of the unit-based conditions,

it also reduces the complexity of the problem, like the model presented in [26]. In Section 2.1, the

MINLP model based on the combination of turbines is presented in details.
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To participate in the Nordic day-ahead market, hydropower producers offer their bid matrix, a

table containing the prices and power volumes per hour for the coming day to the market operator.

This bid volume for each hour should not decrease as the price increases [16]. These rules, as well as

the relationship between the bid matrix and scenario for day-ahead prices and committed production,

are presented in Section 2.2.

2.1 Nonlinear short-term hydropower optimization

As mentioned, hydropower optimization is a nonlinear problem generally, and it has operational con-

straints that should be considered in the model. This Section introduces the power production, the

turbine’s efficiency, the turbine’s combination of turbines, and the operational constraints in the non-

linear model.

The power production in the hydro system depends on the water discharge and water head, and

turbine efficiency [27]. Power output (kW ), in a single turbine is given as

p(q, h) = g ∗ η(q) ∗ q ∗ h(Q, v), (1)

where p is the power output (kW ), g is the gravitational acceleration (m/s2), η is the turbine-generator

efficiency, q is the turbine water discharge(m3/s), Q is the total water discharge(m3/s), and h is the net

water head (m). The gross water head is calculated from the difference between the tailrace elevation

and forebay elevation, and the water friction in the penstock causes the reduction in the water head,

which is called penstock losses. Therefore, the net water head is calculated as shown in Equation (2):

h(Q, v) = fb(v)− tl(Q)− pl(Q, q), (2)

where fb is the forebay level of the reservoir unit, and v is the volume of the reservoir (m3), tl is

the tailrace level of the reservoir unit, pl is the penstock losses of the unit (m). As mentioned, one

of the most important factors in power production is turbine efficiency, and each turbine has its own

efficiency. Turbine efficiency is important for power producers because the power production can be

different for different units, even under similar conditions like the same net water head and water

discharge, if the turbine efficiency is different. In addition to the total water discharge and water head,

another factor that affects power generation in operational reality is the number of active turbines.

Instead of working with turbines individually, the turbines combination can be used. For example,

suppose a power plant has a total of 4 turbines. In that case, the number of possible combinations for

1 active turbine is 4 and 6 combinations for 2 turbines, 4 for 3 turbines, and 1 for 4 active turbines.

In a hydropower system, if the number of turbines is large, the number of combinations will increase,

making the problem more complex. Instead of working with all combinations, the maximum power

output surface can be used for the number of turbines in each combination. The maximum output

for each turbine combination is obtained by considering the water discharge and the volume of the

reservoir.

The first part of the two-phase model presented in [28] is used to obtain optimal power production.

A MINLP is introduced to determine the power output, water discharge, reservoir volume and the

number of turbines in the first phase. The second phase is the unit commitment problem where the

start-up costs are penalized. Operational constraints are considered in the first phase of the model,

which is the loading problem. In the loading problem, the water discharge, qct , and the volume of the

reservoir, vct , for each power plant C at the period T is limited by maximum and minimum levels, as

in Equation (3) and (4).

qcmin ≤ qct ≤ qcmax, ∀t ∈ T, c ∈ C. (3)

vcmin ≤ vct ≤ vcmax, ∀t ∈ T, c ∈ C. (4)

The maximum power output surfaces are obtained by polynomial equations and are used in the power

production function equation, so the nonlinear relationship between water discharge and the volume
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of the reservoir is considered. The power production equations are:

χc
j,t(q

c
t , v

c
t )z

c
j,t, ∀t ∈ T, c ∈ C. (5)

where χc
j,t(q

c
t , v

c
t ) are the power output function for the surface j at period t, and plant c (MW), and

binary variable zcj,t has value 1 if the surface j is chosen at the period t. Equation (6) ensures that

only one surface is selected at each hour from the time horizon.∑
j∈J

zcj,t = 1, ∀t ∈ T, c ∈ C. (6)

Water balance equations are given by:

vct+1 = vct − ζwt(q
c
t + gct ) + ζδt +

∑
r∈R

ζwt(q
r
t + grt ), ∀t ∈ T, c ∈ C. (7)

