Les Cahiers du GERAD

ISSN: 0711-2440

Strong consistency and rate of convergence of switched
least squares system identification for autonomous Markov

jump linear systems

B. Sayedana, M. Afshari, P. E. Caines, A. Mahajan

G-2023-05
February 2023

La collection Les Cahiers du GERAD est constituée des travaux de
recherche menés par nos membres. La plupart de ces documents de
travail a été soumis a des revues avec comité de révision. Lorsqu'un
document est accepté et publié, le pdf original est retiré si c'est
nécessaire et un lien vers I'article publié est ajouté.

Citation suggérée : B. Sayedana, M. Afshari, P. E. Caines, A. Ma-
hajan (Février 2023). Strong consistency and rate of convergence of
switched least squares system identification for autonomous Markov
jump linear systems, Rapport technique, Les Cahiers du GERAD G-
2023-05, GERAD, HEC Montréal, Canada.

Avant de citer ce rapport technique, veuillez visiter notre site Web
(https://www.gerad.ca/fr/papers/G-2023-05) afin de mettre a
jour vos données de référence, s'il a été publié dans une revue sci-
entifique.

The series Les Cahiers du GERAD consists of working papers
carried out by our members. Most of these pre-prints have been
submitted to peer-reviewed journals. When accepted and published,
if necessary, the original pdf is removed and a link to the published
article is added.

Suggested citation: B. Sayedana, M. Afshari, P. E. Caines,
A. Mahajan (February 2023). Strong consistency and rate
of convergence of switched least squares system identification
for autonomous Markov jump linear systems, Technical report,
Les Cahiers du GERAD G-2023-05, GERAD, HEC Montréal, Canada.

Before citing this technical report, please visit our website (https:
//vww.gerad.ca/en/papers/G-2023-05) to update your reference
data, if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grace
au soutien de HEC Montréal, Polytechnique Montréal, Université
McGill, Université du Québec a Montréal, ainsi que du Fonds de
recherche du Québec — Nature et technologies.

Dépét légal — Bibliotheque et Archives nationales du Québec, 2023
— Bibliotheque et Archives Canada, 2023

The publication of these research reports is made possible thanks
to the support of HEC Montréal, Polytechnique Montréal, McGill
University, Université du Québec a Montréal, as well as the Fonds de
recherche du Québec — Nature et technologies.

Legal deposit — Bibliotheque et Archives nationales du Québec, 2023
— Library and Archives Canada, 2023

GERAD HEC Montréal
3000, chemin de la Céte-Sainte-Catherine
Montréal (Québec) Canada H3T 2A7

Tél.: 514 340-6053
Téléc.: 514 340-5665
info@gerad.ca
www.gerad.ca



https://www.gerad.ca/fr/papers/G-2023-05
https://www.gerad.ca/en/papers/G-2023-05
https://www.gerad.ca/en/papers/G-2023-05

Strong consistency and rate of convergence of switched
least squares system identification for autonomous Markov

jump linear systems

Borna Sayedana ? °

Mohammad Afshari @ P

Peter E. Caines 2 ®

Aditya Mahajan @ °

@ GERAD, Montréal (Qc), Canada, H3T 1J4
b McGill, Montréal (Qc), Canada, H3A 0G4

borna.sayedana@mail.mcgill.ca
mohammad.afshari2@mail.mcgill.ca
peter.caines@mcgill.ca
aditya.mahajan@mcgill.ca

February 2023
Les Cahiers du GERAD
G-2023-05

Copyright (© 2023 GERAD, Sayedana, Afshari, Caines, Mahajan

Les textes publiés dans la série des rapports de recherche Les Cahiers
du GERAD n'engagent que la responsabilité de leurs auteurs. Les
auteurs conservent leur droit d’auteur et leurs droits moraux sur leurs
publications et les utilisateurs s'engagent a reconnaitre et respecter
les exigences légales associées a ces droits. Ainsi, les utilisateurs:
e Peuvent télécharger et imprimer une copie de toute publica-
tion du portail public aux fins d'étude ou de recherche privée;
o Ne peuvent pas distribuer le matériel ou I'utiliser pour une
activité a but lucratif ou pour un gain commercial;
e Peuvent distribuer gratuitement I'URL identifiant la publica-
tion.
Si vous pensez que ce document enfreint le droit d'auteur, contactez-
nous en fournissant des détails. Nous supprimerons immédiatement
I'acceés au travail et enquéterons sur votre demande.

