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Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2023-13
https://www.gerad.ca/en/papers/G-2023-13
https://www.gerad.ca/en/papers/G-2023-13


On dynamic program decompositions of static risk mea-
sures

Jia Lin Hau a

Erick Delage b

Mohammad Ghavamzadeh c

Marek Petrik a

a Department of Computer Science, University of
New Hampshire, Durham, NH, USA

b Google Research, Mountain View, Sunnyvale,
San Francisco, CA, USA

c Department of Decision Sciences, HEC Montréal
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Abstract : Optimizing static risk-averse objectives in Markov decision processes is challenging because
they do not readily admit dynamic programming decompositions. Prior work has proposed to use a
dynamic decomposition of risk measures that help to formulate dynamic programs on an augmented
state space. This paper shows that several existing decompositions are inherently inexact, contradicting
several claims in the literature. In particular, we give examples that show that popular decompositions
for CVaR and EVaR risk measures are strict overestimates of the true risk values. However, an exact
decomposition is possible for VaR, and we give a simple proof that illustrates the fundamental difference
between VaR and CVaR dynamic programming properties.

Acknowledgements: We thank Yinlam Chow for mentioning that there may be a duality gap in the
CVaR decomposition.
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1 Introduction

Optimizing static risk-averse objectives in Markov decision processes (MDPs) is challenging because

they do not readily admit dynamic programming decompositions. Prior work has proposed to use a

dynamic decomposition of risk measures that help to formulate dynamic programs on an augmented

state space. This paper shows that several existing decompositions are inherently inexact, which

contradicts several claims in the literature [4, 10, 11]. In particular, we give examples that show

that several popular decompositions for the conditional value at risk (CVaR) and entropic value at

risk (EVaR) strictly overestimate the true values when used in the context of MDPs.

As our first contribution, we construct an example that shows that the CVaR dynamic program

in Chow et al. [4] significantly overestimates the optimal value function. This result contradicts the

optimality claims in Chow et al. [4] and, likely, the CVaR optimality claims in Li et al. [10]. Be-

cause our CVaR counterexample exploits a duality gap, it only applies to policy optimization and

does not contradict the policy evaluation decomposition in Pflug and Pichler [12]. This counterexam-

ple is important because the decomposition has been employed widely in the reinforcement learning

literature.1

As our second contribution, we construct an example that shows that the EVaR dynamic program in

Ni and Lai [11] significantly overestimates the value function of a fixed policy. The example contradicts

the optimality claims in Ni and Lai [11] and applies both to policy evaluation and optimization.

As our third contribution, we derive a decomposition for VaR. This derivation mirrors the derivation

of the quantile MDP decomposition in Li et al. [10], but with several technical differences. In particular,

a quantile of an atomic distribution is an interval rather than a unique value. The quantile MDP

decomposition in Li et al. [10] is defined for the lower bound of the quantile interval, while VaR is

typically defined as the upper bound of the quantile interval [8]. Also, our derivation of the VaR

decomposition demonstrates why the decomposition ideas work for VaR but fail for CVaR and EVaR.

Our counterexamples do not affect the correctness of several other risk decomposition techniques.

The decomposition proposed for quantile, or value at risk ( VaR ), objective in Li et al. [10] uses

a different approach and remains unaffected. The parametric dynamic programs proposed for CVaR

and EVaR [2, 3, 5, 9] also remain unaffected. The parametric dynamic programs use the primal

risk measure representation and do not suffer from the same duality gap issues as the augmentation

methods that use the dual representation of the risk measures, such as [4].

2 Framework

A monetary risk measure ψ : X → R is a monotone mapping that assigns a real value to each random

variable from the set X : Ω → R of real-valued random variables defined over a finite probability space

Ω with O = |Ω|. Random variables in this paper are adorned with a tilde, such as x̃ ∈ X. All risk

measures in this paper are defined for a random variable x̃ that represents rewards.

Because we restrict our attention to finite probability spaces, we can represent any random variable

x̃ ∈ X as a vector x ∈ RO. We also use q ∈ ∆(O) to represent a probability distribution over Ω where

∆(O) represents the O-dimensional simplex. Using this notation, we have that

E[x̃] = q⊤x .

As the decision model, we consider a finite-horizon MDP with a horizon T = 1. Although we only

consider the finite-horizon objective, our results also generalize to discounted infinite-horizon problems.

The MDP has two states S = {s1, s2} = {1, 2} and two actions A = {a1, a2} = {1, 2}. Let S = S

1280 citations on Google Scholar at the time of writing
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and A = |A|. The initial distribution is p̂ ∈ ∆(S). We differentiate vectors from scalars using a bold

notation.

The transition probability function is p : S×A → ∆(S) such that p(s, a, s′) represents the transition

probability from s ∈ S to s′ ∈ S after taking a ∈ A. Finally, the reward function is r : S ×A×S → R,
where r(s, a, s′) represents the reward associated with the transition to s′ from s after taking an action

a. To avoid divisions by 0 that are not central to our claims, we assume that p̂s > 0 and p(s, a, s′) > 0

for all s, s′ ∈ S and a ∈ A. Finally, we use ps,a = p(s, a, ·) ∈ ∆(S) to denote the vector of transition

probabilities.

The solution to an MDP is a policy π from the set Π: S → ∆(A) of all history-dependent randomized

policies. Given that the horizon is T = 1, all history-dependent policies are also stationary (or state-

dependent). We use π(s, a) to denote the probability of an action a in a state s, and π(s) = π(s, ·) ∈
∆(A) to denote the A-dimensional vector of action probabilities in a state s.

