
Les Cahiers du GERAD ISSN: 0711–2440

A dedicated pricing algorithm to solve a large family of
nurse scheduling problems with branch-and-price

A. Legrain, J. Omer

G–2023–02

January 2023
Revised: November 2023

La collection Les Cahiers du GERAD est constituée des travaux de
recherche menés par nos membres. La plupart de ces documents de
travail a été soumis à des revues avec comité de révision. Lorsqu’un
document est accepté et publié, le pdf original est retiré si c’est
nécessaire et un lien vers l’article publié est ajouté.

Citation suggérée : A. Legrain, J. Omer (Janvier 2023). A dedicated
pricing algorithm to solve a large family of nurse scheduling problems
with branch-and-price, Rapport technique, Les Cahiers du GERAD
G– 2023–02, GERAD, HEC Montréal, Canada. Version révisée:
Novembre 2023

Avant de citer ce rapport technique, veuillez visiter notre site Web
(https://www.gerad.ca/fr/papers/G-2023-02) afin de mettre à
jour vos données de référence, s’il a été publié dans une revue sci-
entifique.

The series Les Cahiers du GERAD consists of working papers
carried out by our members. Most of these pre-prints have been
submitted to peer-reviewed journals. When accepted and published,
if necessary, the original pdf is removed and a link to the published
article is added.

Suggested citation: A. Legrain, J. Omer (January 2023). A
dedicated pricing algorithm to solve a large family of nurse scheduling
problems with branch-and-price, Technical report, Les Cahiers du
GERAD G–2023–02, GERAD, HEC Montréal, Canada. Revised
version: November 2023

Before citing this technical report, please visit our website (https:
//www.gerad.ca/en/papers/G-2023-02) to update your reference
data, if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grâce
au soutien de HEC Montréal, Polytechnique Montréal, Université
McGill, Université du Québec à Montréal, ainsi que du Fonds de
recherche du Québec – Nature et technologies.

Dépôt légal – Bibliothèque et Archives nationales du Québec, 2023
– Bibliothèque et Archives Canada, 2023

The publication of these research reports is made possible thanks
to the support of HEC Montréal, Polytechnique Montréal, McGill
University, Université du Québec à Montréal, as well as the Fonds de
recherche du Québec – Nature et technologies.

Legal deposit – Bibliothèque et Archives nationales du Québec, 2023
– Library and Archives Canada, 2023

GERAD HEC Montréal
3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2023-02
https://www.gerad.ca/en/papers/G-2023-02
https://www.gerad.ca/en/papers/G-2023-02


A dedicated pricing algorithm to solve a large family of
nurse scheduling problems with branch-and-price

Antoine Legrain a , b , c

Jérémy Omer d

a Polytechnique Montreal, Montréal (Qc), Canada,
H3T 1J4

b CIRRELT, Montréal (Qc), Canada, H3T 1J4
c GERAD, Montréal (Qc), Canada, H3T 1J4
d IRMAR, INSA de Rennes, Rennes, France

antoine.legrain@polymtl.ca
jeremy.omer@insa-rennes.fr

January 2023
Revised: November 2023
Les Cahiers du GERAD
G–2023–02
Copyright © 2023 GERAD, Legrain, Omer

Les textes publiés dans la série des rapports de recherche Les Cahiers
du GERAD n’engagent que la responsabilité de leurs auteurs. Les
auteurs conservent leur droit d’auteur et leurs droits moraux sur leurs
publications et les utilisateurs s’engagent à reconnâıtre et respecter
les exigences légales associées à ces droits. Ainsi, les utilisateurs:

• Peuvent télécharger et imprimer une copie de toute publica-
tion du portail public aux fins d’étude ou de recherche privée;

• Ne peuvent pas distribuer le matériel ou l’utiliser pour une
activité à but lucratif ou pour un gain commercial;

• Peuvent distribuer gratuitement l’URL identifiant la publica-
tion.

Si vous pensez que ce document enfreint le droit d’auteur, contactez-
nous en fournissant des détails. Nous supprimerons immédiatement
l’accès au travail et enquêterons sur votre demande.

The authors are exclusively responsible for the content of their re-
search papers published in the series Les Cahiers du GERAD. Copy-
right and moral rights for the publications are retained by the authors
and the users must commit themselves to recognize and abide the
legal requirements associated with these rights. Thus, users:

• May download and print one copy of any publication from the
public portal for the purpose of private study or research;

• May not further distribute the material or use it for any profit-
making activity or commercial gain;

• May freely distribute the URL identifying the publication.
If you believe that this document breaches copyright please contact us
providing details, and we will remove access to the work immediately
and investigate your claim.



Les Cahiers du GERAD G–2023–02 – Revised ii

Abstract : In this paper, we describe a branch-and-price algorithm for the personalized nurse schedul-
ing problem. The variants that appear in the literature involve a large number of constraints that can
be hard or soft, meaning that they can be violated at the price of a penalty. We capture the diversity
of the constraints on individual schedules by seven generic constraints characterized by lower and up-
per bounds on a given quantity. The core of the column generation procedure is in the identification
of indivual schedules with minimum reduced cost. For this we solve a shortest path problem with
resource constraints (SPPRC) where several generic constraints are modeled as resource constraints.
We then describe dominance rules adapted to the presence of both upper and lower bounds on the
resources and leverage soft constraints to improve the dominance. We also describe several acceleration
techniques for the solution of the SPPRC, and branching rules that fit the specificities of the problem.
Our numerical experiments are based on the instances of three benchmarks of the literature including
those of the two international nurse rostering competitions (INRC-I and INRC–II). Their objective is
three-fold: assess the dominance rules and the acceleration techniques, investigate the capacity of the
algorithm to find provable optimal solutions of instances that are still open, and conduct a comparison
to best published results. The most noticeable conclusion is that the improved solution of the SPPRC
allows to solve optimally all the INRC–II instances where a 4-weeks planning horizon is considered
and 40% of the 8-weeks instances.

Keywords : Nurse scheduling, column-generation, decomposition, branch-and-price, dynamic pro-
gramming, soft constraints

Acknowledgements: For the purpose of Open Access, a CC-BY public copyright licence has been
applied by the authors to the present document and will be applied to all subsequent versions up to
the Author Accepted Manuscript arising from this submission.



Les Cahiers du GERAD G–2023–02 – Revised 1

1 Introduction

1.1 The nurse scheduling problem

Personalized nurse scheduling problem (NSP) is more important than ever in this post-pandemic
context, where important nurses shortages still exist and have even increased during the pandemic
in most western healthcare systems. Proposing high-quality schedules that fit the nurses preferences
while ensuring the right coverage is a key-element to help managers retain nurses in their care units.
Moreover, these schedules need to cover an horizon long enough, typically 4 to 8 weeks, to let the
nurses plan their own personal time based on their work schedules.

The NSP aims to design a schedule that meets the needs of nurses and operational constraints
while minimizing costs. Each day is divided into multiple shifts, and each nurse possesses a specific
skills set that corresponds to assigned tasks. Nurses are assigned to a shift based on their skills, and
days without any assignment is called a day off. The NSP involves creating a roster for each nurse that
outlines their work schedule and days off for the planning horizon. Most rostering problems aim to
balance workloads among employees while ensuring that individual schedules comply with employment
regulations and contractual obligations. As a result, the cost of the entire schedule typically factors
in an assessment of the overall quality of service it offers, along with penalties linked to imbalanced
customized rosters and breaches of contracts and labor regulations. The quality of service is generally
measured by assessing the demand for each shift on a daily basis, and a potentially significant number
of constraints define the specifications for each customized roster.

The review article by (Cheang et al. 2003) lists 16 types of constraints that are commonly found
in the literature. For instance, the workload of each nurse usually has to lie between a minimum
and a maximum number of assignments on the planning horizon. It is also usual that the number
of consecutive assignments be lower and upper bounded. Depending on the considered country and
hospital, each constraint may be hard, meaning that a feasible solution necessarily satisfies it, or soft,
in which case it can be violated at the the price of a penalty. As an example, the two international
nurse rostering competitions (INRC), INRC-I (Haspeslagh et al. 2014) and INRC–II (Ceschia et al.
2019), specify two rostering problems where most constraints are soft. The hard constraints of the
INRC instances specify that nurses can perform only one assignment per day, that they need the
corresponding skill to perform a task and that a minimum number of nurses must be assigned to
each shift. Up to 15 other soft constraints then characterize the required working conditions of each
nurse. It should be noted that the INRC–II problem originally considered a stochastic NSP where the
demands are dynamically revealed on a weekly basis, but the literature has often focused on its static
version where all data is known in advance.

The personalized aspect of nurse schedules contributes greatly to the complexity of the NSP.
The same schedule can have varying costs depending on the nurse receiving it due to differences in
contracts or preferences for days off. In contrast, workforce scheduling problems are often solved using
anonymous rosters.

1.2 Main contributions

The purpose of the research described in this article is to implement a branch-and-price algorithm
that can handle most of the NSP instances described in the literature while finding provable optimal
solutions for a large number of instances that are still open. Up to now, most static INRC–II instances
studied in the literature were still open, and so were some INRC-I instances. Moreover, most studies
have focused on specific instances and either the corresponding code has not been shared publicly or
it is dedicated to the specific constraints considered in these instances.

Algorithmic contributions In the development of our algorithm, we have looked into opportunities of
improvements in every components of the branch-and-price algorithm, but we have drawn a particular



Les Cahiers du GERAD G–2023–02 – Revised 2

focus on the generation of individual rosters. As a consequence, we have designed a new dominance
rule that better takes into consideration both upper and lower bounded resources, in particular soft
ones, in the solution of the shortest path problem with resource constraints (SPPRC) with dynamic
programming. Moreover, the literature on generic SPPRC, on the NSP and on other related problems
provides a large number of algorithmic features that sometimes produced a significant speed-up in the
solution of the pricing problem. We have implemented the most promising among them and assessed
their impact on a set of INRC instances. Finally, we have also implemented strong-branching, diving
heuristic, and a very promising rotation MIP heuristic that produces high quality solutions in parallel
of the branch-and-price resolution.

Software design contributions We designed a generic representation of the constraints so that each
generic constraint can capture a large set of operational constraints including those described for the
INRC competitions. These generic constraints should also be sufficient to take into consideration any
type of constraints listed by Cheang et al. (2003). Moreover, considering that other needs may appear
in the future, we opted for a code structure that should allow future users to integrate them in the
solver. The already developed generic constraints provide many examples to make this task easier.

The proposed algorithms are implemented in C++ and depend only on free and open third party
libraries. The resulting code is publicly shared (Legrain and Omer 2023) for reproduction of the
results, future comparisons, improvements and extensions. To the best of our knowledge, it is the first
open-source code that can handle all the hard and soft constraints of the INRC instances.

Computational results Our tests are based on the three benchmarks that were most commonly used
in the literature: the Nurse Rostering Problem (NRP)1 and INRC-I benchmarks and the static INRC–
II instances that have already been considered in the literature. Those benchmarks capture a large
diversity of the hard and soft constraints found in the literature. They involve schedules of 8 to 150
nurses over a planning horizon of 2 to 52 weeks, where the nurses can have up to four different skills and
each day is divided into up to 32 shifts. Our algorithm is able to solve every instance of INRC-I except
one, all static 4-weeks instances of INRC–II, and several 8-weeks instances of INRC–II to optimality.
It is also able to find the best known solutions for 19 over 24 NRP instances and it improves two lower
bounds with respect to the literature. For some of these results, we had to distribute several tasks on
up to eight cores and set a the time limit to one day. Moreover, the numerical tests are an opportunity
to report on the experimental comparison of roster and rotation-based formulations on the INRC–II
instances.

1.3 Organization of the article

The generic constraints are first detailed in Section 3. We then give the outline of our branch-and-
price algorithm in Section 4. In there, we also provide a generic extended formulation of the NSP and
describe our branching strategies and the primal heuristics that we developed to improve the upper
bounds found by branching. The solution of the pricing problem with a specific dynamic programming
algorithm is then described in Section 5. Finally, in Section 6, we report the experimental results
of our algorithm, we assess the impact of the acceleration techniques we implemented and carry a
comparative study with the best published results.

2 Solution of the nurse scheduling problem
Most approaches that were used to tackle NSP instances are based on metaheuristics or mathematical
programming techniques. Among them, several methods solely based on metaheuristics have shown
their capacity to compute good rosters in a small computational time on a large variety of benchmarks
(see e.g. (Burke et al. 2013, Ceschia et al. 2020, Abuhamdah et al. 2021, Abdelghany et al. 2021)).

1Instances and best results can be found here http://www.schedulingbenchmarks.org/nrp/index.html

http://www.schedulingbenchmarks.org/nrp/index.html


Les Cahiers du GERAD G–2023–02 – Revised 3

However, the results of the two INRCs emphasized that these approaches were outperformed by meth-
ods based on integer programming formulations of the problem (Ceschia et al. 2020, Haspeslagh et al.
2014) except for instances with very long horizons (16 and 32 weeks) (Ceschia et al. 2020). Another
limit of these approaches is that they do not provide lower bounds on the optimal value, so they cannot
prove the optimality of the solutions by themselves.

The mathematical programming approaches can be categorized in two families. In the first one, the
problem is formulated as a compact integer linear program (ILP) where the variables refer to working
assignments and resting days. This has been investigated by Römer (2016) to successfully handle the
stochastic problem described in INRC–II. Santos et al. (2016b) have also been able to find provable
optimal solutions of many INRC-I instances and improve on the optimality gap of others. However,
eleven instances remain open.

The method that we describe in this article belongs to the second family, where the problem is
modeled as an extended formulation where variables refer to individual rosters or sequences of working
assignments. This formulation generally relies on a column generation procedure embedded in a branch-
and-price algorithm to get integer solutions. These methods, possibly coupled with matheuristics, have
been able to produce the best results on most benchmarks. Below, we draw a detailed review of the
previously developed branch-and-price approaches for the NSP and related problems, with a particular
focus on the computation of individual rosters.

2.1 Branch-and-price approaches

In most extended formulations of the NSP, the variables of the linear problem correspond to rosters and
the linear constraints include partitioning equalities or covering inequalities, each of which guarantees
that a necessary task is performed by an adequate number of nurses. Due to the lengthy planning
horizon and numerous tasks that each nurse may perform, it is unfeasible to enumerate all columns
in advance and resolve the resulting ILP with branch-and-cut. To overcome this numerical challenge,
the initial step is to limit the number of variables by considering a small set of rosters. At every
node of the branch-and-bound tree, the linear relaxation is resolved through column generation. This
leads to the development of the branch-and-price algorithm, where new rosters are typically generated
based on SPPRC solutions. Refer to (Barnhart et al. 1998) for detailed information regarding the
implementation of branch-and-price approaches.

