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3000, chemin de la Côte-Sainte-Catherine
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les exigences légales associées à ces droits. Ainsi, les utilisateurs:
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Abstract : Recently there has been a surge of interest in operations research (OR) and the ma-
chine learning (ML) community in combining prediction algorithms and optimization techniques to
solve decision-making problems in the face of uncertainty. This gave rise to the field of contextual
optimization, under which data-driven procedures are developed to prescribe actions to the decision-
maker that make the best use of the most recently updated information. A large variety of models
and methods have been presented in both OR and ML literature under a variety of names, including
data-driven optimization, prescriptive optimization, predictive stochastic programming, policy opti-
mization, (smart) predict/estimate-then-optimize, decision-focused learning, (task-based) end-to-end
learning/forecasting/optimization, etc. Focusing on single and two-stage stochastic programming prob-
lems, this review article identifies three main frameworks for learning policies from data and discusses
their strengths and limitations. We present the existing models and methods under a uniform notation
and terminology and classify them according to the three main frameworks identified. Our objective
with this survey is to both strengthen the general understanding of this active field of research and
stimulate further theoretical and algorithmic advancements in integrating ML and stochastic program-
ming.

Keywords : Contextual optimization, machine learning, policy optimization, stochastic programming,
predict-then-optimize, decision-focused learning, end-to-end learning, implicit differentiation, unrolling
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1 Introduction

This article surveys the literature on single and two-stage contextual optimization. In contextual

optimization, a decision maker faces a decision-making problem with uncertainty where the distribution

of uncertain parameters that affect the objective and the constraints is unknown, although correlated

side information (covariates or features) can be exploited. The usefulness of side information in inferring

relevant statistics of uncertain parameters and, thereby, in decision-making is evident in many different

fields. For example, weather and time of day can help resolve uncertainty about congestion on a road

network and aid in finding the shortest path traversing a city. In portfolio optimization, stock returns

may depend on historical prices and sentiments posted on Twitter (Xu and Cohen 2018). Harnessing

this information can allow decision makers to build a less risky portfolio. Similarly, a retailer facing

uncertain demand for summer products can infer whether the demand will be low or high depending

on the forecasted weather conditions (Mart́ınez-de Albeniz and Belkaid 2021).

Traditional stochastic optimization models ignore contextual information and use unconditional

distributions of the uncertain parameters to make a decision (Birge and Louveaux 2011). Such a

decision may be suboptimal (Ban and Rudin 2019) and, in some cases, even at the risk of being

infeasible (Rahimian and Pagnoncelli 2022). The availability of data and huge computational power

combined with advancements in machine learning (ML) and optimization techniques have resulted in

a shift of paradigm to contextual optimization (Mǐsić and Perakis 2020).

Making prescriptions using the side information requires a decision rule that maps the observed

context to an action. We identify three different paradigms for learning this mapping.

Decision rule optimization: This approach was introduced to the operation research community in

Ban and Rudin (2019) under the name of big data, although a similar idea was already common

practice in reinforcement learning under the name of policy gradient methods (see Sutton et al.

1999, and literature that followed). It consists in employing a parameterized mapping as the

decision rule and in identifying the parameter that achieves the best empirical performance

based on the available data. The decision rule can be formed as a linear combination of feature

functions of the covariates or even using a deep neural network (DNN). When the data available

is limited, some form of regularization might also be needed.

Sequential learning and optimization (SLO): Bertsimas and Kallus (2020) appears to be the

first to have formalized this two-stage procedure (also referred to as predict/estimate-then-

optimize or prescriptive optimization/stochastic programming) that first uses a trained model

to predict a conditional distribution for the uncertain parameters given the covariates, and then

solves an associated conditional stochastic optimization (CSO) problem to obtain the optimal

action. This procedure can be robustified to reduce post-decision disappointment (Smith and

Winkler 2006) caused by model overfitting or misspecification by using proper regularization at

training time or by adapting the CSO problem formulation.

Integrated learning and optimization (ILO): In the spirit of identifying the best decision rule,

one might question in SLO the need for high precision predictors when one is instead mostly inter-

ested in the quality of the resulting prescribed action. This idea motivates an integrated version

of learning and optimization that searches for the predictive model that guides the CSO problem

toward the best-performing actions. The ILO paradigm appears as early as in Bengio (1997) and

has seen a resurgence recently in active streams of literature on smart predict-then-optimize,

decision-focused learning, and (task-based) end-to-end learning/forecasting/optimization (Donti

et al. 2017, Stratigakos et al. 2022, Wahdany et al. 2023).

The outline of the survey goes as follows. Section 2 rigorously defines the three frameworks for

learning mappings from data to decisions: decision rule optimization, SLO, and ILO. Section 3 reviews

the literature on decision rule optimization with linear and non-linear decision rules. Section 4 focuses

on SLO, including the models that lead to robust decisions, and Section 5 describes the models based
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on the ILO framework and the algorithms used to train them. Section 6 provides an overview of future

research directions to pursue both from a theoretical and applications perspective.

We note that there are other surveys and tutorials in the literature that are complementary to ours.

Mǐsić and Perakis (2020) survey the applications of the SLO framework to operations management

problems in the supply chain, revenue management, and healthcare. Kotary et al. (2021) provide

a comprehensive survey of the literature proposing ML methods to accelerate the resolution of con-

strained optimization models (see also Bengio et al. 2021). It also reviews some of the older literature

on ILO applied to ”expected value-based models” (see Definition 1). Qi and Shen (2022) is a tuto-

rial that mainly focuses on the application of ILO to expected value-based models with very limited

discussions on more general approaches. It summarizes the most popular methods and some of their

theoretical guarantees. In contrast, our survey of ILO goes beyond the expected value-based decision

models and reflects better the more modern literature by casting the contextual decision problem as a

CSO problem and presenting a comprehensive overview of the current state of this rapidly progressing

field of research. We establish links between approaches that minimize regret (Elmachtoub and Grigas

2022),(task-based) end-to-end learning (Donti et al. 2017) and imitation-based models (Kong et al.

2022). Further, we create a taxonomy based on the training procedure for a general ILO framework

encompassing recent theoretical and algorithmic progresses in designing differentiable surrogates and

optimizers and improving training procedures based on unrolling and implicit differentiation.

2 Contextual optimization: An overview

The contextual optimization paradigm seeks a decision (i.e., an action) z in a feasible set Z ⊂ Rnz

that minimizes a cost function c(z;y) with uncertain parameters y ∈ Y ∈ Rny . The uncertain

parameters are unknown when making the decision. However, a vector of relevant features (covari-

ates) x ∈ X ⊆ Rnx , which is correlated with the uncertain parameters y, is revealed before having to

choose z. The joint distribution of the features in X and uncertain parameters in Y is denoted by P.

2.1 Contextual problem and policy

In general, uncertainty can appear in the objectives and constraints of the problem. In the main

sections of this paper, we focus on problems with uncertain objectives and consider that the decision

maker is risk-neutral. We broaden the discussion to risk-averse settings and uncertain constraints in

Section 6.

The CSO problem. Given a context described by a vector of features x and the joint distribution P
of the features x and uncertain parameter y, a risk-neutral decision maker is interested in finding an

optimal action z∗(x) ∈ Z that minimizes the expected costs conditioned on the covariate x. Formally,

the optimal action is a solution to the conditional stochastic optimization problem given by:

(CSO) z∗(x) ∈ argmin
z∈Z

EP(y|x) [c (z,y)] , (1)

where P(y|x) denotes the conditional distribution of y given the covariate x and it is assumed that

a minimizer exists. For instance, when Z is compact, P(y|x) has bounded support and c(z,y) is

continuous in z almost surely (see Van Parys et al. 2021, for more details).

Problem (1) can equivalently be written in a compact form using the expected cost operator h(·, ·)
that receives a decision as a first argument and a distribution as a second argument:

z∗(x) ∈ argmin
z∈Z

h(z,P(y|x)) := EP(y|x) [c (z,y)] . (2)

Optimal policy. In general, the decision maker repeatedly solves CSO problems in many different

contexts. Hence, the decision maker is interested in finding the policy π ∈ Π that provides the lowest
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long-term expected cost, that is:

π∗ ∈ argmin
π∈Π

EP
[
c(π(x),y)

]
= argmin

π∈Π
EP
[
h(π(x),P(y|x))

]
. (3)

Note that the optimal policy does not need to be obtained explicitly in a closed form. Indeed,

based on the interchangeability property (see Theorem 14.60 of Rockafellar and Wets 2009), solving

the CSO Problem (1) in any context x naturally identifies an optimal policy:

π̄(x) ∈ argmin
z∈Z

h(z,P(y|x)) a.s. ⇔ EP
[
h(π̄(x),P(y|x))

]
= min

π∈Π
EP
[
h(π(x),P(y|x))

]
,

assuming that a minimizer of h(z,P(y|x)) exists almost surely. Thus, the two optimal policies π∗ and

z∗(·) coincide.

2.2 Mapping context to decisions: Three data-driven frameworks

Unfortunately, the joint distribution P is generally unknown. Instead, the decision maker possesses

historical data DN = {(xi,yi)}
N
i=1 that is assumed to be made of independent and identically dis-

tributed realizations of (x,y) ∈ X × Y. Using this data, the decision maker aims to find a policy

that approximates well the optimal policy given by (3). Many approaches have been proposed to

find effective approximate policies. Most of them can be classified into the three main frameworks

that we introduce below: (i) decision rule optimization, (ii) sequential learning and optimization, and

(iii) integrated learning and optimization.

2.2.1 Decision rule optimization.

In this framework, the decision policy is assumed to belong to a hypothesis class Πθ := {πθ}θ∈θ ⊆ Π

that contains a family of parametric policies πθ : X → Z (e.g., linear functions or decision trees). The

parameterized policy πθ maps directly any context x to a decision πθ(x) and will be referred to as a

decision rule.

Denote by P̂N the empirical distribution of (x,y) given historical data DN . One can identify the

“best” policy in Πθ by solving the following empirical risk minimization (ERM) problem:

(ERM) θ∗ ∈ argmin
θ

H(πθ, P̂N ) := EP̂N

[
c(πθ(x),y)

]
. (4)

In simple terms, Problem (4) finds the policy πθ∗ ∈ Πθ that minimizes the expected costs over the

training data. Notice that there are two approximations of Problem (3) made by Problem (4). First,

the policy is restricted to a hypothesis class that may not contain the true optimal policy. Second,

the long-term expected costs are calculated over the empirical distribution P̂N rather than the true

distribution P. This decision pipeline is shown in Figure 1. Furthermore, Problem (4) focuses its policy

optimization efforts on the overall performance (averaged over different contexts) and disregards the

question of making the policy achieve a good performance uniformly from one context to another.

2.2.2 Learning and optimization.

The second and third frameworks combine a predictive component and an optimization component.

The predictive component is a general model fθ, parameterized by θ, whose role is to provide the input

of the optimization component. In any context x, the intermediate input fθ(x) can be interpreted as

a predicted distribution that approximates the true conditional distribution P(y|x). The predictive

component is typically learned from historical data.

