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– Library and Archives Canada, 2023

GERAD HEC Montréal
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Abstract : In this paper, we investigate the problem of system identification for autonomous Markov
jump linear systems (MJS) with complete state observations. We propose switched least squares
method for identification of MJS, show that this method is strongly consistent, and derive data-
dependent and data-independent rates of convergence. In particular, our data-independent rate of
convergence shows that, almost surely, the system identification error is O

(√
log(T )/T

)
where T is

the time horizon. These results show that switched least squares method for MJS has the same rate
of convergence as least squares method for autonomous linear systems. We derive our results by
imposing a general stability assumption on the model called stability in the average sense. We show
that stability in the average sense is a weaker form of stability compared to the stability assumptions
commonly imposed in the literature. We present numerical examples to illustrate the performance of
the proposed method.

Keywords: Markov jump linear systems, system identification, estimation, consistency, rate of con-
vergence

Résumé : Dans cet article, nous étudions le problème de l’identification de système pour les systèmes
linéaires à saut de Markov autonomes (MJS) avec des observations d’état complètes. Nous proposons la
méthode des moindres carrés commutés pour l’identification de MJS, montrons que cette méthode est
fortement cohérente et dérivons des taux de convergence dépendants et indépendants des données. En
particulier, notre taux de convergence indépendant des données montre que, presque sûrement, l’erreur
d’identification du système est O

(√
log(T )/T

)
où T est l’horizon temporel. Ces résultats montrent que

la méthode des moindres carrés commutés pour MJS a le même taux de convergence que la méthode
des moindres carrés pour les systèmes linéaires autonomes. Nous dérivons nos résultats en imposant
une hypothèse générale de stabilité au modèle appelée stabilité au sens moyen. Nous montrons que la
stabilité au sens moyen est une forme de stabilité plus faible par rapport aux hypothèses de stabilité
couramment imposées dans la littérature. Nous présentons des exemples numériques pour illustrer les
performances de la méthode proposée.

Mots clés : Systèmes linéaires à saut de Markov, identification du système, estimation, cohérence,
taux de convergence
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1 Introduction

Markov jump linear systems (MJS) are a good approximation of non-linear time-varying systems arising

in various applications including networked control systems [13] and cyber-physical systems [7, 12].

There is a rich literature on the stability analysis (e.g., [11, 15, 16]) and optimal control (e.g., [10])

of MJS. However, most of the literature assumes that the system model is known. The question of

system identification, i.e., identifying the dynamics from data, has not received much attention in this

setup.

The problem of identifying the system model from data is a key component for control synthesis for

both offline control methods and online control methods including adaptive control and reinforcement

learning [21,28]. There are four main approaches for system identification of linear systems: (i) maxi-

mum likelihood estimation which maximizes the likelihood function of the unknown parameter given

the observation (e.g. see [30]); (ii) minimum prediction error methods which minimize the estimation

error (residual process) according to some loss function (e.g. see [5,27]); (iii) subspace methods, which

find a minimum state space realization given the input, output data (e.g. see [22,26]); (iv) least squares

method which estimates the unknown parameter by considering the model as a regression problem (e.g.

see [3, 24]).

These methods differ in terms of structural assumptions on the model (e.g. system order), hy-

potheses on the stochastic process, and convergence properties and guarantees.

Structural assumptions require the system to be stable in some sense (e.g., mean square stable,

exponentially stable, etc.), and stochastic hypotheses restrict the noise processes to be of a certain

type, (e.g., Gaussian, sub-Gaussian, or Martingale difference sequences).

Convergence properties characterize the asymptotic behavior of system identification methods. The

basic requirements for any system identification method is its consistency, asymptotic normality and

rates of convergence, that is to establish that estimates converge asymptotically to the true unknown

parameter and characterize the rate of convergence. System identification methods can be weakly

consistent (i.e., estimates converge in probability) or strongly consistent (i.e., estimates convergence

almost surely). For linear systems, there is a vast literature that establishes the consistency and rates of

convergence for a variety of methods (e.g. see [3,28] for a unified overview). Another characterization

of the convergence is finite-time guarantees which provide lower-bounds on the number of samples

required so that estimates have a specified degree of accuracy with a specified high probability [1,

17, 18, 20, 25, 29, 36, 38, 40]. As the number of samples grow to infinity, these results establish weak
consistency of the proposed methods.