For the SPPRC, one considers a network where vertices represent the tasks to complete and arcs the
possible transitions. Each arc is weighted with a cost and its traversal consumes certain resources. The
SPPRC then consists in finding the minimum cost path between two artificial origin and sink vertices
such that the resources consumed along the path lie within given bounds. Either a new column of
negative reduced cost is generated or it is proven that the optimal solution of the restricted linear
relaxation is optimal for the non-restricted version. An overview of column-generation algorithms can
be found in (Desaulniers et al. 2006), and for a comprehensive review of SPPRC, (Irnich et al. 2005)
can be consulted.

The initial effort to address the NSP using branch-and-price techniques can be traced back to
1998 (Jaumard et al. 1998). In their study, the authors establish a universal framework that addresses
a wide range of constraints. To generate new columns, they resolve an SPPRC that considers as many
as seven distinct constraints. The personalized nature of the issue is later emphasized by Bard and
Purnomo (2005). This approach prompts the generation of fresh schedules through a swap heuristic and
subsequent feasibility checks a posteriori. In (Maenhout and Vanhoucke 2010), a heuristic is initially
executed in an attempt to generate negative reduced cost rosters, and the SPPRC is only solved if
the attempt is unsuccessful. Furthermore, they compare over fifteen different branching rules on one
or more variables. In Burke and Curtois (2014), columns are generated by solving an SPPRC using
heuristic dynamic programming methods. They report outstanding results on the INRC-I benchmark.
The problem of pricing can also be tackled with constraint programming (He and Qu 2012). To handle



Les Cahiers du GERAD G–2023–02 – Revised 4

static INRC–II instances with a 4-weeks horizon, Gomes et al. (2017) improve their branch-and-price
approach with a variable neighborhood search. The authors implemented a classical decomposition
strategy, focusing on the roster of each nurse.

Another approach to addressing the problem is inspired by airline crew scheduling problems. Sim-
ilarly, in (Kohl and Karisch 2004), each column represents a rotation or a sequence of flights that
begin and end at the same base. This approach identifies the rostering problem as a task of selecting a
sequence of rotations to create a roster for every crew member. Legrain et al. (2020) adapted this idea
to the NSP by defining a rotation as a sequence of working assignments preceded and followed by a
sequence of days off. The subproblems thus generate such rotations, while the master problem builds
a complete roster for each nurse by selecting a sequence of rotations that are separated by at least one
day off. They also enriched their branch-and-price algorithm with a large neighborhood search to find
good feasible solutions in limited time. This approach produced the best results for a large number
of INRC–II instances, as shown in the recent experimental comparison carried out by Ceschia et al.
(2020). In his PhD thesis, Lensing (2020) reports that his implementation of this rotation decomposi-
tion is outperformed by the classical roster decomposition on the benchmark proposed by Curtois and
Qu (2014), where most constraints are hard.

2.2 Generation of individual rosters

A key step of the branch-and-price algorithms for NSP is the generation of individual rosters with
negative reduced costs. In our previous works on the subject, we have observed that this is the part of
the algorithm where most of the computational effort is spent. In most works of the literature, this is
done by solving an SPPRC in a graph where the nodes stand for possible assignments or resting days
and where the arcs represent allowed transitions. The specificity of the NSP is that resource constraints
may be soft and that they specify lower and upper bounds on the same quantity. While describing the
first dynamic programming approach to the SPPRC, Joksch (1966) mentioned that in the presence of
two inequalities imposing upper and lower limits on a resource consumption, a path can be identified
as less efficient than another only if the resource consumption is the same along both paths. He then
stressed that dynamic programming approaches would certainly not be computationally worthwhile
unless many paths share the same resource values. Later, the dynamic programming recursion proposed
by Beasley and Christofides (1989) also kept one path for each possible value of the resources, thus
leading to the same computational issue.

The research on SPPRC has often been driven by the study of vehicle routing problems (VRPs).
In this context, when both lower and upper bounds are considered, they are related to time windows
[ai, bi] where each node i must be visited. In this application, it is usually possible to wait at a node
before serving it. As a consequence, the lower bound of a time window will not impact the validity
of a path arriving at node i earlier than ai. Instead, it impacts the departure time from node i: a
vehicle reaching i before ai will wait until ai to serve it and then leave node i. Classical time-windows
are enforced as hard constraints, but some works considered soft time windows. In the latter variant,
waiting is still possible without extra cost at any node, but if a node is served earlier or later than its
time window a linear penalty must be paid. A section is devoted to soft time windows in the review
article by Costa et al. (2019). Sexton and Choi (1986) were the first to consider soft time windows
in a VRP. Those were introduced to distinguish working time windows, outside of which a customer
could not be served, and the preference time slots of the customers, which can be violated by paying
a penalty. As emphasized by Liberatore et al. (2011), the greatest difficulty that they raise is in the
price of earliness. A compromise has to be found between earliness penalty and tardiness in subsequent
nodes, hence dominance happens a lot less when solving the subproblems with label-setting algorithms.
To mitigate this issue, Liberatore et al. (2011) associate a non-increasing linear stepwise cost function
with each label to represent an infinite number of states where the other resources’ consumption and
the list of visited nodes are the same. This prevents from having one label for each possible waiting



Les Cahiers du GERAD G–2023–02 – Revised 5

time at each node. A similar approach is followed by (Bettinelli et al. 2014) and (Abdallah and Jang
2014).

Unfortunately, given that waiting is not relevant in general for resource constraints, the above
cannot be generalized to nurse scheduling. In contrast, Tagmouti et al. (2007) have studied a variant
of the traveling salesman problem where a time-dependent service cost is given by a convex function
of the arrival time at each node. They solve the problem with a column-generation algorithm where
the subproblem is a shortest elementary path problem with one resource constraint. Their algorithm
is a direct adaptation of the classical label-setting algorithm where the cost of a partial path is given
by the sum of the arc traveling costs and the service costs. In (Qureshi et al. 2010), early arrivals are
penalized linearly. The authors clearly emphasize that soft constraints result in a dramatic increase
of the computational time that is required to find optimal paths, especially when early arrivals are
penalized. But in every case, the soft constraints yield no more adaptation than in the computation
of the cost of a partial path. When early arrivals are penalized, the shortest path problem is solved
with a genetic algorithm heuristics (Qurashi et al. 2010).

In the context of NSP, only a few works have handled soft constraints in a branch-and-price
approach where the pricing problem is solved by a label-setting algorithm. For instance, Strandmark
et al. (2020) developed a heuristic column generation approach, but the algorithm does not produce
lower bounds because their SPPRC does not capture the soft roster constraints. In contrast, Burke
and Curtois (2014) straightforwardly adapted the classical dominance rule to handle lower bounds: a
label can dominate another label only if the consumption of every upper bounded resource is smaller
or equal and if the consumption of every lower-bounded resource is larger or equal. As a consequence,
dominance happens only when the consumption is equal for the resources that are both upper and
lower-bounded. In (Legrain et al. 2020), the network of the SPPRC is modified to reduce the pricing
problem to a standard SPPRC with only one upper bounded resource. For this, short sequences of
assignments are enumerated, and the nodes and arcs are duplicated into layers where the number of
consecutive assignments to the same shift can be tracked. Dominance is much more efficient with
this approach, but the network is much larger. Moreover, dominance is not cross-checked between the
nodes that belong to different layers but correspond to the same assignment.

3 Generic constraints for a general NSP
In the remainder of the article, we respectively denote as N , D, S and Σ the sets of nurses, days,
shifts and skills. The number of days in the planning horizon is denoted as nD, therefore we set
D = {1, . . . , nD}. Given that some constraints apply specifically to weekends, we also introduce nW
the number of weekends over the horizon. An assignment is then given by any pair (d, s) where d ∈ D
and s ∈ S. For a more concise presentation of our models, we include in S a Rest shift that corresponds
to no assignment on a given day. Stated otherwise, an assignment (d, Rest) corresponds to a day off
whereas (d, s) is a working day, for any s ̸= Rest. We will also refer to Rest as the rest shift and to
the others as work shifts.

Browsing the literature on the NSP, it quickly appears that each benchmark is based on a specific
set of constraints. Cheang et al. (2003) have listed the 16 different families of constraints they could find
in the articles published before their review. One purpose of this work is to implement an algorithm
that will be able to run on most (if not all) instances of the literature provided that a proper parser
is implemented. For this, we defined a set of generic constraints that are able to capture most specific
constraints that we encountered in the literature.

The first step is in the definition of generic structures for the shifts, days, weekends and patterns,
which are most commonly targeted by the constraints.



Les Cahiers du GERAD G–2023–02 – Revised 6

• A shift type is any set of shifts, i.e., any set S ⊆ S. For instance, a shift type may either stand
for an actual working shift such as a work period from 9 a.m. to 5 p.m., or it may refer to any
working shift, the rest shift or even any afternoon shift.

• A day type is any set of days, i.e., any set D ⊆ D. A day type may thus refer to Monday, May
28, 2022, to any Monday, or to any day. In the remainder, we will thus use the days of the week
Monday, Tuesday, etc., to refer to the corresponding day types.

• A weekend type is given by any sequence of consecutive days of the week, e.g., Saturday-Sunday,
Friday-Saturday-Sunday or Saturday-Sunday-Monday.

• Finally, a pattern Π is given by tuple of pairs formed of one day type and one shift type,
i.e., Π = ((D1, S1), . . . , (DK , Sk)) where K is the length of Π and Dk ⊆ D and Sk ⊆ S for
k = 1, . . . , K.

Given these structures, we divided the generic constraints into two groups: those that define a
feasible individual nurse schedule and its cost, and those that impact the selection of one schedule
per nurse. This decomposition is mostly justified by the column generation procedure we have chosen
where the master problem includes the second group while the subproblems include the first one. Each
generic constraint can then either be hard or soft. In case it is soft, a penalty is associated to its
violation that is generally defined by either the problem description or the instance. When a quantity
is both upper and lower bounded, the penalties may be different for the upper and lower bounds.

In short, the master problem constraints are given below.

1. Coverage: a minimum number of nurses must work on each day and shift with each skill;
2. Assignment: each nurse must be assigned one roster, and they can only be assigned a skill that

they possess.

The subproblems generic constraints are more numerous.

3. Total shift types: the total number of assignments of each nurse to a given shift type over the
planning horizon is bounded. For instance, the total number of working days is usually upper and
lower bounded. The total number of night shifts over the horizon may also be bounded with such
constraint;

4. Total worked weekends: the number of weekends a nurse can work is bounded;
5. Consecutive shift types: the number of consecutive assignments to the same shift type is bounded.

This constraint may refer to consecutive working or resting days, to consecutive specific shifts, etc.;
6. Consecutive worked weekends: the number of consecutive worked weekends is bounded;
7. Identical weekend: assignments on a weekend must all be to identical shift types. This can capture

that a weekend must be either completely worked or completely rested, and that every assignment
on a weekend must be to the exact same shift;

8. Forbidden pattern: the schedule of each nurse must not include a given pattern. For instance, it is
usually forbidden to work a morning shift after a night shift, and it may be forbidden to rest less
than two days after a sequence of night shifts;

9. Preferences: each nurse may have several individual wishes for their schedule. These may refer to
a day that they want off or to a specific shift that they want to be assigned to on a particular day.

The above constraints allow to model the problems described in the two INRC competitions (which
differ in several ways). They also capture the constraints used in the benchmark described by Curtois
and Qu (2014), which has often been used in the literature. What is more, new constraints can be
added to our implementation by defining one corresponding subclass. The condition is that they
comply with the framework of our solution algorithm: the master problem needs to be formulated as
an ILP and the subproblems as the search for a resource constrained shortest path.



Les Cahiers du GERAD G–2023–02 – Revised 7

4 Outline of the roster-based branch-and-price

4.1 Roster-based column generation

For all i ∈ N , we denote as Ωi the set of all feasible rosters for i, where each roster j ∈ Ωi is
characterized by a binary vector aj such that aj

d,s = 1 if and only if roster j includes assignment (d, s)
for all (d, s) ∈ D × S.

We formulate the NSP as the search for the minimum cost assignment of nurses to rosters under
demand constraints. For this, we define three sets of decision variables: for i ∈ N and j ∈ Ωi, xij = 1
if roster j is assigned to nurse i and 0 otherwise; for i ∈ N , p ∈ D × S and σ ∈ Σ, yi,p,σ = 1 if
nurse i performs skill σ on assignment p; and for p ∈ D × S and σ ∈ Σ, zpσ is the demand that is
not satisfied on assignment p for skill σ. The vector of roster costs is given by cx, while the penalties
corresponding to unsatisfied demands and to the assignment to a skill that a nurse does not possess
are respectively denoted as cz and cy. The latter costs are only consistent with soft constraints, but
it is more convenient to treat hard and soft constraints in a unified way by assuming a large penalty
when a constraint is hard. Also, the skill assignment cost cy is zero when it corresponds to a skill
that a nurse can perform. As a result, we may formulate the NSP as the following extended integer
program, where bp,σ is the minimum demand on assignment p for skill σ. We also indicate the dual
variables associated to assignment and demand constraints between brackets.

min cx
T x + cy

T y + cz
T z (1a)

s.t.
∑
j∈Ωi

xij = 1, ∀i ∈ N , [αi] (1b)

∑
j∈Ωi

aj
pxij =

∑
σ∈Σ

yi,p,σ, ∀i ∈ N , ∀p ∈ D × S [βi,p] (1c)

∑
i∈N

yi,p,σ + zpσ ≥ bp,σ, ∀p ∈ D × S, ∀σ ∈ Σ (1d)

xij , yipσ ∈ {0, 1}, ∀i, j, p, σ (1e)
z ≥ 0 (1f)

Given that it is not possible to enumerate the feasible rosters of a nurse in reasonable time for
standard instances, we solve the above formulation by column generation. The algorithm starts with
an initial set of rosters Ri ⊆ Ωi for each nurse i. It then considers a restricted master problem (RMP)
that is obtained from Formulation (1) by replacing Ωi by Ri for all nurses i ∈ N . Assuming a feasible
solution can always be obtained by adding artificial rosters at a prohibitive cost, we can suppose
that the linear relaxation of RMP, known as RMPLR, is feasible. At each iteration of the column
generation procedure, RMPLR is solved until optimality. Next, a pricing problem is solved using an
optimal dual solution of this relaxation to find rosters of Ωi \ Ri that have negative reduced costs.
If such a roster is generated, it will be added to the restricted formulation, otherwise, the optimal
solution of the RMPLR is proven to be optimal for the linear relaxation of Formulation (1).