The authors are exclusively responsible for the content of their re-
search papers published in the series Les Cahiers du GERAD. Copy-
right and moral rights for the publications are retained by the authors
and the users must commit themselves to recognize and abide the
legal requirements associated with these rights. Thus, users:
e May download and print one copy of any publication from the
public portal for the purpose of private study or research;
e May not further distribute the material or use it for any profit-
making activity or commercial gain;
e May freely distribute the URL identifying the publication.
If you believe that this document breaches copyright please contact us
providing details, and we will remove access to the work immediately
and investigate your claim.



Les Cahiers du GERAD G-2023-05 ii

Abstract : In this paper, we investigate the problem of system identification for autonomous Markov
jump linear systems (MJS) with complete state observations. We propose switched least squares
method for identification of MJS, show that this method is strongly consistent, and derive data-
dependent and data-independent rates of convergence. In particular, our data-independent rate of
convergence shows that, almost surely, the system identification error is O(y/log(T)/T) where T is
the time horizon. These results show that switched least squares method for MJS has the same rate
of convergence as least squares method for autonomous linear systems. We derive our results by
imposing a general stability assumption on the model called stability in the average sense. We show
that stability in the average sense is a weaker form of stability compared to the stability assumptions
commonly imposed in the literature. We present numerical examples to illustrate the performance of
the proposed method.

Keywords: Markov jump linear systems, system identification, estimation, consistency, rate of con-
vergence

Résumé : Dans cet article, nous étudions le probléme de I'identification de systéme pour les systémes
linéaires & saut de Markov autonomes (MJS) avec des observations d’état complétes. Nous proposons la
méthode des moindres carrés commutés pour l'identification de M.JS, montrons que cette méthode est
fortement cohérente et dérivons des taux de convergence dépendants et indépendants des données. En
particulier, notre taux de convergence indépendant des données montre que, presque strement, I’erreur
d’identification du systeme est O(\/ log(T)/T ) ou T est I'horizon temporel. Ces résultats montrent que
la méthode des moindres carrés commutés pour MJS a le méme taux de convergence que la méthode
des moindres carrés pour les systeémes linéaires autonomes. Nous dérivons nos résultats en imposant
une hypothese générale de stabilité au modele appelée stabilité au sens moyen. Nous montrons que la
stabilité au sens moyen est une forme de stabilité plus faible par rapport aux hypotheses de stabilité
couramment imposées dans la littérature. Nous présentons des exemples numériques pour illustrer les
performances de la méthode proposée.

Mots clés: Systemes linéaires a saut de Markov, identification du systeme, estimation, cohérence,
taux de convergence
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1 Introduction

Markov jump linear systems (MJS) are a good approximation of non-linear time-varying systems arising
in various applications including networked control systems [13] and cyber-physical systems [7, 12].
There is a rich literature on the stability analysis (e.g., [11,15,16]) and optimal control (e.g., [10])
of MJS. However, most of the literature assumes that the system model is known. The question of
system identification, i.e., identifying the dynamics from data, has not received much attention in this
setup.

The problem of identifying the system model from data is a key component for control synthesis for
both offline control methods and online control methods including adaptive control and reinforcement
learning [21,28]. There are four main approaches for system identification of linear systems: (i) maxi-
mum likelihood estimation which maximizes the likelihood function of the unknown parameter given
the observation (e.g. see [30]); (i) minimum prediction error methods which minimize the estimation
error (residual process) according to some loss function (e.g. see [5,27]); (iii) subspace methods, which
find a minimum state space realization given the input, output data (e.g. see [22,26]); (iv) least squares
method which estimates the unknown parameter by considering the model as a regression problem (e.g.
see [3,24]).

These methods differ in terms of structural assumptions on the model (e.g. system order), hy-
potheses on the stochastic process, and convergence properties and guarantees.

Structural assumptions require the system to be stable in some sense (e.g., mean square stable,
exponentially stable, etc.), and stochastic hypotheses restrict the noise processes to be of a certain
type, (e.g., Gaussian, sub-Gaussian, or Martingale difference sequences).

Convergence properties characterize the asymptotic behavior of system identification methods. The
basic requirements for any system identification method is its consistency, asymptotic normality and
rates of convergence, that is to establish that estimates converge asymptotically to the true unknown
parameter and characterize the rate of convergence. System identification methods can be weakly
consistent (i.e., estimates converge in probability) or strongly consistent (i.e., estimates convergence
almost surely). For linear systems, there is a vast literature that establishes the consistency and rates of
convergence for a variety of methods (e.g. see [3,28] for a unified overview). Another characterization
of the convergence is finite-time guarantees which provide lower-bounds on the number of samples
required so that estimates have a specified degree of accuracy with a specified high probability [1,
17,18, 20, 25, 29, 36, 38,40]. As the number of samples grow to infinity, these results establish weak
consistency of the proposed methods.

