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les exigences légales associées à ces droits. Ainsi, les utilisateurs:
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Abstract : This paper investigates a variant of the traveling salesman problem (TSP) with speed
optimization for a plug-in hybrid electric vehicle (PHEV), simultaneously optimizing the average speed
and operation mode for each road segment in the route. Two mixed-integer nonlinear programming
models are proposed for the problem: one with continuous speed decision variables and one with dis-
cretized variables. Since the models are non-linear, we propose reformulation schemes and introduce
valid inequalities to strengthen them. We also describe a branch-and-cut algorithm to solve these
reformulations. Extensive numerical experiments are performed to demonstrate the algorithm’s per-
formance in terms of computing time and energy consumption costs. Specifically, the proposed solution
method can efficiently solve instances with a realistic number of customers and outperforms the bench-
mark approaches from the literature. Integrating speed optimization into the TSP of a PHEV can
lead to significant energy savings compared to the fixed-speed TSP. In addition, the proposed model
is extended to investigate the impact of the presence of charging stations, which makes the problem
harder to solve but has the potential to further reduce energy consumption costs.

Keywords : plug-in hybrid electric vehicle, traveling salesman problem, speed optimization, branch-
and-cut

Acknowledgements: The authors are grateful to Christian Doppstadt, Achim Koberstein, and
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ments.
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1 Introduction

Reducing emissions is a key focus of international climate change agreements due to the recognized

role of greenhouse gases in causing global temperature rises (Bektaş et al. 2019). Vehicle electrification

has emerged as an effective strategy for reducing emissions from road transportation. In line with

this effort, the United Parcel Service (UPS), a prominent delivery company, aims to incorporate more

than 1000 electric and plug-in hybrid electric vehicles into its fleet by 2025 (UPS 2022). In Canada,

the sales of plug-in hybrid electric vehicles (PHEVs) have surged by 95 percent since 2020, reaching

approximately 28,300 units in 2021 (Carlier 2022). Electric vehicles encompass pure battery electric

vehicles (BEVs) and PHEVs, with the latter drawing power from both battery and fuel sources.

Notably, PHEVs typically have larger battery capacities and can recharge their batteries from an

external electrical outlet, which differs from standard hybrid electric vehicles (HEVs) (Sioshansi 2012).

PHEVs commonly utilize an internal combustion engine (ICE) and an electric machine (EM) as

their two power sources. Two main types of PHEVs are defined according to their powertrain configu-

ration: series and parallel. In a series configuration, only the EM is connected to the wheels, with the

ICE being utilized solely to generate electricity. On the contrary, the parallel configuration connects

both the ICE and EM to the wheels, enabling the vehicle to operate using one or both power sources.

This paper focuses on PHEVs with a parallel configuration, which offers greater operational flexibil-

ity but also presents routing challenges arising from the requirement to determine optimal operation

modes (Nejad et al. 2017).

Most of the previous studies on HEV and PHEV routing problems assume that the cost on each

road segment is given (e.g., Bahrami et al. 2020; Doppstadt, Koberstein, and Vigo 2016, 2020; Nejad

et al. 2017), but vehicle energy consumption highly depends on the driving speed (Bektaş and Laporte

2011; Demir, Bektaş, and Laporte 2014; Fukasawa et al. 2018; Wu et al. 2021). Thus, this paper aims

to model and solve a traveling salesman problem (TSP) with speed optimization for a PHEV, which

is referred to as PHEV-TSPS. The objective of the PHEV-TSPS is to minimize a PHEV’s energy

consumption cost over a TSP, which involves deciding both the service sequence of the customers and

vehicle’s operation mode (e.g., pure ICE, pure EM, or both EM and ICE) on each road segment. In

short, the PHEV-TSPS jointly optimizes the visiting sequence of the customers, the operation mode

on each arc, and the average driving speed on each arc.

The PHEV-TSPS is a challenging problem to solve because it is an extension of the TSP and is

thus NP-hard (Papadimitriou 1977). The multiple operation modes of PHEVs make the resulting TSP
more complex, as the underlying graph becomes a multigraph with a significantly increased number

of possible solutions. For example, as reported in Doppstadt, Koberstein, and Vigo (2016), even with

a state-of-the-art solver such as Cplex, it took nearly 95 hours to find an optimal solution for an

HEV TSP instance with only 10 customers. Although the heuristic that they propose is faster, it

still requires considerable time (hours) to find high-quality solutions for instances with 50 customers.

Furthermore, incorporating speed optimization makes the problem even more difficult because the

energy consumption model is nonlinear. The primary goal of this study is to propose an exact algorithm

that can solve the problem with a realistic number of customers within a reasonable time.

This paper contributes to the existing literature in the following ways. First, it enhances the ac-

curacy of energy consumption evaluation by incorporating speed optimization into the PHEV TSP

and develops two mixed-integer nonlinear programming models for the PHEV-TSPS. In addition, we

prove that the integration of speed optimization in the PHEV TSP can yield energy consumption cost

savings. Second, this paper proposes valid inequalities for the models and embeds them into a branch-

and-cut algorithm, enabling the problem with a realistic number of customers to be solved efficiently.

Third, the paper evaluates the performance of the proposed methods through extensive computation

experiments, considering computational efficiency and energy consumption costs. The proposed solu-

tion methods are capable of efficiently solving instances with up to 70 customers to optimality and are

flexible enough to be applied to the HEV TSP previously studied in the literature. In particular, our



Les Cahiers du GERAD G–2023–42 2

exact algorithm can find optimal solutions to benchmark instances in smaller computing time than

those used by the heuristic of Doppstadt, Koberstein, and Vigo (2016). In addition, the integration

of speed optimization can result in significant savings in energy consumption costs compared to the

fixed-speed TSP. Fourth and last, to ensure reproducibility and facilitate knowledge dissemination, we

have made our code and instances publicly available.

The remainder of the paper is structured as follows. Section 2 provides a brief review of the relevant

literature. Section 3 presents a formal definition of the PHEV-TSPS and formulates the associated

mixed-integer nonlinear programming model. In Section 4, several valid inequalities for the proposed

model are introduced. Section 5 outlines the customized branch-and-cut algorithm designed for solving

the PHEV-TSPS. Section 6 presents computational experiments to evaluate the proposed methods.

Finally, Section 7 concludes the paper.

2 Literature review

Vehicle electrification represents a significant step towards achieving environmental sustainability, and

electric vehicles can be classified into three main categories: BEVs powered solely by EMs, HEVs, and

PHEVs. This section will briefly review the routing problems associated with each category.

Careful route planning can help alleviate the range anxiety experienced by BEV drivers, which

arises from the limited battery capacity. The routing problems of BEVs have been extensively studied

in the existing literature and typically offer two options to address this issue. The first option is to

allow BEVs to stop at charging stations along the route and recharge their batteries (e.g., Andelmin

and Bartolini 2017; Baum et al. 2019; Erdoğan and Miller-Hooks 2012; Yi, Smart, and Shirk 2018). For

instance, Baum et al. (2019) proposed a constrained shortest path problem (SPP) for BEVs that allows

the vehicle to recharge its battery at charging stations along the route and ensures that the battery

is not fully depleted during travel. They solved the problem using a charging function propagating

algorithm, which is accelerated by heuristics. The second option is to plan routes that can be completed

within the available battery capacity of the vehicle (e.g., Baum et al. 2020; Florio, Absi, and Feillet

2021; Pelletier, Jabali, and Laporte 2019; Yi and Bauer 2018). For example, Baum et al. (2020)

investigated constrained SPPs for BEVs with the goal of reaching the destination as fast as possible

while remaining within the vehicle’s battery capacity. The vehicle can adjust its speed to balance

the trade-off between energy consumption and travel time. They solved the problems using a trade-

off function propagating algorithm, which is an exact algorithm, and made it more computationally

efficient by integrating heuristics.

HEVs can operate in fuel, electric, boost, and charging modes, with the latter using fuel to recharge

the battery. As a result, routing problems for HEVs should determine both the optimal routes and the

appropriate running mode for each arc. Doppstadt, Koberstein, and Vigo (2016) considered an HEV

TSP with each mode’s cost and travel time on each road segment assumed to be known values. To

solve the problem efficiently, they proposed a tabu search heuristic. In subsequent work, Doppstadt,

Koberstein, and Vigo (2020) extended the problem by incorporating time windows for customers

and proposed a variable neighborhood search heuristic. Additionally, Rocha and Subramanian (2023)

proposed a hybrid genetic search for the HEV TSP with time windows, which outperforms the approach

introduced by Doppstadt, Koberstein, and Vigo (2020) in terms of both computing time and solution

quality. Liu, Miao, and Zhu (2019) first considered an SPP where the vehicle speed and route are

jointly optimized, and used a hybrid powertrain control strategy to minimize the fuel consumption

by distributing the power between different engines. The problem is an extension of the SPP and

is solved by a genetic algorithm. De Nunzio, Gharbia, and Sciarretta (2021) calculated the energy

consumption based on a predicted speed profile and investigated a general constrained eco-routing

problem for HEVs to find an energy-minimal route. They evaluated several solution approaches for

the problem and found the most effective method in terms of both accuracy and efficiency.
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Compared to HEVs, PHEVs typically have larger batteries that can be charged from external

electrical outlets and do not rely on fuel for charging. As a result, PHEVs can operate in fuel,

electricity, and boost modes, and the routing problems also need to consider the operation mode for

each arc. Various studies have investigated the routing problems of PHEVs. Sun and Zhou (2016)

proposed an SPP that minimizes the traveling cost of a PHEV, and developed an algorithm based on

dynamic programming to solve the problem optimally. Mancini (2017) introduced a PHEV vehicle

routing problem (VRP) that minimizes the total travel distance and the penalty costs associated with

using the fuel mode. The problem was solved by a large neighborhood search-based matheuristic.

Nejad et al. (2017) proposed an energy-efficient SPP for PHEVs that minimizes fuel consumption.

They proved that the problem is NP-complete and developed two exact algorithms based on dynamic

programming and a fully polynomial time approximation scheme to solve the problem. In Bahrami

et al. (2020), a PHEV’s energy consumption is determined based on the driving cycle, resulting in a

predetermined energy consumption on each road segment. The battery charge level is discretized into

multiple levels, enabling the formulation of a four-index VRP, which is solved by a branch-and-price

algorithm and a heuristic method.