System identification of MJS and switched linear systems (SLS) has received less attention in the

literature. There is some work on designing asymptotically stable controllers for unknown SLS [4,

6, 39] but these papers do not establish rates of convergence for system identification. There are

some recent papers which provide finite time guarantees and rate of convergence for SLS [31, 35] and

MJS [32]. System identification of a globally asymptotically stable SLS with controlled switching signal

is investigated in [35], while the system identification of an unknown order SLS using subspace methods

is investigated in [31]. Both these methods are developed for SLS and are not directly applicable to

MJS. The model analyzed in [32] is an MJS system. Under the assumption that the system is mean

square stable, the switching distribution is ergodic and the noise is i.i.d. subgaussian, it is established

that the convergence rate is O(
√
log T/T ) with high probability. Then a certainty equivalence control

algorithm is proposed and its regret is analyzed. Note that if we let the number of samples go to

infinity, these results imply weak consistency of the proposed methods for MJS systems. As far as

we are aware, there is no existing result which establishes strong consistency of a method for system

identification of MJS.
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1.1 Contributions

• We propose a switched least squares method for system identification of an unknown (au-

tonomous) MJS and provide data-dependent and data-independent rates of convergence for this

method.

• We prove strong consistency of the switched least squares method and establish a O(
√
log(T )/T )

rate of convergence, which matches with the rate of convergence of non-switched linear systems

established in [24]. In contrast to the existing high-probability convergence guarantees in the

literature, our results show that the estimates converge to the true parameters almost surely.

Therefore, our results provide guarantees which are different in nature compared to parallel

works.

• The main challenge in establishing strong consistency for MJS systems is the interplay between

the empirical covariance process and stability of the MJS system. We shed light on this connection

and show that stability in the average sense is a sufficient condition for strong consistency.

• Our results are derived under weaker assumptions compared to the existing literature (Note that

the preliminary version of this paper [34] had assumed a stronger stability condition). Most

existing results assume that the MJS system is mean square stable. We prove that mean square

stability implies stability in the average sense. Furthermore, we show that a commonly used

sufficient condition for almost sure stability of noise-free MJS system also implies stability in the

average sense.

2 System model and problem formulation

Consider a discrete-time (autonomous) MJS. The state of the system has two components: a discrete

component st ∈ S := {1, . . . , k} and a continuous component xt ∈ Rn. There is a finite set A =

{A1, . . . , Ak} of system matrices, where Ai ∈ Rn×n. The continuous component xt of the state starts

at a fixed value x0 and the initial discrete state s0 starts according to a prior distribution π0. The

continuous state evolves according to:

xt+1 = Astxt + wt, t ≥ 0, (1)

where {wt}t≥0, wt ∈ Rn, is a noise process. The discrete component evolves in a Markovian manner

according to a time-homogeneous irreducible and aperiodic transition matrix P , i.e. P(st+1 = j|st =
i) = Pij .

Let πt = (πt(1), . . . , πt(k)) denote the probability distribution of the discrete state at time t and

π∞ denote the stationary distribution. We assume π∞(i) ̸= 0 for all i. Let Ft−1 = σ(x0:t, s0:t) denote

the sigma-algebra generated by the history of the complete state.

It is assumed that the noise process satisfies the following:

Assumption 1. The noise process {wt}t≥0 is a martingale difference sequence with respect to {Ft}t≥0,

i.e., E[|wt|] < ∞ and E[wt | Ft−1] = 0. Furthermore, there exists a constant α > 2 such that

supt≥0E[∥wt∥α | Ft−1] < ∞ a.s. and there exists a symmetric and positive definite matrix C ∈ Rn×n

such that lim infT→∞
1
T

∑T−1
t=0 wtw

⊺
t = C a.s.

Assumption 1 is a standard assumption in the asymptotic analysis of system identification of linear

systems [3,8,9, 23,24] and allows the noise process to be non-stationary and have heavy tails (as long

as moment condition is satisfied). We use the following notion of stability for the MJS system (1).

Definition 1. The MJS system (1) is called stable in the average sense if almost surely:

T∑
t=1

∥xt∥2 = O(T ) i.e. lim sup
T→∞

1

T

T∑
t=1

∥xt∥2 < ∞.

Assumption 2. The MJS system (1) is stable in the average sense.
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The notion of stability in the average sense has been used in a few papers in the literature of linear

systems [14,19]; however, in the MJS literature, the commonly used notions of stability are mean square

stability and almost sure stability of noise-free system. We compare stability in the average sense with

both of these notions in Section 4. Specifically, we show that mean square stability implies stability

in the average sense. Moreover, we show a common sufficient condition for almost sure stability of

noise-free system implies stability in the average sense for MJS system (1). Therefore, the assumption

of stability in the average sense is weaker than the commonly imposed stability assumptions imposed

in the literature.

