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(Qc), Canada, H3T 1J4

el-mehdi.er-raqabi@polymtl.ca

August 2023
Les Cahiers du GERAD
G–2023–27
Copyright © 2023 GERAD, Er Raqabi, El Hallaoui, Soumis
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Abstract : Benders decomposition has been applied significantly to tackle large-scale optimization
problems with complicating variables, which, when temporarily fixed, yield problems significantly eas-
ier to solve. Still, in its standard form, Benders decomposition, also known as the L-shaped method
within the stochastic optimization community, shows several shortcomings. Leveraging the view of
Benders decomposition as the dual of Dantzig-Wolfe decomposition, we propose the primal Benders
decomposition. This method, a paradigm shift, is based on considering a reduced pool of complicating
variables and inserting dynamically promising ones. We show that this method: (i) converges theoret-
ically to optimality, (ii) requires only optimality cuts, referred to as Primal Benders cuts, to reach the
optimal solution, (iii) benefits from the integrality of the subproblem, always viewed as a hindrance,
and (iv) has an accelerated version with decreasing steps, and for which the number of iterations is, at
most, the size of the complicating variables pool. We report promising computational results on the
deterministic and stochastic facility location problems for which the proposed method reaches strictly
optimal solutions.

Keywords : Benders decomposition, L-shaped method, Dantzig-Wolfe decomposition, mixed-integer
programming, large-scale optimization, exact method
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1 Introduction

When tackling large-scale optimization problems, mixed integer linear programming (MILP) has been

used intensively as the modeling tool (Guignard-Spielberg and Spielberg, 2005; Lee, 2008). With

such usage, intense research has been conducted to tackle MILP problems efficiently (Jünger et al.

2009). Let us consider the MILP problem of the following generic form, referred to as the original

problem (OP):

min fT y + cTx (OP)

s.t. : Ay ≥ b

Wy + Tx ≥ d

y ∈ Zn
+

x ∈ Rm
+

where f ∈ Rn
+, c ∈ Rm

+ , A ∈ Rk×n, b ∈ Rk, W ∈ Rl×n, T ∈ Rl×m, and d ∈ Rl. We can assume without

loss of generality that OP is feasible and bounded. Benders decomposition (BD) (Benders, 1962) is a

well-known way to tackle problem OP when fixing y implies an easy problem. We refer to y variables

as the complicating variables. By projecting OP on the space defined by y variables (Geoffrion, 1970),

we obtain:

min fT y +min{cTx | Tx ≥ d−Wy, x ∈ Rm
+} (OPy)

s.t. : Ay ≥ b

y ∈ Zn
+

The inner minimization problem is known as the Benders primal subproblem (PSP). Its dual is the

Benders dual subproblem (DSP):

max (d−Wy)Tλ (DSP)

s.t. : TTλ ≤ c

λ ≥ 0

DSP is preferred to PSP because its polyhedron is independent of the complicating variables y.

Solving DSP when fixing y = ȳ yields either an extreme point or an extreme ray. Let P and Q be,

respectively, the set of extreme points and rays of the DSP polyhedron. The Benders master problem

is as follows:

min fT y + z (MP)

s.t. : Ay ≥ b

z ≥ (d−Wy)Tλp, p ∈ P

0 ≥ (d−Wy)Tλq, q ∈ Q

y ∈ Zn
+

Enumerating all extreme points and rays is computationally untractable. Thus, the Benders al-

gorithm starts initially with a subset (or empty set) of extreme points and rays. The restricted MP

(RMP) is solved, and its solution ȳ is provided to DSP. If the latter is feasible and bounded, an op-

timality cut (corresponding to solution λp with p ∈ P ) is generated. If it is unbounded, a feasibility

cut (corresponding to solution λq with q ∈ Q) is generated. These cuts are added to the RMP. Be-

ing a relaxation (fewer constraints), the RMP provides a lower bound (LB) on the optimal solution

of OP. Also, if feasible, the PSP generates a feasible solution to OP, i.e., an upper bound (UB). The
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Benders algorithm continues until the difference between the UB and LB is smaller than a selected

threshold ϵ ≥ 0.

Given its practical relevance, BD has been applied in many fields, including production routing

(Adulyasak et al., 2015), maintenance scheduling (Canto, 2008), healthcare planning (Lin et al., 2016),

airline scheduling (Zeighami and Soumis, 2019; Cordeau et al., 2001b), water resource management

(Cai et al., 2001), hub location (Contreras et al., 2011), locomotive assignment (Cordeau et al., 2001a),

traveling salesman (Laporte et al., 1994), and capacity expansion (Bloom, 1983). Despite its successes,

BD is time-consuming, has a zigzagging behavior, and converges slowly. An exhaustive literature

review by Rahmaniani et al. (2017) highlights the state of the art of BD application, challenges, and

improvement strategies.

Intense research has been conducted to accelerate BD convergence. These efforts can, intuitively,

be classified into two sides. The first side deals with improving the LBs provided by the RMP while

the second seeks to improve the UBs obtained from the PSP. On the first side, intense research has

been developed to select good or strengthen Benders cuts (Magnanti and Wong, 1981; Codato and

Fischetti, 2006; Fischetti et al., 2010; Sherali and Lunday, 2013; Bodur et al., 2017; Rahmaniani et al.,

2020) leading to better LBs. Other acceleration techniques include valid inequalities, warm-starting,

managing the branch-and-bound tree, and solving in two phases, i.e., generating first cuts from relaxed

MP and then cuts from integer MP. On the second side, as far as we acknowledge, there is no systematic

way to generate high-quality UBs. So far, problem-specific heuristics have been used to improve the

UBs (Poojari and Beasley, 2009; Rahmaniani et al., 2017).

As highlighted above, accelerating BD convergence requires a double effort to get the lower and

upper bounds close to each other as fast as possible. In this article, we aim to view BD differently than

the commonly established perception (Benders, 1962). Leveraging BD as the dual of Dantzig-Wolfe

decomposition (DWD), we propose the Primal Benders Decomposition (PBD). In a nutshell, the PBD
method consists of augmenting the PSP with variables from supp(ȳ), the support of RMP solution ȳ

instead of fixing it as in the standard Benders decomposition. In such a case, the BD PSP becomes

a restriction of the original problem to a subset of variables. Using the solutions of the BD PSP, we

generate Benders cuts for the BD RMP. We then solve the latter to identify promising complicating

variable(s) y to be added to the BD PSP. We augment the BD PSP iteratively with these variables

until convergence. This is very relevant in large-scale contexts where companies keep a history of

good solutions. These solutions can be provided as an initial point and thus only a few complicating

variables might be required and inserted for convergence.

The main contributions of this paper are the following: (1) Proposing the PBD method and

proving its convergence, (2) Highlighting that its accelerated version reaches optimal or near-optimal

solutions in at most the size of the complicating variables (n iterations at most) with decreasing steps

(no zigzagging), (3) Generating only interesting optimality cuts, referred to as Pareto-optimal primal

Benders cuts, (4) Showing that handling the integrality at the subproblem level is no longer an issue

when using PBD and that solving to optimality the integer RMP is no longer required, and (5) Testing

the proposed method on various instances of the facility location problem, for which it reaches linearly

and strictly optimal solutions.

The remainder of this article is organized as follows. In Section 2, we present the PBD method, and

in Section 3, we design an accelerated version of it. Section 4 provides a facility location example to

illustrate the method. The experimental design and computational results are provided in Sections 5

and 6, respectively. We conclude in Section 7.

2 The Primal Benders Decomposition

In this section, we present the motivation behind the PBD method development. Then, we highlight

the PBD framework and its convergence.
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2.1 Motivation

In the literature, the main trend is the dual view of BD (visualized in Figure 1), where the BD

RMP provides part of the solution (primal information) to the BD SP (i.e., BD PSP). The latter

completes the primal information and uses its dual solution to generate Benders cuts (row(s)) for the

BD RMP. Such a view has driven research in BD since early developments of the method (Benders,

1962; Rahmaniani et al., 2017).