Table 1 provides an overview of the reviewed literature. To the best of our knowledge, no existing

work has integrated speed optimization and routing problems for PHEVs, particularly for the TSP.

Such integration enables the vehicle to adjust its speed within the speed limit for a lower energy

consumption cost. The integration of speed optimization and routing problems in freight transportation

has been extensively studied in the literature (e.g., Baum et al. 2020; Dabia, Demir, and Woensel

2017; Demir, Bektaş, and Laporte 2012; Fukasawa et al. 2018; Macrina et al. 2019), and it has been

demonstrated that incorporating speed optimization into routing problems can improve the energy

efficiency of vehicles. Therefore, this paper aims to integrate speed optimization and TSP for a PHEV

to explore the potential of reducing energy consumption.

Table 1: Comparison of the problem characteristics studied in this paper and in related papers

Papers Vehicle Problem
Charging
stations

Speed op-
timization

Energy re-
cuperation

Solution
method

Bahrami et al. (2020) PHEV VRP
√

− − E & H
Baum et al. (2019) BEV SPP

√
−

√
E & H

Baum et al. (2020) BEV SPP −
√ √

E & H
Caspari, Fahr, and Mitsos (2021) HEV SPP − −

√
E

De Nunzio, Gharbia, and Sciarretta (2021) HEV SPP − −
√

E
Doppstadt, Koberstein, and Vigo (2016) HEV TSP − − − H
Doppstadt, Koberstein, and Vigo (2020) HEV TSP − − − H
Florio, Absi, and Feillet (2021) BEV VRP − − − E
Liu, Miao, and Zhu (2019) HEV SPP −

√ √
H

Pelletier, Jabali, and Laporte (2019) BEV VRP − − − E & H
Mancini (2017) PHEV VRP

√
− − H

Nejad et al. (2017) PHEV SPP − − − E & A
Sun and Zhou (2016) PHEV SPP − −

√
E

Rocha and Subramanian (2023) HEV TSP − − − H
Yi, Smart, and Shirk (2018) BEV SPP

√
−

√
E

Yi and Bauer (2018) BEV SPP − −
√

E
This paper PHEV TSP

√ √ √
E & H

a ‘−’ means that the paper does not consider the feature, and ‘
√
’ means that the paper considers the

feature;
b In column ‘Solution method’, E, H, and A denote exact, heuristic, and approximation algorithms,
respectively.

3 Problem definition

This section first presents an energy consumption model based on the vehicle speed (Section 3.1). Sec-

ond, a mixed-integer nonlinear programming model for the PHEV-TSPS is described in Section 3.2.
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Third, in Section 3.3, the nonlinear terms associated with vehicle speed in the PHEV-TSPS are lin-

earized by discretizing speed. Finally, in Section 3.4, the proposed PHEV-TSPS model is extended to

incorporate the presence of charging stations.

3.1 Energy consumption model

According to Barth, Younglove, and Scora (2005), Barth and Boriboonsomsin (2008), and Scora and

Barth (2006), the total tractive power usage Pt (kilowatt/second) of the vehicle at time t can be

calculated as follows:

Pt = (mat +mg sin θt +
1

2
CdρAv

2
t + Crmg cos θt)vt, (1)

where at is the acceleration (meter/second2), vt is the speed (meter/second), m is the curb-weight

(kilogram), θt is the road gradient (radian), g is the gravitational constant (meter/second2), Cd is

the coefficient of aerodynamic drag, Cr is the coefficient of rolling resistance, ρ is the air density

(kilogram/meter3), and A is the frontal surface area (meter2). The typical values of the parameters

are shown in Table 2.

Table 2: Description of the parameters in equation (1) and their typical values (Demir, Bektaş, and Laporte 2014)

Notation Description Typical value

m Curb-weight (kilogram) 6350
g Gravitational constant (meter/second2) 9.81
Cd Coefficient of aerodynamic drag 0.7
ρ Air density (kilogram/meter3) 1.2041
A Frontal surface area (meter2) 3.912
Cr Coefficient of rolling resistance 0.01

Let TS be the travel time of the road segment [0, S], then the total tractive energy demand over a

given road segment [0, S] can be calculated as follows:

Etra =

∫ TS

0

Ptdt. (2)

Since the travel time depends on the vehicle speed, we reformulate the time-dependent function (2)

as the following distance-dependent function via the transformation dt = ds
v (see Hellström, Fröberg,

and Nielsen 2006):

Etra =

∫ S

0

Ps
ds

vs

=

∫ S

0

Mas +mg sin θs +
1

2
CdρAv

2
s + Crmg cos θs ds. (3)

In Baum et al. (2020), Bektaş and Laporte (2011) and Demir, Bektaş, and Laporte (2014), the

authors optimize the average speed on each road segment to reduce vehicle energy consumption under

the assumption that the vehicle travels at a constant speed along the road segment and that the road

gradient is constant. Their assumptions are not restrictive, because we can add intermediate nodes to

mimic the changing conditions (Baum et al. 2020). Thus, we follow their assumptions and estimate

the tractive-energy demand as follows:

Etra(v) =

(
mg sin θ +

1

2
CdρAv

2 + Crmg cos θ

)
S, (4)

where v and θ are the average speed and average road gradient, respectively. Function (4) shows

that the energy consumption on a road segment has an approximate quadratic relationship with the
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average speed, which is consistent with vehicle energy consumption estimations in previous studies

such as those of Baum et al. (2020) and Yi and Shirk (2018).

Without loss of generality, we ignore the engine power demand associated with running losses of

the engine and additional vehicle accessories, which is often set as an exogenous parameter, such as 0

(Nasri, Bektaş, and Laporte 2018). When the vehicle is braking or driving downhill, Etra(v) could be

negative, and PHEVs can sometimes recharge their batteries by using a motor generator. Let ηd and

ηg be the drivetrain efficiency and regeneration efficiency, respectively. Then, the energy consumption

can be calculated as the summation of the energy demand (positive) and the energy recuperation

(negative) (Murakami 2017; Yi and Bauer 2018), as follows:

E(v) =
1

ηd
max{Etra(v), 0}+ ηgmin{Etra(v), 0}

=

(
1

ηd
− ηg

)
max{Etra(v), 0}+ ηgmax{Etra(v), 0}+ ηgmin{Etra(v), 0}

=

(
1

ηd
− ηg

)
max{Etra(v), 0}+ ηgEtra(v). (5)

In practice, we usually have 0 < ηg < ηd < 1 (Yi and Bauer 2018), thus 1
ηd

− ηg is a positive value.

When ηg = 0, function (5) calculates the energy consumption of a vehicle which is not equipped with

an energy recuperation system.

3.2 The traveling salesman problem with speed optimization

The problem can be defined on a directed graph G = (V,A), with a directed arc set A, a node set

V = {0, 1, ..., n, n + 1}, including the customers i ∈ {1, 2, ..., n}, the starting depot 0 ∈ V and the

ending depot n + 1 ∈ V , where the ending depot can coincide with the starting depot. The entire

trip needs to be finished within a time budget T , which may be the driver’s maximum working hours

(Doppstadt, Koberstein, and Vigo 2016).

For each arc (i, j) ∈ A, let vij be the average travel speed, dij be the distance, and Eij be the

energy demand on arc (i, j) depending on the speed vij . We let µ ∈ [0, 1] be the coefficient of the

electricity energy split in the boost mode, V +
i = {j|j ∈ V, (i, j) ∈ A} be the set of tail nodes of the arcs

whose head node is i, V −
i = {j|j ∈ V, (j, i) ∈ A} be the set of head nodes of the arcs whose tail node

is i, B and B be the battery’s minimum and maximum charge levels, respectively, and vij and vij be

the lower and upper bounds on the speed, respectively. For each arc (i, j) ∈ A, let xij be a binary

variable taking value 1 if and only if it is used in the route, xfij be a binary variable taking value 1 if

and only if the vehicle is running on the fuel mode, xeij be a binary variable taking value 1 if and only

if the vehicle is running on the electric mode, xrij be a binary variable taking value 1 if and only if the

vehicle is running on the energy recuperation mode, and xbij be a binary variable taking value 1 if and

only if the vehicle is running on the boost mode. For each node i ∈ N , let yi and ti be the state of

charge and the arriving time at node i, respectively.

Our objective is to minimize the total cost of the energy consumption over the whole trip. Let

the parameters cf , ce, cb, and −ce be the unit cost of the energy consumption in fuel-only mode,

electric-only mode, boost mode, and energy recuperation mode, respectively. Then the PHEV-TSPS

can be formulated as follows:

min Z =
∑

(i,j)∈A

(
cfx

f
ij + cex

e
ij + cbx

b
ij

)
Eij − cex

r
ij(yj − yi) (6)

s.t. Eij =

(
1

ηd
− ηg

)
dij max

{
mg sin θij +

1

2
CdρAv

2
ij + Crmg cos θij , 0

}
+ ηgdij

(
mg sin θij +

1

2
CdρAv

2
ij + Crmg cos θij

)
∀(i, j) ∈ A (7)
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xfij + xeij + xbij + xrij = xij ∀(i, j) ∈ A (8)∑
j∈V +

i

xij = 1 ∀i ∈ V \{n+ 1} (9)

∑
i∈V −

j

xij = 1 ∀j ∈ V \{0} (10)

∑
i∈Ω

∑
j /∈Ω

xij ≥ 1 ∀Ω ∈ V \{n+ 1}, |Ω| ≥ 2

(11)

(xfij + xeij + xbij − 1)Mij ≤ Eij ∀(i, j) ∈ A (12)

(1− xrij)Mij ≥ Eij ∀(i, j) ∈ A (13)∑
(i,j)∈A

xij
dij
vij

≤ T (14)

yi −
(
xeij + µxbij + xrij

)
Eij ≥ yj − (1− xij)B ∀(i, j) ∈ A (15)

yi −
(
xeij + µxbij

)
Eij ≤ yj + (1− xij)B ∀(i, j) ∈ A (16)

B ≤ yi ≤ B ∀i ∈ V \{0} (17)

vij ≤ vij ≤ vij ∀(i, j) ∈ A (18)

y0 = B (19)

xij , x
f
ij , x

e
ij , x

b
ij , x

r
ij ∈ {0, 1} ∀(i, j) ∈ A, (20)

where Mij is a sufficiently large constant and can be set as the maximum absolute value of Eij , (i, j) ∈
A, which can be calculated as the maximum value over the speed range.

