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Avant de citer ce rapport technique, veuillez visiter notre site Web
(https://www.gerad.ca/fr/papers/G-2023-17) afin de mettre à
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Abstract : We propose new algorithms with provable performance for online binary optimization
subject to general constraints and in dynamic settings. We consider the subset of problems in which
the objective function is submodular. We propose the online submodular greedy algorithm (OSGA)
which solves to optimality an approximation of the previous round’s loss function to avoid the NP-
hardness of the original problem. We extend OSGA to a generic approximation function. We show that
OSGA has a dynamic regret bound similar to the tightest bounds in online convex optimization. For
instances where no approximation exists or a computationally simpler implementation is desired, we
design the online submodular projected gradient descent (OSPGD) by leveraging the Lovász extension.
We obtain a regret bound that is akin to the conventional online gradient descent (OGD). Finally, we
numerically test our algorithms in two power system applications: fast-timescale demand response and
real-time distribution network reconfiguration.

Keywords: Eemand response, dynamic regret, network reconfiguration, online optimization, submod-
ular minimization
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1 Introduction

Online dynamic decision-making aims at consecutively providing decisions to minimize each round’s

objective function while relying only on the outcome of previous rounds. The objective function is

considered to be time-varying and decisions are made at each discretized time instance. Moreover, it

is assumed to be unknown at the time decisions have to be made. The online convex optimization

(OCO) [1–3] framework assumes a convex objective function and a convex and compact decision

set. Provable performance guarantees can be established under some additional assumptions, e.g.,

boundedness of the objective function and its gradient [1], or the cumulative difference in round

optima computed in hindsight [1, 4].

Online optimization is an appealing framework for real-time decision-making problems because it

uses computationally efficient and scalable updates and provides performance guarantees. For example,

it is used in the context of moving target tracking [5, 6], dynamic resource allocation in data centers [7,

8], dynamic pricing in power systems [9], or renewable generation intermittency mitigation [10, 11].

Online binary optimization [2, 12] considers a subset of problems in which the feasible set is the

intersection of an application-specific constraint set and the binary set {0, 1}n, where n ∈ N is the

decision variable’s dimension. To tackle efficiently constrained, non-linear online binary problems, we

further assume that the objective function is submodular. Specifically, in this work, we consider online

dynamic submodular optimization for which the objective is to provide the round optimal binary

decisions. We propose two types of algorithms: (i) greedy approaches that solve approximations of

the previous round’s objective function (Section 3) and (ii) a projected gradient-based approach using

the continuous and convex Lovász extension of submodular functions (Section 4). For all algorithms,

we provide a performance analysis based on the dynamic regret. The regret bounds are shown to be

sublinear in the number of rounds under different conditions on the variation between round optima

computed in hindsight. Under these assumptions, the time-averaged dynamic regret vanishes as the

time horizon increases and are, therefore, Hannan-consistent [13].

Related work

We now review the relevant literature on online non-linear binary optimization. Linearity simplifies

considerably the problem as argued by [12] and, for this reason, is not considered. Examples of online

binary approaches for linear problems include [14, 15]. In [2], the authors first studied the online

submodular optimization problem. They only considered the static setting in which the decisions are

benchmarked with a single static decision computed in hindsight. This is referred to as static regret

analysis [1]. They further restricted their analysis to unconstrained problems. Reference [12] then

proposed approaches to integrate constraints within online submodular optimization. They also limit

their analysis to the static setting. In both cases, greedy and projected gradient-based approaches

are proposed. In this work, we provide dynamic regret analysis for all our approaches which then

provides a performance guarantee with respect to the round optimum. This latter aspect is important

in an engineering setting because one wants to achieve optimality at each round, e.g., to track a time-

varying setpoint. In the dynamic setting, [11] used randomization and online convex optimization

to solve problems with convex objective functions, i.e., convex with respect to the convex hull of the

decision set. However, [11] do not admit other than binary constraints and the dynamic regret analysis

does not hold asymptotically.

In the power system literature, several approaches based on time-varying optimization have been

proposed to deal with binary decision variables. References [16, 17] apply the error diffusion algorithm

to obtain binary decisions from continuous decisions computed via the relaxed problem. In [18],

randomization is used to convert continuous decisions to binary ones. This body of literature does

not compare the round minima with the algorithm’s decisions like online optimization does using a

dynamic regret analysis.

Specifically, in this work, we make the following contributions:
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• We propose two algorithms for online dynamic submodular optimization. Under the submodu-

larity assumption, we provide the online binary optimization algorithm with the tightest dynamic

regret bound to this date.

• We formulate a greedy algorithm that solves a β-approximation of the previous round’s objective

function. When this approximation is not available, we show that a generic approximation can

be used with limited impact on the performance bound.

• We provide a computationally efficient and scalable algorithm for very fast timescale online

problems which only performs a single project gradient descent step on the Lovász extension of

the objective function.

• We establish conditions under which our algorithms lead to a sublinear dynamic regret bound in

the number of rounds, thus showing that our approaches are Hannan-consistent.