System identification of MJS and switched linear systems (SLS) has received less attention in the
literature. There is some work on designing asymptotically stable controllers for unknown SLS [4,
6, 39] but these papers do not establish rates of convergence for system identification. There are
some recent papers which provide finite time guarantees and rate of convergence for SLS [31,35] and
MJS [32]. System identification of a globally asymptotically stable SLS with controlled switching signal
is investigated in [35], while the system identification of an unknown order SLS using subspace methods
is investigated in [31]. Both these methods are developed for SLS and are not directly applicable to
MJS. The model analyzed in [32] is an MJS system. Under the assumption that the system is mean
square stable, the switching distribution is ergodic and the noise is i.i.d. subgaussian, it is established
that the convergence rate is O(y/log T'/T') with high probability. Then a certainty equivalence control
algorithm is proposed and its regret is analyzed. Note that if we let the number of samples go to
infinity, these results imply weak consistency of the proposed methods for MJS systems. As far as
we are aware, there is no existing result which establishes strong consistency of a method for system
identification of MJS.
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1.1 Contributions

e We propose a switched least squares method for system identification of an unknown (au-
tonomous) MJS and provide data-dependent and data-independent rates of convergence for this
method.

e We prove strong consistency of the switched least squares method and establish a O(y/log(T')/T)
rate of convergence, which matches with the rate of convergence of non-switched linear systems
established in [24]. In contrast to the existing high-probability convergence guarantees in the
literature, our results show that the estimates converge to the true parameters almost surely.
Therefore, our results provide guarantees which are different in nature compared to parallel
works.

e The main challenge in establishing strong consistency for MJS systems is the interplay between
the empirical covariance process and stability of the MJS system. We shed light on this connection
and show that stability in the average sense is a sufficient condition for strong consistency.

e Our results are derived under weaker assumptions compared to the existing literature (Note that
the preliminary version of this paper [34] had assumed a stronger stability condition). Most
existing results assume that the MJS system is mean square stable. We prove that mean square
stability implies stability in the average sense. Furthermore, we show that a commonly used
sufficient condition for almost sure stability of noise-free MJS system also implies stability in the
average sense.

2 System model and problem formulation

Consider a discrete-time (autonomous) MJS. The state of the system has two components: a discrete
component s; € S == {1,...,k} and a continuous component z; € R™. There is a finite set A =
{A1,..., Ax} of system matrices, where A; € R"*™. The continuous component x; of the state starts
at a fixed value xy and the initial discrete state sg starts according to a prior distribution my. The
continuous state evolves according to:

Tpp1 = Ag,t Fwy, >0, (1)

where {w;}¢>0, w; € R™, is a noise process. The discrete component evolves in a Markovian manner
according to a time-homogeneous irreducible and aperiodic transition matrix P, i.e. P(s;11 = j|st =
i) = Pij.

Let m, = (m(1),...,m(k)) denote the probability distribution of the discrete state at time ¢ and

Teo denote the stationary distribution. We assume () # 0 for all i. Let Fz—1 = o (0.4, So:t) denote
the sigma-algebra generated by the history of the complete state.

It is assumed that the noise process satisfies the following:

Assumption 1. The noise process {w; };>¢ is a martingale difference sequence with respect to {F; }+>o,
ie., Ellu|]] < oo and Efw; | Fi—1] = 0. Furthermore, there exists a constant o > 2 such that
sup;>o E[[Jwe]|* | Fi—1] < oo a.s. and there exists a symmetric and positive definite matrix C' € R™*"

such that liminf7_, % ZtT;Ol waw] =C  as.
Assumption 1 is a standard assumption in the asymptotic analysis of system identification of linear
systems [3,8,9,23,24] and allows the noise process to be non-stationary and have heavy tails (as long

as moment condition is satisfied). We use the following notion of stability for the MJS system (1).
Definition 1. The MJS system (1) is called stable in the average sense if almost surely:

T T

. . 1
E lz:]|> = O(T) ie. limsup T E [|2¢]|? < 0.
—1 T—o00

t=1

Assumption 2. The MJS system (1) is stable in the average sense.
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The notion of stability in the average sense has been used in a few papers in the literature of linear
systems [14,19]; however, in the MJS literature, the commonly used notions of stability are mean square
stability and almost sure stability of noise-free system. We compare stability in the average sense with
both of these notions in Section 4. Specifically, we show that mean square stability implies stability
in the average sense. Moreover, we show a common sufficient condition for almost sure stability of
noise-free system implies stability in the average sense for MJS system (1). Therefore, the assumption
of stability in the average sense is weaker than the commonly imposed stability assumptions imposed
in the literature.