2.1 System identification and switched least squares estimates

We are interested in the setting where the system dynamics A and the switching transition matrix P

are unknown. Let θ⊺ = [A1, . . . , Ak] ∈ Rn×nk denote the unknown parameters of the system dynamics

matrices. We consider an agent that observes the complete state (xt, st) of the system at each time

and generates an estimate θ̂T of θ as a function of the observation history (x0:T , s0:T ). A commonly

used estimate in such settings is the least squares estimate:

θ̂
⊺
T = argmin

θ⊺=[A1,...,Ak]

T−1∑
t=0

∥xt+1 −Astxt∥2. (2)

The components [Â1,T , . . . , Âk,T ] = θ̂⊺T of the least squares estimate can be computed in a switched

manner. Let Ti,T = {t ≤ T | st = i} denote the time indices until time T when the discrete state of

the system equals i. Note that for each t ∈ Ti,T , Ast = Ai. Therefore, we have

Âi,T := argmin
Ai∈Rn×n

∑
t∈Ti,T

∥xt+1 −Aixt∥2, ∀i ∈ {1, · · · , k}. (3)

Let Xi,T denote
∑

t∈Ti,T
xtx

⊺
t , which we call the unnormalized empirical covariance of the continuous

component of the state at time T when the discrete component equals i. Then, Âi,T can be computed

recursively as follows:

Âi,T+1 = Âi,T +

[
X−1

i,TxT (xT+1 − Âi,TxT )
⊺

1 + x⊺
TX

−1
i,TxT

]
1{sT+1 = i}

where Xi,T may be updated as Xi,T+1 = Xi,T +
[
xT+1x

⊺
T+1

]
1{sT+1 = i}. Due to the switched

nature of the least squares estimate, we refer to above estimation procedure as switched least squares
system identification.

2.2 The main results

A fundamental property of any sequential parameter estimation method is strong consistency, which

we define below.

Definition 2. An estimator θ̂T of parameter θ is called strongly consistent if limT→∞ θ̂T = θ, a.s.

Our main result is to establish that the switched least squares estimator is strongly consistent. We

do so by providing two different characterization of the rate of convergence. We first provide a data-

dependent rate of convergence which depends on the spectral properties of the unnormalized empirical

covariance. We then present a data-independent characterization of rate of convergence which only

depends on T . All the proofs are presented in Section 3.

Theorem 1. Under Assumptions 1 and 2, the switched least squares estimates {Âi,T }ki=1 are strongly

consistent, i.e., for each i ∈ S, we have: limT→∞
∥∥Âi,T − Ai

∥∥
∞ = 0, a.s. Furthermore, the rate of

convergence is upper bounded by:

∥∥Âi,T −Ai

∥∥
∞ ≤ O

(√
log

[
λmax(Xi,T )

]
λmin(Xi,T )

)
, a.s.
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Remark 1. Theorem 1 is not a direct consequence of the decoupling procedure in the switched least

squares method. The k least squares problems have a common covariate process {xt}t≥1. Therefore,

the convergence of the switched least squares method and the stability of the MJS are interconnected

problems. Our proof techniques carefully use the stability properties of the system to establish the

consistency of the system identification method.

We simplify the result of Theorem 1 and characterize the data dependent result of Theorem 1 in

terms of horizon T and the cardinality of the set Ti,T .
Corollary 1. Under Assumptions 1 and 2, for each i ∈ S, we have:∥∥Âi,T −Ai

∥∥
∞ ≤ O

(√
log(T )/|Ti,T |

)
, a.s.

Remark 2. The assumption that π∞(i) ̸= 0 implies that for sufficiently large T , |Ti,T | ≠ 0 almost

surely, therefore the expressions in above bounds are well defined.

The result of Corollary 1 still depends on data. When system identification results are used for

adaptive control or reinforcement learning, it is useful to have a data-independent characterization of

the rate of convergence. We present this characterization in the next theorem.

Theorem 2. Under Assumptions 1 and 2, the rate of convergence of the switched least squares estimator

Âi,T , i ∈ S is upper bounded by:∥∥Âi,T −Ai

∥∥
∞ ≤ O

(√
log(T )/π∞(i)T

)
, a.s.

where the constants in the O(·) notation do not depend on Markov chain {st}t≥0 and horizon T .

Therefore, the estimation process {θ̂T }T≥1 is strongly consistent, i.e., limT→∞
∥∥θ̂T − θ

∥∥
∞ = 0 a.s.