The objective function (6) minimizes the total cost of the energy consumption over the whole trip,

where the first term calculates the cost in fuel-only, electric-only, and boost modes, and the second

term calculates the cost reduction by energy recuperation. Constraints (7) calculate the energy con-

sumption (positive) or energy recuperation (negative) on arc (i, j). Constraints (8) ensure that the

PHEV can only run in one mode on each arc. Constraints (9) and (10) ensure that every customer

has one incoming and one outgoing arc. Constraints (11) are the subtour elimination constraints.

Constraints (12) require that fuel-only, electric-only, and boost modes are not chosen under a negative

energy consumption. Constraints (13) enforce that the energy recuperation mode cannot be chosen

under a positive energy consumption. Constraint (14) requires that the journey is finished within

the time budget. Constraints (15) and (16) determine the battery charging level at each node. Con-

straints (17) bound the battery charge level to a range between the minimum and maximum charge

levels for the entire trip. Constraints (18) limit the speeds over the entire network. Here, we assume

vij > 0 to ensure constraints (14) are feasible. Constraint (19) sets the initial battery charge level as

B. Note that the battery’s initial charge level y0, depending on the user setting, can be any value

between B and B.

The value of joint optimization of speed, route, and operation modes

The PHEV-TSPS jointly optimizes route, speed, and operation modes. One natural question is

whether the proposed joint optimization method is superior to the sequential optimization method,

which first optimizes energy consumption, then optimizes operations modes. More precisely, we con-

sider the following two-step solution procedure:

• Step 1 optimizes the energy consumption over the whole journey, including speed optimization

and route decision. The model is as follows:

min
∑

(i,j)∈A

xijEij (21)
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s.t. xij ∈ {0, 1} ∀(i, j) ∈ A (22)

(7), (9)–(11), (14), (18),

where objective function (21) minimizes the energy consumption over the whole journey.

• Step 2 minimizes the traveling cost by allocating the energy consumption on each arc to different

operation modes. The model is as follows:

min
∑

(i,j)∈A

(
cfx

f
ij + cex

e
ij + cbx

b
ij

)
Êij − cex

r
ij(yj − yi) (23)

s.t. xfij + xeij + xbij + xrij = x̂ij ∀(i, j) ∈ A (24)

xfij , x
e
ij , x

b
ij , x

r
ij ∈ {0, 1} ∀(i, j) ∈ A (25)

(12)–(13), (15)–(17), (19),

where x̂ij , Êij are the optimized route and energy consumption calculated in Step 1, respectively

(the symbol ·̂ is used to represent the known values).

The following proposition is introduced to show the difference between the sequential optimization

method above and the PHEV-TSPS, and the proof is provided in Appendix B.

Proposition 1. A solution from the sequential optimization approach following Steps 1 and 2 above

has an energy consumption cost greater than or equal to that of the PHEV-TSPS.

3.3 PHEV-TSPS with speed discretization

In order to reduce the computational complexity introduced by the nonlinear terms associated with

variables vij in PHEV-TSPS, we can discretize the continuous speed into a discrete set of speed levels.

Following the approach presented by Bektaş and Laporte (2011), let vmin = min{vij , (i, j) ∈ A} and

vmax = max{vij , (i, j) ∈ A}. We first discretize the speed range [vmin, vmax] into a set of speed levels

L = {0, 1, ..., l, ...}, where each level l ∈ L corresponds to a speed level νl and ν0 = vmin, ν|L| = vmax.

We then introduce a new binary variable zijl taking value 1 if the vehicle travels at the speed level νl
on arc (i, j), and 0 otherwise. The variables zijl and xij are linked by the following equations:∑

l∈L

zijl = xij ∀(i, j) ∈ A (26)

zijl ∈ {0, 1} ∀(i, j) ∈ A, l ∈ L. (27)

Note that the speed ranges on different arcs can be different, the biggest range [vmin, vmax] is used here

only for the sake of simplicity in notation. By using the speed discretization, constraints (7) and (14)

are reformulated as follows:

Eij =

(
1

ηd
− ηg

)
dij max

{
mg sin θij +

1

2
CdρA

∑
l∈L

zijlν
2
l + Crmg cos θij , 0

}

+ ηgdij

(
mg sin θij +

1

2
CdρA

∑
l∈L

zijlν
2
l + Crmg cos θij

)
∀(i, j) ∈ A (28)

∑
(i,j)∈A,l∈L

zijl
dij
νl

≤ T. (29)

Finally, the PHEV-TSPS is converted to (6), (8)–(13), (15)–(20), (26)–(29), which we refer to as

PHEV-TSPSD.

In the PHEV-TSPSD formulation, the vehicle can only drive at one speed out of the given dis-

cretized speed levels, so the feasible speed range is smaller than in the PHEV-TSPS, where the speed
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range is continuous. Therefore, the PHEV-TSPSD has an energy consumption cost that is higher than

or equal to that of the PHEV-TSPS. Increasing the number of discretized speed levels can reduce the

gap between the PHEV-TSPSD and the PHEV-TSPS, but can increase the computational complexity

of the PHEV-TSPSD due to the presence of more integer variables, which will be tested later in the

computational experiments.

3.4 PHEV-TSPS with charging stations at customer locations

Following the setting in Bahrami et al. (2020), we assume that the charging stations are located at

specific customer locations, which are denoted by the set V c. Here we assume a constant charging

rate ϵ at each charging station, such that the recharging time is directly proportional to the amount

of energy that needs to be recharged (Desaulniers et al. 2016; Keskin and Çatay 2018). In addition,

the PHEV is allowed to be partially recharged, which means that the charging time τi at customer i

is a decision variable. To simplify the notation, we set the recharging time at nodes without charging

stations to be zero, namely τi = 0,∀i ∈ V \V c. The problem can then be formulated as follows:

min Z =
∑

(i,j)∈A

(
cfx

f
ij + cex

e
ij + cbx

b
ij

)
Eij − cex

r
ij(yj − yi − ϵτi) (30)

s.t.
∑

(i,j)∈A

xij
dij
vij

+
∑
i∈V

τi ≤ T (31)

yi −
(
xeij + µxbij + xrij

)
Eij + ϵτi ≥ yj − (1− xij)B ∀(i, j) ∈ A (32)

yi −
(
xeij + µxbij

)
Eij + ϵτi ≤ yj + (1− xij)B ∀(i, j) ∈ A (33)

τi = 0 ∀i ∈ V \V c (34)

(7)–(13), (17)–(20).

The second term in the left-hand side of constraint (31) calculates the total recharging time. The third

term of the left-hand side of constraints (32)–(33) represents the amount of energy recharged at each

customer location. We will use the name PHEV-TSPS-CS to refer to the model above. In addition,

we have included a model in Appendix A to show that our approach can also be applied to scenarios

with charging stations that are not solely located at customer premises.

4 Valid inequalities

To reduce the computation time for solving the models presented in the previous section, this section

introduces new valid inequalities to strengthen the models.

4.1 Energy accumulation inequality

Let the optimal tour of the PHEV-TSPS be Ap, where xij = 1,∀(i, j) ∈ Ap, then we can obtain the

following constraint by aggregating constraints (15) over the optimal tour:∑
(i,j)∈Ap

(xeij + µxbij + xrij)Eij ≤
∑

(i,j)∈Ap

(yi − yj) + (1− xij)B̄

⇐⇒
∑

(i,j)∈Ap

(xeij + µxbij + xrij)Eij ≤ y0 − yn+1

⇐⇒
∑

(i,j)∈Ap

(xeij + µxbij + xrij)Eij +
∑

(i,j)∈A\Ap

(xeij + µxbij + xrij)Eij ≤ y0 − yn+1

⇐⇒
∑

(i,j)∈A

xeijEij + µ
∑

(i,j)∈A

xbijEij +
∑

(i,j)∈A

xrijEij ≤ y0 − yn+1, (35)
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where the first equality is derived from the fact that xij = 1,∀(i, j) ∈ Ap and the second equality is

based on the fact that xeij = 0, xbij = 0, xrij = 0,∀(i, j) ∈ A\Ap.

We refer to this new inequality as the ‘energy accumulation inequality’, which can be easily in-

tegrated into the model as a standard constraint. Although it appears simple, it has a significant

potential to accelerate computations, as demonstrated in the computational experiments.

We can also derive the following inequality based on constraints (32) for PHEV-TSPS-CS:∑
(i,j)∈A

xeijEij + µ
∑

(i,j)∈A

xbijEij +
∑

(i,j)∈A

xrijEij ≤ y0 − yn+1 + ϵ
∑
i∈V

τi. (36)

4.2 Lower bound inequalities

Before introducing the lower bound for PHEV-TSPS, we first introduce the following lemma, whose

proof is given in Appendix B:

Lemma 1. Objective function (6) is equal to the following expression:

min Z =
∑

(i,j)∈A

(
cfx

f
ij + cex

e
ij + cbx

b
ij + cex

r
ij

)
Eij . (37)

By relaxing terms
∑

(i,j)∈A x
f
ijEij ,

∑
(i,j)∈A x

e
ijEij , and

∑
(i,j)∈A x

b
ijEij to three continuous vari-

ables Zf , Ze, and Zb, respectively, we can obtain an objective function which is a lower bound of the

objective function (37). This lower bound represents allocating the energy consumption (except the

energy recuperation) over the whole journey to different operation modes:

min cfZf + ceZe + cbZb + ce
∑

(i,j)∈A

xrijEij (38)

s.t. Zf + Ze + Zb =
∑

(i,j)∈A

(
xijEij − xrijEij

)
(39)

Ze + µZb ≤ y0 − yn+1 −
∑

(i,j)∈A

xrijEij (40)

Zf ≥ 0, Ze ≥ 0, Zb ≥ 0, (41)

where the first constraint is due to constraints (8), and the second constraint is a result of the energy

accumulation inequality.