2.1 System identification and switched least squares estimates

We are interested in the setting where the system dynamics A and the switching transition matrix P
are unknown. Let 67 = [Ay, ..., A;] € R"*"F denote the unknown parameters of the system dynamics
matrices. We consider an agent that observes the complete state (z:,s:) of the system at each time
and generates an estimate Or of 0 as a function of the observation history (zo.r, So.7)- A commonly
used estimate in such settings is the least squares estimate:

T—1

0% = argmin Z lzip1 — A,z (2)
0T=[A1,...,Ax] =5

The components [ALT, e ,flk,T] = é} of the least squares estimate can be computed in a switched
manner. Let 7; 7 = {t < T | s; = i} denote the time indices until time T" when the discrete state of
the system equals ¢. Note that for each t € T; v, A;, = A;. Therefore, we have

/Ali,T = arg min Z llzes1 — Asxe||?, Vie{1,--- Kk} (3)
AiGRnX" tE'T,L'YT

Let X7 denote ), - . zx], which we call the unnormalized empirical covariance of the continuous

component of the state at time T" when the discrete component equals 7. Then, ALT can be computed
recursively as follows:

-1
~ N Xz"Tl'T(xT-&-l — AinmT)T
Ai,T+1 = Ai,T T v—1

1+ 2l X, jor

1{3T+1 = Z}

where X; 7 may be updated as X; 741 = X; 1 + [xTHac}H]]l{sTH = i}. Due to the switched
nature of the least squares estimate, we refer to above estimation procedure as switched least squares
system identification.

2.2 The main results

A fundamental property of any sequential parameter estimation method is strong consistency, which
we define below.

Definition 2. An estimator éT of parameter 0 is called strongly consistent if lim7_, éT =0, a.s.

Our main result is to establish that the switched least squares estimator is strongly consistent. We
do so by providing two different characterization of the rate of convergence. We first provide a data-
dependent rate of convergence which depends on the spectral properties of the unnormalized empirical
covariance. We then present a data-independent characterization of rate of convergence which only
depends on T'. All the proofs are presented in Section 3.

Theorem 1. Under Assumptions 1 and 2, the switched least squares estimates {Ai,T}le are strongly
consistent, i.e., for each v € S, we have: limT_,ooHAij — Ai“oo =0, a.s. Furthermore, the rate of
convergence is upper bounded by:

||Ai,T - A1;||Oo < O(\/log[/\nmw), a.s.

Amin (Xi,1)
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Remark 1. Theorem 1 is not a direct consequence of the decoupling procedure in the switched least
squares method. The k least squares problems have a common covariate process {z;};>1. Therefore,
the convergence of the switched least squares method and the stability of the MJS are interconnected
problems. Our proof techniques carefully use the stability properties of the system to establish the
consistency of the system identification method.

We simplify the result of Theorem 1 and characterize the data dependent result of Theorem 1 in
terms of horizon T" and the cardinality of the set 7; .
Corollary 1. Under Assumptions 1 and 2, for each i € S, we have:

), a.S.

Remark 2. The assumption that 7. (7) # 0 implies that for sufficiently large T, |7; 7| # 0 almost
surely, therefore the expressions in above bounds are well defined.

lAr — Al < o( log(T)/|Tor

The result of Corollary 1 still depends on data. When system identification results are used for
adaptive control or reinforcement learning, it is useful to have a data-independent characterization of
the rate of convergence. We present this characterization in the next theorem.

Theorem 2. Under Assumptions 1 and 2, the rate of convergence of the switched least squares estimator

A;r, 1 €S is upper bounded by:
|Air — A, < O(V10g(T) /7 (i)T), a.s.

where the constants in the O(-) notation do not depend on Markov chain {s;}i>0 and horizon T.
Therefore, the estimation process {0r}r>1 is strongly consistent, i.e., limTHOOHHT - HHOO =0 a.s.
Furthermore, the rate of convergence is upper bounded by:

HéT - GHOO < @(\/W), a.s.
where T = minjes Too (7).