Furthermore, the rate of convergence is upper bounded by:∥∥θ̂T − θ
∥∥
∞ ≤ O

(√
log(T )/π∗T

)
, a.s.

where π∗ = minj∈S π∞(j).

Theorem 2 shows that Assumptions 1 and 2 guarantee that the switched least squares estimator

for MJS has the same rate of convergence of O(
√

log(T )/T ) as non-switched case established in [24].

Moreover, the upper bound in Theorem 2 shows that the estimation error of Âi,T is proportional to

1/
√
π∞(i); therefore, the rate of convergence of θ̂T is proportional to 1/

√
π∗, where π∗ is the smallest

probability in the stationary distribution π∞.

Remark 3. SLS is a special case of MJS in which the discrete state evolves in an i.i.d. manner. The

results presented in this section are valid for the SLS after substituting stationary distribution π∞
with the i.i.d. PMF of switching probabilities defined over discrete state.

3 Proofs of the main results

3.1 Preliminary results

We first state the Strong Law of Large Numbers (SLLN) for Martingale Difference Sequences (MDS).

Theorem 3. (see [37, Theorem 3.3.1]) Suppose {Xτ}τ≥1is a martingale difference sequence with respect

to the filtration {Fτ}τ≥1 . Let aτ be Fτ−1 measurable for each τ ≥ 1 and we have 0 < aτ → ∞ as τ →
∞, a.s. If for some p ∈ (0, 2], we have:

∑∞
τ=1E[|Xτ |p|Fτ−1]/a

p
τ < ∞, then: limT→∞

∑T
τ=1 Xτ/aT =

0 a.s.

Lemma 1. The assumptions on the process {st}t≥0 imply that limT→∞ |Ti,T |/T = π∞(i), a.s.

Proof. {st}t≥0 is an aperiodic and irreducible Markov chain, hence, by the Ergodic Theorem (Theorem

4.1, [2]), {st}t≥0 is ergodic and therefore limT→∞ |Ti,T |/T = π∞(i) a.s.
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Lemma 2. Assumption 1 and 2 imply:

∞∑
τ=1

∥xτ∥2/τ2 < ∞ a.s.

Proof. The result is a direct consequence of Abel’s lemma. Let ST :=
∑T

τ=1 ∥xτ∥2, then we have:

T∑
τ=1

∥xτ∥2

τ2
=

T∑
τ=1

Sτ − Sτ−1

τ2

=
ST

T 2
− S0

1
+

T∑
τ=2

Sτ−1

( 1

(τ − 1)2
− 1

τ2

)
(a)
=

ST

T 2
− S0

1
+

T∑
τ=2

O(τ − 1)
( 2τ − 1

τ2(τ − 1)2

)
=

ST

T 2
− S0

1
+

T∑
τ=2

O
(

1

τ2

)
< ∞

where (a) follows from Assumption 2.

Lemma 3. We have the following:

∥∥∥ T∑
τ=1

Asτxτw
⊺
τ + wτx

⊺
τA

⊺
sτ

∥∥∥ = o(T ) a.s.

Proof. We prove the limit element-wise. The (l, p)-th element of the matrixAsτxτw
⊺
τ is

[∑n
j=1 Asτ (l, j)xτ (j)

]
wτ (p).

We calculate the term:

E
[( n∑

j=1

Asτ (l, j)xτ (j)wτ (p)
)2∣∣∣Fτ−1

]
. (4)

Let A∗ = maxi∈S ∥Ai∥∞, then

E
[( n∑

j=1

Asτ (l, j)xτ (j)
)2

w2
τ (p)

∣∣∣Fτ−1

] (a)

≤ A2
∗ sup

τ
E[w2

τ (p)
∣∣Fτ−1]

( n∑
j=1

xτ (j)
)2

(b)

≤ nA2
∗ sup

τ
E
[
w2

τ (p)
∣∣Fτ−1

]
∥xτ∥2,

where (a) uses the fact that sτ and xτ are Fτ−1 measurable and that |Asτ (l, j)| ≤ A∗ and (b) is by

Cauchy-Schwarz’s inequality. Therefore:

T∑
τ=1

E
[([∑n

j=1 Asτ (l, j)xτ (j)
]
wτ (p)

)2∣∣∣Fτ−1

]
τ2

≤ nA2
∗ sup

τ

{
E[w2

τ (p)|Fτ−1]
} T∑

τ=1

∥xτ∥2

τ2

(c)

≤ ∞.