Model (38)–(41) above can be deemed as a linear programming model with decision variables Zf , Ze,

and Zb, and can be solved analytically. Following this approach, Propositions 2 and 3 are developed

to calculate a lower bound for PHEV-TSPS and PHEV-TSPSD, and their proofs are provided in

Appendix B. Due to the fact that electricity is cheaper than fuel, here we assume ce ≤ cb ≤ cf .

Proposition 2. If
cf−cb
µ ≤ cf − ce, we introduce two new continuous variables κ1, κ2 and two new

binary variables δ1, δ2, then the following inequalities are valid for the PHEV-TSPS:

Z ≥ ceκ1 +
(y0 − yn+1 −

∑
(i,j)∈A x

r
ijEij)(ce − cb)

1− µ
δ2 +

cb − µce
1− µ

κ2 + ce
∑

(i,j)∈A

xrijEij (42)

κ1 + κ2 =
∑

(i,j)∈A

(
xijEij − xrijEij

)
(43)

κ1 ≤ (y0 − yn+1 −
∑

(i,j)∈A

xrijEij)δ1 (44)

(y0 − yn+1 −
∑

(i,j)∈A

xrijEij)δ2 ≤ κ2 ≤Mδ2 (45)
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δ1 + δ2 = 1 (46)

δ1, δ2 ∈ {0, 1}, (47)

where M is a sufficiently large constant and can be set as
∑

(i,j)∈AMij.

Proposition 3. If
cf−cb
µ > cf − ce, we introduce three new continuous variables κ1, κ2, κ3 and three

new binary variables δ1, δ2, δ3, the following inequalities are valid for the PHEV-TSPS:

Z ≥ ceκ1 +
(y0 − yn+1 −

∑
(i,j)∈A x

r
ijEij)(ce − cb)

1− µ
δ2 +

cb − µce
1− µ

κ2

+
(y0 − yn+1 −

∑
(i,j)∈A x

r
ijEij)(cb − cf )

1− µ
δ3 + cfκ3 + ce

∑
(i,j)∈A

xrijEij (48)

κ1 + κ2 + κ3 =
∑

(i,j)∈A

(
xijEij − xrijEij

)
(49)

κ1 ≤ (y0 − yn+1 −
∑

(i,j)∈A

xrijEij)δ1 (50)

(y0 − yn+1 −
∑

(i,j)∈A

xrijEij)δ2 ≤ κ2 ≤
(y0 − yn+1 −

∑
(i,j)∈A x

r
ijEij)δ2

µ
(51)

(y0 − yn+1 −
∑

(i,j)∈A x
r
ijEij)δ3

µ
≤ κ3 ≤Mδ3 (52)

δ1 + δ2 + δ3 = 1 (53)

δ1, δ2, δ2 ∈ {0, 1}. (54)

Since the number of valid inequalities in Propositions 2 and 3 is quite small, they can be directly

added as standard constraints to the PHEV-TSPS and the PHEV-TSPSD. For the PHEV-TSPS-CS,

the inequalities proposed in Propositions 2 and 3 can be made valid by substituting the term y0−yn+1

with the term y0 − yn+1 + ϵ
∑
i∈V τi.

5 Solution method

In this section, we introduce the method to solve the proposed PHEV-TSPS. Section 5.1 introduces the

subgradient cut for the PHEV-TSPS to eliminate the nonlinear terms associated with vehicle speed.

Section 5.2 linearizes the proposed PHEV-TSPS to a mixed-integer linear programming (MILP) model.

Section 5.3 develops a branch-and-cut algorithm based on the MILP model. Note that the methods

proposed in this section can be applied to the PHEV-TSPSD, with the exception of the subgradient

cut. In addition, all of the methods can be applied to the PHEV-TSPS-CS with slight modifications,

the details of which can be found in Appendix C.

5.1 Subgradient cut

The nonlinear terms v2ij and 1
vij

in the PHEV-TSPS make the problem intractable. To eliminate the

nonlinear terms, we first introduce new variables uij = v2ij , (i, j) ∈ A. Then, constraints (7), (14),

and (18) can be reformulated as follows:

Eij =

(
1

ηd
− ηg

)
dij max

{
mg sin θij +

1

2
CdρAuij + Crmg cos θij , 0

}
+ ηgdij

(
mg sin θij +

1

2
CdρAuij + Crmg cos θij

)
∀(i, j) ∈ A (55)∑

(i,j)∈A

dijxiju
− 1

2
ij ≤ T (56)
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v2ij ≤ uij ≤ v2ij ∀(i, j) ∈ A. (57)

Because of the minimization in the objective function, equations (55) can be linearized into the following

constraints:

Eij ≥
dij
ηd

(
mg sin θij +

1

2
CdρAuij + Crmg cos θij

)
+ (xij − 1)Mij ∀(i, j) ∈ A (58)

Eij ≥ ηgdij

(
mg sin θij +

1

2
CdρAuij + Crmg cos θij

)
+ (xij − 1)Mij ∀(i, j) ∈ A. (59)

Constraints (56) are nonlinear because of the term u
− 1

2
ij , which is a convex function in uij . Similarly

to the approach of Cheng, Adulyasak, and Rousseau (2020), we can derive a subgradient cut as follows:

• First, by substituting term u
− 1

2
ij with a new continuous variable qij , constraint (56) are refor-

mulated to the following constraint: ∑
(i,j)∈A

dijxijqij ≤ T. (60)

Constraint (60) is nonlinear because of term xijqij , and can be converted to the following linear

constraint: ∑
(i,j)∈A

dijqij ≤ T (61)

qij ≥ 0 ∀(i, j) ∈ A. (62)

• Second, the tangent line of function u
− 1

2
ij at point (ûij , û

− 1
2

ij ) is − 1
2 û

− 3
2

ij (uij − ûij) + û
− 1

2
ij , as

shown in Figure 1. Then the subgradient cut for term u
− 1

2
ij can be derived as follows:

qij ≥ −1

2
û
− 3

2
ij (uij − ûijxij) + û

− 1
2

ij xij ∀(i, j) ∈ A. (63)

If xij = 0, the right-hand side of constraints (63) will be negative and the cut is inactive; else,

the cut is added to the problem.

5 uij 10 15 20
uij

0
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u
1
2

ij
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lu
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u
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ij
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ij (uij uij) + u
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2

ij

Figure 1: The tangent line of function u
− 1

2
ij at point (ûij , û

− 1
2

ij )
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5.2 Linearization

In this section, we first linearize the PHEV-TSPS into an MILP model, and then linearize the valid

inequalities proposed in Section 4.

5.2.1 PHEV-TSPS

The products of binary variables and continuous variables xfijEij , x
b
ijEij , x

e
ijEij , and xrijEij can be

replaced by new continuous variables wfij , w
b
ij , w

e
ij , and w

r
ij with the following constraints:

wfij + wbij + weij + wrij ≥ Eij ∀(i, j) ∈ A (64)

wfij ≤ xfijMij ∀(i, j) ∈ A (65)

wbij ≤ xbijMij ∀(i, j) ∈ A (66)

weij ≤ xeijMij ∀(i, j) ∈ A (67)

− xrijMij ≤ wrij ∀(i, j) ∈ A (68)

wfij , w
b
ij , w

e
ij ≥ 0, wrij ≤ 0 ∀(i, j) ∈ A. (69)

Now, objective function (37) can be rewritten as follows:

min Z =
∑

(i,j)∈A

cfw
f
ij + cew

e
ij + cbw

b
ij + cew

r
ij (70)

s.t. (64)–(69).

By using the new variables defined above, constraints (15)–(16) can be reformulated as the following

linear constraints:

yi − weij − µwbij − wrij ≥ yj − (1− xij)B ∀(i, j) ∈ A (71)

yi − weij − µwbij ≤ yj + (1− xij)B ∀(i, j) ∈ A. (72)

Finally, the PHEV-TSPS is reformulated into (8)–(13), (17), (19)–(20), (57)–(59), (61)–(72), which

is an MILP model.

5.2.2 Valid inequalities

Applying the variables defined in the last subsection, energy accumulation inequality (35) can be

converted to the following inequality:∑
(i,j)∈A

weij + µwbij + wrij ≤ y0 − yn+1. (73)

Using the fact that energy consumption beyond the chosen route does not contribute to the total

energy consumption cost, we modify constraints (18) and (58)–(59) as follows:

xijv
2
ij ≤ uij ≤ xijv

2
ij ∀(i, j) ∈ A (74)

Eij ≥
dij
ηd

(
xijmg sin θij +

1

2
CdρAuij + xijCrmg cos θij

)
∀(i, j) ∈ A (75)

Eij ≥ ηgdij

(
xijmg sin θij +

1

2
CdρAuij + xijCrmg cos θij

)
∀(i, j) ∈ A. (76)

Now, the term Eij for arcs outside the selected tour is equal to 0. Thus, the term xijEij in the valid

inequalities can be replaced with Eij .
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For valid inequalities (42)–(45), we introduce a new variable σ1 subject to the following constraints:

σ1 ≤ y0 − yn+1 −
∑

(i,j)∈A

wrij + (1− δ2)M
∗ (77)

σ1 ≤ δ2M
∗, (78)

where M∗ is the upper bound of y0 − yn+1 −
∑

(i,j)∈A w
r
ij . Then, the inequalities can be linearized as

follows:

Z ≥ ceκ1 +
(ce − cb)

1− µ
σ1 +

cb − µce
1− µ

κ2 + ce
∑

(i,j)∈A

wrij (79)

κ1 + κ2 =
∑

(i,j)∈A

(
Eij − wrij

)
(80)

κ1 ≤ δ1M
∗ (81)

κ1 ≤ y0 − yn+1 −
∑

(i,j)∈A

wrij + (1− δ1)M
∗ (82)

− δ2M
∗ ≤ κ2 ≤ δ2M

∗ (83)

κ2 ≥ y0 − yn+1 −
∑

(i,j)∈A

wrij − (1− δ2)M
∗. (84)

For valid inequalities (48)–(49), we introduce a new variable σ2 subject to the following constraints:

σ2 ≤ y0 − yn+1 −
∑

(i,j)∈A

wrij + (1− δ3)M
∗ (85)

σ2 ≤ δ3M
∗. (86)

Then, the inequalities can be linearized as follows:

Z ≥ ceκ1 +
ce − cb
1− µ

σ1 +
cb − µce
1− µ

κ2 +
cb − cf
1− µ

σ2 + cfκ3 + ce
∑

(i,j)∈A

wrij (87)

κ1 + κ2 + κ3 =
∑

(i,j)∈A

(
Eij − wrij

)
(88)

κ1 ≤ δ1M
∗ (89)

κ1 ≤ y0 − yn+1 −
∑

(i,j)∈A

wrij + (1− δ1)M
∗ (90)

− δ2M
∗ ≤ κ2 ≤ δ2M

∗ (91)

y0 − yn+1 −
∑

(i,j)∈A

wrij − (1− δ2)M
∗ ≤ κ2 ≤

(y0 − yn+1 −
∑

(i,j)∈A w
r
ij + (1− δ2) ∗M∗)

µ
(92)

− δ3M
∗ ≤ κ3 ≤ δ3M

∗ (93)

µκ3 ≥ y0 − yn+1 −
∑

(i,j)∈A

wrij − (1− δ3)M
∗. (94)

5.3 Branch-and-cut algorithm

Branch-and-cut is an exact solution procedure that has been effectively applied to solve different

variants of the TSP (e.g., Alba Mart́ınez et al. 2013; Cordeau, Ghiani, and Guerriero 2014). This

section describes some of the key aspects of the algorithm that we have implemented to solve the

proposed model.
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Initialization: Since the energy recuperation mode cannot be selected when there is positive energy

consumption, we calculate Eij with the lower speed limit vij on each arc and set xrij = 0 if

Eij > 0.