• We numerically evaluate the performance of our approaches in power system examples. First, we

use the projected gradient-descent update to dispatch demand response resources for frequency

regulation. Second, we apply the greedy update to real-time network configuration where line

switches can be controlled (on/off) to minimize the powerline congestion while spanning a

radial network.

2 Preliminaries

In this section, we introduce the online optimization settings and provide the relevant background on

submodular functions.

2.1 Online optimization

In online optimization, a round-dependent objective function must be minimized at each round t ∈
{1, 2, . . . , T}, where T ∈ N is the time horizon. In this setting, the objective function is assumed to be

observed only after the decision maker has implemented the round’s decision, which must be provided

on a fast-timescale.

We consider a subset of online binary optimization problems with the base set V = {1, 2, 3, . . . , n}
in which the objective function is assumed to be submodular. Let the power set 2V represent the set of

all possible decisions. In each round t ∈ {1, 2, . . . , T}, a decision S ⊆ 2V must be made. The problem

takes the form:

min
S∈S

ft(S), (1)

where ft : 2
V 7→ R is a submodular set function, S ⊆ 2V is the feasible set, i.e., the set that expresses

the problem’s constraints, and t ∈ {1, 2, . . . , T}.

As noted by [12], at time t, (1) is NP-hard if S ̸= 2V . Because no offline optimization algo-

rithm can solve (1) given ft in polynomial time, we benchmark the decisions provided by our online

optimization algorithm with an offline α-approximation algorithm [12]. Let S⋆
t ∈ argminS⊆S ft(S).

An α-approximation algorithm provides a solution St such that f(S⋆
t ) ≤ ft(St) ≤ αf(S⋆

t ), where

α ≥ 1. Building on [12], we define the dynamic α-regret to characterize the performance of our online

optimization approaches.

Definition 1. The dynamic α-regret Rdα(T ) over a time horizon T is:

Rdα(T ) =

T∑
t=1

(ft(St)− αft(S
⋆
t )) ,

where St is the decision provided by the online optimization algorithm at round t.
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We note that the special case S = V can be solved to optimality in polynomial time. At this time,

we let α = 1 and we retrieve the standard dynamic regret definition from OCO [1]. This fact is later

used to specialize our results.

The dynamic α-regret defers from the α-regret employed in [12] because it uses as comparators to

the algorithm’s decision (first term of the sum), the round optima instead of the best fixed decision in

hindsight. The power system applications, later discussed in Section 5, motivate the use of a framework

that targets round optimal decisions instead of an averaged, static decision. Dynamic regret bounds

are given in terms of the cumulative round optimum variation VT or a derivative of it [1, 19]. This

term is used as a complexity measure in dynamic problem [4].

We conclude by adapting the definition of VT to online set function optimization from which online

submodular optimization is a subset of. Let χA ∈ {0, 1}n where χA’s i
th component is one if and only

if i ∈ A and zero otherwise be the characteristic vector of the set A ⊆ 2V . Consider the online binary

optimization problem counterpart of (1):

min
x∈X∩{0,1}n

fb
t (x),

where X ⊆ Rn is the constraint set and fb : X ∩ {0, 1}n 7→ R is the objective function. Let

x⋆
t ∈ argminx∈X∩{0,1}n fb (x). The cumulative variation term VT , as in standard online (convex)

optimization, is [1, 11]:

VT =

T∑
t=2

∥∥x⋆
t − x⋆

t−1

∥∥
2

=

T∑
t=2

∥∥∥χS⋆
t
− χS⋆

t−1

∥∥∥
2
,

where S⋆
t ⊆ 2V is the subset of x⋆

t ’s components with value one. Adapting VT to set-valued objective

functions, we, therefore, obtain:

VT =

T∑
t=2

√
card

(
S⋆
t ⊖ S⋆

t−1

)
,

where ⊖ is the symmetric difference or disjunctive union of two sets. When the context requires it, we

will introduce alternative VT definitions, e.g., when the optima are defined from function approxima-

tions.

2.2 Submodularity

A function ft : 2
V 7→ R is submodular if it exhibits the diminishing marginal return property [12], i.e.,

if

ft(A ∪ {i})− ft(A) ≥ ft(B ∪ {i})− ft(B),

for all A ⊆ B ⊆ V and i ∈ V . The Lovász extension f̂ : [0, 1]n 7→ R of a function ft can be defined as:

f̂t(x) =

n∑
i=1

xi (ft({1, 2, . . . , i})− ft({1, 2, . . . , i− 1})) ,

where xi is the ith largest component of x, {0} ≡ ∅, and ft(∅) ≡ 0 [20]. Lastly, we will make use of

two important properties of the Lovász extension: (i) f̂t is convex if and only if ft is submodular and

(ii) f̂t (χA) = ft(A) for submodular functions.