Since α > 2 in Assumption 1, and finiteness of higher order moments imply finiteness of lower order

moments, we get E
[
w2

τ (p)
∣∣Fτ−1

]
is uniformly bounded. This fact along with Lemma 2 imply (c). The

result then follows by applying Theorem 3 by setting at = t and p = 2.

We characterize the asymptotic behavior of the matrix Xi,T .

Proposition 1. Under Assumptions 1 and 2, the following hold a.s. for each i ∈ S:

(P1) λmax(Xi,T ) = O(T ), a.s.
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(P2) lim infT→∞ λmin(Xi,T )/|Ti,T | > 0, a.s.

Remark 4. Property (P1) shows that when the system is stable in the average sense, λmax(Xi,T ) cannot

grow faster than linearly with time. Therefore, the stability of the system controls the rate at which

Xi,T can grow. Property (P2) shows that when the noise has a minimum covariance, λmin(Xi,T ) cannot

grow slower than linearly with time.

Proof of (P1). The maximum eigenvalue of a matrix can be upper bounded as follows:

λmax

( ∑
t∈Ti,T

xtx
⊺
t

) (a)

≤ tr
( ∑

t∈Ti,T

xtx
⊺
t

)
=

∑
t∈Ti,T

∥xt∥2

≤
T∑

t=1

∥xt∥2 = O(T )

where (a) follows from the fact that trace of a matrix is sum of its eigenvalues and all eigenvalues of

xtx
⊺
t are non-negative.

Proof of (P2). For τ ≥ 1, we have:

xτx
⊺
τ =(Asτ−1xτ−1 + wτ−1)(Asτ−1xτ−1 + wτ−1)

⊺

=Asτ−1
xτ−1x

⊺
τ−1A

⊺
sτ−1

+Asτ−1
xτ−1w

⊺
τ−1 + wτ−1x

⊺
τ−1A

⊺
sτ−1

+ wτ−1w
⊺
τ−1.

Since Asτ−1
xτ−1x

⊺
τ−1A

⊺
sτ−1

is positive semi-definite, we have:

xτx
⊺
τ ⪰ Asτ−1xτ−1w

⊺
τ−1 + wτ−1x

⊺
τ−1A

⊺
sτ−1

+ wτ−1w
⊺
τ−1.

By summing over τ ∈ Ti,T , we get:

∑
τ∈Ti,T

xτx
⊺
τ ⪰

∑
τ∈Ti,T

wτ−1w
⊺
τ−1 + x0x

⊺
01{s0 = i}

+
∑

τ∈Ti,T

[
Asτ−1

xτ−1w
⊺
τ−1 + wτ−1x

⊺
τ−1A

⊺
sτ−1

]
(a)

⪰
∑

τ∈Ti,T

wτ−1w
⊺
τ−1 + o(T ) a.s.

where (a) follows from Lemma 3 and x0x
⊺
01{s0 = i} ⪰ 0. Furthermore, since limT→∞ |Ti,T |/T = π∞(i)

a.s. by Lemma 1 and π∞(i) ̸= 0 by assumptions on {sτ}τ≥0, we have:

lim inf
|Ti,T |→∞

∑
τ∈Ti,T

xτx
⊺
τ

|Ti,T |
⪰ lim inf

|Ti,T |→∞

∑
τ∈Ti,T

wτ−1w
⊺
τ−1

|Ti,T |
(b)
= C ≻ 0 a.s.

where (b) holds by Assumption 1 and independence of {wτ}τ≥0 and {sτ}τ≥0 processes. Therefore

lim inf
|Ti,T |→∞

λmin

(∑
τ∈Ti,T

xτx
⊺
τ

|Ti,T |

)
≻ 0.

3.2 Background on least square estimator

Given a filtration {Gt}t≥0, consider the following regression model:

yt = β
⊺
zt + wt, t ≥ 0, (5)
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where β ∈ Rn is an unknown parameter, zt ∈ Rn is Gt−1-measurable covariate process, yt is the

observation process, and wt ∈ R is a noise process satisfying Assumption 1 with Ft replaced by Gt.

Then the least squares estimate β̂T of β is given by:

β̂T = argmin
β⊺

T∑
τ=0

∥yτ − β
⊺
zτ∥2. (6)

The following result by [23] characterizes the rate of convergence of β̂T to β in terms of unnormalized

covariance matrix of covariates ZT :=
∑T

τ=0 zτz
⊺
τ .