The objective of computing an optimal risk-averse policy in the MDP with a horizon T = 1 can be

formalized as

max
π∈Π

ψ [r(s̃, ã, s̃′) | s̃ ∼ p̂, ã ∼ π(s̃), s̃′ ∼ ps̃,ã] . (1)

We use the term policy evaluation to refer to the problem of computing the objective value in (1) for

a fixed policy π. Alternatively, we use the term policy optimization to refer to solving for the optimal

π in (1).

3 CVaR policy optimization gap

This section shows that a common CVaR decomposition proposed in Chow et al. [4] and used to

optimize risk-averse policies is inherently sub-optimal regardless of how closely one discretizes the

state space.

The conditional value at risk (CVaR) for a risk level α ∈ [0, 1] and a random variable x̃ ∈ X
distributed as x̃ ∼ q is defined as (e.g., [8, definition 11.8])

CVaRα [x̃] = inf
ξ∈∆(O)

{
ξ⊤x | α · ξ ≤ q

}
. (2)

CVaR is also known as the average value at risk, and sometimes styled as CV@R or AV@R and can

be defined for α ∈ (0, 1] as (e.q., [14, eq. (6.23)])

CVaRα [x̃] = sup
z∈R

(
z − α−1E [z − x̃]+

)
.

CVaR, as we define it, applies to x̃ that represents rewards and assumes that a higher value of the risk

measure is preferable to a lower value. Also, our CVaR becomes less risk-averse when the risk level α

increases. Other definitions common in the literature include CVaR applied to costs, CVaR applied to

negative rewards, or CVaR with a risk level 1− α.

The following theorem represents one of the key results used to decompose the risk measure in

multi-stage decision-making.

Theorem 1 (lemma 22 in [12]). Suppose that π ∈ Π and s̃ ∼ p̂, ã ∼ π(s̃), s̃′ ∼ ps,a. Then,

CVaRα [r(s̃, ã, s̃′)] = min
ζ∈ZC

∑
s∈S

ζs CVaRαζsp̂
−1
s

[r(s, ã, s̃′) | s̃ = s] , (3)

where the state s on the right-hand side is not random and

ZC = {ζ ∈ ∆(S) | α · ζ ≤ p̂} . (4)
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The notation in Theorem 1 differs superficially from lemma 22 in [12]. Specifically, our CVaR is

defined for rewards rather than costs, the meaning of our α corresponds to 1 − α in [12], and we use

ξs = zsp̂s as the optimization variable.

We include a simple proof of Theorem 1 below for completeness.

Proof. Suppose that α > 0; the decomposition for α = 0 holds readily because CVaR0 [x̃] = ess inf[x̃].

To streamline the notation, Define a random variable x̃ = r(s̃, ã, s̃′) over a random space Ω =

S × A × S with a probability distribution q ∈ ∆(O) such that qs,a,s′ = p̂s · π(s, a) · p(s, a, s′). The

value x is the vector representation of the random variable x̃ and ξs = ξs,·,· ∈ RS·A for ξ ∈ RO is a

vector that corresponds to the subset of the elements of Ω in which the first element is some s ∈ S.
The vector xs = xs,·,· ∈ RS·A is defined analogously to ξs.

Starting with the CVaR definition in (2) and introducing an auxiliary variable ζ we get that

CVaRα [x̃] = min
ξ∈∆(O)

{
x⊤ξ | ξ ≤ α−1q

}
= min

ξ∈∆(O),ζ∈RS

{
x⊤ξ | ξ ≤ α−1q, ζs = 1⊤ξs,∀s ∈ S

}
= min

ξ∈∆(O),ζ∈∆(S)

{
x⊤ξ | ξ ≤ α−1q, ζs = 1⊤ξs, ζs ≤ α−1p̂s, ∀s ∈ S

}
= min

ξ∈RΩ
+,ζ∈ZC

{
x⊤ξ | ξ ≤ α−1q, ζs = 1⊤ξs, ∀s ∈ S

}
.

In the derivation above, we replaced the infimum by a minimum because Ω is finite, introduced a

new variable ζ, derived implied constraints on ζ, and then dropped superfluous constraints on ξ.

Continuing with the derivation above and noticing that the constraints on ξs are independent given ζ,

we get that

CVaRα [x̃] = min
ξ∈RΩ

+,ζ∈ZC

{∑
s∈S

x⊤
s ξs | ξs ≤ α−1qs, ζs = 1⊤ξs, ∀s ∈ S

}
(a)
= min

ζ∈ZC

∑
s∈S

min
ξs∈RΩs

+

{
x⊤
s ξs | ξs ≤ α−1qs, ζs = 1⊤ξs

}
(b)
= min

ζ∈ZC

∑
s∈S

ζs · min
χ∈∆(S·A)

{
x⊤
s χ | p̂−1

s ζsχa,s′ ≤ α−1p̂−1
s qs,a,s′ ,∀a ∈ A, s′ ∈ S

}
(c)
= min

ζ∈ZC

∑
s∈S

ζs · CVaRαζsp̂
−1
s

[x̃ | s̃ = s] .