A subgradient of f̂t at a point x ∈ convS can be computed using only evaluations of the original,

submodular function ft. Let π : [0, 1]
n × V 7→ V be a function where π(x, i) = j is such that the ith
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largest component of x is xj . Let ∂f̂t(x) be the subgradient set of f̂ at x. Then, we have the following

definition for gt ∈ ∂f̂t(x):

gt =

n∑
i=1

(ft({1, 2, . . . , i})− ft({1, 2, . . . , i− 1}))χ{π(x,i)}. (2)

Finally, a rounding algorithm can be employed to convert the Lovaśz extension’s continuous input

x ∈ [0, 1]
n
to the corresponding set of the original, set function ft. For example, in Section 5 we will use

rounding2V (x) : [0, 1]
n 7→ 2V , a standard rounding map for unconstrained problems defined as follows.

Let x ∈ [0, 1]
n
, then rounding2V (x) = S where S = { i ∈ V |xi ≥ p} with p ∼ Uniform[0, 1]. Note

that we get f̂t(x) = E [ft(S)] [2]. Alternatively, for some types of feasible sets S [21, 22], rounding

algorithms can be characterized by their approximation guarantee [12]. For example, a rounding

technique roundingS with approximation guarantee α is such that αf̂t(xt) ≥ ft(St) = f̂t(χSt
) for

St = roundingS(xt), where St ∈ S and xt ∈ convS.

3 Greedy approaches

We now propose greedy approaches for online binary optimization. These approaches are based on

the previous round’s objective function and an approximation that renders the submodular problem

tractable. We first consider the following function approximation.

Definition 2 (β-approximation function [12]). The function f̃t : 2
V 7→ R is a β-approximation of ft if it

satisfies the following conditions:

1. ft(S) ≤ f̃(S) ≤ βft(S) for β ≥ 1 and all S ⊆ V ;

2. minS⊆S f̃(S) can be solved to optimality in polynomial time.

Based on Definition 2, (1) can be solved in an online fashion using the following update:

St ∈ argmin
S∈S

f̃t−1(S), (3)

where f̃ is a β-approximation function of f . We refer to an algorithm implementing (3) as online

submodular greedy algorithm (OSGA).

For the next results, we make the following two assumptions.

Assumption 1. Let ft be a bounded function over the set S, i.e., there exists M ∈ R>0 such that

|ft(S)| ≤ M for all t = 1, 2, . . . , T and S ∈ S.
Assumption 2. The set value function ft is such that

|ft(S1)− ft(S2)| ≤ L card (S1 ⊖ S2) ,

for all S1, S2 ⊆ V and 0 < L < +∞.

In other words, we assume a Lipschitz continuity-like property for set functions. Assumption 2

holds for any submodular function if Assumption 1 does, e.g., the generic approximation defined

below [23] or the β-approximation function for minimum spanning tree with submodular loss function

h(S), h̃(S) =
∑

i∈S h(i) [24].

For the regret analysis, we let S̃⋆
t ∈ argminS∈S f̃t(S) where f̃t is a β-approximation of ft. We

redefine the cumulative variation of the optima as ṼT =
∑T

t=2

∥∥∥χS̃⋆
t
− χS̃⋆

t−1

∥∥∥
2
. This definition is

similar to the one used in standard dynamic online convex optimization [1, 19] and has the advantage

of being a function of efficiently obtainable optima. The regret analysis of update (3) is provided in

Theorem 1.
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Theorem 1. Suppose f̃t is a β-approximation of ft such that f̃t satisfies Assumptions 1 and 2. If

α ≥ β, then the α-regret of OSGA is bounded by:

Rdα(T ) ≤
αL

β

T∑
t=2

√
card

(
S̃⋆
t ⊖ S̃⋆

t−1

)
=

αL

β
ṼT .

If ṼT is sublinear, then so is the α-regret.

Proof. We bound the α-regret using Definition 2 to obtain

Rdα(T ) ≤
T∑

t=1

f̃t(St)−
α

β
f̃t(S

⋆
t ). (4)

We observe that f̃t(St) = f̃t(S̃
⋆
t−1) because of (3) and S̃⋆

t ∈ argminS∈S f̃t(S). Thus, we can rewrite (4)

as

Rdα(T ) ≤
T∑

t=1

f̃t(S̃
⋆
t−1)−

α

β
f̃t(S

⋆
t )

≤
T∑

t=1

f̃t(S̃
⋆
t−1)−

α

β
f̃t(S̃

⋆
t ), (5)

where the last inequality follows from the definition of S̃⋆
t . By assumption, α ≥ β and f̃ satisfies

Assumption 2. We can thus rewrite (5) as

Rdα(T ) ≤
α

β

T∑
t=1

f̃t(S̃t)−
α

β
f̃t(S̃

⋆
t )

≤ αL

β

T∑
t=1

√
card

(
S̃⋆
t ⊖ S̃⋆

t−1

)
,

and we have completed the proof.

We remark that contrarily to [12, Theorem 2], the approximation factor α does not need to be

known to run the algorithm. Given a β-approximation of ft, OSGA leads to a O(ṼT ) regret bound
similarly to the tightest dynamic bound in standard OCO [4]. Note that this latter work requires

strong convexity. Theorem 1 bound’s also improves on [11]’s expected bound because it is only a

function of the cumulative variation and holds asymptotically.