Figure 1: Standard view of Benders Decomposition

Another interesting view consists of perceiving the BD as the dual of the DWD. From such a

perspective, the BD RMP corresponds to the DWD SP, while the BD SP corresponds to the DWD

RMP. In the DWD, the DWD RMP is used to provide the DWD SP with the necessary dual information

(dual solutions) from which the DWD SP generates improving (if they exist) columns for the DWD

RMP. While the latter accumulates the columns (the UB decreases because the domain grows), the

BD SP uses only the last column generated, leading to the UB zigzagging behavior. Also, while the

BD RMP accumulates the dual information (the LB increases because the domain is reduced), the

DWD SP uses only the dual information of the last DWD RMP solution, leading to the LB zigzagging

behavior (Valério de Carvalho, 2005). The LB of BD RMP is dual and resembles, in this sense, the

lower bound obtained with the reduced cost in the SP of DWD. Conversely, the BD SP and DWD

RMP give an UB (primal). In practice, we prefer more primal solutions since they inform the decisions

to be implemented. Thus, the problem (BD SP in our context) that provides primal solutions should

receive more attention, in our opinion. We highlight this view in Figure 2.

Figure 2: BD as the dual of DWD

The presented insight allows the design of the PBD. In the latter, the RMP inserts improving

column(s) into the SP. Then, the SP generates Benders cut(s) for the RMP. In such a way, the PBD
accumulates information in both the RMP and SP and improves monotonically the lower and upper

bounds. Based on the motivation, we present next the PBD framework.
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2.2 The PBD framework

Given a pool of complicating variables y, we generate an initial solution yinit. In practice, we may

already have a good initial solution either from the company’s history of solutions using machine

learning or in case of re-optimization after perturbation (Er Raqabi et al., 2023b). The support of the

initial solution, referred to as supp(yinit), is added to a set S (initially empty), and the corresponding

complicating variables (yj with j ∈ S) are inserted into the reduced primal subproblem (RPSPS).

Since we do not consider all the y variables, we use the qualification reduced.

Formally, let yS ∈ Zn
+ be the vector of complicating variables and let yj , j ∈ J = {1, 2, ..., n} be an

element of it such that yj = 0 if j /∈ S. We formulate the RPSPS as follows:

min fT yS + cTx (RPSPS)

s.t. : AyS ≥ b

WyS + Tx ≥ d [λ]

yS ∈ Zn
+

x ≥ 0

By fixing yS to ȳS , a feasible solution of RPSPS and by denoting λ the vector of dual variables

corresponding to the second set of constraints, we obtain the Reduced Dual Subproblem (RDSPS):

max (d−WȳS)
Tλ (RDSPS)

s.t. : TTλ ≤ c

λ ≥ 0

The PBD framework is highlighted in Figure 3. Using yinit as a warm-start, we first solve RPSPS
to optimality. From the explored leaf nodes of the Branch & Bound (B&B), we generate a pool of

Benders cuts using each node’s dual solution. We add these cuts to the BD RMP, which is solved to

optimality. Let ȳ be its solution. The BD RMP provides a LB on the optimal value of OP. Also, the

RPSPS provides a feasible solution to OP, i.e., an UB on the optimal value of OP. If |UB − LB| ≥ ϵ,

the new complicating variables in supp(ȳ) (i.e., supp(ȳ) ⊈ S with ȳ being the BD RMP’s solution)

are inserted into the RPSPS (S = S ∪ supp(ȳ)). The algorithm continues until the difference between

the UB and LB is smaller than a selected threshold ϵ ≥ 0. In such a case, we return the optimal

solution (y∗S , x
∗) of RPSPS , which is the optimal solution of OP after augmenting it with zeros. From

one iteration to another, the UB decreases because the domain grows and the LB increases because

the domain is reduced. The solving of the RPSPS should be fast if we warm-start using its previous

solution and ȳ.

Figure 3: The PBD framework

The complicating variables added to the RPSPS are not fixed, as in BD SP. Thus, the RPSPS is

a restriction of OP and this is why PBD is primal because we improve the current integer solution at

each iteration. We discuss next the convergence of the PBD method.
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2.3 The PBD convergence

In this section, we discuss the PBD method convergence. We start with an observation related to the

cuts obtained by the standard BD.

Observation 1. Let y ∈ Nn be a vector of complicating integer variables. From this vector, we can

construct ℵn
0 solutions ȳ. Thus, in the worst case, the standard BD may generate ℵn

0 cuts before

convergence, i.e., explore all extreme points and rays of DSP.

Observation 1 is the main insight behind the slow convergence and the zigzagging behavior of BD,

especially in large-scale contexts. This is similar to the DWD case where oscillations are observed

(Ben Amor et al., 2006). In the BD case, it is possible to move from a good BD RMP solution to a

much worse one. This affects the quality of the UB obtained by the RPSPS in the following iteration.

Thus, we may wonder whether all the BD RMP solutions are relevant to reach the optimal solution.

If this is not the case, then we may seek to identify just the relevant solutions. One way to confirm is

finding the best ȳ as sketched in the example below.

Example 1. Given a vector y ∈ B2, instead of providing ȳ = (0, 0), ȳ = (1, 0), ȳ = (0, 1), and ȳ = (1, 1)

to the Benders subproblem as in BD SP, we provide the variables y = (y1, y2) (i.e., S = {1, 2}). Then,
solving the RPSPS via B&B will provide the optimal (the best) ȳ.

The Observation 1 and the Example 1 above align with the PBD motivation and design. Viewing

the RPSPS from a B&B perspective leads us to generate the following result.

Proposition 1. On the B&B tree of RPSPS , each integer feasible node allows generating a Benders’

optimality cut, while each infeasible node allows generating a Benders’ feasibility cut. Furthermore,

this cut can be obtained using the node’s dual solution.

Proof. Within the B&B tree, we distinguish feasible and infeasible nodes. Within the feasible nodes,

we consider integer nodes. Assuming that no cuts are added and that the branching is standard on

each variable alone (not on a subset of variables), the RPSPNode
S at an integer node is written as:

min fT yS + cTx (RPSPNode
S )

s.t. : AyS ≥ b

WyS + Tx ≥ d [λ]

yS = ȳS

x ≥ 0

Constraints yS = ȳS follow from the branching constraints. By fixing yS = ȳS in RPSPNode
S and

removing constraints yS = ȳS , we obtain BD PSP. Thus, we generate the same Benders optimality

cut using the integer node’s dual solution. In a similar way, we prove that we generate a Benders

feasibility cut using an infeasible node’s dual solution.

We refer to the Benders cuts obtained from the B&B leaf nodes’ dual solutions as the primal

Benders cuts. From the B&B perspective, an interesting observation follows.

Observation 2. In the B&B process, some of the nodes will be pruned, thus eliminating several irrel-

evant solutions ȳS in the corresponding leaves, and consequently their corresponding Benders cuts.

The pruned nodes are dominated by the unpruned ones. It implies that the pruned Benders

cuts (corresponding to pruned nodes) are dominated by the unpruned Benders cuts (corresponding to

unpruned nodes). Thus, pruning allows reducing the number of Benders cuts obtained throughout the

PBD framework. It is not the case for BD, which may generate all Benders cuts, thus significantly

increasing the number of iterations and the size of the BD RMP. In the next lemma, we show that the

primal Benders cuts are valid for the BD RMP.
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Lemma 1. The primal Benders cut corresponding to an integer feasible or an infeasible node of RPSPS
is valid for the BD RMP.

The proof of Lemma 1 is straightforward (see Proposition 1). Lemma 1 implies that no cut lifting

is needed. Another strength of the PBD is highlighted in the observation below.

Observation 3. Once the RPSPS feasibility and boundness are ensured from the initial iteration, it

remains feasible and bounded (we enrich the subproblem with new variables) throughout iterations.