Separation problem: For the subtour elimination constraints (11), we use a separation routine based

on the minimum s-t cut algorithm proposed by Stoer and Wagner (1997). If a solution at a

branch-and-bound node violates the subtour elimination constraints, the violated constraints are

added to the model and the problem at the current node is resolved. This process is repeated

until no violated constraints remain.

Subgradient cut: When an integer solution satisfying the subtour elimination constraints is found,

subgradient cuts (63) can be derived from the current solution and added to the model. The

problem is then solved again, and this process is repeated until no more subgradient cuts can be

generated.

Battery flow constraints: During computational experiments, it was observed that the branch-

and-cut algorithm can be accelerated by temporarily removing constraints (71)–(72) from the

model, and only adding them back when an integer solution satisfying the subtour elimination

constraints is found.

Branching priority: In our preliminary test, we observed that extremely long arcs caused issues for

the branch-and-cut algorithm, resulting in increased computation times. To address this issue,

we employed the k-means clustering technique (Pedregosa et al. 2011) to partition arcs into

different clusters based on their length. Subsequently, we increased the branching priorities for

the clusters containing longer arcs.

6 Numerical studies

This section presents the computational experiments undertaken to investigate the performance of the

models and solution methods proposed in this paper. Section 6.1 introduces the instances used for

the numerical testing. Section 6.2 assesses the performance of the proposed solution method. This

is followed by a comparison with the solution method of Doppstadt, Koberstein, and Vigo (2016) in

Section 6.3. Section 6.4 investigates the value of joint optimization of speed, route, and operation

modes. Section 6.5 evaluates the impacts of road gradient and energy recuperation on the energy

consumption cost. Section 6.6 investigates the impact of the presence of charging stations on the

proposed model. All experiments are performed on an AMD Rome 7532 2.40 GHz 256M cache L3

CPU, the optimization models are solved using the Gurobi Optimizer 9.5.2, and the computing time

limit is set to 7200 seconds. The instances and codes are available at the following URL: https:

//github.com/fuliang93/PHEV-TSPS.git.

6.1 Instances

This section evaluates the proposed methods using the instances of Doppstadt, Koberstein, and Vigo

(2016), which consist of 36 instances that can be obtained from Doppstadt, Koberstein, and Vigo

(2019). The instances are divided into three groups based on the distances between the depot and

the delivery area (0, 28, and 57 kilometers). Each group contains instances with different numbers

of customers: 8, 10, 20, and 50. To provide a more thorough investigation of the proposed methods,

we also selected 30 or 40 customers from the original instances that contained 50 customers, resulting

in instances with 30 or 40 customers, respectively. Additionally, we randomly generated 10 and 20

additional customers to create instances with 60 and 70 customers, respectively. The instances are

denoted by HEVTSP α β π, where α, β, and π represent the distances between the depot and the

delivery area (1, 2, and 3 correspond to 0, 28, and 57 kilometers, respectively), the number of customers,

and various customer locations.

The time budgets for α = 1, 2, 3 are set to be 3600, 7200, and 10800 seconds, respectively. For each

arc, we randomly select the speed limit vij from 15 to 19 meters/second and set the lower speed limit

https://github.com/fuliang93/PHEV-TSPS.git
https://github.com/fuliang93/PHEV-TSPS.git
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vij to 3 meters/second. The upper battery limit B is set to 14.4 kilowatt-hours (the battery size of

a 2022 Ford Escape PHEV (Latham 2022)), and the lower battery limit B is set to 0 kilowatt-hours.

The unit costs for different modes cf , ce, cb are set to 1.0, 0.5, and 0.7, respectively. For each instance,

we randomly generate the elevation of each node, ranging from 0 to 100 meters, which is then utilized

to calculate the slopes of the road between the nodes.

6.2 Performance of the solution method

This section describes the numerical experiments performed using the PHEV-TSPS model proposed

in Section 3.2, along with the valid inequalities introduced in Section 4 and the solution methods

discussed in Section 5.

First, we evaluate the effectiveness of the proposed valid inequalities. The computational results

are summarized in Table 3, and the details can be found in Table 8 in Appendix D. We solve the

PHEV-TSPS without valid inequalities using Gurobi, and we can observe that for most instances with

20 or 30 customers, optimality is not achieved within 2 hours. However, the computation efficiency

is significantly improved with the energy accumulation inequality or the lower bound. All instances

with 20 customers are solved to optimality within 1 minute, and most instances with 30 customers are

solved to optimality within 2 hours. Moreover, the combination of the energy accumulation inequality

and lower bound enables solving all instances with 30 customers to optimality within 1 hour, and the

calculation time can be further reduced to less than 15 minutes by incorporating the branching priority.

For the sake of clarity and consistency, we will refer to the PHEV-TSPS with all valid inequalities and

branching priority as PHEV-TSPS-VI, and the PHEV-TSPSD with all valid inequalities and branching

priority as PHEV-TSPSD-VI in the following experiments.

Table 3: Performances of the solution methods for PHEV-TSPS

Original LB EAI LB + EAI LB + EAI +BP

#Cus #Ins #Opt aT ime aGap #Opt aT ime aGap #Opt aT ime aGap #Opt aT ime aGap #Opt aT ime aGap

8 9 9 8 0.0 9 1 0.0 9 1 0.0 9 1 0.0 9 1 0.0
10 9 9 203 0.0 9 3 0.0 9 2 0.0 9 2 0.0 9 2 0.0
20 9 3 4820 14.5 9 38 0.0 9 27 0.0 9 25 0.0 9 29 0.0
30 9 1 6406 19.7 8 2642 0.1 9 664 0.0 9 377 0.0 9 216 0.0

Total 36 22 2859 8.5 35 671 0.0 36 174 0.0 36 101 0.0 36 62 0.0

a Original: original PHEV-TSPS without valid inequalities; LB: PHEV-TSPS with the lower bound;
EAI: PHEV-TSPS with the energy accumulation inequality; LB + EAI: PHEV-TSPS with the LB
and EAI; LB + EAI +BP : PHEV-TSPS with the LB, EAI, and branching priority;
b #Cus: the number of customers; #Ins: the number of instances; #Opt: the number of instances
that are solved to optimality within 2 hours; aT ime: the average computation time (s); aGap: average
optimality gap (%).

Second, we evaluate the performance of PHEV-TSPS-VI and PHEV-TSPSD-VI under instances

with a higher number of customers, and the computation results are summarized in Table 4, with

details in Tables 9–10 in Appendix D. All instances with 50 customers are solved to optimality using

PHEV-TSPS-VI and PHEV-TSPSD-VI. However, for instances with more than 50 customers, most of

them cannot be solved to optimality with PHEV-TSPS-VI. On the other hand, most of them can be

solved to optimality with PHEV-TSPSD-VI by setting the speed discretization level to either 0.3 or

0.5 meter/second. For all instances, although the objective values obtained by PHEV-TSPSD-VI are

slightly higher than those obtained by PHEV-TSPS-VI, the difference is negligible. Hence, PHEV-

TSPSD-VI can be considered a viable option for cases that do not require exact solutions, and its

computational efficiency can be further improved by increasing the speed discretization value.
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Table 4: Performances of PHEV-TSPS-VI and PHEV-TSPSD-VI

PHEV-TSPS-VI
Speed Discretization

0.1 (m/s) 0.3 (m/s) 0.5 (m/s)

#Cus #Ins #Opt aT ime #Opt aT ime Diff #Opt aT ime Diff #Opt aT ime Diff

8 9 9 1 9 2 0.04 9 1 0.09 9 1 0.11
10 9 9 2 9 4 0.01 9 1 0.05 9 1 0.06
20 9 9 29 9 72 0.01 9 38 0.06 9 22 0.11
30 9 9 216 9 229 0.02 9 98 0.08 9 67 0.13
40 9 9 934 9 1097 0.02 9 351 0.08 9 539 0.15
50 9 9 3065 9 2491 0.02 9 714 0.06 9 514 0.10
60 9 2 6101 7 4968 8 2560 9 927
70 9 0 7200 0 7200 6 4395 8 3328

Total 72 56 2193 61 2008 68 1020 71 675

a Diff : the percentage increase (positive) or decrease (negative) compared to PHEV-TSPS-VI.

6.3 Comparison to Doppstadt, Koberstein, and Vigo (2016)

In this section, we compare our proposed solution method with the heuristic proposed by Doppstadt,

Koberstein, and Vigo (2016). The TSP for HEV proposed by Doppstadt, Koberstein, and Vigo (2016)

is based on an HEV with four operation modes, namely pure combustion, pure electric, charging, and

boost modes. A key difference between their HEV and our PHEV is that their battery can only be

charged using fuel and not by a charging station. However, their charging mode is similar to our energy

recuperation mode, where the battery can be charged during travel. Consequently, their model has a

structure that is similar to the PHEV-TSPS with fixed speeds, where the cost and travel time on each

arc are fixed.