At decision time, a learning and optimization decision pipeline (see Figure 2) solves the CSO

problem under fθ(x), namely:

z∗(x, fθ) ∈ argmin
z∈Z

h(z, fθ(x)). (5)
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Decision
rule

Context

x

Decision

πθ(x)

Decision
rule

Task loss
Context

xi

Decision

πθ(xi)

∇θc(πθ(xi),yi)

Parameter

yi

Figure 1: Decision and training pipelines based on the decision rule paradigm: (left) the decision pipeline and (right) the
training pipeline for a given training example (xi,yi).

The solution of Problem (5) minimizes the expected cost with respect to the predicted distribution

fθ(x). Notice that the only approximation between Problem (5) and the true CSO problem in (2) lies

in fθ being an approximation of P(y|x). Since the predicted distribution changes with the context x,

this pipeline also provides a policy. In fact, if the predictive component were able to perfectly predict

the true conditional distribution P(y|x) for any x, the pipeline would recover the optimal policy π∗

given in (3).

Prediction
model

Optimization
model

Context

x

Prediction

fθ(x)

Decision

z

Figure 2: Decision pipeline for learning and optimization.

We now detail the second and third frameworks to address contextual optimization: SLO and ILO.

They differ in the way the predictor fθ(x) is trained using the historical data.

Sequential learning and optimization. In this framework, the contextual predictor is obtained by

minimizing an estimation error, ρ, between the conditional distribution given by fθ(x) and the true

conditional distribution of y given x. Training the contextual predictor implies solving the following

estimation problem:

min
θ

ρ(fθ, P̂N ) + Ω(θ) with ρ(fθ, P̂N ) := EP̂N
[D(fθ(x),y)], (6)

where D is a divergence function, e.g., negative log-likelihood (NLL) and the regularization term Ω(θ)

controls the complexity of fθ. The SLO training pipeline is shown in Figure 3.

Prediction
model

Estimation error
Context

xi

Prediction

fθ(xi)

Parameter

yi

∇θD(fθ(xi),yi) + Ω(θ)

Figure 3: SLO training pipeline for a given training example.

Definition 1 (Expected value-based models). When the cost function c(x,y) of the decision model is

linear in y, the problem of estimating a conditional distribution reduces to finding the expected value

of the uncertain parameter given the covariates since h(z,P(y|x)) = EP(y|x)[c(z,y)] = c(z,EP(y|x)[y]).

Training the contextual predictor, therefore, reduces to a mean regression problem over a parameterized
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function gθ(x). Specifically,

min
θ

ρ(gθ, P̂N ) + Ω(θ) with ρ(gθ, P̂N ) := EP̂N
[d(gθ(x),y)] , (7)

for some distance metric d, usually the sum of squared errors. While the sum of squared error is

known to asymptotically retrieve g∗θ(x) = EP(y|x)[y] under standard conditions, other distance metric

or more general loss functions can also be used (Hastie et al. 2009). For any new context x, a decision

is obtained using:

z∗(x, gθ) ∈ argmin
z∈Z

h(z, δgθ(x)) = argmin
z∈Z

c(z, gθ(x)), (8)

with δy being the Dirac distribution putting all its mass at y. In the remainder of this survey, we

refer to these approaches as expected value-based models, while the more general models that

prescribe using a conditional distribution estimator (i.e. z∗(x, fθ)) will be referred as a conditional

distribution-based models when it is not clear from the context.

Integrated learning and optimization. Sequential approaches ignore the mismatch between the pre-

diction divergence D and the cost function c(x,y). Depending on the context, a small prediction

error about P(y|x) may have a large impact on the prescription. In integrated learning, the goal is

to maximize the prescriptive performance of the induced policy. That is, we want to train the pre-

dictive component to minimize the task loss (i.e., the downstream costs incurred by the decision) as

stated in (3). The prescriptive performance may guide the estimation procedure toward an inaccurate

prediction that produces a nearly-optimal decision. This is illustrated in Figure 4.

Z

z∗(x) = z∗(x, gθA
)

z∗(x, gθB
)

gθA
(x)

E[y|x]

gθB
(x)

Figure 4: Predicting gθA
(x) results in the optimal decision z∗(x, gθA

) = z∗(x) whereas a small error resulting from

predicting gθB
(x) leads to a suboptimal decision z∗(x, gθB

) under c(x,y) := −y⊤x, i.e., h(z,P(y|x)) = −E[y|x]⊤z
(adapted from Elmachtoub and Grigas 2022).

Finding the best parameterization of a contextual predictor that minimizes the downstream ex-

pected costs of the CSO solution can be formulated as the following problem:

min
θ

H(z∗(·, fθ), P̂N ) = min
θ

EP̂N

[
c(z∗(x, fθ),y)

]
. (9)

The objective function in (9) minimizes the average cost of the policy over the empirical distribution.

The policy induced by this training problem is thus optimal with respect to the predicted distribution

for each historical sample and minimizes the average historical costs over the whole training data.

Figure 5 describes how the downstream cost is propagated by the predictive model during training.

This training procedure necessarily comes at the price of heavier computations because an optimization

model needs to be solved for each data point, and differentiation needs to be applied through an argmin

operation.
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Predicton
model

Optimization
model

Task loss
Context

xi

Prediction

fθ(xi)

Decision

z∗(xi, fθ)

∇θc(z
∗(xi, fθ),yi)

Parameter

yi

Figure 5: ILO training pipeline for a given training example.

2.3 Summary

This section presents the main pipelines proposed in recent years to address contextual optimization.

Although these pipelines all include a learning component, they differ significantly in their specific

structures and training procedures. Overall, there are several design choices that the decision maker

should make when tackling contextual optimization: (i) the architecture of the pipeline, i.e., whether it

includes a single predictive component or whether it combines learning and optimization, (ii) the class

of the predictive model (e.g., linear, neural network or random forest) and its hyperparameters, (iii) the

type of loss function used during training, i.e., minimizing the estimation error or the downstream cost

of the policy, which defines whether an approach belongs to the sequential or integrated paradigm. Each

design choice has its own inductive bias and may imply specific methodological challenges, especially

for ILO. In general, it is a priori unclear what combination of choices will lead to the best performance;

therefore, pipelines have to be evaluated experimentally.

In the following sections, we survey the recent literature corresponding to the three main frameworks

for contextual optimization using the notation introduced so far, which is summarized in Table 1. A

list of abbreviations used in this survey is given in Appendix 1.2.

Table 1: Notation: distributions, variables, and operators.

Domain Description

P M(X × Y) True (unknown) joint distribution of (x,y)

P̂N M(X × Y) Joint empirical distribution of (x,y)

δy M(Y) Dirac distribution that puts all of its weight on y

x X ⊆ Rnx Contextual information

y Y ⊆ Rny Uncertain parameters

z Z ⊆ Rnz A feasible decision

θ Θ Parameters of a prediction model

c(z,y) R Cost of a decision z under y

h(z,Qy) R Expected cost of a decision z under Qy (a distribution over y)

H(π,Q) R Expected cost of a policy π under Q (a distribution over (x,y))

fθ(x) H Estimate of the conditional distribution of y given x

gθ(x) R Estimate of the conditional expectation of y given x

π∗(x) Z Optimal solution of CSO under true conditional distribution P(y|x)
πθ(x) Z Decision prescribed by a policy parameterized by θ for context x

z∗(x) Z Optimal solution to the CSO problem under the true conditional distribution P(y|x)
z∗(x, fθ) Z Optimal solution to the CSO problem under the conditional distribution fθ(x)

z∗(x, gθ) Z Optimal solution to the CSO problem under the Dirac distribution δgθ(x)

ρ(fθ , P̂N ) R Expected prediction error for distribution model fθ based on empirical distribution in P̂N

ρ(gθ , P̂N ) R Expected prediction error for point prediction model gθ based on empirical distribution in P̂N
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3 Decision rule optimization

Decision rules obtained by solving the ERM in Problem (4) minimize the cost of a policy on the

task, that is, the downstream optimization problem. Policy-based approaches are especially efficient

computationally at decision time since it suffices to evaluate the estimated policy. No optimization

problem needs to be solved once the policy is trained. We defined the decision rule approach as em-

ploying a parameterized mapping πθ(x), e.g., linear policies (Ban and Rudin 2019) or a neural network

(Oroojlooyjadid et al. 2020). Since policies obtained using neural networks lack interpretability, linear

decision rules are widely used.

3.1 Linear decision rules

Ban and Rudin (2019) show that an approach based on the sample-average approximation (SAA) that

disregards side information can lead to inconsistent decisions (i.e., asymptotically suboptimal) for a

newsvendor problem. Using linear decision rules (LDRs), they study two variants of the newsvendor

problem with and without regularization:

min
π:π(x)=q⊤x

H(π, P̂N ) + Ω(π) = min
q

1

N

N∑
i=1

u(yi − q⊤xi)
+ + o(q⊤xi − yi)

+ + λ∥q∥2k,

where o and u denote the per unit backordering (underage) and holding (overage) costs. Ban and

Rudin (2019) show that for a linear demand model, the generalization error for the ERM model

scales as O( nx√
N
) when there is no regularization and as O( nx√

Nλ
) with regularization. However, one

needs to balance the trade-off between generalization error and bias due to regularization to get the

optimal performance from using LDRs. Ban and Rudin (2019) and Bertsimas and Kallus (2020)

consider unconstrained problems because it is difficult to ensure the feasibility of policies and maintain

computational tractability using the ERM approach. Unfortunately, LDRs may not be asymptotically

optimal in general, and the out-of-sample guarantees have only been established for specific classes

of policies (e.g., LDRs). To generalize LDRs, one can consider decision rules that are linear in the

transformations of the covariate vector (Ban and Rudin 2019). It is also possible to lift the covariate

vector to a reproducing kernel Hilbert space (RKHS) (Aronszajn 1950), as seen in the next section.

3.2 RKHS-based decision rules

To obtain decision rules that are more flexible than linear ones with respect to x, it is possible to lift

the covariate vector to an RKHS in which LDRs might achieve better performance. Let K : X×X → R
be the symmetric positive definite kernel associated with the chosen RKHS, e.g., the Gaussian kernel

K(x1,x2) := exp(−∥x1 − x2∥2/(2σ2)). Given K, the RKHS HK is defined as the closure of a set of

functions given below:

{
φ : X → R | ∃L ∈ N, v1,v2, · · · ,vL ∈ X , φ(x) =

L∑
l=1

alK(vl,x),∀x ∈ X
}
,

with the inner product of φ1(x) =
∑L1

i=1 a
i
1K(vi

1,x) and φ2(x) =
∑L2

j=1 a
j
2K(vj

2,x) given by:

⟨φ1, φ2⟩ =
L1∑
i=1

L2∑
j=1

ai1a
j
2K(vi

1,v
j
2).

Bertsimas and Koduri (2022) approximate the optimal policy with a linear policy in the RKHS, i.e.

πφ(x) := ⟨φ,K(x, ·)⟩ when nz = 1, and show using the representer theorem (see Theorem 9 in Hofmann

et al. 2008) that the solution of the following regularized problem:

min
φ∈HK

H(πφ, P̂N ) + λ∥φ∥22,
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takes the form π∗(x) =
∑N

i=1 K(xi,x)a
∗
i . Hence, this reduces the decision rule problem to:

min
a∈RN

H

(
N∑
i=1

K(xi, ·)ai, P̂N

)
+ λ

N∑
i=1

N∑
j=1

K(xi,xj)aiaj .