The description of how an integer solution can be obtained by branching or by running a primal
heuristic algorithm can be found in Appendix B as these are known techniques. However, we have also
implemented a modified version of the classical MIP heuristic for column generation. More specifically,
this heuristic searches for an integer solution by solving the restricted master problem obtained with
the columns generated after the solution of the relaxation of the master problem. This is usually done
at the root node, but it can also be done at any other branching node. However, compatible rosters
are difficult to find, and solving the classical MIP may lead to solutions of poor quality (and, therefore
greater than the current upper-bound), and even infeasibility. To overcome this challenge, we come
back to the rotation-based formulation that allows more flexibility in the combination of rotations
to obtain a good feasible solution. From a current solution of the roster-based formulation, all the



Les Cahiers du GERAD G–2023–02 – Revised 8

roster columns are cut into rotation columns and the associated MIP is then solved. In a parallel
environment, this MIP can run permanently: as soon as a better solution is obtained, the new upper-
bound is passed to the branch-and-price algorithm and a new MIP based on the current solution is
then solved. This rotation MIP heuristic leads to the best solutions, as shown in the experiments. In
the remainder of the section, we describe the pricing problem and sketch its solution algorithm.

4.2 Pricing rosters by dynamic programming

Construction of individual roster graphs The pricing problem consists in searching for individual
rosters with negative reduced costs. Given that different nurses are not linked at this stage, pricing
can be done independently for each nurse. For this, we consider an acyclic directed roster graph
Gi = (Vi, Ai) for each nurse i, where

• Vi includes two artificial origin and sink vertices o and t, and one vertex for each assignment
(d, s) ∈ D × S. For each v ∈ Vi \ {o, t}, we denote as (day(v), shift(v)), the assignment corre-
sponding to v;

• Ai includes one arc from the origin to each vertex of the first day, one arc from each vertex of
the last day to the sink, and for all days but the last one, one arc from each corresponding vertex
to each vertex of the following day. More formally,

Ai = {(o, v) : day(v) = 1} ∪ {(v, t) : day(v) = nD} ∪ {(u, v) : day(v) = day(u) + 1} .

A small example is given in Figure 1.

day 1

Early

Late

Night

Rest

day 2 day 3 day 4 day 5 day 6 day 7

o

t

Figure 1: Example of a roster graph network. Here, the horizon includes 7 days and S = {Early, Late, Night, Rest}.

A roster corresponds to a path from o to t in the roster graph. A feasible roster must also satisfy
the individual roster constraints listed in Section 3. We take them into account by either modifying
the roster graph or by considering resource constraints. In particular, the constraints on identical
weekends, preferences and two-shifts long patterns may all be modeled by modifying the roster graph.
For instance, a hard day-off preference is considered by removing all the arcs going to a working shift
node on this day, while the same soft preference will lead to adding the corresponding penalty to the
cost. Similar modifications can be done on the arcs joining vertices that correspond to different shift
types on weekends for the identical weekends constraints.

In contrast, modeling the constraints on total working time/weekends, consecutive shift
types/weekends and long forbidden patterns cannot be done without adding a large number of vertices
and arcs to the graph. This has been done for instance in (Legrain et al. 2020) in a rotation-based
decomposition. But in their approach, they could enumerate the rotations whose lengths were smaller
than the minimum number of worked shifts, because this only included rotations with length smaller



Les Cahiers du GERAD G–2023–02 – Revised 9

than three. For rosters, the lower bound may be close to the number of days of the horizon, which
would lead to intractable enumeration. As a consequence, these constraints are modeled with a set
of resource constraints denoted as R. With classical resource constraints, an o − t path is feasible if
the total consumption along the path is at most equal to a given upper bound. Here, the constraints
may be soft, lower bounds also need to be considered, and the consumption of resources associated
to consecutive shifts and forbidden patterns cannot be represented by a single consumption value on
each arc. We will give more details on this matter in Section 5. In the remainder of this section, we
give an abstract description of the pricing solution algorithm.

With the above modifications of the roster graph and the resource constraints R, a feasible path
and its cost correspond to a feasible roster and its cost. To get the reduced cost of a roster, we also
need to model the dual costs of the restricted master problem constraints. Consider nurse i ∈ N and
a roster j ∈ Ωi with cost cj that covers assignments (p1, . . . , pl). Referring to Formulation (1a)–(1f),
we compute the reduced cost of j as:

cj = cj − αi −
l∑

k=1
βi,pk

. (2)

To make sure that the cost of any path in the roster graph is equal to the reduced cost of the cor-
responding roster, we thus subtract αi from the costs of the arcs going out from the source and we
subtract βi,p from the costs of the arcs going out from the vertex corresponding to each assignment
p ∈ D × S.

Search for a resource-constrained shortest path Following the above construction of the roster graph
G, the search for a negative reduced cost roster is equivalent to the search for a negative cost resource-
constrained path in G. Searching for the minimum cost feasible path, we thus get a negative reduced-
cost roster for nurse i or prove that none exists. Most state-of-the-art approaches for the SPPRC are
based on a dynamic programming approach. The algorithm starts with the partial path containing
only vertex o before extending it along each arc outgoing from o. The algorithm then proceeds by
extending the partial paths obtained at the last iteration along the arcs outgoing from their end vertices
until t is reached. Instead of recording each partial path, the algorithm only stores its state as given by
its costs, resources consumptions and the last arc it traversed. The efficiency of the algorithm is then
determined by its ability to keep only a limited number of efficient partial paths at each vertex by
removing those that are dominated. For a more explicit characterization of extension and dominance,
we start with some formal definitions.
Definition 1. Let v ∈ Vi and let P = (o, v1, . . . , vk) be a path from o to vk with length |P | = k. We
denote as γ0 (P ) the cost of P . For any resource r ∈ R, γr (P ) is the consumption of r along P .

Extension Let (vk, vk+1) ∈ A, the extension of P along (vk, vk+1) ∈ Ai is the path [P, vk+1] =
(o, v1, . . . , vk, vk+1).

Completion A completion of P , [P, P ], is a path from o to t. The path P is a suffix of P .
Feasibility Path P is feasible if and only if every hard resource constraint is satisfied along P .
Dominance Let Q be a second path from o to v. Path P dominates Q if and only if any feasible com-

pletion of Q, [Q, Q], yields a feasible completion of P , [P, Q], such that γ0 (
[P, Q]

)
≤ γ0 (

[Q, Q]
)
,

and if there is a feasible completion of Q, [Q, Q̃] such that γ0 (
[P, Q̃]

)
< γ0 (

[Q, Q̃]
)
.

Equivalence Path Q is equivalent to P if and only if any feasible completion of Q, [Q, Q], yields a
feasible completion of P , [P, Q], such that γ0 (

[P, Q]
)

= γ0 (
[Q, Q]

)
. The set of equivalent paths

from o to v defines an equivalence class.

To illustrate the above definitions, we may consider the classical SPPRC where each resource
constraint corresponds to an upper bound on the resource consumption. Denoting as Ur the upper
bound of each resource r, P is infeasible if there is r such that γr (P ) > Ur. If P is feasible, path
P dominates another feasible path Q if and only if γ0 (P ) ≤ γ0 (Q), γr (P ) ≤ γr (Q) , ∀r ∈ R and



Les Cahiers du GERAD G–2023–02 – Revised 10

∃r ∈ R, γr (P ) < γr (Q). Paths P and Q are equivalent if and only if γ0 (Q) = γ0 (P ) and γr (Q) =
γr (P ) , ∀r ∈ R.

From these definitions, it is straightforward to verify that only non-dominated paths need to be
considered for extension, and that at most one representative of each equivalence class needs to be
extended at each node. This leads to the generic solution algorithm below (Algorithm 1). The
algorithm starts with a partial path including only the origin o, and it extends this path along each arc
outgoing from o to build the set of partial paths P(v) that will be extended from neighbor of o. Since
the graph is acyclic and structured into layers corresponding to the days of the planning horizon, the
algorithm may then iterate over the days of the horizon to extend the non-dominated partial paths
of each corresponding vertex. It may be noted though that the identification of all dominated partial
paths requires a necessary and sufficient condition that cannot be verified in a short computational
time in general. It may thus be useful to consider only a sufficient condition with the risk that some
dominated partial paths will be uselessly extended. Section 5 will be devoted to the specialization of
the algorithm for the specific constraints of the NSP.

initialization: P(o) := {(o)}, P(v) := ∅, ∀v ∈ Vi \ {o}.
1 for (o, v) ∈ Ai do
2 if path (o, v) is feasible then P(v)← {(o, v)}
3 for d ∈ D do
4 for u ∈ Vi(d) do
5 Filter P(u) to keep only one path per equivalence class
6 Filter P(u) by removing dominated paths
7 for P ∈ P(u) do
8 for (u, v) ∈ Ai do
9 Extend P along (u, v) to form [P, v]

10 if [P, v] is feasible then P(v)← P(v) ∪ {[P, v]}
11 if P(t) = ∅ then return ∅
12 else return arg minP ∈P(t){γ0 (P )}

Algorithm 1: Dynamic programming search for a constrained shortest path in Gi

5 Solution of the shortest path with soft constraints
In this section, we provide a detailed description of the solution of the pricing problem. Given that each
nurse can be considered independently in the pricing problem, we focus on a particular nurse i with
rotation graph Gi = (Vi, Ai). We denote as H and S the set of hard and soft individual constraints of
nurse i. For a more concise computation of constraints’ violations, we also denote as [x]+ = max{x, 0}
the positive part of any x ∈ R. Finally, for every constraint r ∈ R, we denote as Ur the corresponding
upper bound and as Lr the lower bound (we can set Lr = 0 when there is none). If r ∈ S, we also
denote as cU

r and cL
r the linear penalties for violations of the upper and lower limits (respectively).

5.1 Representation of the NSP constraints as resources

As already stated in Section 4.2, the constraints on identical weekends, preferences and two-shifts
long patterns may all be modeled by modifying the roster graph. We gave some examples of such
modification, and the others are quite straightforward to derive. In the remainder, we show how the
remaining constraints can be modeled as resource constraints.

In its most general definition, the SPPRC is a variant of the shortest path problem where a set
of resources accumulate along paths and whose value is constrained at vertices and arcs of the path.
As a consequence, the description of a resource must specify how it accumulates and how its value
is constrained. For each resource r ∈ R, the accumulation of resource is characterized by a set of
resource extension functions (REF) fr

uv : R → R, ∀(u, v) ∈ Ai. To model soft constraints, we similarly
define cost extension functions (CEF) gr

uv : R → R, ∀(u, v) ∈ Ai. For a given path P with end node u,
the extension of resources consumption and cost along some arc (u, v) ∈ Ai can then be computed as:



Les Cahiers du GERAD G–2023–02 – Revised 11

• γr ([P, v]) = fr
uv(γr (P )), ∀r ∈ R and

• γ0 ([P, v]) = γ0 (P ) + cuv +
∑

r∈S gr
uv(γr (P )).

In the remainder of the section, we provide the specific REFs and CEFs for each constraint of the
NSP that needs to be modeled as a resource constraint. For the hard constraints, we also mention the
constraints that resource consumptions must satisfy.

Total shift types Let r be a constraint on the total number of assignments to a given shift type S.
This constraint can be modeled by a classical resource constraint where the consumption of resource
along each arc (u, v) ∈ Ai is given by a constant value that is equal to 1 if shift(v) ∈ S and 0 otherwise.
At any arc (u, v) ∈ Ai, the resource/cost extensions functions and the hard constraints on a partial
path P can then be defined as follows.

• REF: fr
uv(γ) =

{
min {γ + 1, Ur} if shift(v) ∈ S

γ otherwise

• CEF: if r ∈ S, gr
uv(γ) =


cU

r if shift(v) ∈ S and γ = Ur

cL
r [Lr − γ]+ if v = t

0 otherwise

• Hard constraints: if r ∈ H,
{

if shift(v) ∈ S : γr (P ) ≤ Ur − 1
if v = t : γr (P ) ≥ Lr

Observe that penalties due to the violation of the upper limit are taken into consideration when
extending a partial path along any arc with the above CEFs. This is done for identifying more
dominated paths. In contrast, the penalties due to a violation of the lower bound are added only when
reaching the sink, because this violation is non-increasing (with the extension of the path).

Consecutive shift types Let r be a constraint on the consecutive number of assignments to shift
type S. These constraints are similar to those found in the variant of the SPPRC studied by Boĺıvar
et al. (2014) where the resource consumption is reset when so-called replenishment arcs are traversed.
Here, any arc (u, v) such that shift(u) ∈ S and shift(v) /∈ S is similar to a replenishment arc. When
traversing such arc, any started sequence of assignments to the shift type S is ended and the resource
value is reset to 0. As a consequence, the lower limit must be satisfied every time a replenishment
arc is traversed. For soft constraints, violations of the lower bound must also be paid when traversing
such arc. We may thus define the resource/cost extensions and the constraints at any arc (u, v) ∈ Ai

as follows.

• REF: ∀(u, v) ∈ Ai, fr
uv(γ) =

{
min {γ + 1, Ur} if shift(u) ∈ S and shift(v) ∈ S

0 otherwise

• CEF: if r ∈ S, gr
uv(γ) =


cU

r if shift(v) ∈ S and γ = Ur

cL
r [Lr − γ]+ if shift(u) ∈ S and shift(v) /∈ S

0 otherwise

• Hard constraints: if r ∈ H,
{

if shift(v) ∈ S : γr (P ) ≤ Ur − 1
if shift(u) ∈ S and shift(v) /∈ S : γr (P ) ≥ Lr

Constraints on weekends The only impacting difference between constraints on shift types and con-
straints on weekends is that the completion of two different partial paths with the same suffix may lead
to (slightly) different consumptions over the suffix. To illustrate this, we must assume the weekends
of nurse i is at least three days long, e.g., from Friday to Sunday. We then consider two partial paths
P and Q from o to the same vertex u such that shift(u) = Rest and day(u) is the first Saturday of the
planning horizon. Assume also that P goes through a rest shift on the preceding Friday whereas Q



Les Cahiers du GERAD G–2023–02 – Revised 12

goes through a work shift. In such case, if r is a constraint on the total number of working weekends,
γr (P ) = 0 and γr (Q) = 1. Now, if we extend both P and Q along the same arc going to some node
v such that shift(v) ̸= Rest, the consumption along Q will be unchanged whereas that along P will
increase by one unit.

As a consequence, the resource value γr (P ) is not sufficient to represent the state of a partial path
P with respect to a constraint on worked weekends. For this, we also need a binary resource value
δr ∈ {0, 1} indicating whether the current weekend has already been counted as worked in a partial
path P (i.e., δr(P ) = 1) or not (i.e., δr(P ) = 0). This resource value has common features with a
resource with replenishment since it must be reset at each end of a weekend. To characterize the
extension of this resource value, we define one new set of REFs, hr

uv : R → R, ∀(u, v) ∈ Ai, where

hr
uv(δ) =


1 if shift(v) ̸= Rest and day(v) is on a weekend
δ if shift(v) = Rest and day(v) is on a weekend
0 otherwise

When extended along some arc, the value of γr (P ) can increase only if δr(P ) = 0. The adaptation of
the REFs and CEFs of shift type constraints is then straighforward.