Equation (7) ensure the water balance of the power plants that are connected in series. The volume

of the reservoir in the next hour, vct+1 is the volume of the reservoir at the period t, vct minus the water

discharge used for power production and spillage, wt(q
c
t + gct ), and ζ is the conversion factor from

water discharge (m3/s) to the reservoir volume (Mm3/h), and plus inflow, δt, and water flow from

upstream reservoirs into the reservoir, wt(q
r
t + grt ). The initial volume, v1 and final volume, vfinal, are

considered input parameters to the model. For this problem in two phases, namely the loading and

unit commitment problems, it was shown in [28] that integer variables could be relaxed, allowing to

solve of a continuous nonlinear problem in practice. Therefore, the solution will still be the integer,

although the z variables are continuous in the formulation.

2.2 Bid structure

Hydropower producers offer their bids for the following day to the market operator in the day-ahead

market, which is the main part of the European electricity market because most exchanges are done in

these auctions. Producers and consumers submit their offer to the operator of the market organizer in

the day-ahead market before noon. The marked operator calculates bid prices after receiving bids and

offers from all market participants and then announces publicly at around 1 p.m. each day. Committed

power is calculated by linear interpolation between each producer’s bid curve and market price by the

market operator. There are other markets, such as intraday and balancing to cover obligations, for

the delivery of physical power. These markets increase flexibility and system stability [9, 29]. The

balancing or real-time market is where the transaction and bidding are done near the operating hour,

about 45 minutes or earlier. This market is necessary for ramping flexibility, and it is organized by

the Transmission System Operator (TSO) as a single buyer[9].

The power producer participating in the day-ahead market can submit the hourly bid. As shown

in Figure 1 the hourly bid includes the volume power offered for hour t, XDi,t, and the price, Pi,t.

The number of bid points, I = { 1, 2, ...., I} , are specified by market rules.

The user-determined set of fixed hourly prices, P = { p1, p2, ...., pI} , is used to avoid nonlinear

relation to determining bid volume and prices [11]. The hourly market prices are denoted by ρt and

committed power volume at hour t, Y Dt, is calculated with linear interpolation between the bid points

on a bidding curve in Equation (8).

Y Dt =
ρt − pi−1

pi − pi−1
XDi,t +

pi − ρt
pi − pi−1

XDi−1,t ifpi−1 ≤ ρt ≤ pi. (8)

In the Nordic market, the bid by increasing prices must be non-decreasing, as shown in Equation (9).

XDi,t ≥ XDi−1,t t ∈ T, i ∈ I. (9)

More details about the bidding curve and the problem of determining bids are presented in [11, 30, 31].
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Figure 1: Example of an hourly binding curve

3 Methodology

In the day-ahead market, the prices are uncertain, so the model must consider this uncertainty to choose

the optimal strategy. All the equations, including the production function and operating constraints,

as well as the bidding structure presented in Section 2, are updated considering the uncertainty of the

prices and a two-stage mixed integer nonlinear stochastic model is presented to optimize the bidding

problem in Section 3.1.

Section 3.2 presents an iterative heuristic method to solve the bidding problem. The purpose of

this method is to find a suitable solution with the number of iterations and some changes in the model

and integer variables in a shorter time.

3.1 Two-stage mixed integer nonlinear stochastic model

This two-stage nonlinear stochastic model allows determining the bid volume in the first-stage decisions

at hour t, XDi,t. Second-stage decisions are committed hourly volumes, Y Ds,t, and these decisions

depend on the price scenarios ρst . Second-stage decisions are committed hourly volumes, Y Ds,t, and

these decisions depend on the price scenarios ρst and positive and negative imbalance between com-

mitted volume and power production are Zd and Zu. The objective function is to maximize the

profit from offers, where πs is the probability of each scenario, and α, β are the reward and penalty
of participating in the balancing market. The MINLP stochastic model for the day-ahead market is

given by:

max
∑
s∈S

πs(
∑
t∈T

ρstY Ds
t +

∑
t∈T

(αtρ
s
tZus

t − βtρ
s
tZdst )) (10)