Theorem 2 shows that Assumptions 1 and 2 guarantee that the switched least squares estimator
for MJS has the same rate of convergence of O(y/log(T")/T) as non-switched case established in [24].
Moreover, the upper bound in Theorem 2 shows that the estimation error of /Ali’T is proportional to
1/4/7oo(1); therefore, the rate of convergence of O is proportional to 1 //m*, where 7* is the smallest
probability in the stationary distribution 7.

Remark 3. SLS is a special case of MJS in which the discrete state evolves in an i.i.d. manner. The
results presented in this section are valid for the SLS after substituting stationary distribution 7
with the i.i.d. PMF of switching probabilities defined over discrete state.

3 Proofs of the main results

3.1 Preliminary results

We first state the Strong Law of Large Numbers (SLLN) for Martingale Difference Sequences (MDS).
Theorem 3. (see [37, Theorem 3.3.1]) Suppose { X, }->11is a martingale difference sequence with respect
to the filtration {F:}r>1 . Let a; be Fr_4 measumble_for each 7 > 1 and we have 0 < a, — 00 as 7 —
00, a.s. If for some p € (0,2], we have: Y 72 | B[|X;|P|F-_1]/a? < oo, then: limp_,q Zle X,/ ar=
0 a.s.

Lemma 1. The assumptions on the process {si}i>0 tmply that limp_oo |Tir|/T = 7o (i), a.s.

Proof. {s;}:>0 is an aperiodic and irreducible Markov chain, hence, by the Ergodic Theorem (Theorem
4.1, [2]), {st}+>0 is ergodic and therefore limp_ o0 | 77| /T = 7o (4) a.s. O
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Lemma 2. Assumption 1 and 2 imply:

o0
Z lz %/ < o0 a.s.
T=1

Proof. The result is a direct consequence of Abel’s lemma. Let St := Zle |2+ ||%, then we have:

i =1 _ i S — S,
2 2
T=1 T T=1 T
T
St So 1 1
S STMLE
T2 "1 " Z Nr=1)2 72
T=2
@ St So — 27 — 1
a) OT 0 -
= — — — o 1
2 1 +TZ:2 (r )(72(Tf 1)2>
T
St So
—TQ—l‘f';O(T ) < 00
where (a) follows from Assumption 2. O
Lemma 3. We have the following:
T
H ZASTxTwI +wrzl AL || =o(T) a.s.
T=1

Proof. We prove the limit element-wise. The (I, p)-th element of the matrix As_z,w! is Z?:1 As (1,7)x, (])} wr(p).
We calculate the term:

E[(3 4., (e G ) | 7] (@)
j=1

Let A, = max;es || Ailoo, then
n (a) n
B[(3 A e ) 2| 7] € A2 swp B2 ()| 7] (3, ()
j=1 o =1

(b)
< nAZsup E[w?(p)| Fr1] |2+,

where (a) uses the fact that s, and x, are F,_; measurable and that |As_(I,j)| < A, and (b) is by
Cauchy-Schwarz’s inequality. Therefore:

ET:E[([Z}’_lAs,(lJ)T:v;(j)]wT(p)) ‘fH} gnAisgp{E[wi(p)\fM]} 2 [l |2 ©

T=1 T=1

Since a > 2 in Assumption 1, and finiteness of higher order moments imply finiteness of lower order
moments, we get IE[w?(p)|F,—1] is uniformly bounded. This fact along with Lemma 2 imply (c). The
result then follows by applying Theorem 3 by setting a; =t and p = 2. O

We characterize the asymptotic behavior of the matrix X; 7.
Proposition 1. Under Assumptions 1 and 2, the following hold a.s. for each i € S:

(P1) Anax(Xir) = O(T), a.s.
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(P2) liminfp_, )\min(Xi,T)/|7;,T| >0, a.s.

Remark 4. Property (P1) shows that when the system is stable in the average sense, Amax(X; ) cannot
grow faster than linearly with time. Therefore, the stability of the system controls the rate at which
X, r can grow. Property (P2) shows that when the noise has a minimum covariance, Amin (X; 7) cannot
grow slower than linearly with time.

Proof of (P1). The maximum eigenvalue of a matrix can be upper bounded as follows:

Mo 32 weal) S (X wel) = 30 fl?

teTi, T teTi, T teTi, T
T
<3l = O()
t=1

where (a) follows from the fact that trace of a matrix is sum of its eigenvalues and all eigenvalues of
z;z] are non-negative. O

Proof of (P2). For 7 > 1, we have:

T T
TrT :(Asr,ll'Tfl + w‘rfl)(AsT,ll"rfl + w'rfl)

— T T

—Asr,le—le—lAs7-71

T T T T
+ ASr—leflwrfl + w‘l'*lx'rflAsT_l T Wr 1 Wy _q.