Forbidden patterns They are closely related to the forbidden paths considered by Villeneuve and
Desaulniers (2005), but the structure of the roster graph makes it possible to model it with a single
upper-bounded resource.

Let Π = ((D1, S1), . . . , (DK , SK)) be a forbidden pattern with length K ≥ 3, where D1, . . . , DK

are day types and S1, . . . , SK shift types. Any sub-sequence ((d1, s1), . . . , (dk, sk)), k ≤ K, such that
d1 ∈ D1, . . . , dk ∈ Dk, s1 ∈ S1, . . . , sk ∈ Sk is called a subpattern of Π with length k. Denoting r the
index of the constraint corresponding to Π, we model it with one resource value with upper bound
Ur = K. For any partial path P from o to u ∈ Vi, γr (P ) indicates the length of the longest subpattern
of Π ending at u in P .

If D1, . . . , DK refer to specific days or to some specific week days (e.g., Monday, Tuesday and
Wednesday), the resource extension along an arc (u, v) is quite straightforward. For k = γr (P ), one
must simply compare day(v) with Dk+1 and shift(v) with Sk+1. However, if D1, . . . , DK include every
day of the horizon, some sub-sequences of Π may appear several times in Π. For instance, assume that
Π forbids any sequence of shifts (Late, Late, Early) on any sequence of days. If γr (P ) = 2, then P ends
with a sequence of assignments to shifts (Late, Late). Obviously, if we wish to extend P along some
arc (u, v) such that shift(v) = Early, we get γr ([P, v]) = 3. The specificity is that if shift(v) = Late,
the consumption is not reset to 0: the longest subpattern of Π ending at v in [P, v] is (Late, Late) so
γr ([P, v]) = 2.

To describe the REF, we denote as Π≤l the subpattern of Π with length l, for any l ≤ K. We
then build ΓΠ(l) as the ordered list of the lengths of the subpatterns of Π that match the end of Π≤l.
For the simplicity of the algorithm computing the extension, the list ΓΠ(l) ends with 0 for all l and
starts with l for all l < K, but it does not include K if l = K. In the example above where Π =(Late,
Late, Early), we would get ΓΠ(1) = [1, 0], ΓΠ(2) = [2, 1, 0] and ΓΠ(3) = [0]. We finally characterize
the resource extension over any arc (u, v) ∈ Ai as follows.

• REF: fr
uv(γ) as described in Algorithm 2 which checks, by decreasing size, if any subpattern

could be extended.

• CEF: if r ∈ S, gr
uv(γ) =

{
cU

r if fr
uv(γ) = K

0 otherwise
• Hard constraints: if r ∈ H, fr

uv(γr (P )) ≤ Ur.



Les Cahiers du GERAD G–2023–02 – Revised 13

1 ... function fr
uv(γ):

2 for k ∈ ΓΠ(γ) do
3 if day(v) ∈ Dk+1 and shift(v) ∈ Sk+1 then
4 return k + 1 ;
5 return 0;

Algorithm 2: Resource extension of forbidden patterns

5.2 Dominance rules

The extension functions and the constraints given above guarantee that the dynamic programming
(Algorithm 1) will return a minimum cost feasible o-t path. The computational time of the algorithm
will depend on its capacity to filter dominated paths though. Our aim is to design rules that are fast to
verify and that provide sufficient conditions of dominance. For each considered constraint, one specific
test needs to be carried out, and the satisfaction of the sufficient condition depends on the result of
every test.

In the remainder of the section, we focus on the comparison of two partial paths P and Q from o

to some vertex v ∈ Vi. The size of path P is denoted as |P | (= |Q|). When considering a suffix Q of
Q, the sequence of vertices of Q is denoted as Q =

(
v1, . . . , v|Q|+1

)
and we set v0 = v. Observe that

the first filtering task executed in Algorithm 1 is to remove equivalent labels until only one is left per
equivalence class. It is straightforward to verify that if γ0 (P ) = γ0 (Q) and γr (P ) = γr (Q) , ∀r ∈ R,

then P and Q are equivalent. As a consequence, we assume that either γ0 (P ) ̸= γ0 (Q) or there is
r ∈ R such that γr (P ) ̸= γr (Q). The proofs of the main results are detailed in Appendix A.

5.2.1 Dominance rules for hard constraints

An o-t path is feasible only if it satisfies every hard constraint. As a consequence, P dominates Q only
if for all r ∈ H and for every completion [Q, Q]:

[Q, Q] satisfies r =⇒ [P, Q] satisfies r. (3)

If (3) is true, we say that P dominates Q with respect to (w.r.t.) r. The rule that has often been
applied for a resource with both upper and lower limits is that the resource consumption should be
the same in both partial paths. We can actually do better in some cases by leveraging that for some
paths P , any completion of P is guaranteed to satisfy the upper and/or lower limits of some resources.
For this, we denote as D the number of days after day(v) in the planning horizon (D = nD − day(v))
and W the number of weekends on the planning horizon after day(v) (excluding the ongoing weekend
if day(v) is on a weekend). The resulting dominance rule chosen for each type of resource constraint
is detailed below.
Proposition 1. Let r ∈ H be any hard resource constraint.

1. If r is a constraint on total shift types or on consecutive shift types, P dominates Q w.r.t. r if[
γr (P ) + D − Ur

]+ ≤
[
γr (Q) + D − Ur

]+ and [Lr − γr (P )]+ ≤ [Lr − γr (Q)]+ . (4)

2. If r is a constraint on total or consecutive worked weekends, P dominates Q w.r.t. r if
[
γr (P ) + [δr(Q) − δr(P )]+ + W − Ur

]+
≤

[
γr (Q) + W − Ur

]+

[Lr − γr (P )]+ ≤ [Lr − γr (Q)]+ .
(5)

3. If r is a constraint on a forbidden pattern Π with length three or more, P dominates Q w.r.t. r

if
γr (P ) = γr (Q) or γr (P ) ∈ ΓΠ(γr (Q)). (6)



Les Cahiers du GERAD G–2023–02 – Revised 14

In our implementation, we have used the sufficient conditions given in Proposition 1 as dominance
tests for hard constraints. In the remainder, for any hard constraint r ∈ H, the satisfaction of the
corresponding test is denoted as P ≻r Q.

5.2.2 Dominance rules for soft constraints

Although soft constraints have usually been identified as difficulties for the solution of the SPPRC, they
may actually be leveraged to identify more dominated paths and accelerate the dynamic programming.
As an illustrative example, we may consider the simple case with only one soft upper bounded resource
and two partial paths P and Q, from o to some vertex v, such that γ0 (P ) = 10 and γ0 (Q) = 20.
Assume that the linear penalty associated with the violation of the resource is equal to 5 and that the
consumption along each path is equal to γ(P ) = 2 and γ(Q) = 1. With the classical dominance rule
recalled in Section 4.2, it is impossible to decide whether P dominates Q (because γ(P ) > γ(Q)) or
Q dominates P (because γ0 (Q) > γ0 (P )). Yet, we see that for any completion [Q, Q], γ

(
[P, Q]

)
=

γ
(
[Q, Q]

)
+ 1 which immediately yields γ

(
[P, P ]

)
≤ γ

(
[Q, P ]

)
+ 5. Given that there is no hard

constraint, [P, Q] and [Q, Q] are both feasible, so the above means that P dominates Q. In the
remainder of this section, we formalize this idea and generalize it to all the constraints met in the
NSP. One may observe that if the penalization is not linear, but convex, we could design dominance
conditions in the same spirit.

For any r ∈ S, let Gr(P, Q) and Gr(Q, Q) be the penalty paid for violations of constraint r along
Q in [P, Q] and [Q, Q], respectively. More formally, with Q = (v1, . . . , v|Q|+1),

Gr(P, Q) =
|Q|∑
k=0

gr
vkvk+1

(γr ([P, v1, . . . , vk]))) .

We then denote ∆r(P, Q, Q) = Gr(P, Q) − Gr(Q, Q). Given that the costs of the arcs of Q will be
paid in both [P, Q] and [Q, Q], it is straightforward to verify that the following condition is necessary
and sufficient for P to dominate Q.
Property 1. Partial path P dominates Q if and only if for every feasible completion [Q, Q], [P, Q] is
feasible and

γ0 (Q) > γ0 (P ) +
∑
r∈S

∆r(P, Q, Q). (7)

In general, though, the above condition can be difficult to verify for arbitrary partial paths. It may
for instance be necessary to extend the two partial paths, which we want to avoid. An alternative is to
settle with a sufficient condition that will be based only on the state of the two partial paths. For each
soft constraint r ∈ S, we will thus compute an upper bound ∆r(P, Q) such that for every completion
[Q, Q], ∆r(P, Q, Q) ≤ ∆r(P, Q). Assuming that these quantities are available, we obtain the following
sufficient condition of dominance.
Property 2. For all r ∈ S, let ∆r(P, Q) ≥ ∆r(P, Q, Q) for all completion [Q, Q]. Then, P dominates
Q if 

P ≻r Q, ∀r ∈ H,

γ0 (Q) > γ0 (P ) +
∑
r∈S

∆r(P, Q) (8)

In our implementation, we used the sufficient condition given in (8) as dominance rule. If P ≻r

Q, ∀r ∈ H and γ0 (Q) = γ0 (P )+
∑

r∈S ∆r(P, Q), either P dominates Q or the two paths are equivalent.
In such case, we kept only P for extension. The following proposition provides the actual computation
of an upper bound ∆r(P, Q) for each type of constraint met in the NSP.
Proposition 2. Let r ∈ S be a soft resource constraint, and let Q be a suffix of Q such that [P, Q] and
[Q, Q] are feasible.



Les Cahiers du GERAD G–2023–02 – Revised 15

1. If r is a constraint on the total number of shift types or on consecutive shift types,

∆r(P, Q, Q) ≤


cL

r

(
[Lr − γr (P )]+ − [Lr − γr (Q)]+

)
if γr (P ) ≤ γr (Q)

cU
r

([
γr (P ) + D − Ur

]+ −
[
γr (Q) + D − Ur

]+)
if γr (P ) > γr (Q)

(9)

2. If r is a constraint on total or consecutive worked weekends,

∆r(P, Q, Q) ≤



cL
r

(
[Lr − γr (P )]+ − [Lr − γr (Q)]+

)
,

if γr (P ) ≤ γr (Q)

cU
r

([
γr (P ) + 1 − δr(P ) + W − Ur

]+ −
[
γr (Q) + 1 − δr(Q) + W − Ur

]+)
,

if γr (P ) > γr (Q)
(10)

3. If r is a constraint on a forbidden pattern Π with length three or more,

∆r(P, Q, Q) ≤ cU
r |ΓΠ(γr (Q)) \ ΓΠ(γr (P ))| . (11)

5.3 Implementation of acceleration techniques

Several acceleration techniques have been used in the past to speed-up the solution of the SP-
PRC (Boĺıvar et al. 2014). Good results have also been reported for staff scheduling by Dohn and
Mason (2013) and Gérard et al. (2016) or for the VRP by Costa et al. (2019). Here we describe the
techniques that we implemented.

Given the huge number of acceleration techniques that appear in the literature, we had to restrict
our tests to those that we felt were the most likely to provide significant improvements. For instance,
we did not implement preprocessing methods and Lagrangian-based filtering techniques similar to
those described in (Dumitrescu and Boland 2003) and (Carlyle et al. 2008), because they cannot be
adapted to capture the specificity of soft constraints.

5.3.1 Heuristic pricing methods

Decremental state-space relaxation (DSSR). One may observe that in a context of high demand,
the total number of assignments of each nurse will tend to be closer to its upper bound than to its
lower bound, and the same goes for the number of assignments in each rotation. As a consequence, we
propose to relax the constraints on the lower bounds of these constraints when checking for dominance.
If the optimal solution has a negative cost, we add the corresponding column to the master problem.
Otherwise, we solve the subproblem once more, but with the lower bound constraints. For a more
efficient re-optimization, we store the partial paths that would not have been dominated if lower bounds
had been considered.

Restrict the number of propagated labels (RNPL). In (Burke and Curtois 2014), the number of paths
that can be extended is restricted to a given number and the extended paths are chosen heuristically.
Given that the graph is acyclic, we instead decided to extend the partial paths with minimum costs
at each vertex. If no negative cost roster was found with this heuristic, a second phase is run where
every partial path is extended.

5.3.2 Computation of lower bounds

Shortest reverse paths from the sink (SRP). For any path P from o to v, a lower bound on the cost
and on the consumption of each resource in any completion of P can quickly be obtained by searching
for reverse shortest paths from the sink t to v. Path P can then be deleted if these lower bounds



Les Cahiers du GERAD G–2023–02 – Revised 16

indicate that every completion will have a non-negative reduced cost or that hard resource constraints
will not be satisfied. This technique has often been used for the general SPPRC (Boĺıvar et al. 2014,
Zhu and Wilhelm 2012), and Burke and Curtois (2014) also mentioned having implemented it to solve
INRC-I instances but they did not assess its impact.

In the NSP, a lower bound on a resource’s consumption is of no real use, because it is usually easy
to build a completion that does not consume any unit of resource. As a consequence, we only tested
this technique to get lower bounds on the cost of a completion. The reverse shortest paths from t can
be computed with only one execution of a O (|Ai|) shortest path algorithm, because the roster graph
is acyclic. However, it has to be executed at every solution of the pricing problem, because dual costs
change after every solution of the master problem.

Enumeration of subpaths (ENUM). To strengthen these bounds, we also built a graph where the soft
costs of some constraints could be integrated in the arc costs. More specifically, for the constraints
on consecutive days off that are found in most benchmarks and for those on consecutive shifts that
appear in INRC–II, Legrain et al. (2020) describe how the roster graph can be modified to model the
soft constraints with additional arc costs. We adapted their approach by adding arcs that enumerate
possible sequences of days off and of assignments to the same shift, and then the shortest reverse path
from the sink (ENUM SRP).

5.3.3 Bidirectional extension (BIDI)

Bi-directional dynamic programming has originally been used to speed-up Dijstra’s algorithm for
the computation of shortest paths, and it has been reported to bring significant improvements to
the solution of VRPs with branch-and-price (Righini and Salani 2006). Instead of extending paths
only from the origin to the destination, the algorithm also executes a backward extension from the
destination and merges these forward and backward partial paths into complete o − t paths when they
join. The vertices where these two paths join are chosen with a view to minimizing the total number of
paths generated. This technique can be very efficient for VRPs because the pricing problem consists in
the search of elementary paths where the number of paths generated can be exponential in the number
of arcs in the paths.