Subject to:

Y Ds
t =

ρst − pi−1

pi − pi−1
XDi,t +

pi − ρst
pi − pi−1

XDi−1,t, ∀t ∈ T, s ∈ S, i ∈ I, (11)

XDi,t ≥ XDi−1,t, ∀t ∈ T, i ∈ I, (12)

Hs
t = χs

j,t(q
s
t , v

s
t )z

s
j,t, ∀t ∈ T, j ∈ J, s ∈ S, (13)∑

j∈J

zsj,t = 1, ∀t ∈ T, s ∈ S, (14)

vst+1 = vst − ζwt(q
s
t + gst ) + ζδt +

∑
r∈R

ζwt(q
s,r
t + gs,rt ), ∀t ∈ T, s ∈ S, (15)

qmin ≤ qst ≤ qmax, ∀t ∈ T, s ∈ S, (16)
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vmin ≤ vst ≤ vmax, ∀t ∈ T, s ∈ S, (17)

v1 = vInitial (18)

vT ≥ vfinal (19)

Y Ds
t −HS

t = Zdst − Zus
t , ∀t ∈ T, s ∈ S, (20)

vst ≥ 0, qst ≥ 0, ∀t ∈ T, s ∈ S, (21)

Zus
t ≥ 0, Zdst ≥ 0, ∀t ∈ T, s ∈ S, (22)

Y Ds
t ≥ 0, Hs

t ≥ 0, ∀t ∈ T, s ∈ S, (23)

vst , q
s
t , Zus

t , Zdst , Y Ds
t , H

s
t ∈ R, (24)

zsj,t ∈ B. (25)

Constraints (11) are the piecewise linear interpolation of the offer curve, which is the actual dispatch

in scenario S and at hour t. Constraints (12) ensure that as the price increases, the bid curve is non-

decreasing. Equation (13) is the nonlinear production function for each price scenario at hour t, Hs
t ,

and is obtained from the MINLP model presented in Section 2.1. Constraints (14) limit the model

to choose only one active turbine combination per hour t. The reservoir balance constraints are in

Equation (15), constraints (16) are water discharge bounds and constraints (17) are the limitation

of reservoir storage level, and (18)–(19) specify initial and final volumes. Constraints (20) are the

imbalance between the committed volume and the power production per hour, the shortage is bought

from the balancing market, and the extra energy is sold to the balancing market.

3.2 Nonlinear heuristic bidding

Using the maximum output surface instead of all possible turbine combinations reduces the complexity

of the problem. For example, all possible combinations for four turbines become 24 integer variables.

Instead of these 24 variables, we use four maximum output surfaces for each number of active turbines.

Despite the significant reduction in the combination of turbines, it is still a very complicated and time-

consuming task to check all the active turbines within a time horizon of 24 hours or more, as well

as with many scenarios. Solving the MINLP problem is associated with challenges; the computation

time usually significantly increases in large-scale and complex problems. Therefore, a heuristic method

is proposed that can reach a suitable solution with a low number of iterations. The main problem

is broken into smaller problems and solved by an iterative approach. The problem-solving steps are

shown in Figure 2.

The loading problem is solved for all scenarios and problem inputs, including the initial and final

volume and inflows, as shown in box 1. of Figure 2. Equation (26) is the objective function of the

loading problem, which is to maximize the revenue in price scenarios. Equations (27)–(34) are the

operational constraints of the hydropower problem.
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Figure 2: Flowchart of a heuristic method for the bidding optimization for the day-ahead market

max
∑
s∈S

πs
∑
t∈T

∑
j∈J

ρst χs
j,t(q

s
t , v

s
t )z

s
j,t (26)

Subject to:

vst+1 = vst − ζwt(q
s
t + gst ) + ζδt +

∑
r∈R

ζwt(q
s,r
t + gs,rt ), ∀t ∈ T, s ∈ S, (27)∑

j∈J

zsj,t = 1, ∀t ∈ T, s ∈ S, (28)

v0 = vInitial (29)

vT ≥ vfinal (30)

qsmin ≤ qst ≤ qsmax, ∀t ∈ T, s ∈ S, (31)

vsmin ≤ vst ≤ vsmax, ∀t ∈ T, s ∈ S, (32)

vst ≥ 0, qst ≥ 0, ∀t ∈ T, s ∈ S, (33)

zsj,t ∈ B, ∀t ∈ T,∈ J, s ∈ S. (34)