The step (a) follows from the interchangeability principle [14, theorem 7.92], and the step (b) follows

by substituting ξs,a,s′ = ζsχa,s′ taking care when ζs = 0 and multiplying both sides of the inequality

by p̂−1
s > 0. Finally, in step (c), the random variable x̃ = r(s̃, ã, s̃′) is conditionally distributed on

s̃ = s according to qs,a,s′ p̂
−1
s and the equality follows from the definition of CVaR in (2).

The decomposition in Theorem 1 is important because it shows that the CVaR evaluation can be

formulated as a dynamic program. The theorem shows that CVaR at the time t = 0 decomposes into

a convex combination of CVaR values at the time t = 1. Recursively repeating this process, one can

formulate a dynamic program for any finite time horizon T . Because the risk level at time t = 1 differs

from the level at t = 0 and depends on the optimal ξ, one must compute CVaR values for all, or many,

risk levels α ∈ (0, 1) at time t = 1. As a result, the dynamic program includes an additional state

variable that represents the current risk level.
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Chow et al. [4] propose to adapt the decomposition from Theorem 1 to the policy optimization

setting as

max
π∈Π

CVaRα [r(s̃, ã, s̃′) | ã ∼ π(s̃)] = max
π∈Π

min
ζ∈ZC

∑
s∈S

ζs

(
CVaRαξsp̂

−1
s

[r(s, ã, s̃′) | ã ∼ π(s), s̃ = s]
)

??
= min

ζ∈ZC

∑
s∈S

ζs

(
max

d∈∆(A)
CVaRαξsp̂

−1
s

[r(s, ã, s̃′) | ã ∼ d, s̃ = s]

)
.

(5)

Chow et al. [4] use the decomposition in (5) to formulate a dynamic program with the current risk

level as an additional state variable.

The following theorem shows that the equality in (5) marked with a question mark is false in

general.

Theorem 2. There exists an MDP and a risk level α ∈ (0, 1) such that

max
π∈Π

CVaRα [r(s̃, ã, s̃′) | ã ∼ π(s̃)] < min
ζ∈ZC

∑
s∈S

ζs

(
max

d∈∆(A)
CVaRαζsp̂

−1
s

[r(s, ã, s̃′) | ã ∼ d, s̃ = s]

)
,

(6)

where s̃ ∼ p̂ and s̃′ ∼ p(s̃, ã, ·).

Before proving Theorem 2, we discuss its implications. First, Theorem 2 contradicts theorems 5

and 7 in Chow et al. [4] and shows that their algorithm is inherently suboptimal regardless of the dis-

cretization resolution. Theorem 2 also contradicts the optimality of the accelerated dynamic program

proposed in Stanko and Macek [15].

Second, Li et al. [10, section 5.1] recently proposed to optimize the CVaR objective in MDPs using

a quantile representation. Their approach closely resembles the accelerated algorithm of Stanko and

Macek [15]. Our additional analysis and numerical simulations indicate that the decomposition in Li

et al. [10] is identical to Chow et al. [4], in which case, Theorem 2 also contradicts theorem 4 in Li

et al. [10].

Finally, it is important to emphasize that Theorem 2 only applies to the policy optimization setting

and does not contradict Theorem 1, which holds for the evaluation of policies that assign the same

action distribution to each history of states and action (i.e., are independent of the hypothesized values

of ζ).

start

s1

s1, a1
r(s1, a1, s1) = −50

r(s1, a1, s2) = 100

s1, a2 r(s1, a2, ·) = 0

s2 s2, a1 r(s2, a1, ·) = 10

Figure 1: Rewards of MDP MC used in the proof of Theorem 2. The dot indicates that the rewards are independent of
the next state.

Proof. Let α = 0.5 and consider the MDP MC in Figure 1. In the state s1, both actions a1 and a2
are available, and in the state s2, only the action a1 is available. The MDP’s rewards are

r(s1, a1, s1) = −50, r(s1, a1, s2) = 100,

r(s1, a2, s1) = r(s1, a2, s2) = 0, r(s2, a1, s1) = r(s2, a1, s2) = 10 .

The transition probabilities in MC are

p(s1, a1, s1) = 0.4, p(s1, a1, s2) = 0.6 ,
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and the initial distribution is uniform: p̂s1 = p̂s2 = 0.5.

To simplify the notation, define θπ : ZC → R for each π ∈ Π and ζ ∈ ZC as

θπ(ζ) =
∑
s∈S

ζs CVaRαζsp̂
−1
s

[r(s, ã, s̃′) | ã ∼ π(s), s̃ = s] .

Because CVaR is convex in the distribution [7] and any distribution for r(s̃, ã, s̃′) obtained from a

π ∈ Π is a mixture of the distributions of r(s̃, a1, s̃
′) and r(s̃, a2, s̃

′), it is sufficient to consider only

deterministic policies (there exists an optimal deterministic policy). Thus, we can reformulate the

left-hand side of (6) in terms of θπ as

max
π∈Π

CVaRα [r(s̃, ã, s̃′) | ã ∼ π(s̃)] = max
π∈{π1,π2}

CVaRα [r(s̃, ã, s̃′) | ã ∼ π(s̃), s̃ = s]

= max
π∈{π1,π2}

min
ζ∈ZC

∑
s∈S

ζs · CVaRαζsp̂
−1
s

[r(s, ã, s̃′) | ã ∼ π(s), s̃ = s]

= max
π∈{π1,π2}

min
ζ∈ZC

θπ(ζ) ,

with π1(s, a1) = 1− π1(s, a2) = 1 and π2(s, a2) = 1− π2(s, a1) = 1, for all s ∈ S. The functions θπ1
(·)

and θπ2(·) are depicted in Figure 2. Similarly, the right-hand side of (6) can be expressed using the

convexity of CVaR in the distribution by algebraic manipulation as

min
ζ∈ZC

∑
s∈S

ζs

(
max

d∈∆(A)
CVaRαζsp̂

−1
s

[r(s, ã, s̃′) | ã ∼ d, s̃ = s]

)
= min

ζ∈ZC

max
π∈{π1,π2}

θπ(ζ) .