Recall that unconstrained submodular minimization problem can be solved to optimality efficiently.

Hence, for the special case where S = 2V , i.e., when (1) is an unconstrained binary problem, OSGA can

be directly applied to the previous round loss function. This application leads to the following regret

bound.

Corollary 1. If S = 2V and α = β = 1, then OSGA’s update reduces to

St ∈ argmin
S∈2V

ft−1(S), (6)

and leads to:

Rd(T ) ≤ L

T∑
t=2

√
card

(
S⋆
t ⊖ S⋆

t−1

)
< O (VT ) .

Proof. The proof follows from Theorem 1 where (i) the regret is considered instead of the α-regret

and (ii) ft is used directly instead of f̃t, the β-approximation because (6) can be solved efficiently.
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For some problem instances, finding an approximation that satisfies both Definition 2 and As-

sumption 2 is difficult. Alternatively, the generic approximation for submodular functions provided in

Definition 3 is considered [12, 23].

Definition 3 (Generic approximation function [12, 23]). The function f̃g : 2V 7→ R is a generic approxi-

mation of f defined as: f̃g
t (S) =

√∑
i∈S ci, for some c ∈ Rn, and satisfies(

f̃g
t (S)

)2
≤ (ft(S))

2 ≤ γ2
(
f̃g
t (S)

)2
,

for all S ⊆ 2V and some γ > 0.

Interested readers are referred to [23] for details about the constant c. We now consider the online

submodular generic greedy algorithm (OSGGA), i.e., the generic approximation-based OSGA. OSGGA uses

the following update:

St ∈ argmin
S∈S

(
f̃g
t−1(S)

)2
, (7)

The update rule (7) is equivalent to solving a linear program and can, therefore, be solved effi-

ciently [12].

For the next result, we utilize the variation term Ṽ g
T =

∑T
t=2

√
card

(
Sg,⋆
t ⊖ Sg,⋆

t−1

)
. Similarly to

OSGA, Ṽ g
T is based only on the optima of tractable problems. Let ν ≥ mint,S∈S ft(S) > 0, be lower

bound on all round minima. Lastly, we remark that the squared generic approximation function

satisfies Assumption 2 with modulus L̃g because it is linear and bounded by Assumption 1. The

α-regret for the OSGGA is presented below.

Corollary 2. Suppose f̃g
t is a generic approximation of ft. Then the α-regret of OSGGA is bounded

above by

Rdα(T ) ≤
4α2L̃gL

(1 + α)ν

T∑
t=2

√
card

(
Sg,⋆
t ⊖ Sg,⋆

t−1

)
=

4α2L̃gL

(1 + α)ν
Ṽ g
T ,

and is sublinear for Ṽ g
T < O(T ).

Proof. We based our proof on [12, Theorem 2 and Lemma 3]. The α-regret for update (7) is

Rdα(T ) =

T∑
t=1

ft(St)− αft(S
⋆
t )

=

T∑
t=1

(ft(St)− αft(S
⋆
t )) (ft(St) + αft(S

⋆
t ))

(ft(St) + αft(S⋆
t ))

=

T∑
t=1

(ft(St))
2 − α2 (ft(S

⋆
t ))

2

(ft(St) + αft(S⋆
t ))

≤
T∑

t=1

(ft(St))
2 − α2 (ft(S

⋆
t ))

2

(1 + α)ν
,

where ν ≥ mint,St ft(St) > 0. By Definition 3, we then have

Rdα(T ) ≤
1

(1 + α)ν

T∑
t=1

γ2
(
f̃g
t (St)

)2
− α2

(
f̃g
t (S

⋆
t )
)2

≤ 1

(1 + α)ν

T∑
t=1

γ2
(
f̃g
t (St)

)2
− α2

(
f̃g
t (S̃

g,⋆
t )
)2

,
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where S̃g,⋆
t ∈ argminS∈S f̃g

t (S). Using the update rule (3), we obtain

Rdα(T ) ≤
γ2

(1 + α)ν

T∑
t=1

(
f̃g
t (S̃

g,⋆
t−1)

)2
−
(
f̃g
t (S̃

g,⋆
t )
)2

. (8)

Thus, the α-regret can be re-expressed as

Rdα(T ) ≤
γ2

(1 + α)ν
Rd
((

f̃g
t (S)

)2
, T

)
,

where Rd
((

f̃g
t (S)

)2
, T

)
is the (1-)regret of update (7) when used on the problem minS∈S

(
f̃g
t (S)

)2
.

Using Theorem 1 with α = β = 1 in (8) yields

Rdα(T ) ≤
γ2L̃gL

ν

T∑
t=1

√
card

(
S̃g,⋆
t−1 ⊖ S̃g,⋆

t

)
=

γ2L̃gL

ν
Ṽ g
T ,

which completes the proof.

Hence, OSGGA leads to an α-regret bound that is similar to Theorem 1’s. Albeit different variation

terms are used, the bounds (i) only differ within a constant factor and (ii) both admit up to a linear

variation term to be sublinear.