. Tt o . . )
Since As _,wr_1x; (A | is positive semi-definite, we have:

T T T gyT T
Ty = AT qw, g twraz] Ay Hwrqwp .

By summing over 7 € T; 1, we get:

E Toal = E wy_qwl_q + zoxd 1{so =i}
T€Ti, T T€Ti, T

T T T
+ E : [AST—leflefl +w7*1x771A3771]
T€Ti, T

(a)
= Z wy_qwr_; +o(T) as.

T€Ti, T

where (a) follows from Lemma 3 and zoxl1{so = i} > 0. Furthermore, since limz_,o0 | Ti.7|/T = 7o (i)
a.s. by Lemma 1 and 7 (7) # 0 by assumptions on {s; },>0, we have:

T
) - Wr_ Wiy
T€TiT ) C >0 as.

S e wexl
lim inf ZreTir T > liminf
Tirl—oe  |Til |Ti, 7| —00 | Ti.r|

where (b) holds by Assumption 1 and independence of {w, },>¢ and {s;},>0 processes. Therefore

liminf Apin
‘7—@1"‘—)00

ZTET T xTzI
—— ] > 0. O
()

3.2 Background on least square estimator

Given a filtration {G;}+>0, consider the following regression model:

Yt :6T2t+wt7 t207 (5)



Les Cahiers du GERAD G-2023-05 7

where 8 € R™ is an unknown parameter, z; € R™ is G;_j-measurable covariate process, y; is the
observation process, and w; € R is a noise process satisfying Assumption 1 with F; replaced by G;.
Then the least squares estimate S of 8 is given by:

T
Br = argﬁITninZ lyr — BT 2|2 (6)
T7=0

The following result by [23] characterizes the rate of convergence of BT to B in terms of unnormalized
covariance matrix of covariates Zp = ZZ:O zr2).

Theorem 4 (see [23, Theorem 1]). Suppose the following conditions are satisfied: (S1) Amin(Z7) — 00,
a.s. and (S2) log(Amax(Z7)) = 0(Amin(Zr)), a.s. Then the least squares estimate in (6) is strongly

consistent with the rate of convergence:

. log [Amax(Z1)]
e — gl = 0\ BN
Theorem 4 is valid for all the G,_;-measurable covariate processes {z;};>0. For the switched least
squares system identification if we take G; to be equal to F; and verify conditions (S1) and (S2) in
Theorem 4, then we can use Theorem 4 to establish its strong consistency and rate of convergence. As
mentioned earlier in Remark 1, the empirical covariances are coupled across different components due
to the system dynamics.

3.3 Proof of Theorem 1

To prove this theorem, we check the sufficient conditions in Theorem 4. First requirement that X;
is measurable w.r.t. Fr_j, follows by the definition of X; p. Conditions (S1) and (S2) are verified in
the following.

(S1) By Proposition 1-(P2), we see that Amin(X; 7) — 00 a.s.; therefore, (S1) in Theorem 4 is satisfied.
(S2) Proposition 1-(P1) and (P2) imply that there exist positive constants Cy, Ca, such that :

: log(Amax(Xi 1)) _ .. log(C1) + log(T)
limsup ———— < limsu
T~>oop Amin(Xor) T T~>oop Co|Ti 7|

=0 a.s.

where the last equality follows by Lemma 1 (i.e. |7;r| = O(T), a.s.). Therefore, the second
condition of Theorem 4 is satisfied.
Therefore, by Theorem 4, for each ¢ € S, we have:

1 1 Amax XiT
| Air — Ai”oo < O(\/W), a.s. (7)

which proves the claim in Theorem 1.

3.4 Proof of Corollary 1

Corollary 1 is the direct consequence of Theorem 1 and Proposition 1. Proposition 1-(P1) implies that
Amax (Xi 1) = O(log(T')). By substituting Amax (X r) with O(log(T)) in the right hand side of Eq. (7),

we get that for each i € S, the estimation error ||A; 1 — AiHoo is upper-bounded by O (y/log(T)/[Ti r|).

a.s.
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3.5 Proof of Theorem 2

We first establish the strong consistency of the parameter Or. By Theorem 1 and the fact that k < oo,

we get:
|or — 0] _ < ngx@<\/1°g[)‘mx(xﬂ)]>’ as.