The next proposition shows that when there are no more complicating variables to insert in the

RPSPS , the UB and LB coincide.

Proposition 2. Let (ȳ,z̄) be the solution of RMP at iteration t ∈ N∗. If supp(ȳ) ⊆ S, then UB = LB.

Proof. Suppose that UB > LB. Since supp(ȳ) ⊆ S, we distinguish two cases: optimality or feasibility

cut. Let us discuss the optimality cut case (the same reasoning applies to the feasibility cut case). If

ȳ is feasible for RPSPS , the optimality cut corresponding to ȳ (valid for the RMP as per Lemma 1)

at iteration t− 1 with λ̄ the dual solution of DSP is:

z ≥ (d−Wy)T λ̄

with z = ẑ being the RMP solution at iteration t− 1, we have:

ẑ ≥ (d−Wȳ)T λ̄

Since UB > LB, the optimality cut above is such that at iteration t:

z̄ = (d−Wȳ)T λ̄ > ẑ

Contradiction.

An interesting result follows from Proposition 2.

Corollary 1. The PBD does not generate the same pool of Benders cut(s) twice.

The proof is straightforward since generating the same pool of Benders cut(s) implies obtaining

the same ȳ for the RMP, i.e., supp(ȳ) ⊆ S. Next, we prove the PBD convergence.

Theorem 1. The PBD method converges.

Proof. As per Lemma 1, the Benders cuts computed in the B&B tree of RPSPS are valid for the BD

RMP. As per Corollary 1, the PBD does not generate the same pool of Benders cut(s) twice. Given

that the number of Benders cuts is finite (because the number of extreme points and rays is finite),

the PBD converges.

Under its basic form, the PBD method may insert unpromising complicating variables. This implies

solving potentially large MILP subproblems and master problems at each iteration, and consequently

a large execution time. The latter is increased further in the context of large-scale optimization. The

larger the master problem and the subproblem(s), the larger the execution time. Thus, to make it

efficient, we design an accelerated PBD version, which is presented next.

3 The accelerated PBD

In this section, we present the acceleration strategies, the accelerated PBD algorithm, and its conver-

gence. We highlight in this section that optimality cuts are sufficient to reach optimal or near-optimal

(primal) solution(s).
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3.1 Acceleration strategies

In this section, we discuss some tips allowing the efficient implementation of the PBD method. These

acceleration tips are classified into two aspects: master problem and subproblem acceleration strategies.

3.1.1 Master problem acceleration strategies

Solving both the integer master problem and the integer subproblem is very costly. To tackle such a

burden, we shift integrality to the subproblem and tackle the master problem in its relaxed (integrality)

form. For the master problem, we distinguish two acceleration strategies: selection strategy and

subsets.

Selection Strategy. To alleviate the BD RMP, it is not necessary to consider all y variables. We may,

similarly to the RPSPS , insert the promising complicating variables gradually. In such a case, the

reduced restricted master problem (RRMPT ) can be written as:

min fT yT + z (RRMPT )

s.t. : AyT ≥ b [α]

z ≥ (d−WyT )
Tλp, p ∈ P [β]

yT ∈ Zn
+

Similarly to RPSPS , yT ∈ Zn
+ is the vector of yj , j ∈ J = {1, 2, ..., n} such that yj = 0 if j /∈ T .

The motivation behind the consideration of extreme points without extreme rays follows from the

feasibility of RPSPS (Observation 3). When the RRMPT is relaxed (integrality), let α and βp, p ∈ P

be the dual solutions vectors corresponding to its constraints. Also, let aj be column j of A and wj

be column j of W where j ∈ {1, 2, ..., n}. The reduced cost formula corresponding to variable yj with

j ∈ J \ T is:

f̄j = fj − aTj α−
∑
p∈P

COEF (j, p)βp, j ∈ J \ T (1)

The goal is to find promising complicating variables, i.e., yj , j ∈ J \ T such that f̄j < 0, and select

a few to be added to the RRMPT . For each variable yj , j ∈ J \ T (not present in the RRMPT ), the

computation of reduced cost f̄j requires the computation of this variable’s coefficients COEF (j, p),

p ∈ P in the already existing primal Benders cuts in RRMPT .

Proposition 3. Let p ∈ P . The coefficient of a potential variable ϕ ∈ J \ T in the Benders cut

corresponding to extreme point p is COEF (ϕ, p) = wT
ϕ λ

p.

Proof. Let S+ = S ∪{ϕ}, ϕ ∈ J \ T . In the DSP, we have ȳS+ = ȳS because ȳϕ = 0. Thus, the DSP’s

solution remains the same, i.e., λp. From (d−WyS+)Tλp, we infer that COEF (ϕ, p) = wT
ϕ λ

p.

As per Proposition 3, the computation of reduced costs is quick since λp, p ∈ P are already

computed.

Subsets. The subset of complicating variables in RRMPT contribute to only a subset of constraints

implying a subset of x variables. Some constraints become redundant. We can remove them by

preprocessing. It is worth mentioning that, to differentiate between the LB obtained by the RMP

and the LB obtained by the RRMPT , we refer to the latter as reduced LB (RLB). Since the RRMPT
contains fewer variables, its RLB is not necessarily a LB for OP.

This completes the acceleration strategies for the RMP. We can now present the acceleration

strategies for the RPSPS .
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3.1.2 Subproblem acceleration strategies

For the subproblem, the acceleration strategies are classified into local Pareto-optimal cuts, warm-start,

and subsets.

Local Pareto-optimal Cuts. When solving RPSPS , all the integer solutions ȳ explored in the B&B

tree can be collected and corresponding Benders optimality cuts can be obtained. Adding several cuts

to the RRMPT may increase execution time. Instead of inserting all the Benders cuts corresponding

to the identified ȳS solutions, we seek the relevant ones. Inspired by the notion of Pareto-optimal cuts

(Magnanti and Wong, 1981), we introduce the notion of local Pareto-optimal cuts.

Definition 1. A cut

z ≥ (d−WyS)
T λ̄

is dominated locally by

z ≥ (d−WyS)
Tλ∗

if

(d−WyS)
T λ̄ ≤ (d−WyS)

Tλ∗ ∀yS ∈ Zn
+

and there exist a ȳS ∈ Zn
+ such that

(d−WȳS)
T λ̄ < (d−WȳS)

Tλ∗

A cut is locally Pareto-optimal if it is not locally dominated by any other cut.

Following the definition, we show that the Benders optimality cut(s) obtained from the optimal

node(s) in the B&B of RPSPS are locally Pareto-optimal.

Proposition 4. In the B&B Tree of RPSPS , the Benders cut obtained from the optimal node is locally

Pareto-optimal.

Proof. Let (x∗
S , y

∗
S) be the optimal solution of RPSPS . When fixing yS = y∗S in RPSPS and moving

to the dual, let λ∗ be the dual optimal solution corresponding to (x∗
S , y

∗
S). Then, the Benders cut

corresponding to the optimal node is the following:

z ≥ (d−WyS)
Tλ∗ (2)

Suppose that this cut is dominated by another cut corresponding to a non-optimal node. Then by

Definition 1, there exists λ̄ such that:

(d−WyS)
Tλ∗ ≤ (d−WyS)

T λ̄ ∀yS ∈ Zn
+

For yS = y∗S , we have:

(d−Wy∗S)
Tλ∗ ≤ (d−Wy∗S)

T λ̄

Given that λ∗ is a dual optimal solution of RDSPS , we also have:

(d−Wy∗S)
T λ̄ < (d−Wy∗S)

Tλ∗

Contradiction.
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Based on Propositions 4, we insert only the primal Benders optimality cut(s) corresponding to the

optimal node(s), which are locally Pareto-optimal. These cuts capture all the necessary information to

be provided to the RRMPT at each iteration. In such a way, the master problem has fewer constraints,

and the solving is faster. The next result follows.