4 Projected gradient descent-based approach

In this section, we consider a convex optimization-based update to solve (1) [2, 12]. Our approach lever-

ages the Lovász extension’s convexity for submodular functions. We propose the online submodular

projected gradient descent (OSPGD) based on the update defined as:

xt+1 = projconv(S) xt − ηgt (9)

St+1 = roundingS(xt+1), (10)

where gt ∈ ∂f̂t(xt) is defined in (2) and projconv(S) is the projection onto the convex hull of S. OSPGD
has the advantage over the greedy updates to be computationally very simple because only a single

gradient descent step is performed. It however requires a rounding approach which might not be

available for all constrained problems. For OSPGD, we obtain the following regret bound.

Theorem 2. Suppose that a rounding algorithm with approximation guarantee α is used. Then, OSPGD

with η = δ√
T

leads to an α-regret bounded from above by:

Rdα(T ) ≤ α

(
√
nδ

T∑
t=2

√
card

(
S⋆
t − S⋆

t−1

)
+

5n

2δ
+ 4Mδ

)
√
T

= α

(√
nδVT +

5n

2δ
+ 4Mδ

)√
T ,

and is sublinear if VT < O
(√

T
)
.

Proof. By definition, we have

Rdα(T ) =

T∑
t=1

ft(St)− αft(S
⋆
t )
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≤
T∑

t=1

αf̂t(xt)− αft(S
⋆
t ),

using the rounding algorithm approximation guarantee bound. Using the property of the Lovaśz

extension, we obtain

Rdα(T ) ≤ α

T∑
t=1

f̂t(xt)− f̂t(χS⋆
t
). (11)

We then follow the standard proof techniques for the online gradient descent (OGD) from [1, 13]. We

have ∥∥xt+1 − χS⋆
t

∥∥2
2
=
∥∥∥(projconv(S) xt − ηgt

)
− χS⋆

t

∥∥∥2
2

≤
∥∥xt − ηgt − χS⋆

t

∥∥2
2

=
∥∥xt − χS⋆

t

∥∥2
2
− 2ηtg

⊤
t

(
xt − χS⋆

t

)
+ η2 ∥gt∥22

⇔ g⊤
t

(
xt − χS⋆

t

)
≤ 1

2η

(∥∥xt − χS⋆
t

∥∥2
2
−
∥∥xt+1 − χS⋆

t

∥∥2
2

)
+

η2

2
∥gt∥22 . (12)

The convexity of f̂t implies that for all x,y ∈ [0, 1]n, we have

f̂t(x) ≥ f̂t(y) + g⊤
t (x− y),

for gt ∈ ∂f̂t(y). Using x = χS⋆
t
and y = xt, we obtain

f̂t(xt)− f̂t(χS⋆
t
) ≤ g⊤

t (x− y). (13)

Substituting (12) and (13) in (11) leads to

Rdα(T ) ≤α

T∑
t=1

1

2η

(∥∥xt − χS⋆
t

∥∥2
2
−
∥∥xt+1 − χS⋆

t

∥∥2
2

)
+ α

T∑
t=1

η2

2
∥gt∥22

=α

T∑
t=1

1

2η

(
∥xt∥22 − ∥xt+1∥22

)
+ α

T∑
t=1

η

2
∥gt∥22

+ α

T∑
t=2

1

η
x⊤
t

(
χS⋆

t
− χS⋆

t+1

)
− x⊤

1 χS⋆
1
+ x⊤

T+1χS⋆
T

=
α

2η
∥x1∥22 −

α

2η
∥xT+1∥22 −

α

η
x⊤
1 χS⋆

1
+

α

η
x⊤
T+1χS⋆

T

+
α

η

∑
t=2

x⊤
t

(
χS⋆

t
− χS⋆

t−1

)
+ α

T∑
t=1

η

2
∥gt∥22 ,

where we have evaluated the telescoping sums to obtain the last line [13]. Using [12, Lemma 1], we

have ∥gt∥2 ≤ 4M . The regret becomes

Rdα(T ) ≤
5nα

2η
+ 4αMηT +

α
√
n

η

T∑
t=2

∥∥∥χS⋆
t
− χS⋆

t−1

∥∥∥
2
,
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where we also used the fact that ∥xt∥2 ≤ √
n. We remark that for a submodular function and its

Lovaśz extension pair,
∥∥∥χS⋆

t
− χS⋆

t−1

∥∥∥
2
is equivalent to

√
cardS⋆

t ⊖ S⋆
t−1. We now have

Rdα(T ) ≤
5nα

2η
+ 4αMηT +

α
√
n

η

T∑
t=2

√
card

(
S⋆
t ⊖ S⋆

t−1

)
.

Setting η = δ√
T
, δ ∈ R>0 completes the proof.

In sum, we obtain an α-regret bound that is of the same order as the standard online gradient

descent for OCO problems [1], i.e., O
(√

T (1 + VT )
)
. Hence, in comparison to Section 3’s approaches,

we have traded higher algorithmic simplicity for a stricter regret bound.