This can be extended to nz > 1 by employing one RKHS for each zi.

This RKHS approach appeared earlier in Ban and Rudin (2019) and Bazier-Matte and Delage

(2020) who respectively study the data-driven single item newsvendor and single risky asset portfolio

problems and establish bounds on the out-of-sample performance. Bertsimas and Koduri (2022) show

the asymptotic optimality of RKHS-based policies. Notz and Pibernik (2022) study a two-stage ca-

pacity planning problem with multivariate demand and vector-valued capacity decisions for which the

underlying demand distribution is difficult to estimate in practice. Similar to Bazier-Matte and Delage

(2020), the authors optimize over policies that are linear in the RKHS associated with the Gaussian

kernel and identify generalization error bounds. For large dimensional problems, this kernel is shown

to have a slow convergence rate, and as a result, the authors propose instead using a data-dependent

random forest kernel.

3.3 Non-linear decision rules

Many non-linear decision rule approaches have been experimented with. Zhang and Gao (2017), Huber

et al. (2019), and Oroojlooyjadid et al. (2020) study the value of training a DNN to learn the ordering

policy of a newsvendor problem. It is well-known that neural networks enjoy the universal approxima-

tion property; that is, they can approximate any continuous function arbitrarily well (Cybenko 1989,

Lu et al. 2017). For constrained problems, one can use softmax as the final layer to ensure that decisions

lie in a simplex, e.g., in a portfolio optimization problem (Zhang et al. 2021). In practice, the output

of a neural network might not naturally land in the feasible space Z. To circumvent this issue, Chen

et al. (2023) proposed to introduce an application-specific differentiable repair layer that projects the

solution back to feasibility. Rychener and Sutter (2023) show that the decision rule obtained by using

the stochastic gradient descent (SGD) method to train DNN-based policies approximately minimizes

the Bayesian posterior loss.

Exploiting the fact that the optimal solution of a newsvendor problem is a quantile of the demand

distribution, Huber et al. (2019) further trains, using quantile regression, an additive ensemble of

decision trees to produce the ordering decision. They test these algorithms on a real-world dataset from

a large German bakery chain. Bertsimas et al. (2019), Ciocan and Mǐsić (2022), and Keshavarz (2022)

optimize decision tree-based decision rules to address the multi-item newsvendor, treatment planning,

and optimal stopping problems, respectively. A tutorial on DNN-based decision rule optimization is

given in Shlezinger et al. (2022).

Zhang et al. (2023b) introduce piecewise-affine decision rules (PADRs) and provide non-asymptotic

and asymptotic consistency results for unconstrained and constrained problems, respectively. The pol-

icy is learned through a stochastic majorization-minimization algorithm. Experiments on a constrained

newsvendor problem show that PADRs can outperform the RKHS-based policies.

3.4 Distributionally robust decision rules

Most of the literature on policy learning assumes a parametric form Πθ for the policy. A notable

exception is Zhang et al. (2023a), which study a distributionally robust contextual newsvendor problem

under type-1 Wasserstein ambiguity set, without assuming an explicit structure on the policy class.

The distributionally robust model avoids the degeneracies of ERM for generic Π by defining an optimal

“Shapley” extension to the scenario-based optimal policy. Mathematically,

min
π∈Π

sup
Q∈M(X×Y)

{H(π,Q) : W(Q, P̂N ) ≤ r} ≡ min
π:X̂→Z

sup
Q∈M(X̂×Y)

{H(π,Q) : W(Q, P̂N ) ≤ r},
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where X̂ := ∪N
i=1{xi} and M(X̂ × Y) is the set of all distribution supported on X̂ × Y.

Prior to the work of Zhang et al. (2023a), many have considered distributionally robust versions

of the decision rule optimization problem in the non-contextual setting (Yanıkoğlu et al. 2019) while

Bertsimas et al. (2023) use LDRs to solve dynamic optimization problems with side information.

Yang et al. (2023) point out that the perturbed distributions in the Wasserstein ambiguity set

might have a different conditional information structure than the estimated conditional distribution.

They introduce a distributionally robust optimization (DRO) problem with causal transport metric

(Backhoff et al. 2017, Lassalle 2018) that places an additional causality constraint on the transport

plan compared to the Wasserstein metric. Tractable reformulations of the DRO problem are given

under LDRs as well as for one-dimensional convex cost functions. Rychener and Sutter (2023) present

a Bayesian interpretation of decision rule optimization using SGD and show that their algorithm

provides an unbiased estimate of the worst-case objective function of a DRO problem as long as a

uniqueness condition is satisfied. The authors note that the Wasserstein ambiguity set violates this

condition and thus use the Kullback-Leibler (KL) divergence (Kullback and Leibler 1951) to train the

models.

4 Sequential learning and optimization

In reviewing contextual optimization approaches that are based on SLO, we distinguish two settings:

(i) a more traditional setting where the conditional distribution is learned from data and used directly

in the optimization model, and (ii) a setting that attempts to produce decisions that are robust to

model misspecification. An overview of the methods presented in this section is given in Table 2.

Table 2: Overview of contextual optimization papers in the SLO framework.

Method Regularization Learning model

rCSO wSAA EVB Reg. CSO DRO General Linear Kernel kNN DT RF

Deng and Sen (2022) ✔ ✗ ✗ ✗ ✗ ✔ ✔ ✔ ✔ ✔ ✔

Ban et al. (2019) ✔ ✗ ✗ ✗ ✗ ✗ ✔ ✗ ✗ ✗ ✗

Kannan et al. (2020) ✔ ✗ ✗ ✗ ✗ ✔ ✔ ✔ ✔ ✔ ✔

Hannah et al. (2010) ✗ ✔ ✗ ✗ ✗ ✗ ✗ ✔ ✗ ✗ ✗

Bertsimas and Kallus (2020) ✗ ✔ ✗ ✗ ✗ ✗ ✔ ✗ ✔ ✔ ✔

Notz and Pibernik (2022) ✗ ✔ ✗ ✗ ✗ ✗ ✗ ✔ ✗ ✔ ✗

Ferreira et al. (2016) ✗ ✗ ✔ ✗ ✗ ✗ ✗ ✗ ✗ ✔ ✗

Liu et al. (2021) ✗ ✗ ✔ ✗ ✗ ✗ ✔ ✗ ✗ ✔ ✗

Lin et al. (2022) ✗ ✔ ✗ ✔ ✗ ✗ ✗ ✗ ✔ ✔ ✔

Srivastava et al. (2021) ✗ ✔ ✗ ✔ ✗ ✗ ✗ ✔ ✗ ✗ ✗

Bertsimas and Van Parys (2022) ✗ ✔ ✗ ✗ ✔ ✗ ✗ ✔ ✔ ✗ ✗

Wang et al. (2021) ✗ ✔ ✗ ✗ ✔ ✗ ✗ ✔ ✗ ✗ ✗

Chen and Paschalidis (2019) ✗ ✔ ✗ ✗ ✔ ✗ ✗ ✗ ✔ ✗ ✗

Nguyen et al. (2021) ✗ ✔ ✗ ✗ ✔ ✗ ✗ ✗ ✔ ✗ ✗

Esteban-Pérez and Morales (2022) ✗ ✔ ✗ ✗ ✔ ✗ ✗ ✔ ✔ ✗ ✗

Kannan et al. (2021) ✔ ✗ ✗ ✗ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Kannan et al. (2022) ✔ ✗ ✗ ✗ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Perakis et al. (2023) ✔ ✗ ✗ ✗ ✔ ✗ ✔ ✗ ✗ ✗ ✗

Zhu et al. (2022) ✗ ✗ ✔ ✗ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Note: we distinguish between regularized CSO models (Reg. CSO) and DRO-based regularization; an approach is classified as“General” if its
learning model is not restricted to specific classes.

4.1 Learning conditional distributions

Most of the recent literature has employed discrete models for fθ(x). This is first motivated from a

computational perspective by the fact that the CSO Problem (5) is easier to solve in this setting. In

fact, more often than not, the CSO under a continuous distribution needs to be first replaced by its

SAA to be solved (Shapiro et al. 2014). From a statistical viewpoint, it can also be difficult to assess
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the probability of outcomes that are not present in the dataset, thus justifying fixing the support of y

to its observed values.

4.1.1 Residual-based distribution.

A first approach (found in Sen and Deng 2017, Kannan et al. 2020, Deng and Sen 2022) is to use

the errors of a trained regression model (i.e., its residuals) to construct conditional distributions. Let

gθ̂ be a regression model trained to predict the response y from the covariate x, thus minimizing an

estimation error ρ as in (7). The residual error of sample i is given by ϵi = yi − gθ̂(xi). The set of

residuals measured on the historical data, {ϵi}Ni=1, is then used to form the conditional distribution

fθ(x) =
1
N

∑N
i=1 δgθ̂(x)+ϵi . The residual-based CSO (rCSO) problem is now given by:

(rCSO) min
z∈Z

h(z,PER(x)) with PER(x) :=
1

N

N∑
i=1

δprojY(gθ̂(x)+ϵi). (10)

with projY denoting the orthogonal projection on the support Y. The advantage of residual-based

methods is that they can be applied in conjunction with any trained regression model. Ban et al.

(2019) and Deng and Sen (2022) build conditional distributions for two-stage and multi-stage CSO

problems using the residuals obtained from parametric regression on the historical data.

Notice that, in this approach, the historical data is used twice: to train the regression model gθ,

and to measure the residuals ϵi. This can lead to an underestimation of the distribution of the

residual error. To remove this bias, Kannan et al. (2020) propose a leave-one-out model (also known

as jackknife). They measure the residuals as ϵ̃i = yi − gθ̂−i
(xi), where θ̂−i is trained using all the

historical data except the i-th sample (xi,yi). This idea can also be applied to the heteroskedastic

case studied in Kannan et al. (2021), where the following conditional distribution is obtained by first

estimating the conditional covariance matrix Q̂(x) (a positive definite matrix for almost every x) and

then forming the residuals ϵ̂i = [Q̂(xi)]
−1(yi − gθ̂(xi)):

fθ(x) :=
1

N

N∑
i=1

δprojY(gθ̂(x)+Q̂(x)ϵ̂i)
.

4.1.2 Weight-based distribution.

A typical approach for formulating the CSO problem is to assign weights to the observations of the

uncertain parameters in the historical data and solving the weighted SAA problem (wSAA) given by

(Bertsimas and Kallus 2020):

(wSAA) min
z∈Z

h

(
z,

N∑
i=1

wi(x)δyi

)
. (11)

In this case, the conditional distribution fθ(x) =
∑N

i=1 wi(x)δyi
is fully determined by the function

used to assign a weight to the historical samples. Different approaches have been proposed to determine

the sample weights with ML methods.