Corollary 2. If y∗S augmented by zeros is optimal for the OP , the corresponding Benders cut is Pareto-

optimal.

The proof is straightforward since the local cut is valid for the OP and is Pareto-optimal using the

same proof as Proposition 4.

Warm-start. RPSPS is a MILP, implying that solving it from scratch might be costly. Thus, warm-

starting is an effective way to tackle it efficiently. To accelerate the RPSPS solving, we may warm-start

it at each iteration. Let RPSPS+ be RPSPS augmented with a new complicating variable provided by

the selection strategy, we have the following observation.

Observation 4. Let (x∗
S , y

∗
S) be the optimal solution of RPSPS . When augmenting RPSPS with

an improving complicating variable yϕ, a basic feasible solution for RPSPS+ is obtained when y∗S is

augmented with a zero corresponding to variable yϕ and x∗
S is augmented with zero(s) corresponding

to the new x variable(s) added to RPSPS . Furthermore, the integrality gap is much smaller than if

we consider all the variables y and x of the OP.

Warm-starting allows the PBD to benefit from the primal information to close the gap and reach

optimality quickly. Furthermore, we recall that, at each iteration, we insert only the most promising

variables identified using Formula 1. This allows keeping the RPSPS as small as possible.

Subsets. Since not all the complicating variables y are present in the RPSPS , some constraints become

redundant as well as some x variables, we may reduce the size of the model by removing these variables

and constraints. For instance, let us consider the constraint of the form
∑m

i=1 xij ≤ yj ∀j ∈ J , with

all variables being positive. For a given k ∈ J , if yk = 0 then xik = 0 ∀i ∈ {1, 2, ...,m} and constraint∑m
i=1 xik ≤ yk is redundant.

This completes the acceleration strategies for the RPSPS . We present next the Accelerated PBD
algorithm.

3.2 The Accelerated PBD algorithm

The Accelerated PBD algorithm is summarized in Algorithm 1. Let yinit be an initial point. We

set supp(yinit) to sets S and T , and the current solution yinit to ȳ. Then, we solve RPSPS to

optimality. We generate the local Pareto-optimal primal Benders cut(s) using the optimal node(s)’

dual solution(s). We add these cuts to the RRMPT , which is relaxed (integrality) and solved. Let ȳ be

its new solution. If the solution changes (supp(ȳ) changes), we add supp(y∗) to S and insert the new

complicating variables into RPSPS . We solve the latter, and the process continues. Otherwise (the

solution does not change), using RRMPT ’s dual solution, we compute the reduced cost for each yj
with j ∈ J \T . If we identify promising complicating variables, we select a few, add their indexes to set

T , and insert them into the RRMPT by lifting the existing Benders cuts. We solve the new RRMPT .

The process continues until no improving complicating variable is identified (Φ = ∅). In such a case,

we run Algorithm 2 to check convergence (detailed in Section 3.3). Algorithm 2 returns the optimal

solution (y∗S , x
∗
S) of RPSPS , which is augmented with zeros to obtain an optimal or near-optimal

solution of OP.

3.3 The Accelerated PBD convergence

A feasible solution of OP can be constructed by taking the RPSPS solution and augmenting it with

zeros corresponding to the remaining variables (present in OP and not in RPSPS). The following
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Algorithm 1: Accelerated PBD

1 Generate an initial point yinit

2 S ← supp(yinit), T ← supp(yinit), Φ← ∅, ȳ ← yinit

3 Solve RPSPS to optimality, generate primal Benders optimality cut(s) at optimal B&B node(s), and insert
these cuts into RRMPT

4 Solve relaxed RRMPT to get new solution ȳ
5 if supp(ȳ) changes then
6 S ← S ∪ supp(ȳ)
7 Return to Line 3

8 else
9 Using relaxed RRMPT ’s dual solutions, compute f̄j for each yj with j ∈ J \ T as per Formula 1

10 Φ← {j ∈ J \ T : f̄j < 0}
11 if Φ ̸= ∅ then
12 Select few variables yj , j ∈ Φ and add their indexes to set T
13 Lift Benders cuts in RRMPT using the coefficients COEF (j, p), p ∈ P
14 Return to Line 4

15 end

16 end
17 Run Algorithm 2 to check convergence

theorem highlights that the Accelerated PBD provides a finite decreasing sequence to an optimal or

near-optimal solution of OP.

Theorem 2. If we start with an initial point (x1, y1) and execute Algorithm 1, we generate a sequence

(x1, y1), (x2, y2), ..., (xh, yh) of solutions such that:

1. fT y1 + cTx1 ≥ fT y2 + cTx2 ≥ ... ≥ fT yh + cTxh;

2. (x1, y1), (x2, y2), ..., (xh, yh) are solutions of OP;

3. (xh, yh) is an optimal or near-optimal solution of OP.

Proof. From any feasible solution of RPSPS , we can obtain a feasible solution for OP. Furthermore,

when augmenting RPSPS with a variable yϕ with ϕ ∈ J \S, we have fT
S y∗S+cTx∗

S ≥ fT
S+y∗S+ +cTS+x∗

S+ .

Combining the above, we form a decreasing sequence fT y1+ cTx1 ≥ fT y2+ cTx2 ≥ ... ≥ fT yh+ cTxh

where (x1, y1), (x2, y2), ..., (xh, yh) are solutions of OP and where the last solution (xh, yh) is an optimal

or near-optimal solution of OP because either there are no more complicating variables with a negative

reduced cost to insert or all the complicating variables are inserted, i.e., RPSPS is equivalent to OP.

The following observation highlights the significant reduction in the number of Benders iterations

between the standard BD and the Accelerated PBD.

Observation 5. Compared to BD for which ℵn
0 iterations may be required in the worst case, the

Accelerated PBD requires at most n iterations in the worst case. In such a case, the RPSPS becomes

OP because n is the number of complicating variables in the OP and is also the number of variables

in J .

In the standard BD, each cut is obtained from a solution ȳ. For y ∈ Zn
+, we obtain ℵn

0 solutions

to explore in the worst case, i.e., ℵn
0 iterations. In the PBD case, each complicating variable with a

negative reduced cost induces a single iteration. Thus, n iterations are required in the worst case, i.e.,

a reduction from ℵn
0 to n. It follows that, if y ∈ {0, 1}n, in the worst case, the number of Benders

iterations is reduced from 2n to n when using the Accelerated PBD instead of BD.

To confirm convergence to optimality, we proceed as follows. Once no complicating variable(s)

with a negative reduced cost are identified or there is no change in the optimal solution of RRMPT ,

we insert all remaining complicating variables into RRMPT using the previously computed lifting

coefficients. Then, we solve the RRMPT and compute its objective value, which becomes a LB for

the OP problem (RRMPT contains, at this stage, all complicating variables and becomes RMP). If
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|UB − LB| < ϵ, we return the optimal solution (y∗S , x
∗) of RPSPS , which is augmented with zeros to

obtain the optimal solution of OP. Otherwise, we continue the insertion of complicating variables into

RRMPT as per the framework in Figure 3 until satisfying |UB − LB| < ϵ. In such a case, we return

the optimal solution (y∗S , x
∗
S) of RPSPS , which is augmented with zeros to obtain the optimal solution

of OP. The convergence checking is highlighted in Algorithm 2. The augmented RRMPT contains

fewer cuts (Pareto-optimal primal Cuts). Thus, its solving should be quick. To accelerate RRMPT
solving further, we can rely on a warm start using the last solution obtained augmented with zeros

corresponding to the complicating variables in T̄ .

To conclude this section, we make the following observation.

Observation 6. The number of iterations might be large if n is large. Still, it is worth highlighting

that, since the solution procedure (column generation) of DWD converges by adding only a small

number of the columns to the DWD RMP, it might be the same (BD is the dual of DWD) behavior

for RPSPS .