We adapted this technique to NSP, because the number of paths generated may also grow quickly
with the number of days in a roster due to the presence of lower bounds. This involves the imple-
mentation of two methods for each resource constraint: one for backward extension and the other for
merging paths. The vertices corresponding to the middle day of the scheduling horizon were chosen to
merge forward and backward paths. This appeared to be the most natural choice for the generation
of individual schedules.

6 Computational experiments
Our experiments illustrate the capacity of our approach to handle a large diversity of hard and soft
constraints. First, we wish to study the impact of all the algorithmic developments that we made in
our search for numerical improvements, and which are described in the previous sections. Second, we
assess the performance of our algorithm by solving all the Nurse Rostering Problem (NRP) and INRC-I
instances and the INRC–II instances that have previously been used in studies of the static NSP. We
also report a comparison with the other methods of the literature that were used to solve the same
instances. Only the most important results are displayed in the main body, detailed computational
results can be found in Appendix C.

In most tests, we aim at proving optimality for as many instances as possible, so we implemented
parallel computing where relevant: pricing problems, strong branching and the rotation MIP heuristic.
All experiments have been run on processors Intel Gold 6148 Skylake @ 2.4 GHz with 32 GB of



Les Cahiers du GERAD G–2023–02 – Revised 17

memory over 8 threads using our developed open-source C++ code, which depends on the latest
Coin-OR libraries (BCP 1.4, CLP 1.17.7 and CBC 2.10.82) and Gurobi 9.5.0.

6.1 Description of the test benchmarks

In our experiments, we have used all the INRC-I instances: 30 sprint, 15 medium and 15 long instances,
which consider respectively 10, 30 and 50 nurses. They all consider a four weeks horizon, three to four
different shifts, and one or two different skills. This benchmark is split into three subsets (early, late,
hidden) depending on the stage of the competition when they were released. The hidden instances
were only published once the competitors had all submitted the final versions of their codes.

Given that the INRC–II benchmark was meant for a stochastic version of the problem, we had
to restrict our study to the subset of the instances used by the organizers of the competition when
evaluating the competitors’ algorithms. Those are the same that have already been used in (Legrain
et al. 2020, Ceschia et al. 2020). Their names all start with the same pattern nXXXwY where XXX
stands for the number of nurses and Y is the number of weeks of the planning horizon. The pattern is
then followed by a long sequence identifying files where the demands are written. For a more compact
presentation of the results, we only use shorter names to identify them. The correspondence is given
in Appendix C. The instances include 30 to 120 nurses over a four or an eight weeks horizon. They
consider four different shifts and four different skills. Among other important differences between the
two benchmarks: the weekend is always on Saturday and Sunday in INRC–II whereas it can include
the Friday in INRC-I; INRC-I instances include soft constraints on forbidden patterns with length more
than two, whereas they are hard and their length is equal to two in INRC–II; possessing a required
skill may be a soft constraint in INRC-I while it is always hard in INRC–II; there is a soft and a hard
lower bound on demand in INRC–II whereas there is only one hard equality constraint in INRC-I. For
the reader who plans on working on the INRC-I benchmark, we should also mention that the correct
understanding of the original description of the constraints can be challenging. For this, we had to
refer to the validator provided by the organizers of the competition and to the results and solutions
already shared by other researchers and competitors.

In comparison to the two INRC benchmarks, the NRP instances can be extremely large, certainly
larger than what could be needed for detailed and personalized schedules. The benchmark includes
24 instances whose main characteristics are reported in Table 6. The largest ones consider a one year
horizon with up to 32 different shifts per day. Another specificity of the benchmark is that most
constraints are hard. In particular, all the constraints on total and consecutive shift types are hard.
A detailed comparison of the constraints can be found on the website of the benchmark.3

6.2 Assessment of pricing solution

The algorithmic features described in Section 5 are all meant to speed-up the solution of the pricing
problems. As a consequence, their impact on computational time can be studied by solving only the
linear relaxation of the roster-based formulation (1a)–(1f). Still with a view to spending a reasonable
amount of computational resources in this assessment, we focused on six INRC–II instances – three
with a 4 weeks horizon and three with a 8 weeks horizon – and three INRC-I instances. We have
also run the experiments over only one thread. Given that the number of nurses will not impact
our conclusions, we chose the following instances: n30w4-1, n35w4-1, n040w4-1, n030w8-1, n035w8-1,
n040w8-1, long3, long late3 and medium hidden1. While we also assess the speed-up strategies with
both dominance rules, the main goal of these experiments is to show that the improved dominance is
by far the most impacting feature when solving NSP with soft constraints.

We first assessed the impact of the dominance rules described in Section 5.2 by comparing them to
the basic dominance rule where a path P may dominate a path Q only if γr (P ) = γr (Q) for each upper

2https://github.com/wssuite/coin
3http://www.schedulingbenchmarks.org/nrp/instances1_24.html

https://github.com/wssuite/coin
http://www.schedulingbenchmarks.org/nrp/instances1_24.html


Les Cahiers du GERAD G–2023–02 – Revised 18

and lower bounded resource r. The results are reported in Table 1, where the acronyms used in column
titles have been defined in Section 5.3. Those results show that nearly every strategy implemented
is able to decrease significantly the computational time except the enumeration of subpaths which
requires a heavy preprocessing. This confirms that the implemented strategies work well with a basic
dominance rule, as already reported in the literature.

Table 1: Computational time improvements for the basic dominance rule.

Strategy Default ENUM SRP ENUM SRP BIDI DSSR RNPL=10 DSSR DSSR
RNPL=5 RNPL=10

Instance Time (s) Improvement

n030w4-1 465 4% 58% 2% 55% 37% 36% 33% 33%
n035w4-1 385 18% 54% 0% 50% 51% 32% 36% 29%
n040w4-1 482 30% 58% -1% 55% 28% 11% 43% 22%
n030w8-1 13772 -1% 65% 1% 61% 34% 14% 20% 28%
n035w8-1 20516 -18% 73% 1% 70% 38% 3% 10% 39%
n040w8-1 16027 13% 67% -1% 57% 43% 7% 32% 33%
long3 217 0% 24% -1% 10% 61% 3% 51% 14%
long late3 3385 -1% 13% -1% 61% 66% 70% 73% 73%
medium hidden1 4315 1% 18% 1% 61% 49% 76% 72% 83%

Average 5% 48% 0% 53% 45% 28% 41% 39%

We then assess heuristic pricing algorithms, lower bound computations and bidirectional extension
by measuring their impact when considered individually with the improved dominance rule. For
heuristic pricing and lower bounds, it was possible to code the accelerating techniques for both INRC-I
and INRC–II without extra effort due to the similarity of the two benchmarks. However, each new
resource constraint requires the implementation of methods for the backward extension of partial
paths and for merging forward and backward partial paths, which requires a decent amount of time
to be efficiently implemented. The results are reported in Table 2. They confirm that the improved
dominance rule allows to eliminate a lot of dominated partial paths, and thus to speed-up the whole
solution process by factors up to 28. Unfortunately, the improved dominance also makes most other
strategies inefficient. Only the bidirectional approach is still worth to be implemented, especially for
bigger instances, and will remain activated for the remaining of the tests.

Table 2: Computational time improvements for the improved dominance rule.

Strategy Default ENUM SRP ENUM SRP BIDI DSSR RNPL=10 DSSR DSSR
RNPL=5 RNPL=10

Instance Time (s) Improvement

n030w4-1 39 -26% -8% -13% 8% -15% -5% -5% -18%
n035w4-1 40 -23% -20% -10% -15% -5% -33% -23% -33%
n040w4-1 27 -22% -7% -11% -26% -19% -52% -15% -59%
n030w8-1 544 -21% -1% -4% 29% -2% -18% -13% -5%
n035w8-1 725 -64% 2% -8% 30% -6% -15% -26% -22%
n040w8-1 654 -10% 2% -2% 19% -20% -17% -18% -36%
long3 83 -1% -1% -6% 45% 4% -118% -35% -112%
long late3 302 0% -2% -4% 33% -10% -81% -71% -86%
medium hidden1 303 -1% -7% -2% 31% -1% -61% -33% -61%

Average -27% -5% -8% 7% -11% -23% -16% -29%

6.3 Assessment of the branching and primal heuristics

The assessment of the branching and primal heuristics is performed over more difficult instances:
n080w4-2, n110w4-1, n030w8-1, n035w8-2, n040w8-1, long3, and medium hidden1. Our tests focus
on the assessment of a strong branching strategy and of two primal heuristics: a diving heuristic (see
Appendix B) and the MIP heuristic based the rotation formulation. In the evaluation of the rotation



Les Cahiers du GERAD G–2023–02 – Revised 19

MIP, the MIP solver runs permanently in parallel. However, the selection parameters (µ, ρ) that we
used in the default branching strategy (see Appendix B) have been tuned in preliminary tests and
never modified afterwards. Their values in all our tests are (µ, ρ) = (0.2, 0.1).

Table 3: Assessment of the strong branching strategy and of primal heuristics: improvement of the lower (LB) and upper
(UB) bounds compared to the default branch-and-price algorithm; time limit was set to two hours.

Strategy diving rotation MIP strong branching diving rotation MIP strong branching

Instances LB UB

n080w4-2 0.00% 0.01% 0.05% 1.24% 1.39% 0.31%
n110w4-1 0.21% -0.01% 0.06% 59.48% 59.48% 0.00%
n030w8-1 -0.15% 0.00% -0.12% -0.99% 0.74% -1.23%
n035w8-2 -0.25% -0.01% 0.03% 54.53% 56.45% 0.77%
n040w8-1 -0.11% 0.03% 0.17% -1.54% 2.70% -2.70%
long3 0.00% 0.00% 0.00% 0.41% 0.41% 0.41%
medium hidden1 0.00% 0.00% 4.70% 13.87% 10.95% -21.90%

Average -0.04% 0.00% 0.70% 18.14% 18.88% -3.48%

The results of these tests, reported in Table 3, clearly indicate that the primal heuristics decrease
the upper bounds while strong branching increases the lower bound. At the same time, one can
note that the diving heuristic also decreases the lower bound as more time is spent diving, while
strong branching increases the upper bound as more time is spent evaluating the branching decisions.
However, the rotation MIP heuristic does to not impact the quality of the lower bound, because
computations are done in parallel of the tree exploration. All three strategies are used and combined
for the following experiments.

Among the algorithmic features that are classically implemented in branch-and-price algorithms,
we do not report any result related to stabilization techniques. Actually, we have implemented a dual
stabilization based on penalties as detailed in Du Merle et al. (1999), but we have been discouraged to
go further in our analysis by disappointing preliminary results. Nevertheless, Pessoa et al. (2018) state
that those techniques are particularly difficult to tune, so there might be some space for improvement.

6.4 Comparison to the literature

The assessment of the default algorithm is done on all the INRC-I instances and on the INRC–II
instances used by Ceschia et al. (2020). This amounts to a total of 100 instances where the number
of nurses ranges from 10 to 120 and the schedules must be computed on 4 to 8 weeks. Finally, the
default algorithm is also assessed on the NRP instances that are very different as most constraints
are hard, the horizon ranges from 2 weeks to a whole year, and there are up to 32 different shifts per
day. The purpose of this comparison is to illustrate the capacity of our code to handle several different
benchmarks and assess its capacity to solve the instances to optimality or improve on the literature.
In our tests, we set the default time limit to one hour per week in the planning horizon, not exceeding
a one-day limit.

6.4.1 INRC-I

A review of the methods applied to the INRC-I and their results are summarized in (Abuhamdah et al.
2021). The best known upper bounds are listed on the competition website. Many solution algorithms
are based on metaheuristics and they do not compute lower bounds. The only reports on lower bounds
that we found in the literature are made by (Burke and Curtois 2014) and Santos et al. (2016a), but
the former did not give any result on the 20 hidden instances.

We report the results of our algorithm in Table 4. As will be the case in the other tables below, the
lower and upper bounds displayed with bold characters are optimal, the underlined values indicate an
improvement with respect to the literature and a dash in the Time column indicates that time limit



Les Cahiers du GERAD G–2023–02 – Revised 20

Table 4: Results for the INRC-I ; time limit was set to 4 hours.

Type early late hidden

Instance Time (s) root LB LB UB Time (s) root LB LB UB Time (s) root LB LB UB

sprint1 107 56 56 56 144 37 37 37 29 31.5 32 32
sprint2 62 58 58 58 15 41.4 42 42 11 32 32 32
sprint3 145 51 51 51 36 47.8 48 48 21 62 62 62
sprint4 30 58.5 59 59 107 72.5 73 73 26 66 66 66
sprint5 134 57 58 58 174 43.7 44 44 90 59 59 59
sprint6 22 54 54 54 61 41.5 42 42 31 129.7 130 130
sprint7 26 56 56 56 41 42 42 42 11 153 153 153
sprint8 49 56 56 56 77 17 17 17 36 204 204 204
sprint9 103 55 55 55 87 17 17 17 267 337.3 338 338
sprint10 49 52 52 52 85 42.9 43 43 29 306 306 306
medium1 94 240 240 240 128 156 157 157 – 95.7 103 120
medium2 26 239.2 240 240 94 18 18 18 – 212.4 216 219
medium3 136 235.5 236 236 155 28.2 29 29 341 33.4 34 34
medium4 363 236.2 237 237 58 34.4 35 35 4817 75.5 78 78
medium5 155 302.1 303 303 450 106.7 107 107 329 117.2 118 118
long1 68 197 197 197 360 235 235 235 830 345 346 346
long2 104 218.5 219 219 336 229 229 229 170 88.5 89 89
long3 80 240 240 240 – 218.5 219 220 3408 37.7 38 38
long4 61 303 303 303 138 220.7 221 221 684 21.8 22 22
long5 183 284 284 284 163 82.5 83 83 1012 41 41 41

Improvements 0 0 1(1) 0 9(7) 0

was reached before optimality could be proven. The last row summarizes the number of improved
bounds, and, in parentheses, the number of new proofs of optimality obtained thanks to these new
bounds. Overall, these results show that most instances have been proven optimal in a very short
computational time (over 8 threads) and that time limit was reached on only three instances. For the
two instances medium hidden 1 and 2, optimality was reached during other tests though. More precisely
our algorithm was able to prove optimality with other values of µ and ρ (0 and 0.5). However, our
algorithm was never able to converge when executed on instance long late 3. Whatever computational
time available, the lower bound remains at the root lower bound. One explication could come from
the fact that this particular instance has no personalized aspect: there is no request from any nurse
for a day/shift on/off. A non-personalized rostering method should be used for this special instance.
Finally, the upper-bounds reported in Table 4 were already known, but optimality proofs had not been
reported for all of them. More precisely, we see that our algorithm was able to improve the lower
bounds of ten instances. Among those, eight allowed to prove the optimality of the best known upper
bound.