Lastly, if a randomized rounding technique is used to convert a continuous decision vector to a

binary one, expected and high-probability regret bounds, i.e., where α = 1 as opposed to previous

results, can be derived.

Corollary 3. Consider a random rounding technique roundingS : conv(S) 7→ S such that for S =

roundingS(x) we have E [ft(S))] = f̂t(x). The expected and high-probability dynamic regret for OSPGD

with δ√
T

are bounded from above:

E
[
Rd(T )

]
≤

√
nTδVT +

(
5n

2δ
+ 4Mδ

)√
T ,

and

Rd(T ) ≤
√
nTδVT +

(
5n

2δ
+ 4Mδ + 2Mδ log

1

ϵ

)√
T ,

with probability of at least 1− ϵ.

Proof. We adapt Theorem 2’s and [2, Theorem 1]’s proofs. First, for the expected bound, we have

E
[
Rd(T )

]
=

T∑
t=1

E [ft(St)]− E [ft(S
⋆
t )] (14)

=

T∑
t=1

f̂t(xt)− ft(S
⋆
t )

=

T∑
t=1

f̂t(xt)− f̂t(χS⋆
t
).

The bound then follows from Theorem 2. Second, for the high probability bound, we use Hœffding

inequality [2, Theorem 13]. With a probability of a least 1− ϵ, we have

∑
t=1

ft(St) ≤
T∑

t=1

E[ft(St)] +M

√
2T log

1

ϵ
. (15)

Substituting (15) in the regret definition, we obtain

Rd ≤
T∑

t=1

(E[ft(St)]− ft(S
⋆
t )) +M

√
2T log

1

ϵ
. (16)

We observe that the first term of (16)’s right-hand side and (14)’s are identical. Using Theorem 2 with

η = δ√
T

in (16) yields the high probability regret bound.

For unconstrained problems, we have S = 2V and convS = [0, 1]
n
. Then, Corollary 3 holds when

the randomized rounding procedure described in Section 2.2 is implemented in OSPGD.
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5 Applications to electric power systems

We now apply OSPGD and OSGA to power system problems.

5.1 Demand response for frequency regulation

In demand response, a load aggregator is contracted by the system operator [25–27]. The aggregator’s

mandate is to modulate the load power consumption to help out the grid, e.g., to mitigate renewable

intermittency or reduce peak demand. Specifically, we consider frequency regulation services [10, 28–

30], i.e., load balancing on a fast timescale, e.g., 4 seconds. Advantages of demand response over other

frequency regulation approaches, like battery energy storage and fast-ramping fuel-burning generation,

include low deployment costs and sustainability [30].

5.1.1 Setting

Consider N thermostatically controlled loads (TCLs), e.g., residential loads equipped with electric

water heaters, heaters, or air conditioners, enrolled in the demand response program. Consider a

program of duration T in which decision rounds are indexed by t. Let pn,t ≥ 0 and p̃n,t ≥ 0 be the

power consumption of TCL n ∈ {1, 2, . . . , N} when the load is flexible and inflexible, respectively. This

formulation is similar to [11]’s. Each load must stay in an acceptable temperature range, e.g., ±0.5◦C

of the desired user temperature, to be flexible, i.e., to be controlled according to the aggregator’s need.

If the load temperature is too high or too low, the backup controller forces the load to be active or

inactive accordingly, and its power consumption must be accounted for.

At time t, the aggregator’s objective is to track a regulation setpoint rt provided by the system

operator by adjusting the TCL power consumption. In this work, we consider a setting in which the

aggregator wants to deploy the minimum number of flexible loads such that the regulation signal is

met. This problem can be formulated as an online dynamic submodular optimization problem using

the objective function fDR
t : 2V 7→ R,

fDR
t (St) =

∑
A⊆2V

(∑
n∈A

un,t

)2

−
(∑

n∈V

un,t

)2
 · (17)

max{0, |St ∩A| − |St ∪A|+ 1}IA⊆Rt
,

where un,t = pn,t + p̃n,t, I is the indicator function which returns 1 if the subscript is true and 0

otherwise, and

Rt =

{
S ⊆ 2V

∣∣∣∣∣∑
n∈S

un,t ≥ rt

}
.

In (17), the term between brackets promotes partitions A ⊆ 2V with lower aggregated power. Then,

the maximum term identifies to which partition A the set S belongs to, because it is equal to one if

and only if S = A. Lastly, the indicator function ensures that the set of dispatched loads is at least

equal to the regulation signal.

We apply OSPGD to this problem. In terms of standard online optimization, this corresponds

to a quadratic program with time-dependent binary constraints, which, to this day, has not been

investigated. To the author’s best knowledge, no other approach has been shown to have provable

performance in this context.