Algorithm 2: Convergence checking

1 Insert all remaining complicating variables in T̄ = J \ T into RRMPT using the previously computed lifting
coefficients.

2 if |UB − LB| < ϵ then
3 Return (y∗S , x

∗
S) optimal solution of RPSPS

4 else
5 Continue via the framework in Figure 3 until convergence.
6 end

This completes the discussion on the Accelerated PBD convergence. In what follows, to avoid

selecting many complicating variables with a negative reduced cost (without being in the optimal

solution) and increasing significantly the size of the subproblem, we only select the most promising

complicating variable at each iteration, i.e., the variable yϕ such that ϕ = min
j∈J\S

{f̄j : f̄j < 0}. To

highlight the method’s benefits, we present next an illustrative facility location example.

4 Example

To highlight the benefits of the proposed method, consider the following facility location problem (FLP)

example. A formulation for the capacitated facility location problem as given in Wentges (1996) is:

min

n∑
j=1

fjyj +

m∑
i=1

n∑
j=1

cijxij (FLP)

s.t. :

n∑
j=1

xij = di ∀i ∈ I

xij ≤ diyj ∀i ∈ I, j ∈ J
m∑
i=1

xij ≤ sjyj ∀j ∈ J

xij ≥ 0, yj ∈ {0, 1} ∀i ∈ I, j ∈ J

where n = |J | = 5 (facilities), m = |I| = 6 (clients), fj = 1 ∀j ∈ J (fixed cost), sj = 16 ∀j ∈ J

(capacity), d = {1, 1, 2, 3, 4, 5} (demand), and unit cost matrix (variable cost)
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
The binary variable yj is equal to 1 if facility j ∈ J is opened and zero otherwise. The variable

xij is the quantity supplied to customer i ∈ I by facility j ∈ J . For this example, the optimal value

is 21, and all 5 depots are opened. We compare the BD and the PBD using two scenarios. In the

first scenario, ȳ = (0, 0, 0, 0, 1) is provided as an initial point to BD. Equivalently, S = {5} is an initial

point for PBD. Figure 4 shows the results. For each method, we report Obj1 (in blue) corresponding

to the subproblem objective value and Obj2 (in red) corresponding to the master problem objective

value.

While BD requires 8 iterations (8 Benders cuts) to converge, PBD requires only 5 iterations (5

primal Benders cuts) to reach the optimal solution, i.e., the remaining 5 depots to open. Also, the

objective value of the BD subproblem (Obj1 in Blue on the left) shows a zigzagging behavior while

the objective value of the PBD subproblem (Obj1 in Blue on the right) shows a strict decrease. The

necessity to close the gap between the UB and LB implies more iterations for BD. In contrast, PBD
reaches optimality when no more depots with negative reduced costs are available, i.e., in five iterations.
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Figure 4: Comparison between BD vs PBD for ȳ = (0, 0, 0, 0, 1) and S = {5}

Another interesting observation is the comparison between the Benders cuts generated. In the first

iteration, the Benders cut generated using BD is:

z ≥ 501− 381y2 − 219y3 − 77y4 − 78y5 (3)

The Benders cut generated using PBD is:

z ≥ 501 (4)

Since y1 is binary, the second cut dominates the first one as shown in Section 3.3.

In the second scenario, ȳ = (0, 1, 1, 1, 1) is provided as an initial point to BD. Equivalently, S =

{2, 3, 4, 5} is an initial point for PBD. Figure 5 highlights the results for the second scenario. PBD
reaches the optimal solution in two iterations while BD requires more. For PBD, the first iteration

corresponds to S = {2, 3, 4, 5} while the second iteration corresponds to S = {1, 2, 3, 4, 5}. Two
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Pareto-optimal cuts are required to reach the optimal solution. They are sufficient and provide all the

necessary information. It is not the case with BD, which requires 5 Benders cuts to converge while

showing a zigzagging behavior.
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Figure 5: Comparison between BD vs PBD for ȳ = (0, 1, 1, 1, 1) and S = {2, 3, 4, 5}

For this second example, the Benders cut generated using BD in the first iteration is:

z ≥ 187− 171y1 (5)

The Benders cut generated using PBD is:

z ≥ 187 (6)

Since y variables are binary, the second cut dominates the first one. A last observation is that

all the Benders cuts generated by PBD are tight in the (relaxed) solution of RRMPT and in each

iteration. This is not the case for BD where a few cuts are tight in each iteration.

5 Experimental design

To study whether the PBD method is computationally efficient, we complement the theoretical analysis

presented in previous sections with an extensive computational study. In this section, we describe the

general characteristics of the test instances, the computational setting, and how the algorithms were

implemented.

5.1 Instances

We test our method on the facility location problem (FLP), often used as a classical example in the BD

context. We consider three different sets of instances from the literature. Here, we provide a high-level

summary of these problems and instances. Further details can be found in the provided references.

The first instance set is the deterministic FLP used in Beasley (1988) and available in the OR

Library. These benchmarks are probably the most widely used benchmarks when testing algorithm

performance for the FLP. We have considered all 52 instances from the 16 classes available. Each class

includes at most four instances with varying costs and capacity ratios. Also, these instances include up

to 1000 customers with up to 100 potential facilities. A capacitated formulation of the deterministic

case is FLP. We refer to these instances as CAP instances.

http://people.brunel.ac.uk/~mastjjb/jeb/info.html
http://people.brunel.ac.uk/~mastjjb/jeb/info.html
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The second instance set is the stochastic variant of the facility location problem. For this variant,

we have used the instances generated by Bodur et al. (2017) with up to 5000 scenarios. We have

considered 80 instances from 4 classes and 5 scenarios. Each class includes four instances with varying

costs and capacity ratios. Also, these instances include 50 customers with up to 25-50 potential

facilities. A stochastic variant formulation is provided in Appendix A. We refer to these instances as

SCAP instances. The main reason behind the choice of stochastic instances is that BD, also referred to

as the L-shaped method within the stochastic optimization community, is used significantly to tackle

stochastic optimization problems. Thus, we aim to check the performance of the PBD in the stochastic

case as well.

The third instance set is a large-scale version of the facility location problem used by Kratica et al.

(2001) and available in the Max Planck Institut Informatik. These benchmarks are designed to be

similar to real-life problems and have a large number of near-optimal solutions. We have considered all

22 instances from 6 classes. Each class includes at most five instances with varying costs and capacity

ratios. Also, these instances have a similar number of customers and facilities with 2000 being the

largest size. We refer to these instances as M instances.

5.2 Computational setting and implementation details

The coding language is C++ and tests are conducted using version 12.10.0 of IBM ILOG CPLEX

solver. All experiments were carried out on a 3.20GHz Intel(R) Core(TM) i7-8700 processor, with

64GiB System memory, running on Oracle Linux Server release 7.7. We use real-time to measure

runtime. In order to make the implementations simple and easily replicable, we do not use any

specialized codes or algorithms. Thus, we solve all LPs and MILPs using IBM ILOG CPLEX 12.10.0

run on a single thread.

We compare the following four methods:

MILP: Solve directly with a MIP solver. In our case, we use the default CPLEX.

CPLEX BD: Solve with CPLEX implementation of BD. To do so, we set the CPLEX parameter

Benders Strategy to option Full, i.e., CPLEX automatically decomposes the given model. We

keep other CPLEX parameters to their default options. It is worth mentioning that the CPLEX-

Benders is a state-of-the-art implementation of Benders decomposition (Baena et al., 2020).

BD: Solve with the standard BD as it was initially developed (Benders, 1962) without any acceleration

strategies. BD is chosen as a baseline and allows comparing the number of Benders cuts.

PBD: Solve using the Accelerated PBD method.