Weights based on proximity. Sample weights can be assigned based on the distance between a con-

text x and each historical sample xi. For instance, a k-nearest neighbor (kNN) estimation gives equal

weight to the k closest samples in the dataset and zero weight to all the other samples. That is,

wkNN
i (x) := (1/k)1[xi ∈ Nk(x)], where Nk(x) denotes the set of k nearest neighbors of x and 1[·]

is the indicator function. Even though it may appear simple, this non-parametric approach benefits

from asymptotic consistency guarantees on its prescriptive performance. Another method to determine

sample weights is to use kernel density estimators (Hannah et al. 2010, Srivastava et al. 2021, Ban and
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Rudin 2019). The Nadaraya-Watson (NW) kernel estimator (Watson 1964, Nadaraya 1964) employs

a weight function:

wKDE
i (x) :=

K ((x− xi)/θ)∑N
j=1 K ((x− xj)/θ)

where K is a kernel function and θ denotes its bandwidth parameter. Different kernel functions can

be used, e.g., the Gaussian kernel defined as K(∆) ∝ exp(−∥∆∥2). Hannah et al. (2010) also use

Bayesian approach that exploits the Dirichlet process mixture to assign sample weights.

Weights based on random forest. Weights can also be designed based on random forests (Bertsimas

and Kallus 2020). In its simplest setting, the weight function of a decision tree is given by:

wt
i(x) :=

1 [Rt(x) = Rt(xi)]∑N
j=1 1 [Rt(x) = Rt(xj)]

where Rt(x) denotes the terminal node of tree t that contains covariate x. Thus, a decision tree

assigns equal weights to all the historical samples that end in the same leaf node as x. The random

forest weight function generalizes this idea over many random decision trees. Its weight function is

defined as:

wRF
i (x) :=

1

T

T∑
t=1

wt
i(x),

where wt
i is the weight function of tree t. Random forests are typically trained in order to perform an

inference task, e.g. regression, or classification, but can also be used and interpreted as non-parametric

conditional density estimators.

Bertsimas and Kallus (2020) provide conditions for the asymptotic optimality (see Definition A1

in Appendix 1.1) and consistency (see Definition A2 in Appendix 1.1) of prescriptions obtained by

solving Problem (11) with the weights functions given by kNN, NW kernel density estimation and

local linear regression.

4.1.3 Expected value-based models.

As described in Definition 1, when the cost function is linear, the training pipeline of SLO reduces

to conditional mean estimation. For instance, Ferreira et al. (2016) train regression trees to forecast

daily expected sales for different product categories in an inventory and pricing problem for an online

retailer. Alternatively, one may attempt to approximate the conditional density fθ(x) using a point

prediction gθ(x). For example, Liu et al. (2021) study a last-mile delivery problem, where customer

orders are assigned to drivers, and replace the conditional distribution of the stochastic travel time

with a point predictor (e.g. a linear regression or decision tree) that accounts for the number of stops,

total distance of the trip, etc.

4.2 Regularization and distributionally robust optimization

While non-parametric conditional density estimation methods benefit from asymptotic consistency

(Bertsimas and Kallus 2020, Notz and Pibernik 2022), they are known to produce overly optimistic

policies when the size of the covariate vector is large (see discussions in Bertsimas and Van Parys 2022).

To circumvent this issue, authors have proposed to either regularize the CSO problem (Srivastava et al.

2021, Lin et al. 2022) or to cast it as a DRO problem. In the latter case, one attempts to minimize

the worst-case expected cost over the set of distributions Br(fθ(x)) that lie at a distance r from the

estimated distribution fθ(x):

min
z∈Z

sup
Qy∈Br(fθ(x))

h(z,Qy).
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Bertsimas and Van Parys (2022) generate bootstrap data from the training set and use it as a proxy

for the “out-of-sample disappointment” of a decision z resulting from the out-of-sample cost exceeding

the budget given by supQy∈Br(fθ(x))
h(z,Qy). They show that for the NW kernel density estimator and

nearest neighbor estimator, the DRO, under a range of ambiguity sets, can be reformulated as a convex

optimization problem. Using KL divergence to measure the distance between the probability distri-

butions, they obtain guarantees (“bootstrap robustness”) with respect to the estimate-then-optimize

model taking bootstrap data as a proxy for out-of-sample data. Taking the center of Wasserstein

ambiguity set (see Kantorovich and Rubinshtein 1958) to be NW kernel estimator, Wang et al. (2021)

show that the distributionally robust newsvendor and conditional value at risk (CVaR) portfolio op-

timization problems can be reformulated as convex programs where the type-p Wasserstein distance

(earth mover’s distance) between distributions P1 and P2 is given by:

Wp(P1,P2) = inf
γ∈M(Y2)

(∫
Y×Y

∥y1 − y2∥pγ(dy1, dy2)
) 1

p

,

where γ is a joint distribution of y1 and y2 with marginals P1 and P2. They provide conditions to

obtain asymptotic convergence and out-of-sample guarantees on the solutions of the DRO model.

Chen and Paschalidis (2019) study a distributionally robust kNN regression problem by combining

point estimation of the outcome with a DRO model over a Wasserstein ambiguity set (Chen and

Paschalidis 2018) and then using kNN to predict the outcome based on the weighted distance metric

constructed from the estimates. Extending the methods developed in Nguyen et al. (2020), Nguyen

et al. (2021) study a distributionally robust contextual portfolio allocation problem where worst-

case conditional return-risk tradeoff is computed over an optimal transport ambiguity set consisting

of perturbations of the joint distribution of covariates and returns. Their approach generalizes the

mean-variance and mean-CVaR model, for which the distributionally robust models are shown to be

equivalent to semi-definite or second-order cone representable programs. Esteban-Pérez and Morales

(2022) solve a DRO problem with a novel ambiguity set that is based on trimming the empirical

conditional distribution, i.e., reducing the weights over the support points. The authors show the link

between trimming a distribution and partial mass transportation problem, and an interested reader

can refer to Esteban-Pérez and Morales (2023) for an application in the optimal power flow problem.

A distributionally robust extension of the rCSO model is presented in Kannan et al. (2021) and

Kannan et al. (2022). It hedges against all distributions that lie in the r radius of the (Wasserstein)

ambiguity ball centered at the estimated distribution PER(x). Perakis et al. (2023) propose a DRO

model to solve a two-stage multi-item joint production and pricing problem with a partitioned-moment-

based ambiguity set constructed by clustering the residuals estimated from an additive demand model.

Zhu et al. (2022) considers an expected value-based model and suggests an ambiguity set that is

informed by the estimation metric used to train gθ̂. Namely, they consider:

min
z∈Z

sup
θ∈U(θ̂,r)

c(z, gθ(x)),

with

U(θ̂, r) := {θ ∈ θ|ρ(gθ, P̂N ) ≤ ρ(gθ̂, P̂N ) + r}.

They show how finite-dimensional convex reformulations can be obtained when gθ(x) := θTx, and

promote the use of a “robustness optimization” form.

5 Integrated learning and optimization

As discussed previously, ILO is an end-to-end framework that includes three components in the training

pipeline: (i) a prediction model that maps the covariate to a predicted distribution (or possibly a point

prediction), (ii) an optimization model that takes as input a prediction and returns a decision, and
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Table 3: Overview of contextual optimization papers in the ILO framework.

Objective Feasible domain Training

LP QP Convex
Non

convex
Integer Uncertain

Implicit
diff.

Surr.
loss

Surr.
optim.

Donti et al. (2017) ✗ ✔ ✔ ✗ ✗ ✔ ✔ ✗ ✗

Butler and Kwon (2023a) ✗ ✔ ✗ ✗ ✗ ✗ ✔ ✗ ✗

McKenzie et al. (2023) ✔ ✗ ✗ ✗ ✗ ✗ ✔ ✗ ✗

Kotary et al. (2023) ✔ ✔ ✔ ✔ ✗ ✗ ✔ ✗ ✗

Sun et al. (2023b) ✗ ✔ ✗ ✔ ✗ ✗ ✔ ✗ ✗

Wilder et al. (2019a) ✔ ✗ ✗ ✗ ✗ ✗ ✔ ✗ ✗

Ferber et al. (2020) ✔ ✗ ✗ ✗ ✔ ✗ ✔ ✗ ✗

Mandi and Guns (2020) ✔ ✗ ✗ ✗ ✔ ✗ ✔ ✗ ✗

Elmachtoub and Grigas (2022) ✔ ✗ ✗ ✗ ✔ ✗ ✗ ✔ ✗

Loke et al. (2022) ✔ ✗ ✗ ✗ ✗ ✗ ✗ ✔ ✗

Mandi et al. (2020) ✔ ✗ ✗ ✗ ✔ ✗ ✗ ✔ ✗

Jeong et al. (2022) ✔ ✗ ✗ ✗ ✔ ✗ ✗ ✔ ✗

Muñoz et al. (2022) ✔ ✗ ✗ ✗ ✗ ✗ ✗ ✔ ✗

Estes and Richard (2023) ✔ ✗ ✔ ✗ ✗ ✗ ✗ ✔ ✗

Elmachtoub et al. (2020) ✔ ✗ ✗ ✗ ✗ ✗ ✗ ✔ ✗

Kallus and Mao (2022) ✗ ✗ ✔ ✗ ✗ ✗ ✗ ✔ ✗

Wilder et al. (2019b) ✗ ✔ ✗ ✗ ✔ ✗ ✗ ✔ ✗

Vlastelica et al. (2019) ✔ ✗ ✗ ✗ ✔ ✗ ✗ ✔ ✗

Chung et al. (2022) ✗ ✗ ✔ ✗ ✔ ✗ ✗ ✔ ✗

Lawless and Zhou (2022) ✔ ✗ ✗ ✗ ✔ ✗ ✗ ✔ ✗

Berthet et al. (2020) ✔ ✗ ✗ ✗ ✔ ✗ ✗ ✗ ✔

Dalle et al. (2022) ✔ ✗ ✗ ✗ ✔ ✗ ✗ ✗ ✔

Kong et al. (2022) ✗ ✔ ✔ ✔ ✔ ✗ ✗ ✗ ✔

Mandi et al. (2022) ✔ ✗ ✗ ✗ ✔ ✗ ✗ ✗ ✔

Grigas et al. (2021) ✗ ✗ ✔ ✗ ✗ ✗ ✗ ✗ ✔

Cristian et al. (2022) ✗ ✗ ✔ ✗ ✗ ✗ ✗ ✗ ✔

Shah et al. (2022) ✗ ✔ ✔ ✔ ✔ ✗ ✗ ✗ ✔

Notes: an approach has a “Convex” objective if it can handle general convex objective functions that are not
linear or quadratic such as convex piecewise-linear objective functions; an “Uncertain” feasible domain denotes
that some constraints are subject to uncertainty. Implicit diff., surr. loss and surr. optim. denote implicit differ-
entiation, surrogate differentiable loss function and surrogate differentiable optimizer, respectively.

(iii) a task-based loss function that captures the downstream optimization problem. The parameters

of the prediction model are trained to maximize the prescriptive performance of the policy, i.e., it is

trained on the task loss incurred by this induced policy rather than the estimation loss.

Next, we discuss several methods for implementing the ILO approach. We start by describing

the different models that are used in ILO (Section 5.1), and then we present the algorithms used to

perform the training. We divide the algorithms into four categories. Namely, training using unrolling

(Section 5.2), implicit differentiation (Section 5.3), a surrogate differentiable loss function (Section 5.4),

and a differentiable optimizer (Section 5.5). An overview of the methods presented in this section is

given in Table 3.