Using the notation introduced above and the sufficiency of optimizing over deterministic policies only,

the inequality in (6) becomes

max
π∈{π1,π2}

min
ζ∈ZC

θπ(ζ) < min
ζ∈ZC

max
π∈{π1,π2}

θπ(ζ) . (7)

Figure 2 demonstrates the inequality in (7) numerically, with a rectangle representing the left-hand

maximum and a pentagon representing the right-hand minimum. The dashed line represents the

function ζ 7→ maxπ∈{π1,π2} θπ(ζ).

To show the strict inequality in (7) formally, we evaluate the functions θπ1
(·) and θπ2

(·) for MDP

MC. The function θπ2(·) is linear because the CVaR applies to a constant, and CVaR is cash invariant.
The function θπ1(·) is piecewise-linear and convex, and its slope can be computed using the subgradient

that satisfies for each s ∈ S and ζ̂ ∈ ZC [4]:

∂ζs ζ̂s CVaRαp̂−1
s ζ̂s

[r(s, ã, s̃′) | s̃ = s] ∋ VaRαp̂−1
s ζ̂s

[r(s, ã, s̃′) | s̃ = s] .

Simple algebraic manipulation then shows that

θπ1
(ζ) = max {10− 60 ζs1 , 90 ζs1 − 50} , θπ2

(ζ) = 10− 10 ζs1 ,

and ZC = ∆(S), which implies that ζs1 ∈ (0, 1). Therefore, by algebraic manipulation, we get the

desired strict inequality:

0 = max
π∈{π1,π2}

min
ζ∈ZC

θπ(ζ) < min
ζ∈ZC

max
π∈{π1,π2}

θπ(ζ) = 4 ,

where 0 and 4 are represented by a rectangle and a pentagon in Figure 2, respectively.
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1
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π1
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Figure 2: Functions in the CVaR counterexample in the proof of Theorem 2. The dashed line shows the function
ζs1 7→ maxπ∈{π1,π2} θπ([ζs1 , 1− ζs1 ]).

In summary, the decomposition in Theorem 1 cannot be exploited in policy optimization because

the inequality in the derivation above may not be tight:

max
π∈Π

CVaRα [r(s̃, ã, s̃′) | ã ∼ π(s̃), s̃ = s]

= max
π∈Π

min
ζ∈ZC

∑
s∈S

ζs CVaRαζsp̂
−1
s

[r(s, ã, s̃′) | ã ∼ π(s̃), s̃ = s]

≤ min
ζ∈ZC

max
π∈Π

∑
s∈S

ζs CVaRαζsp̂
−1
s

[r(s, ã, s̃′) | ã ∼ π(s̃), s̃ = s]

= min
ζ∈ZC

∑
s∈S

ζs

(
max

d∈∆(A)
CVaRαζsp̂

−1
s

[r(s, ã, s̃′) | ã ∼ d, s̃ = s]

)
,

where the last equality follows from the interchangeability property of optimization and expected

value [14, theorem 7.92].

4 EVaR policy evaluation gap

This section shows that a decomposition for EVaR proposed in Ni and Lai [11] is inexact even when

considering the policy evaluation setting and an arbitrarily-fine discretization.

The entropic value at risk (EVaR) is defined as [1]

EVaRα [x̃] = sup
β>0

β−1
(
− logE

[
exp (−βx̃)

]
+ logα

)
= inf

ξ≪q

{
Eξ[x̃] | KL(ξ∥q) ≤ − logα

}
.

(8)

Here, KL is the standard KL-divergence defined for each x,y ∈ ∆(Ω) as

KL(x∥y) =
∑
ω∈Ω

xω log

(
xω
yω

)
.

the KL-divergence is defined only when x is aboslutely continuous with respect to y, denoted as x ≪ y,

and defined as yω = 0 ⇒ xω = 0 for each ω ∈ Ω.
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Ni and Lai [11] recently proposed a decomposition of EVaR for a fixed π ∈ Π with ã ∼ π(s̃) and a

risk level α ∈ (0, 1) as

EVaRα [r(s̃, ã, s̃′)]
??
= min

ξ∈ZE

∑
s∈S

ξs EVaRαξsp̂
−1
s

[r(s, ã, s̃′) | s̃ = s] , (9)

where s̃ ∼ p̂, s̃′ ∼ p(s̃, ã, ·), and

ZE =

ξ ∈ ∆(S) |
∑
s∈S

ξs log(ξs/p̂s) ≤ − logα , ξ ≤ α−1p̂︸ ︷︷ ︸
implicit in [11]

 . (10)

Note that we use variables ξs = zsp̂s in comparison with zs in Ni and Lai [11].