Since the coefficients of the constraints (28)–(30) are 0 and 1 and have only one element, the

total unimodularity conditions in [32] are satisfied, so we can relax the integer variable and solve this

problem for all scenarios. After solving the first step, the number of active turbines and the optimal

power production in each scenario are determined. Then, we fix the integer variable, the number of

active turbines in each scenario. The MINLP stochastic problem, equations (10)–(25), is solved with

a fixed integer variable, as shown in box 3. of Figure 2. Due to the absence of the integer variable in

the nonlinear problem, the problem is solved as a continuous nonlinear problem. Fixing the integer

variable may have introduced an error to the model, so the effect of this error can be reduced during an

iterative process. For this purpose, it is reviewed whether the power production value will be increased

by changing the number of active turbines, and the conditions mentioned in box 4. of Figure 2 are as

follows. After solving the bidding problem, the amount of power generation, the reservoir volume, and

the water discharge in each scenario are known. On the other hand, there are maximum power output

surface equations for each turbine combination, as explained in Section 2.1. The results obtained

from the bidding problem can be replaced in the nonlinear surface equations as input. If there is a
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number of activities turbines that provides better power production with the same input, the number

of active turbines will be changed. Suppose there are three turbines in the hydro plant, so we have

three maximum surface equations. Based on the solution of step one in scenario S, the two active

turbines are selected at time t, and the third step is solved with a fixed integer value.

zsj,t = zs2,t = 1, ∀t ∈ T, s ∈ S (35)

The results obtained in the third step include the power production, H∗s
t , water discharge, q∗st , and

the reservoir volume v∗st at time T and scenario S.

H∗s
t = χs

2,t(q
∗s
t , v∗st )zs2,t, ∀t ∈ T, s ∈ S (36)

In the third step, we put the obtained results in the equations of other turbine combinations, i.e. one

active turbine,H1s
t , and three active turbines, H3s

t .

H1s
t = χs

1,t(q
∗s
t , v∗st )zs1,t, ∀t ∈ T, s ∈ S (37)

H3s
t = χs

3,t(q
∗s
t , v∗st )zs3,t, ∀t ∈ T, s ∈ S (38)

If the results were better, the turbine combination is changed.

H1s
t (q∗st , v∗st ) ≥ H∗s

t (q∗st , v∗st ) ≥ H3s
t (q∗st , v∗st ), ∀t ∈ T, s ∈ S (39)

It means that there is a number of active turbines that has a higher output with the same input than

the previous condition. Therefore, instead of checking all turbine combinations, the number of active

turbine changes only when the value of power production increases. Figure 3 shows the maximum

output surface for three turbines, drawn in two dimensions for simplicity. As shown in the figure, after

solving the stochastic model with a fixed integer variable of two turbines, the turbine combination will

change in the next iteration if the amount of power production is in the marked parts. If the power

production amount is in part A, the number of active turbines changes from two to one, and if it is in

part B, the number of active turbines changes from two to three. In the next iteration, the number

of changed turbines is fixed and the stochastic programming problem is resolved again. This iteration

process continues until there is no change in the number of active turbines, after which the iteration

stops.

Figure 3: Maximum output surface for three turbines

4 Case study

The MINLP model and heuristic method presented in the previous section are tested on two cases

with the data extracted from SHOP runs. This data includes power production values with different

reservoir volumes and water discharge values for each turbine combination. Nonlinear equations of

the maximum power output surface of each number of the active turbine are obtained using extracted

data and polynomial approximation. The proposed method focuses on the day-ahead market, so the

purchase amount in the balanced market is penalized, and selling the surplus amount is rewarded.