6.4.2 Static INRC–II

A review of the methods that were applied to this static INRC–II benchmark and a detailed comparison
of their results can be found in (Legrain et al. 2020) and (Ceschia et al. 2020). The results of our
roster-based approach on all 4-weeks and 8-weeks instances of the INRC–II benchmark are respectively
given in Table 5. The bounds that appear in these tables all improve on those already reported in the
literature. To avoid redundancy, we thus omit to underline these values. For a more detailed analysis
of the results, the superscripts B, D, and H refer to the moment when the best upper bound has been
found: respectively, during the branch-and-price (either at a node or during strong-branching), when
diving or when solving the MIP Heuristic.

First and foremost, Table 5 shows that all 4-weeks instances have been solved to optimality, while
the algorithms described in the literature had all failed to do so up to now. Among these 20 instances,
18 were solved in less than one hour and all of them where solved in less than three hours.



Les Cahiers du GERAD G–2023–02 – Revised 21

Table 5: Results for the static INRC–II; time limit was set to one hour per week.

Instance Time (s) root LB LB UB Instance Time (s) root LB LB UB

n030w4-1 67 1659.5 1670 1670H n030w8-1 425 1993.7 2010 2010H

n030w4-2 377 1809.2 1815 1815B n030w8-2 471 1709.4 1720 1720D

n035w4-1 66 1337.1 1360 1360B n035w8-1 - 2407.8 2425 2505H

n035w4-2 196 1075.6 1080 1080H n035w8-2 - 2152.2 2205 2270H

n040w4-1 161 1535.2 1565 1565D n040w8-1 - 2463.9 2490 2515H

n040w4-2 33 1741.7 1750 1750D n040w8-2 - 2284 2305 2330H

n050w4-1 483 1295.5 1315 1315D n050w8-1 - 4777.5 4805 4810B

n050w4-2 175 1302.1 1315 1315H n050w8-2 7731 4743.3 4765 4765B

n060w4-1 46 2434.9 2450 2450D n060w8-1 - 2099 2120 2150D

n060w4-2 31 2664.3 2675 2675D n060w8-2 - 2393.4 2410 2435H

n070w4-1 37 2370.3 2380 2380D n070w8-1 - 4474.7 4505 4530H

n070w4-2 69 2105 2115 2115H n070w8-2 - 4636.3 4660 4690H

n080w4-1 2811 3292 3300 3300D n080w8-1 - 3941.7 3955 4030H

n080w4-2 7514 3177.1 3185 3185H n080w8-2 - 4286.9 4295 4335H

n100w4-1 187 1167.2 1170 1170B n100w8-1 - 2013.5 2025 2030H

n100w4-2 39 1777.7 1780 1780D n100w8-2 - 2128.6 2140 2145H

n110w4-1 816 2321.3 2330 2330D n110w8-1 2456 3990 3990 3990B

n110w4-2 133 2455 2455 2455D n110w8-2 - 3440 3440 3460H

n120w4-1 11351 2011.5 2020 2020H n120w8-1 - 2440 2440 2450D

n120w4-2 70 2045.7 2050 2050D n120w8-2 14162 2871.7 2875 2875B

Improvements 20 20(20) 5 5(5)

Although, the 4-weeks instances have all been solved in a reasonable amount of time, a lot more
time was generally necessary to prove optimality for the 8-weeks instances (when it could be done).
Table 5 shows that for the 8-weeks horizon, 5 instances over 20 could be solved to optimality in less than
eight hours. It also allowed to improve all the best known upper and lower bounds of the literature.

Out of curiosity, we also investigated the impact of the time limit on the results by running these
tests with a 1-day time limit (see Appendix C). This has allowed to close three more instances and
improve many upper and lower bounds. For all instances but one, the remaining gap is of the same
order as one unit violation of any soft constraint. This may be the sign that the algorithm is not
far from solving most other instances to optimality. Most of these upper bounds have been obtained
by the MIP heuristic. For further analysis of the primal heuristics, the large neighborhood search
(LNS) developed by Legrain et al. (2020) has also been tested with the roster formulation. These
results are presented in the column LNS UB. They show that the LNS was almost never able to get
better performances than the MIP heuristic approach: the LNS obtained a better upper bound only
for instance n040w8-2. One may also observe in Appendix C that n110w8-2 was solved optimally in
the second run with a 1-day time limit although less than 3 hours were necessary to converge. The
reason is that, even though we set the random seed to the same value for every run, the code remains
stochastic due to the parallel execution of the MIP heuristic.

We have then conducted the same experiments with CBC instead of Gurobi for the rotation MIP
heuristic and those results can be seen in Appendix C. For the 4-weeks instances, all the instances
but one have been solved to optimality, but in general with larger computational times. For the 8-
weeks instances, four instances (instead of five) have been solved to optimality under 8 hours and all
computational times are significantly higher. CBC can thus be a good option for a free and open-source
solver as the reported differences may not be impacting in practice.

Finally, we have compared these results to the best ones obtained with the rotation approach
(Legrain et al. 2020), and those results, which are presented in Appendix C, show the improvements
in lower and upper bounds that could be achieved by using a roster instead of a rotation formulation.
To be fair, we should mention that the rotations results were obtained in one day of computation over
only one thread, while the roster formulation was solved on 8 threads with a 4 and 8 hours time limit
for 4-weeks and 8-weeks instances, respectively. The results show that the roster approach outperforms



Les Cahiers du GERAD G–2023–02 – Revised 22

the rotation approach on all instances with improvements of the lower bounds by more than 4% on
average and of the upper bounds by more than 3%. When using CBC though, it can be noticed that
the rotation-based formulation finds a better upper bound for five 8-weeks instances. The observation
of the increase in the root and final lower bounds also confirm that the most impacting property of
the roster-based formulation is that it has a better linear relaxation.

6.4.3 Nurse rostering problem benchmark

The last comparison have been made on the 24 instances of the NRP benchmark. Only the largest
instances, which cover a whole year, are still open. For several difficult instances though, there exists
no publication describing the method that produced the best reported results. For a meaningful
comparison, we will thus restrict our analysis to the best published results. The twelve first instances
could be solved to optimality within a reasonable computational time (i.e., less than 5 hours) with a
commercial mathematical programming solver, running on 16 threads and using up to 128GB RAM
(see (Smet 2018)). However, the larger ones are much more difficult, which causes most approaches to
encounter issues during their solution. The main difficulty comes from the fact there are many hard
constraints on total shift types. The easier instances do not include any constraint on the maximum
number of assignments to specific shifts whereas the most difficult ones may include 6 to 32 of them.
If specifically interested by the NRP benchmark, the reader may refer (Strandmark et al. 2020) for
more details on published results.

The description of the instance, the results of our roster-based approach and the best published
lower and upper bound are reported in Table 6. In the best published columns, the superscript indicates
the reference where each bound was published. To obtain our results, most accelerating strategies have
been activated (RNPL=10, DSSR, SRP, BIDI). They show that our algorithm performs as well as
other approaches on this benchmark: it finds the best known upper bounds of 19 instances an proves
the optimality of 14 among them. Moreover, our approach was able to solve one open instance and
improve one lower and two upper bounds with respect to the literature. Despite the large time limit,
our approach was not able to solve the root linear relaxation of six instances nor compute any feasible
solution for the largest four instances. We observed that the roster-based formulation gets stuck in the
solution of the subproblems due to the large number of hard constraints. Although the subproblems
are solved only with RNPL and DSSR strategies to overcome part of the difficulty, the impossibility
to perform soft dominance (as described in Section 5.2.2) on the total shift type constraints yield an
explosion of the number of nondominated labels. Regarding instances 15 and 19, this did not preclude
the MIP heuristic from finding fairly good upper bounds though. Actually, the upper bound found for
instance 19 is even far better than the best published one.

7 Conclusion
Extensive experiments (weeks of computation) have shown that the proposed improved dominance
approach combined with many acceleration techniques has enabled the resolution of large instances to
optimality. In particular, all 4-weeks instances of the INRC–II have now optimal solutions while they
were open up to now, and optimality was also proven for eight 8-weeks instances while only small gaps
remain for the others. Moreover, every INRC-I instance but one has also been closed, and our approach
solves to optimality or finds the best upper bounds for most NRP instances. Finally, the proposed
solver, when used with CBC, is available as a free and open source software, and still produces very
good solutions.

Several improvements could be made to help with the instances that remain open. In particular,
we think that instance long late3 of the INRC-I can be solved to optimality by aggregating similar
nurses. Regarding the largest NRP instances, one may raise the purpose of optimizing detailed and
personalized schedules over six months or even one year, but if this is of importance, one step towards
getting feasible (and hopefully good) solutions could be implement a receding horizon where smaller



Les Cahiers du GERAD G–2023–02 – Revised 23

Table 6: Results for the NRP instances: indices 1 and 2 refer to solutions published respectively in (Smet 2018) (a
flow-based MIP) and (Strandmark et al. 2020) (a column generation-based heuristic); time limit was set to one hour per
week.

best published our roster-based approach

instance weeks nurses shifts LB UB time (s) root LB LB UB

Instance1 2 8 1 6071 6071 2 558 607 607
Instance2 2 14 2 8281 8281 0 828 828 828
Instance3 2 20 3 10011 10011 1 1001 1001 1001
Instance4 4 10 2 17161 17161 2 1716 1716 1716
Instance5 4 16 2 11431 11431 9 1140.6 1143 1143
Instance6 4 18 3 19501 19501 9 1949 1950 1950
Instance7 4 20 3 10561 10561 112 1054.1 1056 1056
Instance8 4 30 4 13001 13001 - 1296.6 1298 1300
Instance9 4 36 4 4391 4391 - 405.7 406 439
Instance10 4 40 5 46311 46311 100 4631 4631 4631
Instance11 4 50 6 34431 34431 21 3443 3443 3443
Instance12 4 60 10 40401 40401 4131 4040 4040 4040
Instance13 4 120 18 13481 13562 - 1301 1301 1351
Instance14 6 32 4 12781 12781 4830 1278 1278 1278
Instance15 6 45 6 38201 38531 - - - 3879
Instance16 8 20 3 32251 32251 63 3223.5 3225 3225
Instance17 8 32 4 57461 57461 669 5746 5746 5746
Instance18 12 22 3 44041 44591 - 4417.3 4421 4459
Instance19 12 40 5 31441 32041 - - - 3174
Instance20 26 50 6 47651 49131 36089 4769 4769 4769
Instance21 26 100 8 211221 214022 - - - -
Instance22 52 50 10 - 321262 - - - -
Instance23 52 100 16 - 197042 - - - -
Instance24 52 150 32 - 584802 - - - -

Improvements 2(1) 3(1)

schedules are iteratively computed. Finally, some other promising avenues could be explored with
stochastic counterparts of the nurse rostering problem. As one may observe that the lower bounds
computed with the root linear relaxation of the roster-based approach is within a few percents of the
optimal value for all instances solved to optimality, the linear relaxation of the roster formulation
can serve as an excellent approximation of the recourse in a two-stage stochastic counterpart where
schedules need to be computed as a potential recourse.

A Proofs
Proof of Proposition 1.

We assume that there is no violation of r in P nor Q, and we consider a suffix Q such that the
completion [Q, Q] satisfies r. As a consequence, we are interested only in the violations of constraints
that can happen in [P, Q] and not in [Q, Q]. In particular, for constraints on consecutive shift types or
worked weekends, we are interested only in the ongoing sequence of shift types or worked weekends.
To avoid heavy technicalities, we will refer to the length of this complete sequence as γr

(
[P, Q]

)
. This

allows for a homogeneous presentation with constraints on total shift and weekend types. We proceed
likewise for constraints on forbidden patterns, since we are interested only in patterns that are already
started in P or Q.

1. Observe first that by definition of D, γr (P ) ≤ γr
(
[P, Q]

)
≤ γr (P ) + D. By definition of the

constraints on shift types, we also have

γr (P ) ≤ γr (Q) ⇔ γr
(
[P, Q]

)
≤ γr

(
[Q, Q]

)
.



Les Cahiers du GERAD G–2023–02 – Revised 24

Looking at the first inequality of (4), we then see that if γr (P ) ≤ γr (Q) then
[
γr (P ) + D − Ur

]+

≤
[
γr (Q) + D − Ur

]+. If on the contrary, γr (P ) > γr (Q),[
γr (P ) + D − Ur

]+ ≤
[
γr (Q) + D − Ur

]+ =⇒ γr (P ) + D ≤ Ur.

As a consequence, if
[
γr (P ) + D − Ur

]+ ≤
[
γr (Q) + D − Ur

]+
, then γr

(
[P, Q]

)
≤ Ur or

γr (P ) ≤ γr (Q). Regarding the second inequality, we have similarly that

γr (P ) ≥ γr (Q) =⇒ [Lr − γr (P )]+ ≤ [Lr − γr (Q)]+ .

And if γr (P ) < γr (Q),

[Lr − γr (P )]+ ≤ [Lr − γr (Q)]+ =⇒ γr (P ) ≥ Lr.

As a consequence, if [Lr − γr (P )]+ ≤ [Lr − γr (Q)]+, γr
(
[P, Q]

)
≥ Lr or γr (P ) ≥ γr (Q).

We finally get that if both inequalities are satisfied and Lr ≤ γr
(
[Q, Q]

)
≤ Ur then Lr ≤

γr
(
[P, Q]

)
≤ Ur.

2. For constraints on weekends, it is not true that γr (P ) ≤ γr (Q) ⇔ γr
(
[P, Q]

)
≤ γr

(
[Q, Q]

)
.

Indeed, an ongoing weekend may have been worked in Q but not in P . If that is the case, we may
have γr

(
[P, Q]

)
− γr (P ) = γr

(
[Q, Q]

)
− γr (Q) + 1. Observe then that [δr(Q) − δr(P )]+ = 1 if

δr(P ) = 0 and δr(Q) = 1, and 0 otherwise. So, the arguments developed for constraints on shift
types remain valid if we consider γr (P ) + [δr(Q) − δr(P )]+ instead of γr (P ) when checking the
upper bound.

3. We denote as ΠP and ΠQ the subpatterns of Π at the end of P and Q. Recall that γr (P ) and
γr (Q) are the lengths of ΠP and ΠQ. If γr (P ) = γr (Q), we then know that if Π appears in
[P, Q], it must appear in [Q, Q]. If γr (P ) ∈ ΓΠ(γr (Q)), by definition of ΓΠ, it exists a sequence
of assignments Π̃ such that ΠQ =

[
Π̃, ΠP

]
. As a consequence, if Π appears in [P, Q], it must

also appear in [Q, Q].