Theorem 4 (see [23, Theorem 1]). Suppose the following conditions are satisfied: (S1) λmin(ZT ) → ∞,

a.s. and (S2) log(λmax(ZT )) = o(λmin(ZT )), a.s. Then the least squares estimate in (6) is strongly

consistent with the rate of convergence:

∥β̂T − β∥∞ = O
(√

log
[
λmax(ZT )

]
λmin(ZT )

)
a.s.

Theorem 4 is valid for all the Gt−1-measurable covariate processes {zt}t≥0. For the switched least

squares system identification if we take Gt to be equal to Ft and verify conditions (S1) and (S2) in

Theorem 4, then we can use Theorem 4 to establish its strong consistency and rate of convergence. As

mentioned earlier in Remark 1, the empirical covariances are coupled across different components due

to the system dynamics.

3.3 Proof of Theorem 1

To prove this theorem, we check the sufficient conditions in Theorem 4. First requirement that Xi,T

is measurable w.r.t. FT−1, follows by the definition of Xi,T . Conditions (S1) and (S2) are verified in

the following.

(S1) By Proposition 1-(P2), we see that λmin(Xi,T ) → ∞ a.s.; therefore, (S1) in Theorem 4 is satisfied.

(S2) Proposition 1-(P1) and (P2) imply that there exist positive constants C1, C2, such that :

lim sup
T→∞

log(λmax(Xi,T ))

λmin(Xi,T )
≤ lim sup

T→∞

log(C1) + log(T )

C2|Ti,T |
= 0 a.s.

where the last equality follows by Lemma 1 (i.e. |Ti,T | = O(T ), a.s.). Therefore, the second

condition of Theorem 4 is satisfied.

Therefore, by Theorem 4, for each i ∈ S, we have:

∥∥Âi,T −Ai

∥∥
∞ ≤ O

(√
log

[
λmax(Xi,T )

]
λmin(Xi,T )

)
, a.s. (7)

which proves the claim in Theorem 1.

3.4 Proof of Corollary 1

Corollary 1 is the direct consequence of Theorem 1 and Proposition 1. Proposition 1-(P1) implies that

λmax(Xi,T ) = O(log(T )). By substituting λmax(Xi,T ) with O(log(T )) in the right hand side of Eq. (7),

we get that for each i ∈ S, the estimation error ∥Âi,T −Ai

∥∥
∞ is upper-bounded by O

(√
log(T )/|Ti,T |

)
,

a.s.
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3.5 Proof of Theorem 2

We first establish the strong consistency of the parameter θ̂T . By Theorem 1 and the fact that k < ∞,

we get: ∥∥θ̂T − θ
∥∥
∞ ≤ max

i∈S
O
(√

log
[
λmax(Xi,T )

]
λmin(Xi,T )

)
, a.s.

Therefore, the result follows by applying Theorem 1 to the argmax of above equation. For the second

part notice that by Lemma 1, we know limT→∞ |Ti,T |/T = π∞(i), a.s. Now, by Corollary 1, we get:

∥∥Âi,T −Ai

∥∥
∞ ≤ O

(√
log(T )

|Ti,T |

)
= O

(√
log T

π∞(i)T

)
a.s.

which is the claim of Theorem 2.

4 Discussion on stability in the average sense

The main results of this paper are derived under Assumption 2 i.e., the MJS system (1) is stable in

the average sense. In this section, we discuss the connection between this notion of stability and more

common forms of stability, i.e., mean square stability and almost sure stability.

4.1 Stability on the average sense and mean square stability

A common assumption on the stability of MJS systems (e.g., [31] and [33]) is mean square stability

defined as following:

Definition 3. The MJS system (1) is called mean square stable (MSS) if there exists a deterministic

vector x∞ ∈ Rn and a deterministic positive definite matrixQ∞ ∈ Rn×n such that for any deterministic

initial state x0 and s0 , we have: limτ→∞
∥∥E[xτ ]− x∞

∥∥ → 0, and limτ→∞
∥∥E[xτx

⊺
τ ]−Q∞

∥∥ → 0.

Proposition 2 (see [11, Theorem 3.9]). The system is MSS, if and only if λmax

(
(P ⊺ ⊗ In2) diag(Ai ⊗

Ai)
)
< 1.

We now show that stability in the average sense is a weaker notion of stability than MSS.

Proposition 3. If the MJS system (1) is mean square stable, then the system is stable in the average

sense.

The proof if presented in Appendix A.

Remark 5. Proposition 3 shows that MSS implies Assumption 2. Therefore, the results of Theorem 1

and 2 also hold when Assumption 2 is replaced by the assumption that the system is MSS.