The constraint ξ ≤ α−1p̂ in (10) is not stated explicitly in Ni and Lai [11] but is necessary because

EVaRα′ [·] is defined only for α′ ∈ (0, 1) (and extended to [0, 1]). When α′ = αξsp̂
−1
s in (9) it must

also satisfy for each s ∈ S that

α′ ≤ 1 ⇔ αξsp̂
−1
s ≤ 1 ⇔ ξs ≤ α−1p̂s .

This additional constraint on ξ implies that ZE ⊆ ZC.

The following theorem shows that the equality in (9) does not hold even in the policy evaluation

setting.

Theorem 3. There exists an MDP with a single action and α ∈ (0, 1) such that

EVaRα [r(s̃, a1, s̃
′)] < min

ξ∈ZE

∑
s∈S

ξs EVaRαξsp̂
−1
s

[r(s, a1, s̃
′) | s̃ = s] , (11)

where s̃ ∼ p̂, s̃′ ∼ p(s̃, a1, ·), and set ZE defined by (10).

Theorem 3 demonstrates a stronger failure mode than Theorem 2, since it applies to both policy

evaluation and policy optimization settings.

Proof. Consider an MDP ME depicted in Figure 3 with S = {s1, s2} and A = {a1} and a reward

function r(s1, a1, ·) = 1 and r(s2, a1, ·) = 0. We abbreviate the rewards to r(s1) and r(s2) because

they only depend on the originating state. The initial distribution is p̂s1 = p̂s2 = 0.5.

Because ZE ⊆ ZC, the right-hand side of (11) can be lower-bounded by CVaR as

min
ξ∈ZE

∑
s∈S

ξs EVaRαξsp̂
−1
s

[r(s, a1, s̃
′)] = min

ξ∈ZE

∑
s∈S

ξsr(s)

≥ min
ξ∈ZC

∑
s∈S

ξsr(s) = CVaRα [r(s̃, a1, s̃
′)] .

(12)

The first equality holds from the positive homogeneity and cash invariance properties of EVaR, and

the last equality follows from the dual representation of CVaR [8].

Because EVaRα [x̃] ≤ CVaRα [x̃] for each α ∈ (0, 1) and x̃ ∈ X (see [1, proposition 3.2]), we can

further lower-bound (12) as

EVaRα [r(s̃, a1, s̃
′)] ≤ CVaRα [r(s̃, a1, s̃

′)] ≤ min
ξ∈ZE

∑
s∈S

ξs EVaRαξsp̂
−1
s

[r(s, a1, s̃
′)] . (13)

Therefore, (11) holds with an inequality.
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To prove by contradiction that the inequality in (11) is strict, suppose that

EVaRα [r(s̃, a1, s̃
′)] = min

ξ∈ZE

∑
s∈S

ξs EVaRαξsp̂
−1
s

[r(s, a1, s̃
′)] . (14)

Equalities (14) and (13) imply that EVaRα [r(s̃, a1, s̃
′)] = CVaRα [r(s̃, a1, s̃

′)] which is false in gen-

eral [1].

We now show that EVaR does not equal CVaR even for the categorical distribution of s̃. The

CVaR of the return in ME reduces from (2) to

CVaRα [r(s̃, a1, s̃
′)] = min

ξ∈ZC

∑
s∈S

ξsr(s) = max

{
0,
p̂s1 + α− 1

α

}
. (15)

Choose α such that 1− α < p̂s1 , then the optimal ξ⋆ in (15) is

ξ⋆ =

(
p̂s1

+α−1

α
1−p̂s1

α

)
.

Since KL(ξ⋆∥p̂) < − logα . we have that ξ⋆ is in the relative interior of the EVaR feasible region in (8),

and, therefore, there exists an ϵ > 0 such that

EVaRα [r(s̃, a1, s̃
′)] = CVaRα [r(s̃, a1, s̃

′)]− ϵ < CVaRα [r(s̃, a1, s̃
′)] ,

which proves the desired inequality.

start

s1 s1, a1 r(s1, a1, ·)

s2 s2, a1 r(s2, a1, ·)

Figure 3: Rewards of the MDP ME used in the proof of Theorem 3. The dot indicates that the rewards are independent
of the next state.

We propose a correct decomposition of EVaR in the following theorem and employ it to establish

that the decomposition in (9) overestimates the actual value of EVaR.

Theorem 4. Given a random variable x̃ ∈ X and a discrete variable ỹ : Ω → N = {1, . . . , N}, with
probabilities denoted as {p̂i}Ni=1, we have that

EVaRα [x̃] = inf
ζ∈(0,1]N

min
ξ∈Z′

E(ζ)

∑
i

ξi EVaRζi [x̃ | ỹ = i] ,

where

Z ′
E(ζ) =

{
ξ ∈ ∆(N) | ξ ≪ p̂,

N∑
i=1

ξi(log(ξi/p̂i)− log(ζi)) ≤ − logα

}
.