Proof of Proposition 2.

We consider a suffix Q of Q. Similarly to the proof of Proposition 1, we are interested in counting the
penalties that will be paid while completing P with Q but not while completing Q. As a consequence,
we can focus on the patterns and on the sequences of shift types/weekends that are already started at
the end of P and Q, and we will refer to the length of these completed sequences as γr

(
[P, Q]

)
and

γr
(
[Q, Q]

)
.

1. Let 0 ≤ x ≤ D be the consumption of r in Q (this quantity is equal in [Q, Q] and in [P, Q]).
Note that x is only the consumption of the initial sequence in Q for a constraint on consecutive
shift types. We have

γr
(
[P, Q]

)
= γr (P ) + x and γr

(
[Q, Q]

)
= γr (Q) + x.

Referring to the arguments developed in the proof of Proposition 1, we can also deduce that
∆r(P, Q, Q) ≤cL

r

(
[Lr − γr (P ) − x]+ − [Lr − γr (Q) − x]+

)
if γr (P ) ≤ γr (Q)

∆r(P, Q, Q) ≤cU
r

(
[γr (P ) + x − Ur]+ − [γr (Q) + x − Ur]+

)
if γr (P ) > γr (Q)

(12)

Functions x 7→ [Lr − γr (P ) − x]+ − [Lr − γr (Q) − x]+ and x 7→ [γr (P ) + x − Ur]+ −
[γr (Q) + x − Ur]+ are both stepwise-linear; the former reaches its maximum at 0 while the
latter reaches its maximum at D. Replacing x with these values yields (9).



Les Cahiers du GERAD G–2023–02 – Revised 25

2. As in Proposition 1, we must compensate for the difference of structure between constraints
on shift types and constraints on weekends by replacing D with W and by counting possible
consumption of resource on the ongoing weekend. This directly yields (10).

3. For each element k > 0 of ΓΠ(γr (P )), there is a subpattern of Π with length k at the end of P .
Each subpattern of length k ∈ ΓΠ(γr (P )) ∩ ΓΠ(γr (Q)) that will be completed in [P, Q] will also
be completed in[P, Q]; only the subpatterns with lengths in ΓΠ(γr (Q)) \ ΓΠ(γr (P )) may induce
a penalty.

B Implementation details
B.1 Branching

Classical branching decisions on columns do not work within a branch-and-price algorithm: forbidden
columns at a given node in the tree can be regenerated by the subproblems, which makes this branching
decision useless. Instead, branching decisions are performed on the variables of the original problem
before the Dantzig-Wolfe decomposition, e.g., the flow on the edges of the roster graph network (see
Figure 1). Therefore, a two-phase branching heuristic has been developed. First, we branch on the
flow of the edges corresponding to a rest shift for a given nurse and day: respectively, rest and work
edges are removed from the graph of each child node. Second, we branch on a subset of shift types for
a given nurse and day: in the same spirit, some edges are removed from each graph.

Furthermore, the branching heuristic must select for each phase on which nurse and day (and
subset of shifts for the second phase) the algorithm will branch. As the main goal is to increase
the lower-bound when searching to prove optimality, the heuristic aims at maximizing the expected
increase of the worst lower-bound of the children. Therefore, the variables closer to 0.5 are selected.
When strong-branching is enabled, the linear relaxation of a subset of potential (10, i.e., 5 branching
decisions) children is evaluated without column-generation, and the branching decision leading to the
best expected increase of the worst lower-bound is selected.

Finally, some knowledge on the nature of the problem is introduced in the variable selection process.
First, the assignments on weekends are in general more expensive to cover. Second, some nurses tend
to have more fractional and/or expensive rosters. We aim at favoring the variables corresponding to
these assignments and nurses in the heuristic. The following score is computed as follows for each
variable:

min(fids, 1 − fids) + µ W(d) + ρ
1 + Ci

1 + maxi′(Ci′) ∗ Ni

maxi′(Ni′) ,

where fids is the sum of the flows on the edges corresponding to shift types included in subset s for
nurse i on day d, W(d) indicates whether day d is a weekend, Ci =

∑
j∈Ωi

cjxij is the cost of the current
fractional roster of nurse i, Ni = Card ({j ∈ Ωi : xij > 0}) is the number of variables of nurse i with a
positive value, and (µ, ρ) is a pair of parameters to control the weight of each term. To summarize, the
score is composed of three parts: the first one favors fractional flows, the second advantages weekend
days and the third one favors nurses with many fractional rosters and a high associated cost. We then
branch on the edge with maximum score or test those with maximum scores if strong-branching.

B.2 Primal heuristics

In order to get good feasible solutions in the process and increase our chance to prune branching nodes
with large lower bounds, we implemented three primal heuristic methods: the rotation MIP heuristic
and the following two classical approaches which are simple adaptations of the techniques described
in (Legrain et al. 2020) for rotation-based decomposition. In short, we used a diving method where
we branch on columns and fix to one the values of those that are integer or close to integrality. Such
dives are done frequently at the beginning of the branch-and-price and more scarcely as the algorithm
proceeds. We also adapted their large neighborhood search (LNS). When this method is selected and



Les Cahiers du GERAD G–2023–02 – Revised 26

optimality has not been proved after half the time limit, the metaheuristic algorithm is executed to
improve the upper bound. Starting with an initial feasible solution, the LNS proceeds by fixing most
schedules of the solution and destroying the remainder. In a repair phase, it then solves a smaller
problem where only the destroyed schedules need to be built. Several destruction operators can be
considered and the choice of the operator is made by a random roulette procedure that gives priority to
the operators that produced improvements in past iterations. In the roster-based decomposition, we
mostly destroy complete individual rosters, but we also destroy four consecutive weeks of rosters when
considering 8-weeks horizons. The number of nurses whose rosters are destroyed is chosen so that the
total number of impacted weeks is equal to 48. Given that our roster-based branch-and-price has been
able to solve small instances to optimality within a short computational time, this choice guarantees
that the LNS will be able to execute a large number of iterations.

C Detailed experimental results
This section provides the detailed experimental results discussed in the main body as well as the full
names of the INRC–II instances (Table 7). Among those, Tables 10 and 11 show the improvements of
the roster approach compared to the rotation approach. The column “Increase” reports the increase
of the lower bound obtained by the roster approach when compared to the rotation approach while
the column “Decrease” reports the decrease of the upper bound.

Table 7: Complete names of the INRC–II instances.

|N | |W| = 4 |W| = 8

instance short name instance short name

30 n030w4 1 6-2-9-1 n30w4-1 n030w8 1 2-7-0-9-3-6-0-6 n30w8-1
n030w4 1 6-7-5-3 n30w4-2 n030w8 1 6-7-5-3-5-6-2-9 n30w8-2

35 n035w4 0 1-7-1-8 n35w4-1 n035w8 0 6-2-9-8-7-7-9-8 n35w8-1
n035w4 2 8-8-7-5 n35w4-2 n035w8 1 0-8-1-6-1-7-2-0 n35w8-2

40 n040w4 0 2-0-6-1 n40w4-1 n040w8 0 0-6-8-9-2-6-6-4 n40w8-1
n040w4 2 6-1-0-6 n40w4-2 n040w8 2 5-0-4-8-7-1-7-2 n40w8-2

50 n050w4 0 0-4-8-7 n50w4-1 n050w8 1 1-7-8-5-7-4-1-8 n50w8-1
n050w4 0 7-2-7-2 n50w4-2 n050w8 1 9-7-5-3-8-8-3-1 n50w8-2

60 n060w4 1 6-1-1-5 n60w4-1 n060w8 0 6-2-9-9-0-8-1-3 n60w8-1
n060w4 1 9-6-3-8 n60w4-2 n060w8 2 1-0-3-4-0-3-9-1 n60w8-2

70 n070w4 0 3-6-5-1 n70w4-1 n070w8 0 3-3-9-2-3-7-5-2 n70w8-1
n070w4 0 4-9-6-7 n70w4-2 n070w8 0 9-3-0-7-2-1-1-0 n70w8-2

80 n080w4 2 4-3-3-3 n80w4-1 n080w8 1 4-4-9-9-3-6-0-5 n80w8-1
n080w4 2 6-0-4-8 n80w4-2 n080w8 2 0-4-0-9-1-9-6-2 n80w8-2

100 n100w4 0 1-1-0-8 n100w4-1 n100w8 0 0-1-7-8-9-1-5-4 n100w8-1
n100w4 2 0-6-4-6 n100w4-2 n100w8 1 2-4-7-9-3-9-2-8 n100w8-2

110 n110w4 0 1-4-2-8 n110w4-1 n110w8 0 2-1-1-7-2-6-4-7 n110w8-1
n110w4 0 1-9-3-5 n110w4-2 n110w8 0 3-2-4-9-4-1-3-7 n110w8-2

120 n120w4 1 4-6-2-6 n120w4-1 n120w8 0 0-9-9-4-5-1-0-3 n120w8-1
n120w4 1 5-6-9-8 n120w4-2 n120w8 1 7-2-6-4-5-2-0-2 n120w8-2



Les Cahiers du GERAD G–2023–02 – Revised 27

Table 8: Results for the static INRC–II over 8 weeks with time limit set to 8 and 24 hours.

Time limit: 8 hours Time limit: 1 day

Instance Time (s) root LB LB UB Time (s) LB UB LNS UB

n030w8-1 425 1993.7 2010 2010H 2025
n030w8-2 471 1709.4 1720 1720D 1740
n035w8-1 - 2407.8 2425 2505H - 2430 2460H 2475
n035w8-2 - 2152.2 2205 2270H - 2215 2265H 2265
n040w8-1 - 2463.9 2490 2515H - 2495 2515B 2605
n040w8-2 - 2284 2305 2330H - 2310 2325D 2320
n050w8-1 - 4777.5 4805 4810B - 4805 4810H 4830
n050w8-2 7731 4743.3 4765 4765B 4775
n060w8-1 - 2099 2120 2150D - 2125 2145H 2200
n060w8-2 - 2393.4 2410 2435H - 2415 2430H 2475
n070w8-1 - 4474.7 4505 4530H 69115 4520 4520B 4555
n070w8-2 - 4636.3 4660 4690H 20312 4675 4675H 4700
n080w8-1 - 3941.7 3955 4030H - 3955 4055H 4110
n080w8-2 - 4286.9 4295 4335H - 4295 4325H 4335
n100w8-1 - 2013.5 2025 2030H - 2025 2030H 2065
n100w8-2 - 2128.6 2140 2145H - 2140 2145H 2190
n110w8-1 2456 3990 3990 1315B 4000
n110w8-2 - 3440 3440 3460H 11430 3440 3440B 3440
n120w8-1 - 2440 2440 2450D - 2440 2450B 2450
n120w8-2 14162 2871.7 2875 2875B 2875

Table 9: Results for the INRC–II using COIN-OR CBC solver; time limit was set to one hour per week.

Instance Time (s) LB UB Instance Time (s) LB UB

n030w4-1 86 1670 1670 n030w8-1 918 2010 2010
n030w4-2 1425 1815 1815 n030w8-2 4774 1720 1720
n035w4-1 71 1360 1360 n035w8-1 28802 2425 2585
n035w4-2 81 1080 1080 n035w8-2 28824 2195 2365
n040w4-1 170 1565 1565 n040w8-1 28800 2490 2565
n040w4-2 36 1750 1750 n040w8-2 28847 2305 2435
n050w4-1 1076 1315 1315 n050w8-1 28804 4800 4835
n050w4-2 206 1315 1315 n050w8-2 10627 4765 4765
n060w4-1 42 2450 2450 n060w8-1 28825 2115 2275
n060w4-2 31 2675 2675 n060w8-2 28817 2410 2595
n070w4-1 37 2380 2380 n070w8-1 28802 4505 4540
n070w4-2 75 2115 2115 n070w8-2 28803 4660 4730
n080w4-1 7806 3300 3300 n080w8-1 28861 3950 4105
n080w4-2 14400 3185 3190 n080w8-2 28844 4295 4440
n100w4-1 138 1170 1170 n100w8-1 28866 2025 2080
n100w4-2 83 1780 1780 n100w8-2 28840 2140 2215
n110w4-1 637 2330 2330 n110w8-1 10108 3990 3990
n110w4-2 59 2455 2455 n110w8-2 28800 3440 3490
n120w4-1 14288 2020 2020 n120w8-1 28820 2440 2450
n120w4-2 67 2050 2050 n120w8-2 28819 2875 2895



Les Cahiers du GERAD G–2023–02 – Revised 28

Table 10: Comparison of the rotation and roster formulations over INRC–II 4-weeks instances; time limit was set to 4
hours.

Instance Rotations Rosters

LB UB Root LB Increase LB Increase UB Decrease CBC UB Decrease

n030w4-1 1615 1685 1659.5 2.76% 1670 3.41% 1670 0.89% 1670 0.89%
n030w4-2 1740 1840 1809.2 3.98% 1815 4.31% 1815 1.36% 1815 1.36%
n035w4-1 1250 1415 1337.1 6.97% 1360 8.80% 1360 3.89% 1360 3.89%
n035w4-2 1045 1145 1075.6 2.93% 1080 3.35% 1080 5.68% 1080 5.68%
n040w4-1 1335 1640 1535.2 15.00% 1565 17.23% 1565 4.57% 1565 4.57%
n040w4-2 1570 1865 1741.7 10.94% 1750 11.46% 1750 6.17% 1750 6.17%
n050w4-1 1195 1445 1295.5 8.41% 1315 10.04% 1315 9.00% 1315 9.00%
n050w4-2 1200 1405 1302.1 8.51% 1315 9.58% 1315 6.41% 1315 6.41%
n060w4-1 2380 2465 2434.9 2.31% 2450 2.94% 2450 0.61% 2450 0.61%
n060w4-2 2615 2730 2664.3 1.89% 2675 2.29% 2675 2.01% 2675 2.01%
n070w4-1 2280 2430 2370.3 3.96% 2380 4.39% 2380 2.06% 2380 2.06%
n070w4-2 1990 2125 2105 5.78% 2115 6.28% 2115 0.47% 2115 0.47%
n080w4-1 3140 3320 3292 4.84% 3300 5.10% 3300 0.60% 3300 0.60%
n080w4-2 3045 3240 3177.1 4.34% 3185 4.60% 3185 1.70% 3190 1.54%
n100w4-1 1055 1230 1167.2 10.64% 1170 10.90% 1170 4.88% 1170 4.88%
n100w4-2 1470 1855 1777.7 20.93% 1780 21.09% 1780 4.04% 1780 4.04%
n110w4-1 2210 2390 2321.3 5.04% 2330 5.43% 2330 2.51% 2330 2.51%
n110w4-2 2255 2525 2455 8.87% 2455 8.87% 2455 2.77% 2455 2.77%
n120w4-1 1790 2165 2011.5 12.37% 2020 12.85% 2020 6.70% 2020 6.70%
n120w4-2 1820 2220 2045.7 12.40% 2050 12.64% 2050 7.66% 2050 7.66%

Average 7.64% 8.28% 3.70% 3.69%

Table 11: Comparison of the rotation and roster formulations over INRC–II 8-weeks instances; time limit was set to 8
hours.