We randomly generate loads’ parameters similarly to [31]. We use the same constraints and logical

rules as [11] and omit the lockout constraint. The thermodynamic model is based on [29]. We consider

TCLs equipped with air conditioners.
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5.1.2 Numerical results

We deploy 15 TCLs to track a vanishing sinusoidal regulation signal subject to Perlin noise [32]. We

compare OSPGD to the closest work to ours, bOGD [11]. We note that, in this setting, bOGD’s regret

analysis does not hold. Lastly, we provide the round optimum, which we denote OSPGD⋆t .
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(a) Setpoint tracking
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(b) Time-averaged experimental dynamic regret for OSPGD

Figure 1: Demand response with 15 Loads

Figure (1a) presents OSPGD’s time-averaged dynamic α-regret. The vanishing time-averaged regret

implies a sublinear regret. The tracking root-mean-square error (RMSE) over 3000 rounds is 1.406 kW

for OSPGD⋆t , 3.227 kW for OSPGD, and 6.928 kW for bOGD. As shown in Figure (1b), OSPGD outperforms

bOGD and offers good setpoint tracking.

5.2 Real-Time Network Reconfiguration

Electric distribution networks generally possess a radial topology [33]. Their topology is controlled via

switches located throughout the network. By opening and closing different switches, the topology can

be modified, for example, to minimize active power losses or line congestion, and, thus, to increase the

grid efficiency [34–36]. The set of switch statuses must always induce a radial network topology while

assuring that all loads are supplied.

Distribution grids with high penetration of grid-edge/behind-the-meter technologies [37, 38], e.g.,

electric vehicles, residential solar panels, or demand response, can experience large, fast-ramping vari-

ations in power demand at the different buses. These rapid changes in loading are out of the dis-

tribution system operator’s control and can lead to network perturbations, e.g., over/under-voltage,

line congestion, etc. [39–41]. To mitigate incidents, the system operator can preemptively configure

the distribution network by altering its topology. Remotely-activated switches allow fast network re-

configuration (NR) and can be used to adapt to the load demand in real-time, viz., to prevent line

congestion or higher power losses.

5.2.1 Setting

We consider a distribution network consisting of a set of static powerlines L, a set of loads N , and a

set of lines equipped with switches V =
{
1, 2, . . . , S

}
, S ∈ N. Let L(St) = L ∪ St where St ⊆ 2V be

the set of all powerlines active at time t, i.e., the static line set augmented by the lines with closed

switches St. The set L(St) is subject to two constraints; it must be such that (i) the network topology

is radial and (ii) all loads are connected.

Let pi,t ≥ 0 and qi,t ≥ 0, be the active and reactive power demand, respectively, at bus i ∈ N and

time t. Let Nr be the set of feeder nodes. Let Pij,t ∈ R and Qij,t ∈ R be, respectively, the active and
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reactive power flowing from node i to j if ij ∈ L(St). Let Pij,t = Qij,t = 0 if ij /∈ L(St). Line ij’s

apparent power is denoted by Aij,t = Pij,t + jQij,t. Let vi ∈ C be the voltage at node i, Iij ∈ C be

the current flowing in line ij, and yij ∈ C be the admittance of line ij. Let notation x and x represent

upper and lower bounds on any given parameter x.

To minimize active power losses in distribution grids, the NR problem can be cast using the

objective function fNR
t : 2V 7→ R presented in (18) where power losses on line ij at time t are defined

as |vi,t − vj,t|2y∗ij . In (18), the spanning tree constraint ensures that the network topology is radial

and connects all loads to the source node. The other constraint ensure that the power flow (PF),

which models the electric network’s physics, respects all operational constraints while meeting power

demand.

min
St⊆2V

fNR
t (S) =

∑
ij∈L(S)

|vi,t − vj,t|2y∗ij

s.t. L(St) ⊆ SpanningTree(N ){
{vi,t}i∈N

{Pij,t, Qij,t}ij∈L(St)

}
∈ PF({pi,t, qi,t}i∈N ,L(St))

(18)

5.2.2 Weakly-Meshed Approximation

Finding the optimal configuration of a radial network is NP-hard. We re-express (18) as an online

dynamic submodular optimization problem, which can then be solved in real-time.

When the radiality constraint is relaxed, the network, in which the set of active powerlines is

L ∪ V , referred to as the weakly-meshed network (WMN), is a good solution, if not optimal, for loss

minimization [42]. Using the WMN as a starting point, our goal is to find the radial network that best

imitates its power flow. This can be done by first computing the WMN power flow. Then, a minimum

spanning tree (MST) algorithm (e.g., Prim’s algorithm [43]) with edge weights set as the negative line

currents −Iij obtained from the power flow, is used. The MST is fast and guarantees radiality. By

removing the edges with lower currents, the MST returns a radial network with a power flow pattern

similar to the WMN as demonstrated by [42]. We note that in all evaluations, the resulting topology

admitted a feasible power flow with respect to the original AC power flow constraints. If infeasible,

the resulting topology could be projected onto the set induced by these constraints. Finally, we can

approximate (18) by the following online dynamic submodular problem:

min
St⊆2V

fWM
t (St) =

∑
ij∈L(St)∪V

−Iij,t

s.t. L(St) ⊆ SpanningTree(N ),

(19)

where Iij,t is an online parameter extracted from power flow computations, e.g. [44], of the WMN.