5.1 Models

Bengio (1997) appears to have been the first to have trained a prediction model using a loss that is

influenced by the performance of the decision prescribed by a conditional expected value-based decision

rule. This was done in the context of portfolio management, where an investment decision rule exploits

a point prediction of asset returns. Effective wealth accumulation is used to steer the predictor toward

predictions that lead to good investments. More recent works attempt to integrate a full optimization
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model, rather than a rule, into the training pipeline. Next, we summarize how ILO is applied to the

two types of contextual optimization models and introduce two additional popular task models that

have been considered under ILO, replacing the traditional expected cost task.

Expected value-based model. To this date, most of the literature has considered performing ILO

on an expected value-based optimization model. Namely, following the notation presented in Def-

inition 1 (Section 2.2.2), this training pipeline is interested in the loss L(θ) := H(z∗(·, gθ), P̂N ) =

EP̂N
[c(z∗(x, gθ),y)] with gθ(x) as a point predictor for y, which we interpret as a prediction of E[y|x].

This already raises challenges related to the non-convexity of the integrated loss function L(θ) and its

differentiation with respect to θ:

∇θL(θ) =
1

N

N∑
i=1

∇θc(z
∗(xi, gθ),yi)

=
1

N

N∑
i=1

nz∑
j=1

ny∑
k=1

∂c(z∗(xi, gθ),yi)

∂zj

∂z∗j (xi, ŷ)

∂ŷk

∣∣∣∣
ŷ=gθ(xi)

∇θ[gθ(xi)]k

with
∂z∗

j (xi,ŷ)

∂ŷk
as the most problematic evaluation. For instance, when z∗(xi, gθ) is the solution of a

linear program (LP), it is well known that its gradient is either null or non-existent as it jumps between

extreme points of the feasible polyhedron as the objective is perturbed.

Conditional distribution-based model. In the context of learning a conditional distribution model

fθ(x), Donti et al. (2017) appear to be the first to study the ILO problem. They model the dis-

tribution of the uncertain parameters using parametric distributions (exponential and normal). For

the newsvendor problem, it is shown that the ILO model outperforms decision rule optimization with

neural networks and SLO with maximum likelihood estimation (MLE) when there is model misspeci-

fication. Since then, it has become more common to formulate the CSO problem as a weighted SAA

model (as discussed in Section 4.1.2). The prediction model fθ then amounts to identifying a vector of

weights to assign to each historical sample, which effectively reduces to the expected value paradigm

with z∗(x, gθ) := z∗(x,
∑N

i=1[gθ(·)]iδyi
), where [gθ(x)]i denotes the estimated conditional probability

of scenario yi given x. This is done by Kallus and Mao (2022) using a random forest to assign weights

and by Grigas et al. (2021) with a neural network to predict the probabilities for a finitely supported

y.

Regret minimization task. A recent line of work has tackled the ILO problem from the point of view

of regret. Indeed, in Elmachtoub and Grigas (2022), a contextual point predictor gθ(x) is learned

by minimizing the regret associated with implementing the prescribed decision based on the mean

estimator gθ(x) instead of based on the realized parameters y (a.k.a. the optimal hindsight or wait-

and-see decision). Specifically, the value of an expected value-based policy πθ(x) := z∗(x, gθ) is

measured as the expected regret

HRegret(πθ,P) := EP[c(πθ(x),y)− c(z∗(x,y),y)], (12)

which returns the same optimal parameter vector θ as the ILO problem (9). This is due to the fact

that:

HRegret(π, P̂N ) = EP̂N
[c(π(x),y)− c(z∗(x,y),y)] = H(π, P̂N )− EP̂N

[c(z∗(x,y),y)].

Hence, both HRegret(π, P̂N ) and H(π, P̂N ) have the same set of minimizers.

Optimal action imitation task. ILO has some connections to inverse optimization, i.e., the problem

of learning the parameters of an optimization model given data about its optimal solution (see Sun

et al. 2023a, where both problems are addressed using the same method). Indeed, one can replace
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the original objective of ILO with an objective that seeks to produce a z∗(x, fθ) that is as close as

possible to the optimal hindsight action and, therefore, closer to the regret objective. Specifically, to

learn a policy that “imitates” the optimal hind-sight action, one can first augment the data set with

z∗
i := z∗(xi,yi) to get {(xi,yi, z

∗
i )}Ni=1. Thereafter, a prediction model fθ(x) is learned in a way that

the decision z∗(xi, fθ) is as close as possible to z∗
i for all samples in the training set (Kong et al. 2022):

HImitation(π, P̂′
N ) := EP̂′

N
[d(π(x), z∗)] = EP̂N

[d(π(x), z∗(x,y))] (13)

with P̂′
N as the empirical distribution on the lifted tuple (x,y, z∗(x,y)) based on the augmented data

set and a distance function d(z, z∗). We note that there is no reason to believe that the best imitator

under a general distance function, e.g., ∥z − z∗∥2, performs well under our original metric H(π, P̂N ).

One exception is for d(z, z∗) := c(z,y)−c(z∗,y), where we allow the distance to also depend on y, for

which we recover the regret minimization approach, and therefore the same solution as with H(π, P̂N ).

5.2 Training by unrolling

An approach to obtain the Jacobian matrix ∂z∗(x,ŷ)
∂ŷ is unrolling (Domke 2012), which involves approx-

imating the optimization problem with an iterative solver (e.g., first-order gradient-based method).

Each operation is stored on the computational graph, which then allows, in principle, for computing

gradients through classical back-propagation methods. Unfortunately, this approach requires extensive

amounts of memory. Besides this, the large size of the computational graph exacerbates the vanish-

ing and exploding gradient problems typically associated with training neural networks (Monga et al.

2021).

5.3 Training using implicit differentiation

Implicit differentiation allows for a memory-efficient backpropagation as opposed to unrolling (we

refer to Bai et al. 2019, for discussion on training constant memory implicit models using an FP

equation and feedforward networks of infinite depths). Amos and Kolter (2017) appears to be the

first to have employed implicit differentiation methods to train an ILO model, which they refer to as

OptNet. They consider expected value-based optimization models that take the form of constrained

quadratic programs (QP) with equality and inequality constraints. They show how the implicit function

theorem (IFT) (see Krantz and Parks 2002) can be used to differentiate z∗(x, gθ) with respect to θ

using the Karush–Kuhn–Tucker (KKT) conditions that are satisfied at optimality. Further, they
provide a custom solver based on a primal-dual interior method to simultaneously solve multiple

QPs on GPUs in batch form, permitting 100-times speedups compared to Gurobi and CPLEX. This

approach is extended to conditional stochastic and strongly convex optimization models in Donti et al.

(2017). They use sequential quadratic programming (SQP) to obtain quadratic approximations of the

objective functions of the convex program at each iteration until convergence to the solution, and

then differentiate the last iteration of SQP to obtain the Jacobian. For a broader view of implicit

differentiation, we refer to the surveys by Duvenaud et al. (2020) and Blondel et al. (2022).

To solve large-scale QPs with linear equality and box inequality constraints, Butler and Kwon

(2023a) use the ADMM algorithm to decouple the differentiation procedure for primal and dual vari-

ables, thereby decomposing the large problem into smaller subproblems. Their procedure relies on

implicit differentiation of the fixed-point (FP) equations of the alternating direction method of multi-

pliers (ADMM) algorithm (ADMM-FP). They show that the unrolling of the iterations of the ADMM

algorithm on the computational graph (Sun et al. 2016, Xie et al. 2019) results in higher computation

time than ADMM-FP. Their empirical results on a portfolio optimization problem with 254 assets sug-

gest that computational time can be reduced by a factor of almost five by using ADMM-FP compared to

OptNet, mostly due to the use of the ADMM algorithm in the forward pass. Note that the experiments

in Butler and Kwon (2023a) were conducted on a CPU.
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To extend OptNet to a broader class of problems, Agrawal et al. (2019) introduce CvxpyLayer that

relies on converting disciplined convex programs in the domain-specific language used by Cvxpy into

conic programs. They implicitly differentiate the residual map of the homogeneous self-dual embedding

associated with the conic program.

McKenzie et al. (2023) note that using KKT conditions for constrained optimization problems

with DNN-based policies is computationally costly as “CvxpyLayer struggles with solving problems

containing more than 100 variables” (see also Butler and Kwon 2023a). An alternative is to use

projected gradient descent (PGD) where DNN-based policies are updated using an iterative solver and

projected onto the constraint set Z at each iteration and the associated fixed point system (Donti

et al. 2021, Chen et al. 2021, Blondel et al. 2022) is used to obtain the Jacobian.

Since a closed-form solution for the projection onto Z is unavailable in many cases, the projection

step may be costly, and in some cases, PGD may not even converge to a feasible point (Rychener and

Sutter 2023). To avoid computing the projection in the forward pass, McKenzie et al. (2023) solve the

expected value-based CSO problem using Davis-Yin operator splitting (Davis and Yin 2017) while the

backward pass uses the Jacobian-free backpropagation (JFB – Fung et al. 2022) in which the Jacobian

matrix is replaced with an identity matrix.

To mitigate the issues with unrolling, Kotary et al. (2023) propose FP folding (fold-opt) that

allows analytically differentiating the FP system of general iterative solvers, e.g., ADMM, SQP, and

PGD. By unfolding (i.e., partial unrolling), some of the steps of unrolling are grouped in analytically

differentiable update function T : Rny → Rny :

zk+1(x, ŷ) = T (zk(x, ŷ), ŷ).

Realizing that z∗(x, ŷ) is the FP of the above system, they use the IFT to obtain a linear system (a

differential FP condition) that can be solved to obtain the Jacobian. This effectively decouples the

forward and backward pass enabling the use of black box solvers like Gurobi for the forward pass while

CvxpyLayer is restricted to operator splitting solvers like ADMM. An added benefit of using fold-opt

is that it can solve non-convex problems. In the case of portfolio optimization, the authors note that

the superior performance of their model with respect to CvxpyLayer can be explained by the precise

calculations made in the forward pass by Gurobi.

While speedups can be obtained for sparse problems, Sun et al. (2023b) remark that the complexity

associated with differentiating the KKT conditions is cubic in the total number of decision variables
and constraints in general. They propose an alternating differentiation framework (called Alt-Diff)

to solve parameterized convex optimization problems with polyhedral constraints using ADMM that

decouples the objective and constraints. This procedure results in a smaller Jacobian matrix when

there are many constraints since the gradient computations for primal, dual, and slack variables are

done alternatingly. The gradients are shown to converge to those obtained by differentiating the KKT

conditions. The authors employ truncation of iterations to compensate for the slow convergence of

ADMM when compared to interior-point methods and provide theoretical upper bounds on the error

in the resulting gradients. Alt-Diff is shown to achieve the same accuracy with truncation and lower

computational time when compared to CvxpyLayer for an energy generation scheduling problem.