There are several (meta)heuristics used to find an initial point for the FLP. While it is not our

focus here, to find initial points, we implement the DROP heuristic that starts with all facilities open,

keeps dropping (closing) the facility that gives the maximum decrease in the total cost, and stops if

dropping any more facilities will no longer reduce the total cost (Nemhauser et al., 1978; Erlenkotter,

1978). Using this heuristic, we construct an initial point with as few open facilities as possible. For

a fair comparison, we provide all methods with the same initial point. The time limit for solving any

instance by any of the four methods is one hour.

6 Computational results

In this section, we quantify the computational benefits of the PBD when solving the instances con-

sidered. We first check the performance of the PBD on the CAP instances. Then, we evaluate its

performance on the SCAP instances. After that, we highlight its performance on the M instances. We

then quantify the impact of the implementation tips. Finally, we discuss some computational insights.

https://resources.mpi-inf.mpg.de/departments/d1/projects/benchmarks/UflLib/packages.html


Les Cahiers du GERAD G–2023–27 15

6.1 Deterministic Facility Location Problem

Table 1 presents the performance of the four methods on the CAP instances. We report the optimality

gap (Gap) computed as UB−OPT
OPT , where OPT is the optimal value and UB is the best UB obtained,

and the execution time (Time) in seconds. In the latter and when it is the case, we indicate between

parentheses the number of instances that could not be solved to optimality. Furthermore, for the three

decompositions, we report the number of Benders cuts (Cuts). Column |J∗| refers to the number of

opened facilities in the optimal solution. All the values are reported as averages.

Table 1: Performance Comparison for Cap Instances

CAP# |I| |J | |J∗| MILP CPLEX BD BD PBD

Gap Time Cuts Gap Time Cuts Gap Time Cuts Gap Time

41-44 50 16 9 0.00% 0.73 4 0.00% 0.58 24 0.00% 24.50 6 0.00% 0.62
51 50 16 8 0.00% 0.78 4 0.00% 0.55 34 0.00% 19.33 6 0.00% 0.59

61-64 50 16 8 0.00% 0.71 4 0.00% 0.51 32 0.00% 11.42 6 0.00% 0.52
71-74 50 16 7 0.00% 0.74 5 0.00% 0.49 28 0.00% 8.15 5 0.00% 0.51
81-84 50 25 11 0.00% 0.98 8 0.00% 0.75 >5000 4.11% (4) 9 0.00% 0.77
91-94 50 25 11 0.00% 1.18 8 0.00% 0.84 >5000 3.93% (4) 8 0.00% 0.85

101-104 50 25 10 0.00% 1.33 5 0.00% 0.95 48 3.78% 378.67 (1) 8 0.00% 0.96
111-114 50 50 11 0.00% 1.49 10 0.00% 1.07 >5000 4.27% (4) 9 0.00% 1.12
121-124 50 50 11 0.00% 4.14 12 0.00% 1.20 >5000 4.77% (4) 8 0.00% 1.26
131-134 50 50 10 0.00% 4.64 7 0.00% 1.27 >5000 3.97% (4) 8 0.00% 1.36

a 1000 100 4 0.00% 232.00 7 0.00% 2.00 >5000 8.21% (4) 2 0.00% 1.71
a1-4 1000 100 6 0.00% 72.50 15 0.00% 5.50 >5000 10.15% (4) 5 0.00% 3.57

b 1000 100 7 0.00% 68.00 13 0.00% 2.55 >5000 8.34% (4) 5 0.00% 2.31
b1-4 1000 100 9 0.00% 73.25 52 0.00% 13.25 >5000 12.33% (4) 7 0.00% 5.58

c 1000 100 9 0.00% 104.00 15 0.00% 3.15 >5000 8.67% (4) 6 0.00% 2.48
c1-4 1000 100 10 0.00% 101.25 43 0.00% 10.50 >5000 12.07% (4) 9 0.00% 5.86

Avg 406 60 9 0.00% 41.73 13 0.00% 2.82 >5000 5.29% 2502.63 7 0.00% 1.88

From Table 1, we can infer that CPLEX BD and PBD outperform both MILP and BD. The latter

fails to reach optimality on several CAP instances with the average gap being 5.29%. In many of them,

BD generates more than 5000 Benders cuts without converging, highlighting the convergence issues

of BD. Also, while CPLEX BD performs better compared to PBD on instances with 25-50 facilities

and 50 customers, PBD outperforms other methods on larger instances with 100 facilities and 1000

customers. On average, PBD outperforms all other methods with an average time to optimality equal

to 1.88 and an average number of Benders cuts equal to 7.

6.2 Stochastic Facility Location Problem

Table 2 presents the results obtained on SCAP instances. We consider from 250 to 5000 scenarios.

The SCAP instances are more difficult than the CAP instances. Indeed, BD fails to reach optimality

on all of them and MILP starts to fail from scenario 500. For CPLEX BD and PBD, they both reach

optimality in all instances. CPLEX BD requires many Benders cuts to reach optimality with the lowest

number being 549 cuts and the highest number being 29037 cuts. On the other side, PBD requires

far fewer cuts and converges in at most |J∗| iterations. For execution time, PBD outperforms more

significantly CPLEX BD on SCAP instances than CAP instances.

6.3 Large-scale Facility Location Problem

For the M instances, which mimic real-life cases, we report the results in Table 3. These instances

are more complicated than CAP and SCAP instances since they have significantly more complicating

variables. BD fails in these instances. MILP fails in instances with more than 500 customers and

facilities. CPLEX BD also fails on instances with a size larger than 500 except for instance R2. PBD
outperforms all methods and reaches optimality in all instances.
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Table 2: Performance Comparison for SCAP Instances

K SCAP# |I| |J | |J∗| MILP CPLEX BD BD PBD

Gap Time Cuts Gap Time Cuts Gap Time Cuts Gap Time

250

101-104 50 25 9 0.00% 18.00 601 0.00% 4.00 >5000 17.91% (4) 6 0.00% 4.15
111-114 50 50 16 0.00% 364.75 624 0.00% 13.00 >5000 9.62% (4) 13 0.00% 12.21
121-124 50 50 10 0.00% 557.00 894 0.00% 12.75 >5000 19.33% (4) 7 0.00% 12.14
131-134 50 50 9 0.00% 168.75 549 0.00% 7.00 >5000 23.33% (4) 7 0.00% 4.65

Avg 50 44 11 0.00% 341.91 667 0.00% 9.19 >5000 17.55% - 8 0.00% 8.05

500

101-104 50 25 9 0.00% 64.75 1218 0.00% 7.00 >5000 19.23% (4) 6 0.00% 8.75
111-114 50 50 16 0.00% 1620.50 1736 0.00% 28.25 >5000 9.79% (4) 13 0.00% 27.58
121-124 50 50 10 0.24% 1988.25 (1) 1956 0.00% 27.25 >5000 19.63% (4) 7 0.00% 25.89
131-134 50 50 9 0.00% 760.5 1080 0.00% 14.00 >5000 23.61% (4) 7 0.00% 9.67

Avg 50 44 11 0.08% 1108.50 1497 0.00% 19.13 >5000 18.07% - 8 0.00% 17.97

1500

101-104 50 25 9 0.00% 674.25 3575 0.00% 27.75 >5000 21.01% (4) 6 0.00% 29.07
111-114 50 50 16 7.69% (4) 11044 0.00% 186.00 >5000 10.06% (4) 13 0.00% 137.77
121-124 50 50 10 11.60% (4) 6838 0.00% 93.00 >5000 20.99% (4) 7 0.00% 89.57
131-134 50 50 9 3.60% 3259.25 (3) 3891 0.00% 52.25 >5000 26.54% (4) 7 0.00% 35.51

Avg 50 44 11 5.72% 2783.38 6337 0.00% 89.75 >5000 19.65% - 8 0.00% 72.98

3000

101-104 50 25 9 4.31% 2407.75 (2) 5585 0.00% 62.25 >5000 23.11% (4) 6 0.00% 53.08
111-114 50 50 16 13.63% (4) 29037 0.00% 309.00 >5000 11.07% (4) 13 0.00% 255.91
121-124 50 50 10 20.58% (4) 10913 0.00% 208.00 >5000 23.09% (4) 7 0.00% 165.85
131-134 50 50 9 9.25% (4) 7099 0.00% 126.50 >5000 29.19% (4) 7 0.00% 65.68