Proof. Let q denote the joint probability distribution of x̃ and ỹ. The proof exploits the chain rule

of relative entropy (e.g., Cover and Thomas [6, theorem 2.5.3]), which states for any probability

distributions η, q ∈ ∆(Ω) that

KL(η∥q) = KL(η(ỹ)∥q(x̃)) + KL(η(x̃|ỹ)∥q(x̃|ỹ)), (16)

where the conditional relative entropy is defined as

KL(η(x̃|ỹ)∥q(x̃|ỹ)) = Eη

[
log

η(x̃|ỹ)
q(x̃|ỹ)

]
.
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We can now decompose EVaR from its definition in (8) as

EVaRα [x̃] = inf
η≪q

{
Eη[x̃] | KL(η | q) ≤ − logα

}
(a)
= inf

η≪q

{
Eη[x̃] | KL(η(ỹ)∥q(ỹ)) + KL(η(x̃|ỹ)∥q(x̃|ỹ)) ≤ − logα

}
= inf

η≪q

{
Eη[x̃] | KL(η(ỹ)∥q(ỹ)) + Eη

[
Eη

[
log

η(x̃|ỹ)
q(x̃|ỹ)

]
| ỹ

]
≤ − logα

}
(b)
= inf

ζ∈(0,1]N ,η≪q

{
Eη[Eη[x̃ | ỹ]] | KL(η(ỹ)∥q(ỹ)) + Eη[− log(ζỹ)] ≤ − logα

Pη [Eη [log(η(x̃|ỹ)/q(x̃)|ỹ) | ỹ] ≤ − log(ζỹ)] = 1

}
(c)
= inf

ζ∈(0,1]N ,ξ≪q

{
Eξ[EVaRζỹ [x̃|ỹ]] | KL(ξ(ỹ)∥q(ỹ)) + Eξ[− log(ζỹ)] ≤ − logα

}
= inf

ζ∈(0,1]N , ξ∈∆(N)

{∑
i

ξi EVaRζi [x̃ | ỹ = i] | ξ ≪ p̂,

N∑
i=1

ξi log(ξi/p̂i)−
N∑
i=1

ξi log(ζi) ≤ − logα

}
.

Here, we decompose the relative entropy of η and q using (16) in step (a) and then use the tower

property of the expectation operator in the next step. In step (b), we introduce a variable ζi for each

realization of ỹ = i with i ∈ N to decouple the influence of η(x̃|ỹ), under each ỹ, in the inequality

constraint. Finally, we replace the conditional EVaR definition by solving for η for a given ξ in step

(c), and then get the final expression by algebraic manipulation.

Corollary 1. Given any finite MDP with horizon T = 1, we have that

EVaRα [r(s̃, ã, s̃′)] = inf
ζ∈(0, 1]S , ξ∈Z′

E(ζ)

∑
s∈S

ξs EVaRζs [r(s, ã, s̃
′) | s̃ = s] ,

where

Z ′
E(ζ) =

{
ξ ∈ ∆(S) | ξ ≪ p̂,

∑
s∈S

ξs(log(ξs/p̂s)− log(ζs)) ≤ − logα

}
.

Moreover, the EVaR can be upper-bounded as

EVaRα [r(s̃, ã, s̃′)] ≤ min
ξ∈ZE

∑
s∈S

ξs EVaRαξsp̂
−1
s

[r(s, ã, s̃′) | s̃ = s] . (17)

Proof. The first part of the corollary follows directly from Theorem 4. Suppose that α > 0; the result
follows for α = 0 because EVaR0 [·] reduces to ess inf. Then, the second part of the corollary holds as

EVaRα

[
r(s̃, ã, s̃′)

]
= inf

ζ∈(0,1]N , ξ∈∆(N)

{∑
s∈S

ξs EVaRζs

[
r(s, ã, s̃′) | s̃ = s

]
|
∑
s∈S

ξs log
ξs
ζsp̂s

≤ − logα

}

≤ inf
ζ∈(0,1]N , ξ∈∆(N)

{∑
s∈S

ξs EVaRζs

[
r(s, ã, s̃′) | s̃ = s

]
|
∑
s∈S

ξs log
ξs
ζsp̂s

≤ − logα, ξ ≤ α−1p̂

}

≤ inf
ξ∈∆(N)

{∑
s∈S

ξs EVaRαξsp̂
−1
s

[
r(s, ã, s̃′) | s̃ = s

]
| ξ ≤ α−1p̂

}
.

The first inequality follows from adding a constraint on the pairs on the ξ considered by the infimum.

The second inequality follows by fixing ζs = ζ̂s with ζ̂s = αξsp̂
−1
s for each s ∈ S. This is an upper

bound because ζ̂s is feasible in the infimum:∑
s∈S

ξs log
ξs

ζ̂sp̂s
= − logα ≤ − logα .

The value ζ̂s is well-defined since p̂s > 0 and the constraint ξ ≤ α−1p̂ ensures that ζ̂s ≤ 1. Also,

we can relax the constraint ζs > 0 ⇒ ξs > 0 to ξs ≥ 0 because EVaR0 [x̃] = limα→0 EVaRα [x̃], and,

therefore, the infimum is not affected. Finally, the inequality in the corollary follows immediately by

further upper bounding the decomposition above by adding a constraint.
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5 VaR decomposition

This section discusses a dynamic program decomposition for value-at-risk (VaR) whose decomposition

resembles the CVaR and EVaR decompositions described above. We provide a new proof of the VaR

decomposition to elucidate the differences that make it optimal in contrast with CVaR and EVaR

decompositions. Our VaR decomposition closely resembles the quantile MDP approach in Li et al. [10]

with a few technical modifications that can significantly impact the computed value.

Value at risk (VaR) in modern risk management literature (e.g., [8, 14]) is typically defined for a

risk level α ∈ [0, 1] and a random variable x̃ ∈ X as

VaRα [x̃] = sup {z ∈ R | P [x̃ < z] ≤ α} = inf {z ∈ R | P [x̃ ≤ z] > α} . (18)

Note that VaR1 [x̃] = ∞. For the equality between the two definitions above, see, for example, Follmer

and Schied [8, remark A.20].