To compare with their method, we first modify our proposed PHEV-TSPS to their case. Here, we

use the binary variable xrij for the charging mode that takes value 1 if and only if the vehicle is running

on this mode. For each arc (i, j) ∈ A, let crij and t
r
ij be the cost and travel time for the charging mode,

cbij and tbij be the cost and travel time for the boost mode, cfij and tfij be the cost and travel time for

the combustion mode, and ceij and t
e
ij be the cost and travel time for the electric mode. For each node

i ∈ V , let si be the service time. The charging and discharging rates of the vehicle battery are denoted

by rc and rd, respectively. The values of all parameters can be found in Doppstadt, Koberstein, and

Vigo (2016).

Then the HEV traveling salesman problem (HEV-TSP) is as follows:

min Z =
∑

(i,j)∈A

crijx
r
ij + cbijx

b
ij + cfijx

f
ij + ceijx

e
ij (95)

s.t.
∑
i∈V

si +
∑

(i,j)∈A

(
xrijt

r
ij + xbijt

b
ij + xfijt

f
ij + xeijt

e
ij

)
≤ T (96)

yi +
(
rcx

r
ijt

r
ij − rdx

b
ijt

b
ij − rdx

e
ijt

e
ij

)
≥ yj − (1− xij)M ∀(i, j) ∈ A (97)

0 ≤ yi ≤ B ∀i ∈ V (98)

y0 = 0 (99)

(8)–(11), (20).

Following the same approach as in Section 4, we can develop an energy accumulation inequality

based on constraints (97):

y0 + rc
∑

(i,j)∈A

xrijt
r
ij − rd

∑
(i,j)∈A

(
xbijt

b
ij + xeijt

e
ij

)
≥ yn+1, (100)
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which can be directly added to HEV-TSP and solved by the proposed branch-and-cut algorithm. Here

we refer to the model (8)–(11), (20), (95)–(100) as HEV-TSP with valid inequality (HEV-TSP-VI).

To compare our proposed model and solution method with those of Doppstadt, Koberstein, and

Vigo (2016), we solve their instances. The results are shown in Table 5, where it can be seen that

the energy accumulation inequality (100) can significantly improve the computation efficiency of our

branch-and-cut algorithm. In addition, HEV-TSP-VI outperforms the iterated tabu search method

provided by Doppstadt, Koberstein, and Vigo (2016) in two ways: (1) HEV-TSP-VI can always find the

optimal value of the problem while the heuristic cannot, especially for the instances with 50 customers;

(2) our algorithm achieves a faster runtime while utilizing comparable computational resources.

Table 5: Comparison with the Iterated Tabu Search method (Doppstadt, Koberstein, and Vigo 2016)

Instance HEV-TSP HEV-TSP-VI Iterated Tabu Search

α β π Obj T ime Gap Obj T ime Gap Obj T ime Diff∗

1 8 1 1830.69 1.9 0.00 1830.69 0.4 0.00 1830.69 20 0.00
1 8 2 1553.15 2.1 0.00 1553.15 0.2 0.00 1553.15 21 0.00
1 8 3 1435.74 3.3 0.00 1435.74 0.7 0.00 1435.74 22 0.00
2 8 1 7189.85 1.7 0.00 7189.85 0.3 0.00 7189.85 22 0.00
2 8 2 7140.95 1.2 0.00 7140.95 0.3 0.00 7140.95 20 0.00
2 8 3 7292.25 1.8 0.00 7292.25 0.3 0.00 7292.25 22 0.00
3 8 1 12706.6 1.9 0.00 12706.6 0.3 0.00 12706.6 20 0.00
3 8 2 12687.9 1.7 0.00 12687.9 0.3 0.00 12687.9 24 0.00
3 8 3 12708.57 1.4 0.00 12708.57 0.3 0.00 12708.57 19 0.00
1 10 1 1798.94 28.3 0.00 1798.94 0.2 0.00 1798.94 54 0.00
1 10 2 1598.18 54.2 0.00 1598.18 0.5 0.00 1598.18 53 0.00
1 10 3 1478.9 60.8 0.00 1478.9 0.2 0.00 1478.9 58 0.00
2 10 1 7308.15 27.4 0.00 7308.15 0.4 0.00 7308.15 59 0.00
2 10 2 7362.93 17.8 0.00 7362.93 0.4 0.00 7362.93 55 0.00
2 10 3 7290.82 16.1 0.00 7290.82 0.3 0.00 7290.82 70 0.00
3 10 1 12747.22 33.7 0.00 12747.22 0.5 0.00 12747.22 63 0.00
3 10 2 12725.88 46.0 0.00 12725.88 0.3 0.00 12725.88 64 0.00
3 10 3 12935.48 45.9 0.00 12935.48 0.4 0.00 12935.48 62 0.00
1 20 1 2005.89 7200.3 61.02 2005.89 2.1 0.00 2005.89 419 0.00
1 20 2 1969.78 7200.4 69.41 1969.78 1.9 0.00 1969.78 357 0.00
1 20 3 1606.42 7200.2 52.58 1606.42 2.0 0.00 1606.42 454 0.00
2 20 1 7819.22 7200.0 18.83 7807.05 4.7 0.00 7807.05 477 0.00
2 20 2 7671.48 7200.1 15.42 7670.94 5.7 0.00 7670.94 447 0.00
2 20 3 7713.39 7200.1 17.74 7709.14 4.3 0.00 7709.14 454 0.00
3 20 1 13343.32 7200.0 10.09 13329.82 6.7 0.00 13335.85 432 0.05
3 20 2 13287.61 7200.4 9.06 13287.61 4.6 0.00 13287.61 422 0.00
3 20 3 13247.33 7200.1 7.17 13247.33 4.4 0.00 13247.33 388 0.00
1 50 1 2755.28 7200.1 75.13 2712.9 29.6 0.00 2767.36 8218 2.01
1 50 2 2493.26 7200.1 74.91 2489.24 39.2 0.00 2491.45 9768 0.09
1 50 3 2509.92 7200.3 73.66 2474.21 32.2 0.00 2509.53 8980 1.43
2 50 1 8764.52 7200.1 38.25 8338.12 138.9 0.00 8397.48 10224 0.71
2 50 2 8790.33 7200.2 27.99 8425.7 426.7 0.00 8439.57 10623 0.16
2 50 3 8476.82 7200.1 37.23 8422.15 304.8 0.00 8446.29 12164 0.29
3 50 1 13901.24 7200.1 21.63 13846.98 120.3 0.00 13966.47 11537 0.86
3 50 2 14119.29 7200.1 21.55 13935.63 88.1 0.00 13953.79 11123 0.13
3 50 3 13863.99 7200.1 13.12 13805.51 59.4 0.00 13805.51 9661 0.00
#Opt 18 36 27

a Iterated Tabu Search: the objective values and computation times are from Table 6
of Doppstadt, Koberstein, and Vigo (2016) (The columns of ‘Best Result’);
b Obj: objective value; Time: computation time (s); Gap: optimality gap (%); Diff∗:
percentage increase compared to HEV-TSP-VI.

6.4 The value of joint optimization

First, we compare our proposed PHEV-TSPS with some policies such as only using fuel, only using
electricity, and the sequential optimization method described in Section 3.2. Results are summarized
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in Table 6 with details in Table 11 in Appendix D. It can be seen that our proposed PHEV-TSPS

can significantly reduce energy consumption costs compared to the policy of solely using fuel. Using

only electricity is impractical as the PHEV may run out of battery and fail to complete the journey.

In addition, the sequential optimization method performs worse than our proposed PHEV-TSPS,

resulting in over 7% more energy consumption costs in some instances.

Table 6: Comparison of PHEV-TSPS with some other policies

Only Fuel Mode Only Electricity Mode Sequential Method

#Cus #Ins #Opt #Inf Diff #Opt #Inf Diff #Opt #Inf Diff

8 9 9 0 48.42 3 6 9 0 1.60
10 9 9 0 48.55 3 6 9 0 1.55
20 9 9 0 45.52 3 6 9 0 0.63

Total 27 27 0 47.50 9 18 27 0 1.26

a #Inf : the number of the instances that are infeasible.

Second, to assess the advantages of incorporating speed optimization in PHEV-TSPS over a PHEV-

TSPS with fixed speeds, we consider a PHEV-TSPS with fixed speeds in which the PHEV is assumed

to run on speeds from Table 2 of Doppstadt, Koberstein, and Vigo (2016) or on speed limits on arcs,

respectively. We then solve the PHEV-TSPS with fixed speeds using the given speeds. The results are

summarized in Table 7, and the details are shown in Table 12 in Appendix D.

It appears that the proposed PHEV-TSPS outperforms the TSPS with fixed speeds in terms of

energy consumption cost. The use of speed values from Table 2 of Doppstadt, Koberstein, and Vigo

(2016) can lead to energy consumption costs that are up to 59% higher than those obtained with the

proposed model. Similarly, the use of speed limits can lead to energy consumption costs that are up to

59% higher than those obtained with the proposed model. This comparison supports the advantages

of incorporating speed optimization into the TSP.

Table 7: Performance of the PHEV-TSPS with fixed speeds

Doppstadt, Koberstein, and Vigo (2016) Speed Limits

#Cus #Ins #Opt aObj(×107) Diff #Opt aObj(×107) Diff

8 9 9 13.42 15.59 9 14.80 41.59
10 9 9 13.69 15.37 9 15.09 36.45
20 9 9 15.27 22.43 9 16.47 33.62

Total 27 27 14.13 17.79 27 15.46 37.22

a aObj: the average objective value.

6.5 Sensitivity analysis

This section presents a sensitivity analysis of the proposed PHEV-TSPS, including the impacts of road

gradient and energy recuperation, respectively.

6.5.1 Impact of the road gradient

To investigate the impact of road gradient on PHEV-TSPS, we test it on different values of this

parameter. Specifically, in one set of experiments, the elevation of each node is randomly chosen from

0 to 200 meters. In another set of experiments, the elevation of each node is randomly selected from 0

to 300 meters. The results of these experiments are presented in Table 13 in Appendix D, indicating

that higher road gradients can lead to increased energy consumption costs in most cases, because the

PHEVs need more energy to climb the steeper road slopes.
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6.5.2 Impact of energy recuperation

To investigate the impact of energy recuperation on the energy consumption cost, we force xrij = 0 for

all arcs, and then calculate the PHEV-TSPS under different road gradients. The results are shown in

Table 14 in Appendix D.