Motivated by OptNet, several extensions have been proposed to solve linear and combinatorial

problems. Wilder et al. (2019a) solve LP-representable combinatorial optimization problems and LP

relaxations of combinatorial problems during the training phase. Their model, referred to as QPTL

(Quadratic Programming Task Loss), adds a quadratic penalty term to the objective function of the

linear problem. This has two advantages: it recovers a differentiable linear-quadratic program, and the

added term acts as a regularizer, which might avoid overfitting. To solve a general mixed-integer LP

(MILP), Ferber et al. (2020) develop a cutting plane method MIPaal, which adds a given number of

cutting planes in the form of constraints Sz ≤ s to the LP relaxation of the MILP. Instead of adding

a quadratic term, Mandi and Guns (2020) propose IntOpt based on the interior point method to solve
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LPs that adds a log barrier term to the objective function and differentiates the homogeneous self-dual

formulation of the LP. Their experimental analyses show that this approach performs better on energy

cost-aware scheduling problems than QPTL using the data from Ifrim et al. (2012).

5.4 Training using a surrogate differentiable loss function

As discussed in Section 5.1, minimizing directly the task loss in (9) or the regret in (12) is computa-

tionally difficult in most cases. For instance, the loss may be piecewise-constant as a function of the

parameters of a prediction model and, thus, may have no informative gradient. To address this issue,

several surrogate loss functions with good properties, e.g., differentiability and convexity, have been

proposed to train ILO models.

5.4.1 SPO+.

In the context of Smart “Predict, then Optimize” (SPO), Elmachtoub and Grigas (2022) first tackles

the potential non-uniqueness of z∗(x, gθ) by choosing to minimize the empirical average of the regret

under the worst-case optimal solution as defined below:

(SPO) min
θ

max
π

HRegret(π, P̂N ),

s.t. π(x) ∈ argmin
z∈Z

c(z, gθ(x)), ∀x.
(14)

In the expected value-based model, they show that the SPO objective reduces to training the prediction

model according to the ERM problem:

θ⋆ ∈ argmin
θ

ρSPO(gθ, P̂N ) := EP̂N

[
ℓSPO(gθ(x),y)

]
,

with:

ℓSPO(ŷ,y) := sup
z̄∈argminz∈Z c(z,ŷ)

c(z̄,y)− c(z∗(x,y),y).

Since the SPO loss function is nonconvex and discontinuous in ŷ (Ho-Nguyen and Kılınç-Karzan

2022, Lemma 1), Elmachtoub and Grigas (2022) focus on the linear objective c(z,y) := yTx and re-

place the SPO loss with a convex envelope approximation called SPO+ which has a closed-form expression

for its subgradient:

ℓSPO+(ŷ,y) := sup
z∈Z

(y − 2ŷ)Tz + 2ŷTz∗(x,y)− yTz∗(x,y).

Loke et al. (2022) propose a decision-driven regularization model (DDR) that combines prediction

accuracy and decision quality in a single optimization problem with loss function as follows:

ℓDDR(ŷ,y) = d(ŷ,y)− λmin
z∈Z

{µy⊤z + (1− µ)ŷ⊤z}

and SPO+ being a special case with µ = −1, λ = 1, and d(ŷ,y) = 2ŷ⊤z∗(x,y)− yTz∗(x,y).

SPO+ for combinatorial problems. Evaluating the SPO+ loss requires solving the optimization prob-

lem (8) to obtain z∗(x, 2ŷ−y) for each data point. This can be computationally demanding when the

optimization model in (8) is an NP-hard problem. Mandi et al. (2020) propose a SPO-relax approach

that computes the gradient of SPO+ loss by solving instead a continuous relaxation when (8) is a

MILP. They also suggest speeding up the resolution using a warm-start for learning with a pre-trained

model that uses MSE as the loss function. Another way proposed to speed up the computation is

warm-starting the solver that is used, e.g., z∗(x,y) can be used as a starting point for MILP solvers
or to cut away a large part of the feasible space. Mandi et al. (2020) show that for weighted and
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unweighted knapsack problems as well as energy-cost aware scheduling problems (CSPLib, Problem

059, Simonis et al. 2014), SPO-relax results in faster convergence and similar performance compared

to SPO+ loss. Also, SPO-relax provides low regret solutions and faster convergence compared to QPTL

in the aforementioned three problems, except in the weighted knapsack problem with low capacity.

With a focus on exact solution approaches, Jeong et al. (2022) study the problem of minimizing the

regret in (12) assuming a linear prediction model gθ(x) = θx with θ ∈ Rnz×nx . Under the assumption

that z∗(x, gθ) is unique for all θ and x, the authors reformulate the bilevel SPO problem as a single-level

MILP using symbolic variable elimination. They show that their model can achieve up to two orders

of magnitude improvement in expected regret compared to SPO+. Muñoz et al. (2022) applies a similar

idea of representing the set of optimal solutions with a MILP. They rely on the KKT conditions of

the problem defining z∗(x, gθ) to transform the bilevel integrated problem into a single-level MILP.

Finally, Estes and Richard (2023) use SPO loss function to solve a two-stage LP with right-hand side

uncertainty. They propose a lexicographical ordering rule to select the minimal solution when there

are multiple optima and approximate the resulting piecewise-linear loss function, lex-SPO, by a convex

surrogate to find the point predictor.

SPO Trees. Elmachtoub et al. (2020) propose a model (SPOT) to construct decision trees that segment

the contextual features based on the SPO loss function while retaining the interpretability in the end-

to-end learning framework. Their model outperforms classification and regression trees (CART) in

the numerical experiments on a news recommendation problem using the Yahoo! Front Page Today

Module dataset and on the shortest path problem with synthetic data used in Elmachtoub and Grigas

(2022).

Guarantees. Elmachtoub and Grigas (2022) show that under certain conditions, the minimizers of

SPO loss, SPO+ loss and MSE loss are almost always equal to EP(y|x)[y] given that EP(y|x)[y] ∈ H.

Thus, SPO+ is Fisher consistent (see Definition A3 in Appendix 1.1) with respect to SPO loss. This

means that minimizing the surrogate loss also minimizes the true loss function. Ho-Nguyen and Kılınç-

Karzan (2022) show that for a multiclass classification problem, SPO+ is Fisher inconsistent, while MSE

loss is consistent. However, complete knowledge of the distribution is a limitation in practice where

the decision maker has access to only the samples from the distribution. As a result, Ho-Nguyen

and Kılınç-Karzan (2022) and Liu and Grigas (2021) provide calibration bounds that hold for a class

of distributions D on X × Y and ensure that a lower excess risk of predictor for MSE and SPO+,

respectively, translates to lower excess SPO risk (see Definition A4 in Appendix 1.1).

In many ML applications, one seeks to derive finite-sample guarantees which are given in the form

of a generalization bound, i.e., an upper bound on the difference between the true risk of a loss function

and its empirical risk estimate for a given sample size N . A generalization bound for SPO loss function

is given in El Balghiti et al. (2022) (extension of El Balghiti et al. (2019)) based on Rademacher

complexity (see Definition A5 in Appendix 1.1) of the SPO loss composed with the prediction functions

gθ ∈ H. More specifically, the bound achieved in El Balghiti et al. (2019) is O

(√
log(N)

N

)
, and tighter

bounds with respect to decision and feature dimension are obtained using SPO function’s structure

and if Z satisfies a “strength” property. Hu et al. (2022) show that for linear CSO problems, the

generalization bound for MSE loss and SPO loss is O(
√

1
N ) while faster convergence rates for the SLO

model compared to ILO model are obtained under certain low-noise assumptions. Elmachtoub et al.

(2023) show that for non-linear optimization problems, SLO models stochastically dominate ILO in

terms of their asymptotic optimality gaps when the hypothesis class covers the true distribution. When

the model is misspecified, they show that ILO outperforms SLO for a newsvendor problem.

5.4.2 Surrogate loss for a stochastic forest.

Kallus and Mao (2022) propose an algorithm called StochOptForest, which generalizes the random-

forest based local parameter estimation procedure in Athey et al. (2019). A second-order perturbation
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analysis of stochastic optimization problems allows them to scale to larger CSO problems since they

can avoid solving an optimization problem at each candidate split. The policies obtained using their

model are shown to be asymptotically consistent, and the benefit of end-to-end learning is illustrated

by comparing their approach to the random forests of Bertsimas and Kallus (2020) on a set of problems

with synthetic and real-world data.

5.4.3 Other surrogates.

Wilder et al. (2019b) introduce ClusterNet to solve hard combinatorial graph optimization problems

by learning incomplete graphs. The model combines graph convolution networks to embed the graphs

in a continuous space and uses a soft version of k-means clustering to obtain a differential proxy for the

combinatorial problems, e.g., community detection and facility location. Numerical experiments on a

synthetic data set show that ClusterNet outperforms the two-stage SLO approach of first learning

the graph and then optimizing, as well as other baselines used in community detection and facility

location.

Focusing on combinatorial problems, Vlastelica et al. (2019) tackles the issue that the Jacobian

of z∗(x, gθ) is zero almost everywhere by approximating the true loss function using an interpolation

controlled in a way that balances between “informativeness of the gradient” and “faithfulness to the

original function”. Algorithmically, this is done by perturbing the prediction gθ(x) in the direction

∇zc(z
∗(x, gθ),y) and obtaining a gradient of the surrogate loss based on the effect of this perturbation

on the resulting perturbed action.

In Chung et al. (2022), a decision-focused learning-based approach is used to allocate medicines in

a health supply chain in Sierra Leone. Using the Taylor expansion of the decision loss and a single

prediction model for all the facilities, the resulting decision-aware model is trained using random

forests. To improve the scalability compared to Kallus and Mao (2022) and Wang et al. (2023), they

propose a weighted average distance over M facilities:

d(gθ(x),y) =

M∑
j=1

|wj |.|gθ(xj)− yj |, (15)

where the weights are given by wj = (∇yz
∗(x,y)∇zc(z

∗(x,y),y))j . They train a random forest to

minimize this surrogate loss. To recover a weighted SAA formulation, they define the conditional

distribution fθ(x) =
1
T

∑T
t=1 δgt

θ(x)
, where gtθ is the t-th regression tree of the random forest of size T .

The decision-aware loss in (15) is in line with the expected value-based model in Lawless and Zhou

(2022) for linear cost function, i.e., c = y⊤z. The prediction error is weighted with a decision-aware

regret term as follows:

d(gθ(x),y) = [c(z∗(x, gθ(x)),y)− c(z∗(x,y),y)](y − gθ(x))
2 (16)

Learning optimal θ from the above formulation involves an argmin differentiation. So, the authors

provide a two-step polynomial time algorithm to approximately solve the above problem. It first

computes a pilot estimator gθ̂ by solving (7) with d(gθ(x),y) = (gθ(x) − y)2 and then solving (7)

with the distance function in (16) where c(z∗(x, gθ(x)),y) is substituted with c(z∗(x, gθ̂(x)),y). The

authors show that their simple algorithm performs comparably to SPO+.

We conclude this subsection on surrogate loss functions by mentioning the efforts in Sun et al.