Instance Rotations Rosters (over 8 hours)

LB UB Root LB Increase LB Increase UB Decrease CBC UB Decrease

n030w8-1 1920 2070 1993.7 3.84% 2010 4.69% 2010 2.90% 2010 2.90%
n030w8-2 1620 1735 1709.4 5.52% 1720 6.17% 1720 0.86% 1720 0.86%
n035w8-1 2330 2555 2407.8 3.34% 2425 4.08% 2505 1.96% 2585 -1.17%
n035w8-2 2180 2305 2152.2 -1.28% 2205 1.15% 2270 1.52% 2365 -2.60%
n040w8-1 2340 2620 2463.9 5.29% 2490 6.41% 2515 4.01% 2565 2.10%
n040w8-2 2205 2420 2284 3.58% 2305 4.54% 2330 3.72% 2435 -0.62%
n050w8-1 4625 4900 4777.5 3.30% 4805 3.89% 4810 1.84% 4835 1.33%
n050w8-2 4530 4925 4743.3 4.71% 4765 5.19% 4765 3.25% 4765 3.25%
n060w8-1 1970 2345 2099 6.55% 2120 7.61% 2150 8.32% 2275 2.99%
n060w8-2 2260 2590 2393.4 5.90% 2410 6.64% 2435 5.98% 2595 -0.19%
n070w8-1 4400 4595 4474.7 1.70% 4505 2.39% 4530 1.41% 4540 1.20%
n070w8-2 4540 4760 4636.3 2.12% 4660 2.64% 4690 1.47% 4730 0.63%
n080w8-1 3775 4180 3941.7 4.42% 3955 4.77% 4030 3.59% 4105 1.79%
n080w8-2 4125 4450 4286.9 3.92% 4295 4.12% 4335 2.58% 4440 0.22%
n100w8-1 2005 2125 2013.5 0.42% 2025 1.00% 2030 4.47% 2080 2.12%
n100w8-2 2125 2210 2128.6 0.17% 2140 0.71% 2145 2.94% 2215 -0.23%
n110w8-1 3870 4010 3990 3.10% 3990 3.10% 3990 0.50% 3990 0.50%
n110w8-2 3375 3560 3440 1.93% 3440 1.93% 3460 2.81% 3490 1.97%
n120w8-1 2295 2600 2440 6.32% 2440 6.32% 2450 5.77% 2450 5.77%
n120w8-2 2535 3095 2871.7 13.28% 2875 13.41% 2875 7.11% 2895 6.46%

Average 3.91% 4.54% 3.35% 1.46%



Les Cahiers du GERAD G–2023–02 – Revised 29

References
Khaled S. Abdallah and Jaejin Jang. An exact solution for vehicle routing problems with semi-hard resource

constraints. Computers & Industrial Engineering, 76:366–377, October 2014. doi: 10.1016/j.cie.2014.08.
011.

Mohammed Abdelghany, Amr B. Eltawil, Zakaria Yahia, and Kazuhide Nakata. A hybrid variable neighbour-
hood search and dynamic programming approach for the nurse rostering problem. Journal of Industrial
& Management Optimization, 17(4):2051, 2021. doi: 10.3934/jimo.2020058.

Anmar Abuhamdah, Wadii Boulila, Ghaith M. Jaradat, Anas M. Quteishat, Mutasem K. Alsmadi, and
Ibrahim A. Almarashdeh. A novel population-based local search for nurse rostering problem. International
Journal of Electrical and Computer Engineering, 11(1):471, 2021. doi: 10.11591/ijece.v11i1.pp471-480.

Jonathan F. Bard and Hadi W. Purnomo. Preference scheduling for nurses using column generation. European
Journal of Operational Research, 164(2):510–534, 2005. doi: 10.1016/j.ejor.2003.06.046.

Cynthia Barnhart, Ellis L. Johnson, George L. Nemhauser, Martin W. P. Savelsbergh, and Pamela H. Vance.
Branch-and-price: Column generation for solving huge integer programs. Operations Research, 46(3):
316–329, 1998. doi: 10.1287/opre.46.3.316.

J. E. Beasley and N. Christofides. An algorithm for the resource constrained shortest path problem. Networks,
19(4):379–394, 1989. doi: 10.1002/net.3230190402.

Andrea Bettinelli, Alberto Ceselli, and Giovanni Righini. A branch-and-price algorithm for the multi-depot
heterogeneous-fleet pickup and delivery problem with soft time windows. Mathematical Programming
Computation, 6(2):171–197, June 2014. doi: 10.1007/s12532-014-0064-0.

Manuel A. Boĺıvar, Leonardo Lozano, and Andrés L. Medaglia. Acceleration strategies for the weight con-
strained shortest path problem with replenishment. Optimization Letters, 8(8):2155–2172, 2014. doi:
10.1007/s11590-014-0742-x.

Edmund K. Burke and Tim Curtois. New approaches to nurse rostering benchmark instances. European
Journal of Operational Research, 237(1):71–81, 2014. doi: 10.1016/j.ejor.2014.01.039.

Edmund K. Burke, Timothy Curtois, Rong Qu, and Greet Vanden Berghe. A time predefined variable depth
search for nurse rostering. INFORMS Journal on Computing, 25(3):411–419, 2013. doi: 10.1287/ijoc.
1120.0510.

W Matthew Carlyle, Johannes O Royset, and R Kevin Wood. Lagrangian relaxation and enumeration for
solving constrained shortest-path problems. Networks: an international journal, 52(4):256–270, 2008.

Sara Ceschia, Nguyen Dang, Patrick De Causmaecker, Stefaan Haspeslagh, and Andrea Schaerf. The Second
International Nurse Rostering Competition. Annals of Operations Research, 274(1-2):171–186, 2019. doi:
10.1007/s10479-018-2816-0.

Sara Ceschia, Rosita Guido, and Andrea Schaerf. Solving the static INRC-II nurse rostering problem by
simulated annealing based on large neighborhoods. Annals of Operations Research, 288(1):95–113, 2020.
doi: 10.1007/s10479-020-03527-6.

Brenda Cheang, Haibing Li, Andrew Lim, and Brian Rodrigues. Nurse rostering problems – a bibliographic
survey. European Journal of Operational Research, 151(3):447–460, 2003.

Luciano Costa, Claudio Contardo, and Guy Desaulniers. Exact Branch-Price-and-Cut Algorithms for Vehicle
Routing. Transportation Science, 53(4):946–985, July 2019. doi: 10.1287/trsc.2018.0878.

Tim Curtois and Rong Qu. Computational results on new staff scheduling benchmark instances. ASAP
Research Group, School of Computer Science, University of Nottingham, page 5, 2014.

Guy Desaulniers, Jacques Desrosiers, and Marius M. Solomon. Column generation, volume 5. Springer Science
& Business Media, 2006.

Anders Dohn and Andrew Mason. Branch-and-price for staff rostering: An efficient implementation using
generic programming and nested column generation. European Journal of Operational Research, 230(1):
157–169, 2013. doi: 10.1016/j.ejor.2013.03.018.

Olivier Du Merle, Daniel Villeneuve, Jacques Desrosiers, and Pierre Hansen. Stabilized column generation.
Discrete Mathematics, 194(1–3):229–237, 1999.

Irina Dumitrescu and Natashia Boland. Improved preprocessing, labeling and scaling algorithms for the weight-
constrained shortest path problem. Networks: An International Journal, 42(3):135–153, 2003.

Rafael A.M. Gomes, Túlio A.M. Toffolo, and Haroldo Gambini Santos. Variable neighborhood search
accelerated column generation for the nurse rostering problem. 4th International Conference on



Les Cahiers du GERAD G–2023–02 – Revised 30

Variable Neighborhood Search. Electronic Notes in Discrete Mathematics, 58:31–38, 2017. doi:
10.1016/j.endm.2017.03.005.

Matthieu Gérard, François Clautiaux, and Ruslan Sadykov. Column generation based approaches for a tour
scheduling problem with a multi-skill heterogeneous workforce. European Journal of Operational Re-
search, 252(3):1019–1030, 2016. doi: 10.1016/j.ejor.2016.01.036.

Stefaan Haspeslagh, Patrick De Causmaecker, Andrea Schaerf, and Martin Stølevik. The first international
nurse rostering competition 2010. Annals of Operations Research, 218(1):221–236, 2014. doi: 10.1007/
s10479-012-1062-0.

Fang He and Rong Qu. A constraint programming based column generation approach to nurse rostering
problems. Computers & Operations Research, 39(12):3331–3343, 2012. doi: 10.1016/j.cor.2012.04.018.

Stefan Irnich, Guy Desaulniers, et al. Shortest path problems with resource constraints. In Column generation,
chapter 2, pages 33–65. Springer US, 2005.

Brigitte Jaumard, Frédéric Semet, and Tsevi Vovor. A generalized linear programming model for nurse schedul-
ing. European Journal of Operational Research, 107(1):1–18, 1998. doi: 10.1016/S0377-2217(97)00330-5.

H.C Joksch. The shortest route problem with constraints. Journal of Mathematical Analysis and Applications,
14(2):191–197, 1966. doi: 10.1016/0022-247X(66)90020-5.

Niklas Kohl and Stefan E Karisch. Airline crew rostering: Problem types, modeling, and optimization. Annals
of Operations Research, 127(1–4):223–257, 2004.

Antoine Legrain and Jérémy Omer. wssuite/nursescheduler: Soft domination, October 2023.
Antoine Legrain, Jérémy Omer, and Samuel Rosat. A rotation-based branch-and-price approach for the nurse

scheduling problem. Mathematical Programming Computation, (12):417–450, 2020. doi: 10.1007/s12532-
019-00172-4.

Warner Lensing. Heuristic Branch-and-Price algorithms for the nurse rostering problem. Unpublished PhD
dissertation, University of Groningen, Faculty of Economics and Business, 2020.

Federico Liberatore, Giovanni Righini, and Matteo Salani. A column generation algorithm for the vehicle
routing problem with soft time windows. 4OR, 9(1):49–82, 2011. doi: 10.1007/s10288-010-0136-6.

Broos Maenhout and Mario Vanhoucke. Branching strategies in a branch-and-price approach for a multiple
objective nurse scheduling problem. Journal of Scheduling, 13(1):77–93, 2010. doi: 10.1007/s10951-009-
0108-x.

Artur Pessoa, Ruslan Sadykov, Eduardo Uchoa, and François Vanderbeck. Automation and combination of
linear-programming based stabilization techniques in column generation. INFORMS Journal on Com-
puting, 30(2):339–360, 2018.

Ali Gul Qurashi, Eiichi Taniguchi, and Tadashi Yamada. Column generation-based heuristics for vehicle routing
problem with soft time windows. Journal of the Eastern Asia Society for Transportation Studies, 8, 2010.

Ali Gul Qureshi, Eiichi Taniguchi, and Tadashi Yamada. Column Generation-based Heuristics for Vehicle
Routing Problem with Soft Time Windows. Journal of the Eastern Asia Society of Transportation
Studies, 8:15, 2010.

Giovanni Righini and Matteo Salani. Symmetry helps: Bounded bi-directional dynamic programming for the
elementary shortest path problem with resource constraints. Discrete Optimization, 3(3):255–273, 2006.
doi: 10.1016/j.disopt.2006.05.007.

Michael Römer. Future demand uncertainty in personnel scheduling: investigating deterministic lookahead
policies using optimization and simulation. In Michael Manitz and Oliver Rose, editors, Proceedings of
30th European Conference on Modelling and Simulation, 2016.

Haroldo G Santos, Túlio AM Toffolo, Rafael AM Gomes, and Sabir Ribas. Integer programming techniques
for the nurse rostering problem. Annals of Operations Research, 239(1):225–251, 2016a.

Haroldo G. Santos, Túlio A. M. Toffolo, Rafael A. M. Gomes, and Sabir Ribas. Integer programming techniques
for the nurse rostering problem. Annals of Operations Research, 239(1):225–251, 2016b. doi: 10.1007/
s10479-014-1594-6.

Thomas R. Sexton and Young-Myung Choi. Pickup and delivery of partial loads with “soft” time windows.
American Journal of Mathematical and Management Sciences, 6(3-4):369–398, 1986. doi: 10.1080/
01966324.1986.10737200.

Pieter Smet. Constraint reformulation for nurse rostering problems. In Proceedings of the 12th international
conference on the practice and theory of automated timetabling, pages 69–80. PATAT, 2018.



Les Cahiers du GERAD G–2023–02 – Revised 31

Petter Strandmark, Yi Qu, and Timothy Curtois. First-order linear programming in a column generation-based
heuristic approach to the nurse rostering problem. Computers & Operations Research, 120:104945, 2020.
doi: 10.1016/j.cor.2020.104945.

Mariam Tagmouti, Michel Gendreau, and Jean-Yves Potvin. Arc routing problems with time-dependent service
costs. European Journal of Operational Research, 181:30–39, 2007. doi: 10.1016/j.ejor.2006.06.028.

Daniel Villeneuve and Guy Desaulniers. The shortest path problem with forbidden paths. European Journal
of Operational Research, 165(1):97–107, 2005. doi: 10.1016/j.ejor.2004.01.032.

Xiaoyan Zhu and Wilbert E. Wilhelm. A three-stage approach for the resource-constrained shortest path
as a sub-problem in column generation. Computers & Operations Research, 39(2):164–178, 2012. doi:
10.1016/j.cor.2011.03.008.


	Introduction
	The nurse scheduling problem
	Main contributions
	Organization of the article

	Solution of the nurse scheduling problem
	Branch-and-price approaches
	Generation of individual rosters

	Generic constraints for a general NSP
	Outline of the roster-based branch-and-price
	Roster-based column generation
	Pricing rosters by dynamic programming

	Solution of the shortest path with soft constraints
	Representation of the NSP constraints as resources
	Dominance rules
	Dominance rules for hard constraints
	Dominance rules for soft constraints

	Implementation of acceleration techniques
	Heuristic pricing methods
	Computation of lower bounds
	Bidirectional extension (BIDI)


	Computational experiments
	Description of the test benchmarks
	Assessment of pricing solution
	Assessment of the branching and primal heuristics
	Comparison to the literature
	INRC-I
	Static INRC–II
	Nurse rostering problem benchmark


	Conclusion
	Proofs
	Implementation details
	Branching
	Primal heuristics

	Detailed experimental results