Price scenarios, as shown in Figure 4, are selected to represent a typical pattern in the Nordic market,

and inflows are regarded as deterministic. The summary of cases is shown in Table 1. All test cases

are solved for 24 hours planning horizon.
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Figure 4: Stochastic prices

Table 1: Case study

Case study Number of instances Number of reservoirs Number of turbines

Case A 20 1 4
Case B 60 2 6
Validation results 9 2 6

In each case, several instances with different input parameters, including the initial and final volume

of the reservoir and the inflows, have been investigated. In each instance, to obtain the difference

between the results of the objective function in the MINLP model and the heuristic method, the

difference is defined as:

Difference(%) = (1− Objective function of Heuristic(EUR)

Objective function of MINLP (EUR)
)× 100 (40)

To evaluate the presented methods, the results of these two models have been compared with SHOP.

This program, based on successive linear programming and may include mixed integer programming,

can solve problems with a large number of cascaded water courses. The improvement percentage

in the objective function of the MINLP model and the heuristic method with SHOP is shown in

Equations (41) and (42).

MINLP improvement(%) = (1−
Objective function of SHOP (EUR)

Objective function of MINLP (EUR)
)× 100 (41)

Heuristic improvement (%) = (1−
Objective function of SHOP (EUR)

Objective function of heuristic (EUR)
)× 100 (42)

BONMIN [33] is an effective and efficient open-source solver used to solve MINLP and non-convex
problems based on Cbc [34] and Ipopt [35] as building blocks. The stochastic MINLP and heuristic
model are implemented in Julia, and the optimization software to solve stochastic MINLP is the
BONMIN, and for the stochastic heuristic model, the Ipopt is used. A laptop computer with an Intel
Core i5 Processor and 8 GB of RAM is utilized to solve the models.

4.1 Case A

This case study uses a power plant with four turbines and a reservoir. The maximum power
production capacity of this hydropower system with four turbines is 345 MWh, and the volume of
the reservoir when full is 104.16 Mm3. The total number of turbine combinations is 24, but for each
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number of active turbines, the maximum output surface is used, which is 4. A maximum output
surface should be selected per hour, so 4 binary variables are considered in the MINLP model for each
hour. 20 instances of various reservoir conditions, including full, half full, and almost empty, as well as
10 price scenarios and 24-hour time horizon, are examined. Inflows are considered deterministic. The
comparison between the MINLP model and the heuristic method is shown in Table 2. As mentioned
in Section 3.1, the value of the objective function is revenue in euros for participation in the day-ahead
market and the balancing market, in case of an imbalance between the power offered volume and
the committed volume. Equation (40) is used to calculate the difference percentage of the objective
function of the two models. The number of active turbines selected in the first iteration will not
change in the next iteration of the heuristic method if the initial and final volumes are such that 4
turbines, the maximum power production of the hydropower plant, are on for all scheduling time. To
make the comparison between the MINLP model and the heuristic method more meaningful, the input
parameters, such as the initial and final reservoir volume and the inflow, are set in such a way that
there is not enough water to produce full in all hours.

Table 2: Comparison income of stochastic MINLP model and stochastic heuristic method results in case A

Instance MINLP Heuristic Difference Time MINLP Time HEU Diff Time Number of iterations
(EUR) (EUR) (%) (s) (s) (s)

1 296,076 296,052 0.00% 13.10 25.55 -12.45 2
2 186,579 186,512 0.04% 114.29 51.12 63.18 4
3 324,377 324,381 -0.00% 22.28 23.10 -0.83 3
4 234,886 234,877 0.00% 31.75 30.88 0.87 3
5 178,121 178,043 0.04% 50.78 39.91 10.87 4
6 255,380 255,341 0.02% 50.75 43.39 7.36 4
7 244,565 244,520 0.02% 114.73 42.47 72.26 4
8 360,184 360,170 0.00% 19.48 34.47 -14.99 3
9 136,660 136,689 -0.02% 18.65 25.05 -6.39 3
10 218,479 218,359 0.05% 28.81 42.28 -13.47 4
11 138,268 138,246 0.02 % 36.55 32.53 4.02 4
12 212,724 212,675 0.02% 17.81 51.37 -33.56 5
13 282,276 282,291 -0.01% 18.64 49.04 -30.40 4
14 276,439 276,446 -0.00% 25.36 43.81 -18.46 4
15 170,818 170,776 0.02 % 15.77 43.28 -27.51 4
16 240,744 240,743 0.00 % 132.10 36.28 95.83 3
17 221,723 221,677 0.02 % 79.46 46.63 32.83 4
18 241,412 241,375 0.02 % 99.89 33.82 66.07 3
19 219,511 219,492 0.01% 76.17 46.03 30.14 4
20 202,485 202,465 0.01 % 18.54 45.39 -26.85 4