Avg 50 44 11 11.94% 3301.94 13158 0.00% 176.44 >5000 21.62% - 8 0.00% 135.13

5000

101-104 50 25 9 7.41% 3106.25 (3) 11273 0.00% 112.50 >5000 25.42% (4) 6 0.00% 98.46
111-114 50 50 17 16.73% (4) 22120 0.00% 528.25 >5000 12.17% (4) 13 0.00% 438.92
121-124 50 50 10 27.13% (4) 16213 0.00% 380.75 >5000 25.40% (4) 7 0.00% 304.12
131-134 50 50 9 11.12% (4) 11645 0.00% 216.75 >5000 32.11% (4) 7 0.00% 111.52

Avg 50 44 11 15.60% 3476.50 15313 0.00% 309.56 >5000 23.78% - 8 0.00% 238.26

Table 3: Performance Comparison for M Instances

M# |I| = |J | |J∗| MILP CPLEX BD BD PBD

Gap Time Cuts Gap Time Cuts Gap Time Cuts Gap Time

O1-5 100 4 0.00% 35.20 213 0.00% 2.33 >5000 5.33% (5) 4 0.00% 0.27
P1-5 200 5 0.00% 139.00 1029 0.00% 43.80 >5000 6.26% (5) 4 0.00% 1.35
Q1-5 300 5 0.00% 729.60 1766 0.00% 251.20 >5000 8.66% (5) 5 0.00% 4.77
R1-5 500 6 13.01% (5) 4075 2.64% 3229.80 (4) >5000 12.12% (5) 6 0.00% 11.23

S1 1000 6 42.11% (1) 2562 2.92% (1) >5000 19.85% (1) 6 0.00% 27.59
T1 2000 6 53.78% (1) 627 1.96% (1) >5000 25.44% (1) 6 0.00% 174.86

Avg 684 5 18.15% 1950.63 1712 1.25% 1787.86 >5000 12.94% - 5 0.00% 36.68

For the M instances, |J∗| is on average 5. Thus, PBD reaches the optimal solution in a few

iterations despite the large size of facilities. This aligns with Observation 6 since the number of cuts

is much less than the number of y variables and is rather of the order of the number of y variables

in the optimal solution. On average, within 36.68 seconds, 5 Benders cuts are added to reach the

optimal solution. In the remaining sections, we investigate further the methods and consider only the

M instances with a large number of complicating variables (≥ 100).

6.4 Impact of implementation tips

In this section, we evaluate the impact of implementation tips on the PBD. The abbreviations IP, WS,

Cuts, and SS refer to the initial point, warm-start, Benders cuts, and selection strategy, respectively.

In the first approach, we evaluate PBD when no initial point is provided. We recall that no initial

point means the usage of an artificial solution with high costs as in DWD. In the second approach,
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we evaluate PBD when no warm start is applied to both RRMP and RPSP. In the third approach,

we evaluate PBD when all integer optimality cuts are collected from the branch-and-bound tree of

RPSP in a given iteration. We recall that we consider solely the local Pareto-optimal cut(s), obtained

from the optimal node(s), in PBD. Lastly, in the fourth approach, we compare PBD to PBD without

the selection strategy. In the latter, we solve the RRMP to optimality and insert the support of its

solution in the RPSP as described in Section 2. Table 4 highlights the effect of the implementation

tips on the PBD.

Table 4: Impact of acceleration strategies

M#
No IP No WS All Cuts No SS PBD

Cuts Gap Time Cuts Gap Time Cuts Gap Time Cuts Gap Time Cuts Gap Time

O1-5 5 0.00% 0.53 4 0.00% 0.50 108 0.00% 0.61 4 0.00% 1.12 4 0.00% 0.27
P1-5 6 0.00% 2.24 4 0.00% 2.20 168 0.00% 2.65 4 0.00% 7.00 4 0.00% 1.35
Q1-5 6 0.00% 7.14 5 0.00% 7.12 245 0.00% 8.88 5 0.00% 22.80 5 0.00% 4.77
R1-5 7 0.00% 11.77 6 0.00% 18.40 571 0.00% 22.07 6 0.00% 110.80 6 0.00% 11.23

S1 7 0.00% 28.15 6 0.00% 48.30 1266 0.00% 57.96 6 0.00% 883.00 6 0.00% 27.59
T1 7 0.00% 184.32 6 0.00% 316.25 1872 0.00% 379.49 6 5.50% (1) 6 0.00% 174.86

Avg 6 0.00% 40.19 5 0.00% 65.46 705 0.00% 78.61 5 0.92% 770.79 5 0.00% 36.68

On M instances, the initial point does not significantly impact the PBD. This is due to the fact

that |J∗| is quite small. Thus, PBD reaches the optimal solution in at most 6 iterations. With a

large |J∗|, the initial point will definitely accelerate the PBD. Warm-starting significantly impacts

the PBD performance, especially for large instances. For instance, while PBD reaches optimality in

174.86 seconds for the instance T1, PBD without warm-start requires 316.25 seconds. This is due to

the large size of the subproblem and the time taken to solve it at each iteration from scratch. The same

observation happens when all Benders cuts are inserted. The selection strategy also plays a crucial

role, especially when J is large. Indeed, when solving the RMP to optimality and inserting the support

of its solution in the RPSPS , several complicating variables that do not belong to the optimal solution

might be inserted in the RPSPS . The latter becomes quite large and consequently computationally

expensive. This is the case for instance T1, which can no longer be solved within one hour when the

selection strategy is removed.

6.5 Computational insights

The results above report the optimality gap using the UBs obtained by each method. In what follows,

we check the LBs as well and report in Table 5 the gap between the optimal solution and the LBs

(Gap−) within the time limit of one hour. It is computed as OPT−LB
OPT , where OPT is the optimal

value and LB is the best LB obtained. The number of cuts and the execution time remain the same

as in Table 3. For PBD, we report the results before running Algorithm 2.

Table 5: Performance on the LBs

M# |J∗| MILP CPLEX BD BD PBD

Gap− Time Cuts Gap− Time Cuts Gap− Time Cuts Gap− Time

O1-5 4 0.00% 35.20 213 0.00% 2.33 >5000 2.32% (5) 4 3.83% 0.27
P1-5 5 0.00% 139.00 1029 0.00% 43.80 >5000 2.72% (5) 4 2.10% 1.35
Q1-5 5 0.00% 729.60 1766 0.00% 251.20 >5000 3.76% (5) 5 1.41% 4.77
R1-5 6 14.95% (5) 4075 3.03% 3229.80 (4) >5000 5.26% (5) 6 0.49% 11.23

S1 6 48.39% (1) 2562 5.65% (1) >5000 7.63% (1) 6 0.64% 27.59
T1 6 61.80% (1) 627 9.15% (1) >5000 10.06% (1) 6 1.89% 174.86

Avg 5 20.86% 1950.63 1712 2.97% 1787.86 >5000 6.35% - 5 2.07% 36.68

Table 5 highlights that PBD reaches the optimal solution without necessarily closing the gap

between the UB and the RLB. While BD improves the LB more efficiently than the UB, both MILP
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and CPLEX BD improve the LB less efficiently than the UB. The performance of MILP, CPLEX BD,

and BD is curbed by the necessity of closing the gap between the UB and the LB. In contrast, PBD
does not have such an issue and can be stopped once there are no more promising y variables to insert,

thus ensuring the practical superiority of the proposed method.