To contrast the typical definition of VaR with the quantile definition in Li et al. [10], it is helpful to

summarize how VaR is related to the quantile of a random variable. Recall that q ∈ R is an α-quantile

of x̃ ∈ X when

P [x̃ ≤ q] ≥ α and P [x̃ < q] ≤ α. (19)

In general, the set of quantiles is an interval [q−x̃ (α), q
+
x̃ (α)] with the bounds computed as [8, ap-

pendix A.3]

q−x̃ (α) = sup {z | P [x̃ < z] < α} = inf {z | P [x̃ ≤ z] ≥ α}
q+x̃ (α) = inf {z | P [x̃ ≤ z] > α} = sup {z | P [x̃ < z] ≤ α} .

When the distribution of x̃ is absolutely continuous (atomless), then q+x̃ (α) = q−x̃ (α) and the quantile

is unique.

The following example illustrates a simple setting in which the quantile is not unique.

Example 1 (Bernoulli random variable). Consider a Bernoulli random variable ẽ such that ẽ = 1 and

ẽ = 0 with equal (50%) probabilities. Then, any value q ∈ [0, 1] is a valid 0.5-quantile because

q−ẽ (0.5) = inf
z∈R

{z | P [ẽ ≤ z] ≥ 0.5} = inf
z∈R

{z | z ≥ 0} = 0

q+ẽ (0.5) = sup
z∈R

{z | P [ẽ ≥ z] ≥ 0.5} = sup
z∈R

{z | z ≤ 1} = 1.

The objective in Li et al. [10] is to maximize the quantile operator Qα : X → R defined for rewards

x̃ ∈ X and a risk level α ∈ [0, 1] as

Qα(x̃) = inf
z∈R

{z | P [x̃ ≤ z] ≥ α} . (20)

The quantile operator Qα and the VaR differ in which quantile of the random variable they consider:

Qα(x̃) = q−x̃ (α), but VaRα [x̃] = q+x̃ (α) . (21)

As a result, the quantile MDP objective in (20) coincides with the VaR value only when the quantile

is unique. Example 1 demonstrates that this may not always be the case.

Theorem 5. Given an x̃ ∈ X, suppose that a random variable ỹ : Ω → N = {1, . . . , N} is distributed

as p̂ = (p̂i)
N
i=1 with p̂i > 0. Then:

VaRα [x̃] = sup
ζ∈∆(N)

{
min
i

VaRαζip̂
−1
i

[x̃ | ỹ = i] | α · ζ ≤ p̂
}
, (22)

where we interpret the minimum to evaluate to ∞ if all the terms are infinite, which only occurs if

α = 1.
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Proof. First, we decompose VaR using the definition in (18) as

VaRα [x̃] = sup
z∈R

{z | P [x̃ < z] ≤ α} (a)
= sup

z∈R

{
z |

N∑
i=1

P [x̃ < z | ỹ = i] p̂i ≤ α

}
(b)
= sup

z∈R,ζ∈[0,1]N

{
z |

N∑
i=1

ζip̂i ≤ α, P [x̃ < z | ỹ = i] ≤ ζi,∀i ∈ N

}
(c)
= sup

z∈R,ζ∈[0,1]N

{
z | z ≤ VaRζi [x̃ | ỹ = i] ,∀i ∈ N ,

N∑
i=1

ζip̂i ≤ α

}
(d)
= sup

ζ∈[0,1]N

{
sup
z∈R

{z | z ≤ VaRζi [x̃ | ỹ = i] ,∀i ∈ N} |
N∑
i=1

ζip̂i ≤ α

}
(e)
= sup

ζ∈[0,1]N

{
min
i

VaRζi [x̃ | ỹ = i] |
N∑
i=1

ζip̂i ≤ α

}
.

We decompose the probability P [x̃ < z] in terms of the conditional probabilities P [x̃ < z | ỹ = i] in

step (a) and then lower-bound them by an auxiliary variable ζi in step (b). In step (c), we exploit the

following equivalence:

P [x̃ < z | ỹ = i] ≤ ζi ⇔ z ≤ VaRζi [x̃ | ỹ = i]

The direction ⇐ in the equivalence follows immediately from the fact that VaRζi [x̃ | ỹ = i] is a ζi-

quantile and satisfies (19), namely:

z ≤ VaRζi [x̃ | ỹ = i] = q+x̃ (ζi | ỹ = i) ⇒ P [x̃ < z | ỹ = i] ≤ P
[
x̃ < q+x̃ (ζi | ỹ = i) | ỹ = i

]
≤ ζi.

The direction ⇒ follows from the definition of VaR (see equation (18)), which implies that VaR upper-

bounds any z that satisfies the left-hand condition:

P [x̃ < z | ỹ = i] ≤ ζi ⇒ VaRζi [x̃ | ỹ = i] = sup {z ∈ R | P [x̃ < z | ỹ = i] ≤ ζi} ≥ z.

In step (e), we solve for z. Finally, the form in (22) follows by replacing each ζi by αζip̂
−1
i .

Focusing on the finite MDP with horizon T = 1, we can show that the decomposition proposed in

Theorem 5 is amenable to policy optimization. The main difference between the VaR decomposition

and CVaR is that VaR can be expressed as a maximization or a supremum.