The model results in Table 2 show that both the MINLP model and heuristic methods are efficient
and can reach the solution in a short time. The average difference of the objective function value
is 0.014% which is higher in the MINLP model. The average solution time for 20 instances in the
MINLP model is 51.15 seconds, and in the heuristic method is 40.04 seconds. Although the solvers
of the MINLP model and the heuristic method are different, the values of the objective functions are
close, and there is not much difference between them. In the heuristic method, there is no guarantee
of reaching the optimal solution, and because the solver of the two methods is not the same, some
difference in the results is normal. Some hours of instance 2 are selected for comparison of the bid
volume and bid curve. Figure 5 shows the bid volume of the MINLP model and the heuristic method
in the day-ahead market for ten scenarios at 5, 11, 18 and 21 hours in instance 2 and Case A. In this
figure, the amount of bid volume in the MINLP model and the heuristic method is presented in the
specified hours for 10 price scenarios.

Figure 6 shows the bid curve at 5, 11, 18 and 21 hours for instance 2, case A. The bid curves in the
MINLP model and the heuristic method have been compared in this figure. Usually, the bid curves
are close at high prices for each hour in both models, and the differences are at low prices.
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Figure 5: Comparison of the bid volume per stochastic price at 5, 11, 18 and 21 hours and different scenarios in instance 2,
case A

Figure 6: Comparison of the bid curve at 5, 11, 18 and 21 hours and different scenarios in instance 2, case A

4.2 Case B

In the second case study, two power plants are connected in series. The topology of the system is
illustrated in Figure 7. The first power plant has two turbines, a maximum power generation capacity
of 240 MWh, and a maximum reservoir volume of 41.66 Mm3. The second power plant has four
turbines, a maximum power generation capacity of 345 MWh, and a maximum reservoir volume of
104.16 Mm3. The simulation is for a Norwegian system that participates in the day-ahead market
with a 24-hour time horizon. The MINLP model and heuristic method were tested on 60 instances for
a planning horizon of 24 hours, with the initial and final volumes different, reservoirs almost empty,
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half-full and full. The inflows are considered deterministic and from low to high inflows. As shown in
Table 3, rows 1 to 20 show results for low inflow, 21 to 40 for medium inflow, and 41 to 60 for high
inflow.

Figure 7: Topology of the hydro system in case B

Table 3 reports the profit obtained in euros in each instance with the MINLP model, the heuristic
method, the solution time, and the difference between the two models. The results show that in 10
instances of the stochastic MINLP, no results were obtained with the BONMIN solver because the LP
relaxation is infeasible or too expensive. However, the heuristic method provides the result after a
few iterations. The solution time is too long to determine that the instance has no solution, so their
time was not recorded in the table nor considered in the calculations. The average solution time for
the nonlinear model is 131.35 seconds and for the heuristic method with an average of 4 iterations is
86.06 seconds. The MINLP model has an average of 0.08% better results than the heuristic method.
Figure 8 is a histogram of the difference percentage between the objective function in the MINLP
model and the heuristic method. As mentioned, the MINLP model provides no result in 10 instances.
So out of the remaining 50, in 27 instances, their percentage difference is between -0.05% and 0.05%;
in 13 instances, the percentage difference is between -0.05% and 0.15%.