Figure 6 shows the behavior of the four methods on instance MO1. For MILP, we report the

execution time along the x-axis. For CPLEX BD, BD, and PBD, we report the iterations on the

x-axis. The CPLEX BD requires 225 Benders iterations to converge. The BD does not converge and

stagnates while the PBD reaches optimality in less than one second. The graphs confirm that MILP

and CPLEX BD reach optimality on the UB in 6 and 0.75 seconds, respectively. Still, they do not

converge because the LB is not tight. On both top graphs in Figure 6, much of the time is spent

bringing the LB to optimality. On the bottom graphs, BD stagnates since both the UB and the LB

do not change. On the bottom right side, PBD ensures a strict improvement from one iteration to

another until reaching the optimal solution. This feature is one of the main strengths of PBD.

0 10 20 30
500

1,000

1,500

2,000

Execution Time

B
ou

n
d
s

UB

LB

(a) MILP

50 100 150 200
1,200

1,400

1,600

1,800

2,000

Iteration

B
ou

n
d
s

UB

LB

(b) CPLEXBD

0 1,000 2,000 3,000 4,000 5,000
1,000

1,200

1,400

1,600

Iteration

B
ou

n
d
s

UB

LB

(c) BD

1 2 3 4 5
1,200

1,400

1,600

1,800

2,000

Iteration

B
ou

n
d
s

UB

RLB

(d) PBD

Figure 6: Comparison between the four methods for instance MO1

An interesting aspect to check is the number of Benders cuts tight at each iteration, i.e., when

solving the RRMPT . Table 6 highlights such a comparison between BD and PBD. We report the

number of cuts as well as the average percentage of cuts tight (%Tight) in the RRMPT solution. For

BD, less than half of the cuts are tight at each iteration. For PBD, all cuts added are tight at each

iteration. It highlights the significant difference in the quality of Benders cuts added by each method.

PBD provides the best cut(s) given a subset of y variables compared to BD. Thus, it implies a quicker

convergence to the optimal solution.
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Table 6: Tight cuts between BD and PBD

M# |J∗| BD PBD

Cuts %Tight Cuts %Tight

O1-5 4 >5000 50.12% 4 100.00%
P1-5 5 >5000 47.74% 4 100.00%
Q1-5 5 >5000 45.93% 5 100.00%
R1-5 6 >5000 43.36% 6 100.00%
S1 6 >5000 40.12% 6 100.00%
T1 6 >5000 38.75% 6 100.00%

Avg 5 >5000 44.37% 5 100.00%

Another interesting point is that while BD relies on the gap between the UB provided by the sub-

problem and the LB provided by the master problem, PBD relies solely on the UB of the subproblem.

Thus, instead of the double effort required to get both bounds close to each other in BD, a single

effort is required to get PBD to reach the optimal solution. Once no more complicating variables are

identified, PBD stops. Then, Algorithm 2 allows confirming that the optimal solution of the original

problem is the optimal solution of the subproblem augmented with zeros. The master problem in PBD
acts like a guide, i.e., it guides the subproblem toward the optimal solution. Indeed, as it is shown

on the bottom right graph of Figure 6, the master and subproblem bounds behave in a similar and,

interestingly, decrease strictly. From the computational insights above, we formulate the following

conjecture.

Conjecture 1. For the FLP, the PBD converges strictly to the optimal solution in at most n iterations

where n is the size of complicating variables.

To sum up the computational results, through the PBD, we highlight the importance of leveraging

the primal information when tackling optimization problems, especially when relying on decomposition

techniques such as BD for large-scale problems. Indeed, using the primal information, one can follow

improving directions towards the optimal solution. This aspect is lacking in all dual methods, including

BD in its standard form. Furthermore, while we use the FLP to evaluate the PBD, it is worth

mentioning that it can be applied to many problems in the literature such as the multicommodity

capacitated fixed charge network design problem, the stochastic network interdiction problem, the

applications introduced in the Section 1, and many others (Adulyasak et al., 2015; Er Raqabi et al.,

2023a; Himmich et al., 2023). Indeed, as highlighted with the M instances, it is very promising to

apply it to real-life problems where the ratio |J∗|
|J| is small.

7 Conclusion

This paper presents an attempt to view BD from a different perspective. Indeed, when seeing it as

the dual of DWD, it is possible to leverage the primal information to converge more quickly compared

to all dual BD methods. As far as we know, there has not been any such work in the literature.

We believe that this paper will open a new era in BD with many future research directions. Several

improvements can be made in the generation of cuts, the identification of promising complicating

variables to insert, etc. The main strengths of the PBD are the generation of solely optimality cuts,

the convergence to optimal or near-optimal solutions in at most the size of complicating variables, the

improvement of the UB at each iteration, the handling of the integrality of the subproblem (a crucial

issue in BD literature), and the scalability to several real-life problems since it relies on an intuitive

dynamic insertion of complicating variables.
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A The Stochastic Capacitated Facility Location Problem

Let us consider a set of potential facility locations J and a set of customers I. The objective is to open

enough facilities to satisfy the customers with minimum cost. A customer must be served by at least

one facility (or more). At each potential facility location j ∈ J , at most one facility with a service

capacity of sj can be opened. The corresponding fixed cost is fj units. The variable service cost from

facility j ∈ J to customer i ∈ I is cij . Each customer i ∈ I has a stochastic demand dki , where k ∈ K

is a scenario with probability pk such that
∑

k∈K pk = 1.

Let yj be the binary variable equal to one if a facility is opened at location j ∈ J and zero otherwise.

Let xk
ij ≥ 0 be the quantity supplied from facility j ∈ J to customer i ∈ I given scenario k ∈ K. The

stochastic capacitated facility location problem is then:

min
∑
j∈J

fjyj +
∑
k∈K

∑
j∈J

∑
i∈I

pkcijx
k
ij (SFLP)

s.t. :
∑
j∈J

xk
ij ≥ dki ∀i ∈ I, k ∈ K

∑
i∈I

xk
ij ≤ sjyj ∀j ∈ J, k ∈ K∑

j∈J

sjyj ≥ max
k∈K

∑
i∈I

dki

xk
ij ≥ 0, yj ∈ {0, 1} ∀i ∈ I, j ∈ J, k ∈ K

The objective minimizes the total costs (fixed and variable). The first constraint set controls the

demand satisfaction for each customer under every scenario. The second constraint set controls the

capacity level for each facility. The third constraint corresponds to the complete recourse property to

the problem. The last constraints are positivity (x variables) and binary (y variables) conditions.
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Kratica, J., Tošic, D., Filipović, V., and Ljubić, I. (2001). Solving the simple plant location problem by genetic
algorithm. RAIRO-Operations Research, 35(1):127–142.

Laporte, G., Louveaux, F. V., and Mercure, H. (1994). A priori optimization of the probabilistic traveling
salesman problem. Operations research, 42(3):543–549.

Lee, J. (2008). A celebration of 50 years of integer programming. Optima, 76:10–14.

Lin, S., Lim, G. J., and Bard, J. F. (2016). Benders decomposition and an IP-based heuristic for selecting
IMRT treatment beam angles. European Journal of Operational Research, 251(3):715–726.

Magnanti, T. L. and Wong, R. T. (1981). Accelerating Benders decomposition: Algorithmic enhancement and
model selection criteria. Operations research, 29(3):464–484.

Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L. (1978). An analysis of approximations for maximizing
submodular set functions—i. Mathematical programming, 14(1):265–294.

Poojari, C. A. and Beasley, J. E. (2009). Improving Benders decomposition using a genetic algorithm. European
Journal of Operational Research, 199(1):89–97.

Rahmaniani, R., Ahmed, S., Crainic, T. G., Gendreau, M., and Rei, W. (2020). The benders dual decomposition
method. Operations Research, 68(3):878–895.

Rahmaniani, R., Crainic, T. G., Gendreau, M., and Rei, W. (2017). The Benders decomposition algorithm: A
literature review. European Journal of Operational Research, 259(3):801–817.

Sherali, H. D. and Lunday, B. J. (2013). On generating maximal nondominated Benders cuts. Annals of
Operations Research, 210(1):57–72.
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