Because (19) is submodular, and can be solved to optimality in polynomial time using a MST

algorithm like Prim’s [43] over the WMN, we apply our OSGA for online reconfiguration. The process

is summarized in Algorithm 1.

In Algorithm 1, M is a large constant. We remark that in the case of multiple feeders, we tem-

porarily add virtual lines between the different sources (generators) in the MST algorithm to ensure

radiality, see steps 5−6. These lines are then removed from St, see step 8.

5.2.3 Numerical Results

For this section, we consider the IEEE standardized 33-bus/1-feeder (33b/1f) [45] and the 135-bus/8-

feeder (135b/8f) [46] distribution networks with the added modification, on both networks, that every

line is equipped with a switch to fully benefit from the flexibility of online optimization. At each
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round, we add randomly generated Perlin noise [32] on pi,t, qi,t,∀i ∈ N to model uncertainty. Figure 2

illustrates OSGA’s sublinear dynamic α-regret. This is depicted by the vanishing time-averaged regret.

Algorithm 1 OSGA for Real-time Network Reconfiguration

1: for t = 1, 2, ..., T do
2: Reconfigure the network according to St.
3: Observe new online parameters: pi,t, qi,t, ∀i ∈ N .

4: Compute the power flow of the WMN with the Newton-Raphson algorithm and extract Iij,t ∀ij ∈ L ∪ V .
5: if card(Nr) > 1 then
6: Set Iij,t = M, ∀ij where {i, j ∈ Nr ∩ i ̸= j}
7: end if
8: Update St+1 via a greedy MST algorithm:

S̃t+1 = argmin fWM
t (S) s.t. L(S) ⊆ SpanningTree(N )

St+1 ∈ S̃t+1 \ {∀ ij where i, j ∈ Nr}

9: end for
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Rounds
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Figure 2: Time-averaged experimental dynamic regret for OSGA

We now compare OSGA to its offline counterparts solved in hindsight both dynamically (OSGA⋆t ) and

statically (OSGA⋆) over the time horizon. We note that hindsight solutions only serve analysis purposes

and have no practical application. We benchmark our approach, in the simpler network (33b/1f), to

the closest work in OCO (bOGD) [11] to which we must add a projection on the feasible power flow

set to handle operational constraints of the grid. We also compare OSGA to a round-optimal offline

configuration, with a limited flexibility of 9 switches, based on the second-order cone relaxation power

flow (SOCR-9SW) [33], which require much more computational power. Lastly, we present the case

where a random feasible reconfiguration is implemented each round.

Figure 3: Cumulative power losses (33b/1f)

Figure 4 presents snapshots of the 135/8f NR at different rounds according to the apparent power

demand at each node. The demand is represented by a light-dark scale: the darker the node the
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higher the demand is. Closed and open switches are pictured in green and red, respectively. Squares

are generators. Radiality is always preserved.

(a) Round 21 (b) Round 23

Figure 4: Network reconfiguration (135b/8f)

In sum, OSGA performs systematically better than bOGD and is considerably faster because it stands

on a fast MST heuristic. It also scales easily to bigger networks and guarantees radiality without

the need for a projection step. OSGA also outperforms OSGA⋆ while maintaining a small performance

gap with OSGA⋆t , the round optimal solution. For example, we observed a total power loss increase of

0.038% for OSGA and of 1.545% for OSGA⋆, after 400 rounds, when compared to OSGA⋆t on 135b/8f in

the simulation leading to Figure 4.

6 Conclusion

In this work, we investigate online binary optimization in dynamic settings. We consider submodular

objective functions and general binary constraints. We first assume an approximation of the objective

function which can be minimized in polynomial time exists. We propose OSGA that solves the previous

round approximation as a proxy and in doing so, circumvents the NP-hardness of the original problem.

We adapt our approach to a generic but weaker approximation that can be used to recast general

submodular problems in a simpler form. Second, aiming at algorithmic simplicity, we formulate OSPGD

which leverages the Lovász extension and convex optimization. For all our algorithms, we provide a

dynamic regret analysis. We show that OSGA and OSPGD possess, respectively, a dynamic regret bound

that is similar to the tightest bound in the literature and to the OGD used in online convex optimization.

Finally, we present two applications of our approaches in electric power systems. First, OSPGD is

employed to dispatch demand response resources, viz., thermostatic loads, to mitigate fast-timescale

power imbalances. Second, OSGA is used to minimize active power losses in distribution networks

via real-time reconfiguration, i.e., closing and opening switches in the network to better shape its

topology. Our numerical study illustrates the performance of our approaches and their ability to

outperform prior work [11] in both applications by harnessing submodularity properties. On another

note, our experimental NR results show that the WMN approximation paired with Prim’s algorithm

is great for online decision-making, and for leveraging grid flexibility, thanks to its light computational

needs, near-optimal performances, and scalability.
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Next, time-varying binary constraints, i.e., constraints that, similarly to the objective function, are

observed only at the end of a round while needing to be satisfied in average, will be investigated.
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