Figure 8: Histogram of difference between stochastic MINLP model and stochastic heuristic method, case B

4.3 Validation results with SHOP

To validate the MINLP and the heuristic method, the value of their objective function has been
compared with SHOP. The objective functions and solution methods of these models are not the same;
One of the differences is that in the MINLP model and heuristic method, the power produced and the
number of active turbines are determined in the first phase, the loading problem. In the second phase,
the problem of unit commitment is solved, and the start-up costs are penalized; therefore, the start-up
costs are not a decision variable in the bidding problem in the MINLP model and heuristic method,
and it is optimized in the second phase. But in SHOP model, the start-up costs are a part of the
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Table 3: Results for MINLP and heuristic methods for case B

Instance Inflows MINLP Heuristic Difference Time MINLP Time HEU Diff Time Number of iterations
(EUR) (EUR) (%) (s) (s) (s)

1 Low 415,640 415,563 0.019% 146.03 72.40 73.63 4
2 Low NO Reslut 525,654 - - 54.96 - 3
3 Low 488,798 488,760 0.008% 160.38 74.95 85.43 4
4 Low 439,840 439,847 -0.002% 94.11 188.17 -94.06 5
5 Low 458,945 458,933 0.003% 229.52 220.56 8.96 5
6 Low 519,198 519,282 -0.016% 69.63 80.99 -11.36 4
7 Low 583,800 583,800 0.000% 15.61 31.87 -16.27 3
8 Low 382,630 382,642 -0.003% 173.33 64.34 108.99 4
9 Low 442,410 442,356 0.012% 18.32 66.39 -48.07 4
10 Low 411,106 410,746 0.088% 194.91 78.30 116.61 4
11 Low 432,330 432,409 -0.018% 123.93 87.46 36.47 5
12 Low NO Reslut 458,164 - - 68.55 - 4
13 Low 528,858 528,845 0.002% 36.43 50.25 -13.82 3
14 Low 506,363 506,398 -0.007% 62.90 64.37 -1.47 4
15 Low 463,316 463,207 0.024% 84.71 71.04 13.67 4
16 Low 495,952 495,652 0.060% 39.36 67.60 -28.24 4
17 Low 443,889 443,863 0.006% 299.39 98.47 200.93 4
18 Low NO Reslut 482,266 - - 117.64 - 4
19 Low 559,790 559,793 -0.001% 98.22 102.68 -4.46 4
20 Low 370,581 370,236 0.093% 149.08 97.89 51.18 5
21 Medium 440,527 440,524 0.001% 180.08 85.63 94.45 5
22 Medium 503,192 503,176 0.003% 27.37 85.83 -58.46 5
23 Medium 325,549 324,584 0.296% 95.65 106.05 -10.40 4
24 Medium 501,095 500,770 0.065% 396.96 110.18 286.78 4
25 Medium 557,098 557,083 0.003% 71.98 51.61 20.38 3
26 Medium 307,438 307,020 0.136% 106.44 126.43 -20.00 5
27 Medium NO Reslut 372,167 - - 95.76 - 5
28 Medium 453,719 453,868 -0.033% 204.04 92.29 111.75 5
29 Medium 314,211 314,292 -0.026% 152.83 43.83 108.99 4
30 Medium 429,609 429,519 0.021% 163.47 96.27 67.20 5
31 Medium NO Reslut 356,977 - - 107.10 - 6
32 Medium 411,493 410,729 0.186% 499.41 67.92 431.49 4
33 Medium 388,272 387,185 0.280% 104.42 70.31 34.10 4
34 Medium 433,909 434,010 -0.023% 94.48 56.30 38.18 5
35 Medium 571,885 571,872 0.002% 20.73 59.18 -38.45 2
36 Medium NO Reslut 416,822 - - 73.38 - 4
37 Medium 482,433 482,012 0.087% 90.46 82.68 7.78 4
38 Medium 418,097 417,490 0.145% 221.52 78.69 142.83 4
39 Medium 374,595 374,287 0.082% 57.20 197.34 -140.14 5
40 Medium 493,862 494,090 -0.046% 221.95 95.48 126.47 5
41 High 544,617 543,946 0.123% 32.99 69.76 -36.78 4
42 High NO Reslut 337,140 - - 97.11 - 6
43 High 398,340 397,600 0.186% 97.53 102.38 -4.85 6
44 High 383,772 383,187 0.152% 66.77 139.29 -72.52 4
45 High NO Reslut 404,323 - - 66.24 - 4
46 High 488,761 488,767 -0.001% 33.58 51.60 -18.02 3
47 High NO Reslut 416,091 - - 86.60 - 5
48 High 484,657 484,528 0.027% 182.25 70.42 111.83 4
49 High 406,413 406,616 -0.050% 50.83 66.80 -15.97 4
50 High 432,191 431,556 0.147% 133.11 77.25 55.86 4
51 High 404,549 402,236 0.572% 126.90 72.00 54.89 4
52 High 371,200 369,391 0.487% 144.67 66.16 78.51 4
53 High 401,446 400,178 0.316% 363.22 86.55 276.67 5
54 High NO Reslut 377,770 - - 46.51 - 4
55 High 407,531 407,105 0.105% 106.97 66.96 40.01 4
56 High 390,692 390,313 0.097% 85.52 82.09 3.42 5
57 High 447,669 447,465 0.046% 146.40 108.32 38.08 6
58 High 361,972 361,237 0.203% 92.69 67.71 24.98 4
59 High 322,351 321,070 0.397% 163.17 64.46 98.71 4
60 High 401,820 401,520 0.075% 35.95 87.43 -51.48 5
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objective function. Another difference is that the water value is included in the objective function of
SHOP, but in the MINLP model and the heuristic method, the final volume is one of the input data.
Therefore, for comparison, all conditions, such as the initial and final volume of the reservoir, are the
same. We consider zero for the start-up cost and water value in all cases examined. The inflow is
considered into three categories: low, medium and high. The comparison results of the MINLP model
and heuristic method with SHOP are shown in Table 4.