(2023a) to learn a decision-aware cost point estimator (in an expected value-based model) to imitate

the hindsight optimal solution. This is done by designing a surrogate loss function that penalizes

by how much the optimal basis optimality conditions are violated. They derive generalization error

bounds for this new loss function and employ them to provide a bound on the sub-optimality of the

minimal θ.
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5.5 Training using a surrogate differentiable optimizer

5.5.1 Differentiable perturbed optimizer.

One way of obtaining a differentiable optimizer is to apply a stochastic perturbation to the parameters

predicted by the ML model. Taking the case of expected value-based models as example, the key idea

is that, although the gradient of the solution of the conditional problem with respect to the predicted

parameters ŷ := gθ(x) is zero almost everywhere, if we perturb the predictor using a noise with

differentiable density, then the expectation of the solution of the perturbed contextual problem,

z̄ε(x, gθ) = EΨ[z̃
ε(x, gθ,Ψ)] with z̃ε(x, gθ,Ψ) := argmin

z∈Z
c(z, gθ(x) + εΨ),

where ε > 0 controls the amount of perturbation, and more generally of the expected cost of the

associated random policy EΨ[H(z̃ε(·, gθ,Ψ), P̂N )] can be shown to be smooth and differentiable. This

idea is proposed and exploited in Berthet et al. (2020), which focus on a bi-linear cost c(z,y) := yTz

thus simplifying EΨ[H(z̃ε(·, gθ,Ψ), P̂N )] = H(z̄ε(·, gθ), P̂N ). Further, they show that when an imitation

ILO model is used with a special form of Bregman divergence to capture the difference between z∗(x,y)

and z̃ε(x, ŷ,Ψ), the gradient of HImitation(z̃
ε(·, gθ,Ψ), P̂′

N ) can be computed directly without needing

to determine the Jacobian of z̄ε(x, gθ) (Blondel et al. 2020):

HImitation(z̃
ε(·, gθ,Ψ), P̂′

N ) := EP̂N
[ℓFY(gθ(x),y)]

with

ℓFY(ŷ,y) := ŷTz∗(x,y)− EΨ[(ŷ + εΨ)T z̃ε(x, ŷ,Ψ)] + εΩFY(z
∗(x,y)),

where ΩFY(z) is the Fenchel dual of F (y) := −EΨ[(y+Ψ)T z̃ε(x,y,Ψ)]. The gradient of the Fenchel-

Young loss with respect to the model prediction is given by:

∇ŷℓFY(ŷ,y) = z∗(x,y)− z̄ε(x, ŷ).

Dalle et al. (2022) introduce a multiplicative perturbation with the advantage that it preserves the

sign of gθ(x) without adding any bias:

z̃ε(x, gθ,Ψ) := argmin
z∈Z

c(z, gθ(x)⊙ exp(εΨ− ε2/2)),

where ⊙ is the Hadamard dot-product and the exponential is taken elementwise. Dalle et al. (2022)
and Sun et al. (2023c) also show that there is a one-to-one equivalence between the perturbed optimizer

approach and using a regularized randomized version of the CSO problem for combinatorial problems

with linear objective functions. Finally, Dalle et al. (2022) show an intimate connection between

the perturbed minimizer approach proposed by Berthet et al. (2020) and surrogate loss functions

approaches such as SPO+ by casting them as special cases of a more general surrogate loss formulation.

Mulamba et al. (2021) and Kong et al. (2022) consider an “energy-based” perturbed optimizer

defined by its density of the form

z̃ε(x, fθ) ∼
exp(−h(z, fθ(x))/ε)∫
exp(−h(z′, fθ(x))/ε)dz′ ,

with ε = 1, in the context of an imitation ILO problem. This general form of perturbed optimizer

captures a varying amount of perturbation through ε, with z̃ε(x, fθ) converging in distribution to

z∗(x, fθ) as ε goes to zero. They employ the negative log-likelihood to measure the divergence between

z̃ε(x, fθ) and the hindsight optimal solution z∗(x,y). Given the difficulties associated with calculating

the partition function in the denominator of (5.5.1), Mulamba et al. (2021) devise a surrogate loss

function based on noise-contrastive estimation, which replaces likelihood with relative likelihood when

compared to a set of sampled suboptimal solutions. This scheme is shown to improve the performance
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over SPO+ and DBB in terms of expected regret performance for linear combinatorial CSO. Based on

the noise contrastive estimation approach of Mulamba et al. (2021), Mandi et al. (2022) note that ILO

for combinatorial problems can be viewed as a learning-to-rank problem. They propose surrogate loss

functions, with closed-form expressions for gradients, that are used to train to rank feasible points

in terms of performance on the downstream optimization problem. Unlike Mulamba et al. (2021),

Kong et al. (2022) tackles the partition function challenge by employing a self-normalized importance

sampler that provides a discrete approximation. To avoid overfitting, the authors also introduce a

regularization that penalizes the KL divergence between the perturbed optimizer distribution and a

subjective posterior distribution over perturbed optimal hindsight actions P(z̃ε(x,y)|y):

HImitation(z̃
ε(·, fθ), P̂′

N ) :=

− EP̂N
[log(P(z̃ε(x, fθ) = z∗(x,y))|x,y)] + λEP̂N

[KL(P(z̃ε(x,y)|y)∥z̃ε(x, fθ)|x,y)].

The authors show that their model outperforms ILO trained using SQP and CvxpyLayer in terms of

computational time and gives lower task loss than sequential models trained using MLE and policy

learning with neural networks.

5.5.2 Supervised learning.

Grigas et al. (2021) solve a decision regularized CSO problem with a convex and non-negative decision

regularizer Ω(z) assuming that the y has discrete support. Their model, called ICEO-λ, is thus trained

by solving:

(ICEO-λ) min
θ

H(z∗
λ(·, fθ), P̂N ) + λΩ(z) (17a)

s.t. z∗λ(x, fθ) = argmin
z

c(z, fθ(x)) + λΩ(z). (17b)

The regularization ensures uniqueness and Lipschitz property of z∗λ(x, fθ) with respect to fθ and

leads to finite-sample guarantees. To circumvent the challenge associated with non-differentiability

of z∗λ(x, fθ) with respect to θ, they replace z∗λ(x, fθ) with a smooth approximation z̃λ(x, fθ) that is

learned using a random data set (pi, zi) generated by sampling pi from the probability simplex over

the discrete support and then finding the optimal solution zi. They show asymptotic optimality and

consistency of their solutions when the hypothesis class is well-specified. They compare their approach

to other ILO pipelines and to the SLO approach that estimates the conditional distribution using

cross-entropy.

Cristian et al. (2022) introduce the ProjectNet model to solve uncertain constrained linear pro-

grams in an end-to-end framework by training an optimal policy network, which employs a differentiable

approximation of the step of projection to feasibility.

Another approach, related to Berthet et al. (2020), that generalizes beyond LPs is given in Shah

et al. (2022) that constructs locally optimized decision losses (LODL) with supervised learning to directly

evaluate the performance of the predictors on the downstream optimization task. To learn a convex

LODL for each data point, this approach first generates labels in the neighborhood of label yi in

the training set, e.g., by adding Gaussian noise, and then chooses the parameter that minimizes the

MSE between LODL and the downstream decision loss. The LODL is used in place of the task-specific

surrogate optimization layers and outperforms SLO on three resource allocation problems (linear top-

1 item selection problem, web advertising, and portfolio optimization). The numerical experiments

indicate that handcrafted surrogate functions only perform better for the web advertising problem.

5.6 Applications

In this subsection, we discuss the applications of the ILO framework to a wide range of real-world

problems.
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Tian et al. (2023) use SPOT to solve a maritime transportation problem. Stratigakos et al. (2022)

propose an integrated forecasting and optimization model for trading in renewable energy that trains

an ensemble of prescriptive trees by randomly splitting the feature space X based on the task-specific

cost function. Finally, SPO has been used in solving last-mile delivery (Chu et al. 2023) and ship

inspection problems (Yan et al. 2020). Demirović et al. (2019) and Demirović et al. (2020) minimize

the same expected regret as SPO for specific applications related to ranking optimization and dynamic

programming problems, respectively.

Perrault et al. (2020) solve a Stackelberg security game with the ILO framework by learning the

attack probability distribution over a discrete set of targets to maximize a surrogate for the defender’s

expected utility. They show that their model results in higher expected utility for the defender on

synthetic and human subjects data than the sequential models that learn the attack probability by

minimizing the cross entropy loss. Wang et al. (2020) replace the large-scale optimization problem

with a low dimensional surrogate by reparameterizing the feasible space of decisions. They observe

significant performance improvements for non-convex problems compared to the strongly convex case.

Sang et al. (2022) introduce a decision-focused electricity price prediction approach for energy

storage system arbitrage. They present a hybrid loss function to measure prediction and decision

errors and a hybrid stochastic gradient descent learning method. Sang et al. (2023) solve a voltage

regulation problem using a similar hybrid loss function, and backpropagation is done by implicitly

differentiating the optimality conditions of a second-order cone program.

Liu et al. (2023b) use DNN to model the routing behavior of users in a transportation network

and learn the parameters by minimizing the mismatch between the flow prescribed by the variational

inequality and the observed flow. The backward pass is obtained by applying the IFT to the variational

inequality. Wahdany et al. (2023) propose an integrated model for wind-power forecasting that learns

the parameters of a neural network to optimize the energy system costs under the system constraints.

Vohra et al. (2023) apply similar ideas to develop end-to-end renewable energy generation forecasts,

using multiple contextual sources such as satellite images and meteorological time series.

Butler and Kwon (2023b) solves the contextual mean-variance portfolio (MVP) optimization prob-

lem by learning the parameters of the linear prediction model using the ILO framework. The covariance

matrix is estimated using the exponentially weighted moving average model. They provide analytical

solutions to unconstrained and equality-constrained MVP optimization problems and show that they

outperform SLO models based on OLS. These analytical solutions lead to lower variance when com-

pared with the exact solutions of the corresponding inequality-constrained MVP optimization problem.

6 Conclusion and future research directions

We now summarize the key research directions for further work in contextual optimization.

Uncertainty in constraints. Most studies on contextual optimization assume that there is no uncer-

tainty in the constraints. If constraints are also uncertain, the SAA solutions that ignore the covariates

information might not be feasible (Rahimian and Pagnoncelli 2022). Bertsimas and Kallus (2020) have

highlighted the challenges in using ERM in a constrained CSO problem. Rahimian and Pagnoncelli

(2022) solve a conditional chance-constrained program that ensures with a high probability that the

solution remains feasible under the conditional distribution of the features. Although they do not focus

on contextual optimization, interesting links can be found with the literature on constraint learning

(Fajemisin et al. 2023) and inverse optimization (Chan et al. 2021).

Risk aversion. There has been a growing interest in studying contextual optimization in the risk-

averse setting. Specifically, one can consider replacing the risk-neutral expectation from (1) with a

risk measure such as value-at-risk. By doing so, one would expect, with a high probability, that a

decision maker’s loss is lower than a particular threshold. One can easily represent such a risk measure
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using an uncertainty set which represents the set of all possible outcomes that may occur in the

future. The resulting uncertainty set should be carefully chosen. It should capture the most relevant

scenarios to balance the trade-off between avoiding risks and obtaining returns. The recently proposed

Conditional Robust Optimization (CRO) paradigm by Chenreddy et al. (2022) (see also Ohmori 2021,

Sun et al. 2023b, Peršak and Anjos 2023) consists in learning a conditional set U(x) to solve the

following problem:

(CRO) min
z∈Z

max
y∈U(x)

c(z,y), (18)

where U(x) is an uncertainty set designed to contain with high probability the realization of y condi-

tionally on observing x. Their approach solves the CRO problem sequentially where U(x) is learned

first and is subsequently used to solve the downstream RO problem. A challenging problem is to learn

the uncertainty set to minimize the downstream cost function.