4.2 Stability on the average sense and almost sure stability

Consider the noise free version of the MJS system (1) with the following dynamics:

xt+1 = Astxt, t ≥ 0. (8)

Definition 4. The system (8) is called almost surely stable if, for any deterministic initial state x0 and

s0 we have:

lim
t→∞

∥xt∥ = 0, a.s.

A common sufficient condition to check the almost sure stability of MJS system (8) is given below.

Proposition 4 (see [11, Theorem 3.47]). If the stationary distribution π∞ = (π∞(1), . . . , π∞(k)) satisfies

(C1) π∞(i) ̸= 0 for all i and (C2)
∏k

i=1 σmax(Ai)
π∞(i) < 1, then the system (8) is almost surely stable.
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We now show that (C1) and (C2) are also sufficient conditions for stability in the average sense.

Proposition 5. If the MJS system (1) satisfies (C1) and (C2), then the system is stable in the average

sense.

Proof is presented in Appendix B.

Remark 6. Proposition 5 shows that (C1) and (C2) imply Assumption 2. Therefore, the results of

Theorem 1 and 2 also hold when Assumption 2 is replaced by the assumption that the system satisfies

(C1) and (C2).

4.3 Discussion on non-comparable stability assumption

The following examples illustrate that neither MSS nor conditions (C1) and (C2) in Proposition 5 is

stronger than the other.

Example 1. Let θ⊺ = {A1, 0}, and p = (p1, p2) is an i.i.d. probability transition, with λmax(p1A1) > 1

and x0 ̸= 0. Then E[xτ+1] = E[Aστ
xτ + wt] = p1A1E[xτ ] = · · · = (p1A1)

τE(x0) , which implies

limτ→∞E(xτ ) = ∞. Therefore, this system is not mean square stable. However, this system satisfies

conditions (C1) and (C2) in Proposition 5 and therefore is stable in the average sense.

Example 2. Consider non-switched system with matrix A, with λmax(A) < 1 and σmax(A) > 1. This

system is mean square stable, but it doesn’t satisfy the conditions (C1) and (C2) in Proposition 5.

5 Numerical simulation

In this section, we illustrate the result of Theorem 1 via an example. Consider a MJS with n = 2, k = 2,

A1 = [ 1.5 0
0 0.2 ], and A2 = [ 0.01 0.1

0.1 0.1 ], probability transition matrix P = [ 0.5 0.5
0.75 0.25 ] and i.i.d. {wt}t≥0

with wt ∼ N (0, I). Note that the example satisfies Assumptions 1 and conditions (C1) and (C2) of

Proposition 5 (and, therefore, Assumption 2), but it is not mean square stable. We run the switched

least squares for a horizon of T = 106 and repeat the experiment for 100 independent runs. We plot

the estimation error ei,T = ∥Âi,t −A1∥∞ versus time in Figure 1. The plot shows that the estimation

error is converging almost surely even though the system is not mean square stable. In Figure 2,

logarithm of the estimation error versus logarithm of the horizon is plotted. The linearity of the graph

along with approximate slope of −0.5 shows that ei,T = Õ(1/
√
T ).

Figure 1: Performance of switched least squares method for the example of Section 5. The solid line shows the mean
across 100 runs and the shaded region shows the 25% to 75% quantile bound.
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Figure 2: Logarithm of the estimation error versus logarithm of the horizon is plotted.

6 Conclusion and future directions

In this paper, we investigated system identification of (autonomous) Markov jump linear systems. We

proposed the switched least squares method, showed it is strongly consistent and derived the almost

sure rate of convergence of O(
√
log(T )/T ). This analysis provides a solid first step toward establishing

almost sure regret bounds for adaptive control of MJS.

We derived our results assuming that system is stable in the average sense and we showed that this

is a weaker assumption compared to mean square stability.

The current results are established for autonomous systems with Markov switching when the com-

plete state of the system is observed. Interesting future research directions include relaxing these

modeling assumptions and considering controlled systems under partial state observability and unob-

served jump times.

Appendix A Proof of Proposition 3

Proof. Since the system is MSS, there exists a positive definite matrix Q∞ ∈ Rn×n such that

limτ→∞E[xτx
⊺
τ ] = Q∞, which implies limτ→∞ Tr(E[xτx

⊺
τ ]) = Tr(Q∞). Since Tr(E[xx⊺]) = E[Tr(xx⊺)] =

E[x⊺x], MSS implies that sequence of real numbers {E(∥xτ∥2)}τ≥0 converges to Tr(Q∞) and therefore:

lim
T→∞

1

T

T∑
τ=1

E(∥xτ∥2) = Tr(Q∞) < ∞ (9)

Define events

En =
{
ω ∈ Ω : lim sup

T→∞

1

T

T∑
τ=1

∥xτ∥2 ≤ n
}
, ∀n ∈ N

and

E =

∞⋃
n=0

En =
{
ω ∈ Ω : lim sup

T→∞

1

T

T∑
τ=1

∥xτ∥2 < ∞
}
.