The comparison between Tables 13–14 reveals that energy recuperation results in only a marginal

reduction in energy consumption cost (less than 1%) when the maximum elevation is 100 meters. This

is because PHEV cannot recuperate energy under such a small road gradient. However, when the

maximum elevation is increased to 200 or 300 meters, the energy consumption cost can be reduced by

more than 2.5% in some instances.

6.6 Impact of charging stations at customer locations

In this section, we aim to investigate the impact of charging stations on PHEV-TSPS. It is assumed

that each customer location is equipped with a charging station that has a charging rate of 60 kilowatts.

Since battery charging takes time, we set larger travel time budgets, which are 7200, 14400, and 21600

seconds for α = 1, 2, 3, respectively.

We compare three models: PHEV-TSPS, PHEV-TSPS with charging stations (PHEV-TSPS-CS),

and PHEV-TSPS-CS without fuel (PHEV-TSPS-CSwF), and present the calculation results in Table 15

in Appendix D. It can be seen that when α = 1, all three models have the same cost as the journey

can be completed using the initial battery charge. When α = 2, PHEV-TSPS-CS and PHEV-TSPS-

CSwF have lower costs than PHEV-TSPS as they do not use fuel during the journey. This is because

electricity has a lower cost than fuel, and the former two models recharge the battery during the

journey. When α = 3, PHEV-TSPS-CSwF cannot have a feasible solution as the initial battery charge

cannot cover the path between the depot and the first customer.

7 Conclusions

This paper presents a PHEV TSP with speed optimization that jointly optimizes speed, route, and

operation modes to minimize the energy consumption cost over a journey. The problem is formu-

lated as two mixed-integer nonlinear programming models, one with continuous speed and the other

with discretized speed. To solve the two models efficiently, the paper proposes valid inequalities to

strengthen them and linearizes them to MILP models, which are then solved by a branch-and-cut

algorithm. The computational experiments demonstrate that the proposed methods can optimally

solve instances with a realistic number of customers within a reasonable time, making them applicable

to daily tour planning problems. Furthermore, the proposed models and solution methods can also be

utilized for HEVs, and solve the problem optimally with high efficiency compared to existing methods.

The experiments indicate that the joint optimization method outperforms the sequential optimization

method and models with fixed speeds in energy consumption cost, thereby validating the importance of

incorporating speed optimization into routing planning problems for PHEVs. Additionally, numerical

experiments show that charging stations can help reduce the energy consumption cost.

This research warrants some future investigations. First, as vehicles running on roads are bound by

uncertain traffic speeds (Wu et al. 2021), it would be valuable to incorporate traffic speed uncertainty

into the proposed models, making them more practical. Second, considering the existence of different

paths between customers, each with features such as distance, speed limit, and other factors (Huang

et al. 2017), incorporating path selection into the model will make the problem more flexible.
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Appendix A PHEV-TSPS with charging stations

This appendix shows how our approach can be applied to cases where charging stations are not limited

to customer locations.

To model the recharging opportunities during the journey, we refer to the method proposed by

Roberti and Wen (2016) for the case of an electric vehicle fleet and define the recharging path between

nodes i and j that involves visiting one charging station. Here, we adopt a full-recharge policy where

the battery is charged to its full capacity upon visiting the charging station. Moreover, we assume that

the stopping time at the charging station is constant (Andelmin and Bartolini 2017; Bruglieri et al.

2019).

Let d∗ij denote the distance of the recharging path between nodes i and j, and d′ij denote the

distance between node i and the charging station. For each arc (i, j) ∈ A, let xf∗ij be a binary variable

that takes value 1 if and only if the vehicle is operating on the fuel mode on the recharging path, xe∗ij
be a binary variable that takes the value 1 if and only if the vehicle is operating on the electric mode

on the recharging path, xb∗ij be a binary variable that takes the value 1 if and only if the vehicle is

operating on the boost mode on the recharging path, and xr∗ij be a binary variable that takes the value

1 if and only if the vehicle is operating on the energy recuperation mode on the recharging path. We

also let yij and t∗ be the state of charge and stopping time at a charging station, respectively. Then

the PHEV-TSPS with charging stations can be formulated as follows:

min Z =
∑

(i,j)∈A

(
cfx

f
ij + cex

e
ij + cbx

b
ij

)
Eij − cex

r
ij(yj − yi)

+
(
cfx

f∗
ij + cex

e∗
ij + cbx

b∗
ij

)
E∗
ij − cex

r∗
ij (yj − yi −B + yij) (101)

s.t. E∗
ij =

(
1

ηd
− ηg

)
d∗ij max

{
mg sin θij +

1

2
CdρAv

2
ij + Crmg cos θij , 0

}
+ ηgd

∗
ij

(
mg sin θij +

1

2
CdρAv

2
ij + Crmg cos θij

)
∀(i, j) ∈ A (102)

xfij + xeij + xbij + xrij + xf∗ij + xe∗ij + xb∗ij + xr∗ij = xij ∀(i, j) ∈ A (103)

(xf∗ij + xe∗ij + xb∗ij − 1)M∗
ij ≤ E∗

ij ∀(i, j) ∈ A (104)

(1− xr∗ij )M
∗
ij ≥ E∗

ij ∀(i, j) ∈ A (105)∑
(i,j)∈A

(xfij + xeij + xbij + xrij)
dij
vij

+ (xf∗ij + xe∗ij + xb∗ij + xr∗ij )

(
d∗ij
vij

+ t∗
)

≤ T (106)

yi −
(
xeij + µxbij + xrij

)
Eij −

(
xe∗ij + µxb∗ij + xr∗ij

)
E∗
ij

+ (xf∗ij + xe∗ij + xb∗ij + xr∗ij )(B − yij) ≥ yj − (1− xij)B ∀(i, j) ∈ A (107)

yi −
(
xeij + µxbij

)
Eij −

(
xe∗ij + µxb∗ij

)
E∗
ij

+ (xf∗ij + xe∗ij + xb∗ij + xr∗ij )(B − yij) ≤ yj + (1− xij)B ∀(i, j) ∈ A (108)

E′
ij =

(
1

ηd
− ηg

)
d′ij max

{
mg sin θij +

1

2
CdρAv

2
ij + Crmg cos θij , 0

}
+ ηgd

′
ij

(
mg sin θij +

1

2
CdρAv

2
ij + Crmg cos θij

)
∀(i, j) ∈ A (109)

yi − (xe∗ij + µxb∗ij + xr∗ij )E
′
ij = yij ∀(i, j) ∈ A (110)

yij ≥ B ∀(i, j) ∈ A (111)

xf∗ij , x
e∗
ij , x

b∗
ij , x

r∗
ij ∈ {0, 1} ∀(i, j) ∈ A (112)

(9)–(13), (17)–(20).
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Objective function (101) minimizes the total cost of energy consumption and recharging over the

entire trip. The first two terms are the same as in objective function (6), while the third and fourth

terms calculate the energy consumption cost over the recharging path. Constraints (102) calculate the

energy consumption over each recharging path. Constraints (103) ensure that the PHEV can only run

in one mode and one path on each arc. Constraints (104)–(105) are counterparts to constraints (12)–

(13) on the recharging path. Constraint (106) is the travel time constraint, where the second term

calculates the travel time on the recharging path. Constraints (107)–(108) are the battery flow con-

straints. Constraints (109) calculate the energy consumption between the start point and the charging

station on each arc. Constraints (110) calculate the state of charge when the vehicle visits the charging

station, and constraints (111) require that the state of charge cannot be lower than the lower bound.

The above model is more complex due to the incorporation of four extra binary variables in the

recharging path, rendering it intractable for the proposed method. During our tests, we were able to

solve all instances with 10 customers within 2 hours, but we were unable to solve all instances with

20 customers within the same time frame. The complexity of the model would require more tailored

algorithms, which are beyond the scope of this paper.

Appendix B Proof of Lemma and Propositions

Proof of Lemma 1: Due to constraints (15), we have the inequality xrij(yi − yj) ≥ xrijEij . Since the

objective function (6) is a minimization, xrij(yi − yj) is minimized, making the left-hand side of the

inequality as small as possible. Therefore, we have xrij(yi−yj) = xrijEij , and the lemma is proven.

Proof of Proposition 1: First, it can be seen that the optimal solution of Step 1 and Step 2 is

feasible for the PHEV-TSPS, because Step 1 and Step 2 contain all constraints of the PHEV-TSPS.

To illustrate that Step 1 and PHEV-TSPS can result in different speeds and routes, we can consider

the following two cases:

• Assuming that the optimal routes of Step 1 and PHEV-TSPS are the same, denoted as A∗, then

the objective function (21) in Step 1 is as follows:

min
∑

(i,j)∈A∗

Eij , (113)

the objective function (6) in the PHEV-TSPS is as follows:

min
∑

(i,j)∈A∗

(
cfx

f
ij + cex

e
ij + cbx

b
ij

)
Eij − cex

r
ij(yj − yi)

s.t. xfij + xeij + xbij + xrij = 1 ∀(i, j) ∈ A∗. (114)

From the above, it can be seen that the objective functions of Step 1 and PHEV-TSPS may have

different energy consumption coefficients on each arc, leading to different speed decisions.

• Similarly, assuming a fixed running speed on each arc, the energy consumption on each arc

resulting from the sequential optimization method would be the same as that of PHEV-TSPS.

However, the objective functions of Step 1 and PHEV-TSPS may still differ due to the variation

in energy consumption coefficients on each arc in the latter. As a result, different route decisions

can be made.