Toolboxes and benchmarking. Several toolboxes and packages have been proposed recently to train

decision pipelines. Agrawal et al. (2019) provide the CvxpyLayer library, which includes a subclass

of convex optimization problems as differentiable layers in auto-differentiation libraries in PyTorch,

TensorFlow, and JAX. Other libraries for differentiating non-linear optimization problems for end-

to-end learning include higher (Grefenstette et al. 2019), JAXopt (Blondel et al. 2022), TorchOpt

(Ren et al. 2022), and Theseus (Pineda et al. 2022). Tang and Khalil (2022) introduce PyEPO as an

open-source software package in Python for ILO of problems that are linear in uncertain parameters.

They implement various existing methods, such as SPO+, DBB, DPO, and FYL. They also include new

benchmarks and comprehensive experiments highlighting the advantages of integrated learning. Dalle

et al. (2022) provide similar tools for combinatorial problems in Julia.

Comparisons of existing approaches in fixed simulation settings are scarce, especially with real-

world data. Buttler et al. (2022) provide a meta-analysis of selected methods on an unconstrained

newsvendor problem on four data sets from the retail and food sectors. They highlight that there is

no single method that clearly outperforms all the others on the four data sets.

Endogenous uncertainty. While there has been some progress in studying problems where the decision

affects the uncertain parameters (Basciftci et al. 2021), the literature on decision-dependent uncertainty

with covariates is sparse (Bertsimas and Kallus 2020, Bertsimas and Koduri 2022). An example could

be a facility location problem where demand changes once a facility is located in a region or a price-

setting newsvendor problem whose demand depends on the price (Liu and Zhang 2023). In these
problems, the causal relationship between demand and prices is unknown. Interesting connections can

be drawn with the literature on heterogeneous treatment effects, such as Wager and Athey (2018), who

introduce causal forests for estimating treatment effects and provide asymptotic consistency results.

Alley et al. (2023) study a price-setting problem and provide a new loss function to isolate the causal

effects of price on demand from the conditional effects due to other features.

Data privacy. Another issue is that the data might come from multiple sources and contain sensitive

private information, so it cannot be directly provided in its original form to the system operator.

Differential privacy techniques (see, e.g., Abadi et al. 2016) can be used to obfuscate data, but may

impact predictive and prescriptive performance. Mieth et al. (2023) determine the data quality after

obfuscation in an optimal power flow problem with a Wasserstein ambiguity set and use a DRO model

to determine the data value for decision-making.

Interpretability & explainability. Decision pipelines must be trusted to be implemented. This is

evident from the European Union legislation “General Data Protection Regulation” that requires

entities using automated systems to provide “meaningful information about the logic involved” in

making decisions, known popularly as the “right to explanation” (Doshi-Velez and Kim 2017, Kaminski

2019). For instance, a citizen has the right to ask a bank for an explanation in the case of loan denial.
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While interpretability has received much attention in predictive ML applications (Rudin 2019), it

remains largely unexplored in a contextual optimization, i.e., prescriptive context. Interpretability

requires transparent decision pipelines that are intelligible to users, e.g., built over simple models such

as decision trees or rule lists. In contrast, explainability may be achieved with an additional algorithm

on top of a black box or complex model. Feature importance has been analyzed in a prescriptive

context by Serrano et al. (2022). They introduce an integrated approach that solves a bilevel program

with an integer master problem optimizing (cross-)validation accuracy. To achieve explainability, Forel

et al. (2023) adapt the concept of counterfactual explanations to explain a given data-driven decision

through differences of context that make this decision optimal, or better suited than a given expert

decision. Having identified these differences, it becomes possible to correct or complete the contextual

information, if necessary, or otherwise to give explanative elements supporting different decisions.

Fairness. Applying decisions based on contextual information can raise fairness issues when the context

is made of protected attributes. This has been studied especially in pricing problems, to prevent that

different customers or groups of customers are proposed prices that differ too greatly (Cohen et al.

2021, 2022).

Finite sample guarantees for ILO. An open problem is to derive generalization bounds on the per-

formance of ILO models for non-linear problems.

Multi-agent decision-making. A multi-agent perspective becomes necessary in transportation and

operations management problems, where different agents have access to different sources of informa-

tion (i.e. covariates). In this regard, some recent work by Heaton et al. (2022) identifies the Nash

equilibrium of contextual games using implicit differentiation of variational inequalities and JFB.

Costly label acquisition. In many applications, it is costly to obtain the labels for uncertain parameters

and covariate vectors. For instance, in personalized pricing, surveys can be sent to customers to obtain

information on the sensitivity of purchasing an item with respect to its price. However, creating,

sending, and collecting the surveys may have a cost. Liu et al. (2023a) develop an active learning

approach to obtain labels to solve the SPO problem, while the more general case of developing active

learning methods for non-linear contextual optimization is an interesting future direction. Besbes

et al. (2023) provide theoretical results on the trade-off between the quality and quantity of data in a

newsvendor problem, thus guiding decision-makers on how to invest in data acquisition strategies.

Multi-stage contextual optimization. Most works on contextual optimization focus on single and two-

stage problems. Ban et al. (2019) and Rios et al. (2015) use the residuals of the regression model to

build multi-stage scenario trees and solve multi-stage CSO problems. Bertsimas et al. (2023) generalize

the weighted SAA model for multi-stage problems. Qi et al. (2023) propose an end-to-end learning

framework to solve a real-world multistage inventory replenishment problem.

An active area of research is sequential decision-making with uncertainty, where estimates on the

transition dynamics and reward functions of the Markov decision processes (MDPs) are obtained

through MLE (Rust 1988). Nikishin et al. (2022) introduce a model-based reinforcement learning

approach that combines learning and planning to optimize expected returns for both tabular and

non-tabular MDPs. They employ the soft version of the Bellman operator (Ziebart et al. 2008) for

efficient parameter learning using the IFT and show that their state-action value function has a lower

approximation error than that of MLE in tabular MDPs.

Another interesting research direction is to challenge the assumption that the joint distribution of

the context and uncertain parameters is stationary. Neghab et al. (2022) study a newsvendor model

with a hidden Markov model underlying the distribution of the features and demand.

Finally, an area that requires attention is the deployment of models for real-world applications
by tackling computational hurdles associated with decision-focused learning in MDPs, such as large
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state-action pairs and high-dimensional policy spaces (Wang et al. 2023). An example is a service

call scheduling problem that is formulated as a restless multi-armed bandit (RMAB) problem in Mate

et al. (2022) to improve maternal and child health in a non-profit organization. They model each

beneficiary as an arm, apply a clustering method to learn the dynamics, and then use the Whittle

Index policy to solve the RMAB. Wang et al. (2023) use decision-focused learning to solve RMAB,

where the computational difficulty in differentiating the Whittle index policy of selecting the top-k

arms, is mitigated by making a soft-top-k selection of arms which is an optimal transport problem

(Xie et al. 2020).

1 Appendix

1.1 Theoretical guarantees

In this section, we provide some definitions and theoretical results for completeness.

Definition A1. (Bertsimas and Kallus 2020) We say that a policy πN (x) obtained using N samples is

asymptotically optimal if, with probability 1, we have that for P(x)-almost-everywhere x ∈ X :

lim
N→∞

h(πN (x),P(y|x)) = h(π∗(x),P(y|x)).

Definition A2. (Bertsimas and Kallus 2020) We say that a policy πN (x) obtained using N samples is

consistent if, with probability 1, we have that for P(x)-almost-everywhere x ∈ X :

∥πN (x)−Z∗(x)∥ = 0 where ∥πN (x)−Z∗(x)∥ = inf
z∈Z∗(x)

∥πN (x)− z∥,

and

Z∗(x) = {z|z ∈ argmin
z′∈Z

EP
[
h(z′,P(y|x))

]
.

The above conditions imply that, as the number of samples tends to infinity, the performance of

the decision under almost all covariates matches the optimal conditional cost.

Definition A3. A surrogate loss function ℓ is Fisher consistent with respect to the SPO loss if the

following condition holds for all x ∈ X :

argmin
θ

EP(y|x)[ℓ(gθ(x),y)] ⊆ argmin
θ

EP(y|x)[ℓSPO(gθ(x),y)].

The Fisher consistency condition defined above requires complete knowledge of the joint distribu-

tion P. Instead, an interesting issue is to determine if the surrogate loss ℓ is calibrated with respect to

SPO, that is, whether low surrogate excess risk translates to small excess true risk.

Definition A4. (Ho-Nguyen and Kılınç-Karzan 2022) A loss function ℓ is uniformly calibrated with

respect to SPO for a class of distributionsD on X×Y if for ϵ > 0, there exists a function ∆ℓ(·) : R+ → R+

such that for all x ∈ X :

EP(y|x)[ℓ(gθ(x),y)]− inf
θ′

EP(y|x)[ℓ(gθ′(x),y)] < ∆ℓ(ϵ)

⇒ EP(y|x)[ℓSPO(gθ(x),y)]− inf
θ′

EP(y|x)[ℓSPO(gθ′(x),y)] < ϵ.

Ho-Nguyen and Kılınç-Karzan (2022) introduce a “calibration function” with which it is simpler

to verify the uniform calibration of MSE loss and show that the calibration function is O(ϵ2). Liu and

Grigas (2021) assumed that the conditional distribution of y given x is bounded from below by the

density of a normal distribution and obtain a O(ϵ2) calibration function for polyhedral Z and O(ϵ)

when Z is a level set of a strongly convex and smooth function.
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Definition A5. The empirical Rademacher complexity of a hypothesis class H under the loss function

ℓ is given by:

Eσ

[
sup
g∈H

1

N

∣∣∣∣∣
N∑
i=1

σiℓ(g(xi),yi)

∣∣∣∣∣
]
,

where σ1, σ2, · · · , σN are independent and identically distributed Rademacher random variables, i.e.,

P(σi = 1) = P(σi = −1) = 1
2 , ∀i ∈ {1, 2, · · · , N}.

1.2 List of abbreviations

In this section, we provide expand the abbreviations used in this survey.

Table A1: List of abbreviations

Abbreviation Description

ADMM alternating direction method of multipliers

CSO conditional stochastic optimization

CVaR conditional value at risk

DRO distributionally robust optimization

DNN deep neural network

ERM empirical risk minimization

FP fixed point

ILO integrated learning and optimization

IFT implicit function theorem

JFB Jacobian-free backpropagation

kNN k-nearest neighbor

KKT Karush–Kuhn–Tucker

KL Kullback-Leibler

LDR linear decision rule

LP linear program

ML machine learning

MLE maximum likelihood estimation

MILP mixed-integer linear program

NW Nadaraya-Watson

rCSO residual-based conditional stochastic optimization

RKHS reproducing kernel Hilbert space

SAA sample average approximation

SLO sequential learning and optimization

SPO smart “predict, then optimize”

QP quadratic program
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