Amin(Xi,T)

Therefore, the result follows by applying Theorem 1 to the argmax of above equation. For the second
part notice that by Lemma 1, we know limy_,o |7;,7|/T = moo(i), a.s. Now, by Corollary 1, we get:

i ‘ log(T)\ logT
- all <o) =o(|725) =

which is the claim of Theorem 2.

4 Discussion on stability in the average sense

The main results of this paper are derived under Assumption 2 i.e., the MJS system (1) is stable in
the average sense. In this section, we discuss the connection between this notion of stability and more
common forms of stability, i.e., mean square stability and almost sure stability.

4.1 Stability on the average sense and mean square stability

A common assumption on the stability of MJS systems (e.g., [31] and [33]) is mean square stability
defined as following;:

Definition 3. The MJS system (1) is called mean square stable (MSS) if there exists a deterministic
vector o, € R™ and a deterministic positive definite matrix Q.. € R™*"™ such that for any deterministic
initial state zo and sq , we have: lim, o ||E[z;] — 2| — 0, and lim o || E[z,2]] — Q|| — 0.
Proposition 2 (see [11, Theorem 3.9]). The system is MSS, if and only if Amax((PT @ I,,2) diag(A; ®

We now show that stability in the average sense is a weaker notion of stability than MSS.

Proposition 3. If the MJS system (1) is mean square stable, then the system is stable in the average
sense.

The proof if presented in Appendix A.
Remark 5. Proposition 3 shows that MSS implies Assumption 2. Therefore, the results of Theorem 1
and 2 also hold when Assumption 2 is replaced by the assumption that the system is MSS.

4.2 Stability on the average sense and almost sure stability
Consider the noise free version of the MJS system (1) with the following dynamics:

Ti41 = Astl.tv t 2 0. (8)

Definition 4. The system (8) is called almost surely stable if, for any deterministic initial state z and
So we have:

lim ||| =0, a.s.

t—o0

A common sufficient condition to check the almost sure stability of MJS system (8) is given below.
Proposition 4 (see [11, Theorem 3.47]). If the stationary distribution meo = (Moo (1), ..., oo (k)) satisfies
(C1) 7o (i) # 0 for alli and (C2) Hle Omax(Ai)™® < 1, then the system (8) is almost surely stable.
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We now show that (C1) and (C2) are also sufficient conditions for stability in the average sense.
Proposition 5. If the MJS system (1) satisfies (C1) and (C2), then the system is stable in the average
sense.

Proof is presented in Appendix B.
Remark 6. Proposition 5 shows that (C1) and (C2) imply Assumption 2. Therefore, the results of
Theorem 1 and 2 also hold when Assumption 2 is replaced by the assumption that the system satisfies

(C1) and (C2).
4.3 Discussion on non-comparable stability assumption

The following examples illustrate that neither MSS nor conditions (C1) and (C2) in Proposition 5 is
stronger than the other.

Example 1. Let 07 = {A4,0}, and p = (p1, p2) is an i.i.d. probability transition, with Apax(p1 A1) > 1
and g # 0. Then E[z, 1] = E[4, z, + wi] = p1A1E[z,] = --- = (p1A1)"E(xg) , which implies
lim, o E(z;) = co. Therefore, this system is not mean square stable. However, this system satisfies
conditions (C1) and (C2) in Proposition 5 and therefore is stable in the average sense.

Example 2. Consider non-switched system with matrix A, with Apax(A) < 1 and opax(A) > 1. This
system is mean square stable, but it doesn’t satisfy the conditions (C1) and (C2) in Proposition 5.

5 Numerical simulation

In this section, we illustrate the result of Theorem 1 via an example. Consider a MJS withn = 2,k = 2,
Ay = 1P %], and Ay = [%9% 91], probability transition matrix P = [ J5%] and i.id. {wi}i>o
with w; ~ N(0,I). Note that the example satisfies Assumptions 1 and conditions (C1) and (C2) of
Proposition 5 (and, therefore, Assumption 2), but it is not mean square stable. We run the switched
least squares for a horizon of T = 10° and repeat the experiment for 100 independent runs. We plot
the estimation error e; p = H/L"t — Aj||oo versus time in Figure 1. The plot shows that the estimation
error is converging almost surely even though the system is not mean square stable. In Figure 2,
logarithm of the estimation error versus logarithm of the horizon is plotted. The linearity of the graph
along with approximate slope of —0.5 shows that e; r = O(1/VT).

0.05

0.04
0.03
0.02

0.00

Estimation ermor

0 1 2 3 4 5
Horizon T 1es

Figure 1: Performance of switched least squares method for the example of Section 5. The solid line shows the mean
across 100 runs and the shaded region shows the 25% to 75% quantile bound.
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Figure 2: Logarithm of the estimation error versus logarithm of the horizon is plotted.