Table 4: Validation results with SHOP in case B

Instance Inflow SHOP (EUR) MINLP (EUR) Improvement % Heuristic (EUR) Improvement %

1 Low 490,117 - - 491,371 0.26%
2 low 288,609 - - 291,975 1.17%
3 low 388,676 396,721 2.07% 396,603.0 2.04%
4 Medium 392,105 - - 402,791 2.73%
5 Medium 518,067 - - 518,067 0.00%
6 Medium 468,489 - - 474,081 1.19%
7 High 513,283 513,283 0.00% 513,283 0.00%
8 High 477,594 485,393 1.63% 485,393 1.63%
9 High 320,898 - - 324,437 1.10%

The improvement percentage of the objective function value in the MINLP model and the heuristic
method compared to SHOP is obtained from Equations (41) and (42), and it is displayed in Table 4
in the side column of the objective function of each model. As noted, because the formulation of the
models is different from SHOP, the improvement of the objective function may not provide a totally
right picture of the benefits, and it is only used to validate the results. Figure 9 shows the comparison
of the bid curves for instance 3 in the MINLP model and the heuristic method with SHOP at 5, 9,
19, and 21 hours. Due to the different models and their solvers, the results are different in some hours
and very similar in others.

Figure 9: Bid curves for a selected hour (Hours 5, 9, 19, 21 )
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5 Conclusion

This paper introduced a two-stage mixed integer nonlinear stochastic model to obtain the optimal bids
for a price-taking hydropower producer in the day-ahead market. Since hydropower optimization is
generally a nonlinear problem, a MINLP model was used to determine the optimal power production
in the bidding problem. Instead of using the combination of turbines, the maximum power output
surface was used to reduce the complexity of the problem. The results of the case studies showed that
MINLP model was efficient for small problems and could be solved in a short time. However, for larger
problems, the solution time increased, and the binary variables and the complexity of the nonlinear
problem make the MINLP model unable to find the solution in some instances. Therefore, a heuristic
method was proposed to solve the two-stage mixed integer nonlinear stochastic model, which can reach
the appropriate solution after several iterations in a short time. Average revenues in case studies A
and B are 0.014% and 0.08% higher, respectively, in the MINLP model than in the heuristic method.
The presented methods were tested according to the available data. For future studies, another data
set with more powerhouses in a larger system will be investigated, and uncertainty of inflows and
prices will be considered simultaneously in the model. The heuristic method can be combined with
metaheuristic methods, and the results will be compared.
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