Theorem 6. Given any finite MDP with horizon T = 1, we have that:

max
π∈Π

VaRα [r(s̃, ã, s̃′) | ã ∼ π(s̃)] = sup
ζ∈∆(S)

{
min
s∈S

(
max

d∈∆(A)
VaRαζsp̂

−1
s

[r(s, ã, s̃′) | ã ∼ d]

)
| α · ζ ≤ p̂

}
.

Proof. The equality develops from Theorem 6 as

max
π∈Π

VaRα [r(s̃, ã, s̃′) | ã ∼ π(s̃)]

= max
π∈Π

sup
ζ∈∆(S):α·ζ≤p̂

min
s∈S

(
VaRαζsp̂

−1
s

[r(s, ã, s̃′) | ã ∼ π(s̃)]
)

= sup
ζ∈∆(S):α·ζ≤p̂

max
π∈Π

min
s∈S

(
VaRαζsp̂

−1
s

[r(s, ã, s̃′) | ã ∼ π(s̃)]
)

= sup
ζ∈∆(S):α·ζ≤p̂

min
s∈S

(
max

d∈∆(A)
VaRαζsp̂

−1
s

[r(s, ã, s̃′) | ã ∼ d]

)
,

where we first change the order of maximum and supremum, followed by changing the order of

maxπ mins with mins maxπ, which follows based on the interchangeability property of the maximum

operation [13, proposition 2.2].
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For completeness, we finally present the valid decompositions for the lower quantile and lower

quantile MDP.

Theorem 7. Given an x̃ ∈ X, suppose that a random variable ỹ : Ω → N = {1, . . . , N} is distributed

as p̂ = (p̂i)
N
i=1 with p̂i > 0. Then:

q−α (x̃) = sup
ζ∈[0,1]N

{
min
i:ζi<1

q−ζi(x̃ | ỹ = i) |
N∑
i=1

ζip̂i < α

}
, (23)

where we interpret the supremum to be minus infinity if its feasible set is empty, which only occurs if

α = 0.

We note that the difference with the result presented in [10] resides in the constraint imposed on ζ

replacing the weak inequality with a strong one.

Proof. First, we decompose lower quantile using its definition as

q−α (x̃) = sup {z | P [x̃ < z] < α} (a)
= sup

z∈R

{
z |

N∑
i=1

P [x̃ < z | ỹ = i] p̂i < α

}
(b)
= sup

z∈R,ζ∈[0,1]N

{
z |

N∑
i=1

ζip̂i < α, P [x̃ < z | ỹ = i] < ζi,∀i ∈ N : ζi < 1

}
(c)
= sup

z∈R,ζ∈[0,1]N

{
z | z < q−ζi(x̃ | ỹ = i),∀i ∈ N : ζi < 1,

N∑
i=1

ζip̂i < α

}
(d)
= sup

ζ∈[0,1]N

{
sup
z∈R

{
z | z < q−ζi(x̃ | ỹ = i),∀i ∈ N : ζi < 1

}
|

N∑
i=1

ζip̂i < α

}
(e)
= sup

ζ∈[0,1]N

{
min
i:ζi<1

q−ζi(x̃ | ỹ = i) |
N∑
i=1

ζip̂i < α

}
.

We decompose the probability P [x̃ < z] in terms of the conditional probabilities P [x̃ < z | ỹ = i] in

step (a) and then lower-bound them by an auxiliary variable ζi in step (b). In step (c), we exploits

the following equivalence:

P [x̃ < z | ỹ = i] < ζi ⇔ z < q−ζi(x̃ | ỹ = i)

The direction ⇐ in the equivalence follows from the definition of q−ζi(x̃ | ỹ = i):

z < q−ζi(x̃ | ỹ = i) = inf {z | P [x̃ ≤ z | ỹ = i] ≥ ζi} ⇒ P [x̃ < z | ỹ = i] < ζi.

The direction ⇒ follows from the definition of VaR (see equation (18)), which implies that VaR upper-

bounds any z that satisfies the left-hand condition:

P [x̃ < z | ỹ = i] < ζi ⇒ q−ζi(x̃ | ỹ = i) = sup {z ∈ R | P [x̃ < z | ỹ = i] < ζi} ≥ z,

yet q−ζi(x̃ | ỹ = i) ̸= z otherwise since P [x̃ < z | ỹ = i] is right continuous, there must exist some ϵ > 0

for which P [x̃ < z + ϵ | ỹ = i] < ζi hence:

z = sup {z ∈ R | P [x̃ < z | ỹ = i] < ζi} ≥ z + ϵ > z,

which leads to a contradiction. In step (e), we solve for z. Finally, we obtain the form in (23).

Corollary 2. Given any finite MDP with horizon T = 1, we have that:

max
π∈Π

q−α (r(s̃, ã, s̃
′) | ã ∼ π(s̃)) = sup

ζ∈[0,1]N

{
min
i:ζi<1

max
d∈∆(A)

q−ζs(r(s, ã, s̃
′) | ã ∼ d) |

N∑
i=1

ζip̂i < α

}
.
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6 Conclusion

Our examples show that several popular approaches to solving MDPs with static CVaR and EVaR risk

measures are inherently suboptimal. We also give a new decomposition bound for EVaR and adapt

an existing quantile MDP decomposition to the VaR objective.

References
[1] A. Ahmadi-Javid. Entropic Value-at-Risk: A new coherent risk measure. Journal of Optimization Theory

and Applications, 155(3):1105–1123, 2012.
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