6 Conclusion and future directions

In this paper, we investigated system identification of (autonomous) Markov jump linear systems. We
proposed the switched least squares method, showed it is strongly consistent and derived the almost
sure rate of convergence of O(4/log(T)/T). This analysis provides a solid first step toward establishing
almost sure regret bounds for adaptive control of MJS.

We derived our results assuming that system is stable in the average sense and we showed that this
is a weaker assumption compared to mean square stability.

The current results are established for autonomous systems with Markov switching when the com-
plete state of the system is observed. Interesting future research directions include relaxing these
modeling assumptions and considering controlled systems under partial state observability and unob-
served jump times.

Appendix A Proof of Proposition 3

Proof. Since the system is MSS, there exists a positive definite matrix Q. € R™ ™ such that
lim; 00 E[z,2T] = Qoo, which implies lim,_, o Tr(E[z,2]]) = Tr(Qoo). Since Tr(E[zzT]) = E[Tr(zzT)] =
E[zTx], MSS implies that sequence of real numbers {E(||z||*)}+>0 converges to Tr(Q) and therefore:

T
. 1 9
i 3B ) = Tr(Que) < o0 )
Define events .
. 1 9
= : = T < )
E, {wGQ hzl“njolipTTE:l 1zl _n} Vn €N

and
o) 1 T
E = En:{wEQ:limsup— .T-,—Z<OO}.
U msup 73 el

Now, by the continuity of probability measure from below, we have:

P(E) = P( G E,) = lim P(E,). (10)
n=0
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Note that
T T
P(E,) = IP(hmsup Z 2,]> < n) > hmsupIP Z 2 [* < n)
T=1 ‘r*l
® Eljz,|?) ©
Z 1 _ limsup (Z‘r:l ||.’L' || ) 2 1 _ T‘I‘(Qoo)7
T— o0 Tn n

where (a) follows from reverse Fatou’s lemma, (b) follows from the Markov inequality and (c¢) follows
from Eq. (9). Substituting the above in equation (10), we get

P(E) > lim (1 - %) =1

T n—oo

Therefore P(E) = 1, and the system is stable in the average sense. O

Appendix B Proof of Proposition 5

B.1 Asymptotic behavior of continuous component

To simplify the notation, we assume that xg = 0 which does not entail any loss of generality. Let
Ot —1,74+1) = A,,_,--- A, ., denote the state transition matrix where we follow the convention
that ®(¢,7) = I, for t < 7. Then we can write the dynamics in Eq. (1) of the continuous component
of the state in convolutional form as:

t—1
2= ®(t—1,7+ 1w, (11)
=0

where ||®(t — 1,74+ 1)|| = [|As,_, ... As. |, and
As,_y - As | <06y 05, = Tt 741 (12)

where 05, = 0max(As,). In the following lemma, it is established that the conditions (C1) and (C2) in
Proposition 5 imply that the sum of norms of the state-transition matrices are uniformly bounded.
Lemma 4 (see [34, Lemma 1]). Under the condztzons (C1) and (C2) in Proposition 5, there exists a
constant T' < oo such that for all T > 1, ZT o |1®(T —1,7+1)| <T, as.

The following Lemma shows the implication of Assumption 1 on the growth rate of energy of the
noise process.
Lemma 5 ( [24, Eq. (3.1)]). Under Assumption 1 ZZ:O |w,||*> =O(T), a.s.

Using the convolution formula in Eq. (11), we can bound the norm of the state ||z as following:

a]? = (qum—u“ )< (ZH(I)(t—lT—i—l)()H)z
(Z||<1>t—17+1>u||w )< (Zrhﬂuw 1)’

where (a) follows from triangle inequality and (b) follow from sub-multiplicative property of the matrix
norm, and (c) follows from Eq. (12). Now for a fixed ¢, i € S, we have:

T T t—1
S el < 30 (3 Tpene sl
t=0

t=0 j=0
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—~
s
=

< ZT: (§Fj+1,t1) (§Fj+1,t1||w(j)2)
t=0 j=0 j=0

r ETZ(ZFHU w()I?)

f T—1 T

<r Z(Zrm ) ()

Y () = O as

<.
I
o

where (d) follows from Cauchy-Schwarz’s inequality, (e) follows from Lemma 4, ( f) follows from chang-
ing the order of summation, and (g) follows from boundedness of sub-sums of Zf;ol I'r41,7-1, and
Lemma 4.
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