Now, by the continuity of probability measure from below, we have:

P(E) = P(

∞⋃
n=0

En) = lim
n→∞

P(En). (10)
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Note that

P(En) = P
(
lim sup
T→∞

1

T

T∑
τ=1

∥xτ∥2 ≤ n
) (a)

≥ lim sup
T→∞

P
( 1
T

T∑
τ=1

∥xτ∥2 ≤ n
)

(b)

≥ 1− lim sup
T→∞

(∑T
τ=1E∥xτ∥2

)
Tn

(c)

≥ 1− Tr(Q∞)

n
,

where (a) follows from reverse Fatou’s lemma, (b) follows from the Markov inequality and (c) follows

from Eq. (9). Substituting the above in equation (10), we get

P(E) ≥ lim
n→∞

(
1− Tr(Q∞)

n

)
= 1.

Therefore P(E) = 1, and the system is stable in the average sense.

Appendix B Proof of Proposition 5

B.1 Asymptotic behavior of continuous component

To simplify the notation, we assume that x0 = 0 which does not entail any loss of generality. Let

Φ(t − 1, τ + 1) = Ast−1
· · ·Asτ+1

denote the state transition matrix where we follow the convention

that Φ(t, τ) = I, for t < τ . Then we can write the dynamics in Eq. (1) of the continuous component

of the state in convolutional form as:

xt =

t−1∑
τ=0

Φ(t− 1, τ + 1)wτ . (11)

where ∥Φ(t− 1, τ + 1)∥ = ∥Ast−1
. . . Asτ+1

∥, and

∥Ast−1
. . . Asτ+1

∥ ≤ σst−1
· · ·σsτ+1

=: Γt−1,τ+1 (12)

where σst = σmax(Ast). In the following lemma, it is established that the conditions (C1) and (C2) in

Proposition 5 imply that the sum of norms of the state-transition matrices are uniformly bounded.

Lemma 4 (see [34, Lemma 1]). Under the conditions (C1) and (C2) in Proposition 5, there exists a

constant Γ̄ < ∞ such that for all T > 1,
∑T−1

τ=0 ∥Φ(T − 1, τ + 1)∥ ≤ Γ̄, a.s.

The following Lemma shows the implication of Assumption 1 on the growth rate of energy of the

noise process.

Lemma 5 ( [24, Eq. (3.1)]). Under Assumption 1
∑T

τ=0 ∥wτ∥2 = O(T ), a.s.

Using the convolution formula in Eq. (11), we can bound the norm of the state ∥xt∥2 as following:

∥xt∥2 =
(∥∥ t−1∑

τ=0

Φ(t− 1, τ + 1)w(τ)
∥∥)2 (a)

≤
( t−1∑

τ=0

∥Φ(t− 1, τ + 1)w(τ)∥
)2

(b)

≤
( t−1∑

τ=0

∥Φ(t− 1, τ + 1)∥∥w(τ)∥
)2 (c)

≤
( t−1∑

τ=0

Γt,τ+1∥w(τ)∥
)2

where (a) follows from triangle inequality and (b) follow from sub-multiplicative property of the matrix

norm, and (c) follows from Eq. (12). Now for a fixed i, i ∈ S, we have:

T∑
t=0

∥xt∥2 ≤
T∑

t=0

( t−1∑
j=0

Γj+1,t−1∥w(j)∥
)2
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(d)

≤
T∑

t=0

( t−1∑
j=0

Γj+1,t−1

)( t−1∑
j=0

Γj+1,t−1∥w(j)∥2
)

(e)

≤ Γ̄

T∑
t=0

( t−1∑
j=0

Γj+1,t−1∥w(j)∥2
)

(f)

≤ Γ̄

T−1∑
j=0

( T∑
t=0

Γj+1,t−1

)
∥w(j)∥2

(g)

≤ Γ̄2
T−1∑
j=0

∥w(j)∥2 = O(T ) a.s.

where (d) follows from Cauchy-Schwarz’s inequality, (e) follows from Lemma 4, (f) follows from chang-

ing the order of summation, and (g) follows from boundedness of sub-sums of
∑T−1

τ=0 Γτ+1,T−1, and

Lemma 4.
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