Second, Step 2 can be seen as PHEV-TSPS with fixed route and speeds, so PHEV-TSPS is a relaxed

problem of Step 2 and thus has an objective value lower than or equal to Step 2.
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Proof of Propositions 2 and 3: First, to solve the model (38)–(41), we write a dual formulation as

follows:

max
ψ1,ψ2

(−y0 + yn+1 +
∑

(i,j)∈A

xrijEij)ψ1 +
∑

(i,j)∈A

(xijEij − xrijEij)ψ2 + ce
∑

(i,j)∈A

xrijEij (115)

s.t. − ψ1 + ψ2 ≤ ce (116)

ψ2 ≤ cf (117)

− µψ1 + ψ2 ≤ cb (118)

ψ1 ≥ 0. (119)

Then, we solve the problem (115)–(119) by two cases:

(a) If
cf−cb
µ ≤ cf − ce, the feasible region of model (115)–(119) is the cyan area of Figure 2. When

y0−yn+1−
∑

(i,j)∈A x
r
ijEij∑

(i,j)∈A xijEij−xr
ijEij

≥ 1, the optimal solution is (0, ce), the optimal value is ce
∑

(i,j)∈A xijEij ;

when
y0−yn+1−

∑
(i,j)∈A x

r
ijEij∑

(i,j)∈A xijEij−xr
ijEij

< 1, the optimal solution is ( cb−ce1−µ ,
cb−µce
1−µ ), the optimal

value is 1
1−µ

(
(ce − cb)(y0 − yn+1 −

∑
(i,j)∈A x

r
ijEij) + (cb − µce)

∑
(i,j)∈A(xijEij − xrijEij)

)
+

ce
∑

(i,j)∈A x
r
ijEij .

cb ce
1

cf cecf cb

1

ce

cb

cf

cb ce
1

2

2 = cf 2 = 1 + ce 2 = 1 + cb

Figure 2: Feasible area of model (115)–(119)
(

cf−cb
µ

≤ cf − ce
)

(b) If
cf−cb
µ > cf − ce, the feasible region of model (115)–(119) is the cyan area of Figure 3. When

y0−yn+1−
∑

(i,j)∈A x
r
ijEij∑

(i,j)∈A xijEij−xr
ijEij

≥ 1, the optimal solution is (0, ce), the optimal value is ce
∑

(i,j)∈A xijEij .

When µ ≤ y0−yn+1−
∑

(i,j)∈A x
r
ijEij∑

(i,j)∈A xijEij−xr
ijEij

≤ 1, the optimal solution is ( cb−ce1−µ ,
cb−µce
1−µ ), the optimal

value is 1
1−µ

(
(ce − cb)(y0 − yn+1 −

∑
(i,j)∈A x

r
ijEij) + (cb − µce)

∑
(i,j)∈A(xijEij − xrijEij)

)
+

ce
∑

(i,j)∈A x
r
ijEij . When

y0−yn+1−
∑

(i,j)∈A x
r
ijEij∑

(i,j)∈A xijEij
≤ µ, the optimal solution is

(
cf−cb
µ , cf

)
, the

optimal value is
(cb−cf )(y0−yn+1−

∑
(i,j)∈A x

r
ijEij)

µ +cf
∑

(i,j)∈A(xijEij−xrijEij)+ce
∑

(i,j)∈A x
r
ijEij .
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cb ce
1

cf ce cf cb

1

ce

cb

cf

cb ce
12

2 = cf 2 = 1 + ce 2 = 1 + cb

Figure 3: Feasible area of model (115)–(119)
(

cf−cb
µ

≥ cf − ce
)

Second, in order to integrate the lower bound calculated by model (115)–(119) with PHEV-TSPS,

we use the multiple choice model (Croxton, Gendron, and Magnanti 2003) to combine the objective

values under different cases:

(a) If
cf−cb
µ ≤ cf − ce, we introduce two new continuous variables, κ1 and κ2, and two new binary

variables, δ1 and δ2, then the optimal value of model (38)–(41) or model (115)–(119) can be

calculated by the following function:

Za = ceκ1 +
(y0 − yn+1 −

∑
(i,j)∈A x

r
ijEij)(ce − cb)

1− µ
δ2 +

cb − µce
1− µ

κ2 + ce
∑

(i,j)∈A

xrijEij (120)

subject to constraints (43)–(47);

(b) If
cf−cb
µ > cf − ce, we introduce three new continuous variables, κ1, κ2 and κ3, and three new

binary variables, δ1, δ2 and δ3, then the optimal value of model (38)–(41) or model (115)–(119)

can be calculated by the function

Zb = ceκ1 +
(y0 − yn+1 −

∑
(i,j)∈A x

r
ijEij)(ce − cb)

1− µ
δ2 +

cb − µce
1− µ

κ2

+
(y0 − yn+1 −

∑
(i,j)∈A x

r
ijEij)(cb − cf )

1− µ
δ3 + cfκ3 + ce

∑
(i,j)∈A

xrijEij (121)

subject to constraints (49)–(54).

Finally, we can obtain the following valid inequalities under two cases. If
cf−cb
µ ≥ cf − ce, the

following inequalities are valid to PHEV-TSPS:

Z ≥ Za (122)

(43)–(47), (120).

Thus Proposition 2 is proved.
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If
cf−cb
µ ≤ cf − ce, the following inequalities are valid to PHEV-TSPS:

Z ≥ Zb (123)

(49)–(54), (121).

Thus Proposition 3 is proved.

Appendix C Solution method for PHEV-TSPS-CS

This appendix presents the modifications made to the solution method proposed in Section 5 when

applied to PHEV-TSPS-CS.

First, constraints (31)–(33) can be reformulated to the follows:∑
(i,j)∈A

dijqij +
∑
i∈V

τi ≤ T (124)

yi − weij − µwbij − wrij + ϵτi ≥ yj − (1− xij)B ∀(i, j) ∈ A (125)

yi − weij − µwbij + ϵτi ≤ yj + (1− xij)B ∀(i, j) ∈ A (126)

(62)–(63).

Second, energy accumulation inequality (36) can be linearized to the follows:∑
(i,j)∈A

(weij + µwbij + wrij) ≤ y0 − yn+1 + ϵ
∑
i∈V

τi. (127)

Third, if
cf−cb
µ ≤ cf − ce, we can formulate the lower bound inequalities for PHEV-TSPS-CS as

follows, similar to Proposition 2:

Z ≥ ceκ1 +
(y0 − yn+1 + ϵ

∑
i∈V τi −

∑
(i,j)∈A x

r
ijEij)(ce − cb)

1− µ
δ2 +

cb − µce
1− µ

κ2 + ce
∑

(i,j)∈A

xrijEij

(128)

κ1 ≤ (y0 − yn+1 + ϵ
∑
i∈V

τi −
∑

(i,j)∈A

xrijEij)δ1 (129)

(y0 − yn+1 + ϵ
∑
i∈V

τi −
∑

(i,j)∈A

xrijEij)δ2 ≤ κ2 ≤Mδ2 (130)

(43), (46)–(47),

where constraints (128)–(130) can be linearized to the following constraints:

σ1 ≤ y0 − yn+1 + ϵ
∑
i∈V

τi −
∑

(i,j)∈A

wrij + (1− δ2)M
∗ (131)

κ1 ≤ y0 − yn+1 + ϵ
∑
i∈V

τi −
∑

(i,j)∈A

wrij + (1− δ1)M
∗ (132)

κ2 ≥ y0 − yn+1 + ϵ
∑
i∈V

τi −
∑

(i,j)∈A

wrij − (1− δ2)M
∗ (133)

(78)–(81), (83).

Finally, if
cf−cb
µ > cf − ce, we can formulate the lower bound inequalities for PHEV-TSPS-CS as

follows, similar to Proposition 3:

Z ≥ ceκ1 +
(y0 − yn+1 + ϵ

∑
i∈V τi −

∑
(i,j)∈A x

r
ijEij)(ce − cb)

1− µ
δ2 +

cb − µce
1− µ

κ2
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+
(y0 − yn+1 + ϵ

∑
i∈V τi −

∑
(i,j)∈A x

r
ijEij)(cb − cf )

1− µ
δ3 + cfκ3 + ce

∑
(i,j)∈A

xrijEij (134)

κ1 ≤ (y0 − yn+1 + ϵ
∑
i∈V

τi −
∑

(i,j)∈A

xrijEij)δ1 (135)

(y0 − yn+1 + ϵ
∑
i∈V

τi −
∑

(i,j)∈A

xrijEij)δ2 ≤ κ2 ≤
(y0 − yn+1 + ϵ

∑
i∈V τi −

∑
(i,j)∈A x

r
ijEij)δ2

µ
(136)

(y0 − yn+1 + ϵ
∑
i∈V τi −

∑
(i,j)∈A x

r
ijEij)δ3

µ
≤ κ3 ≤Mδ3 (137)

(49), (53)–(54),

where constraints (134)–(137) can be linearized to the following constraints:

σ2 ≤ y0 − yn+1 + ϵ
∑
i∈V

τi −
∑

(i,j)∈A

wrij + (1− δ3)M
∗ (138)

κ1 ≤ y0 − yn+1 + ϵ
∑
i∈V

τi −
∑

(i,j)∈A

wrij + (1− δ1)M
∗ (139)

y0 − yn+1 + ϵ
∑
i∈V

τi −
∑

(i,j)∈A

wrij − (1− δ2)M
∗ ≤ κ2

≤
(y0 − yn+1 + ϵ

∑
i∈V τi −

∑
(i,j)∈A w

r
ij + (1− δ2) ∗M∗)

µ
(140)

µκ3 ≥ y0 − yn+1 + ϵ
∑
i∈V

τi −
∑

(i,j)∈A

wrij − (1− δ3)M
∗ (141)

(78), (86)–(89), (91), (93), (131).

Appendix D Results of the experiments



L
es

C
ah
iers

d
u
G
E
R
A
D

G
–2023–42

26

Table 8: Performances of the solution methods for PHEV-TSPS

Instance Original LB EAI LB + EAI LB + EAI +BP

α β π Obj(×107) T ime Gap Obj(×107) T ime Gap Obj(×107) T ime Gap Obj(×107) T ime Gap Obj(×107) T ime Gap

1 8 1 1.602 0.5 0.00 1.602 0.9 0.00 1.602 0.5 0.00 1.602 0.5 0.00 1.602 0.7 0.00
1 8 2 1.443 0.3 0.00 1.443 0.3 0.00 1.443 0.4 0.00 1.443 0.4 0.00 1.443 0.6 0.00
1 8 3 1.139 0.3 0.00 1.139 0.4 0.00 1.139 0.4 0.00 1.139 0.3 0.00 1.139 0.5 0.00
2 8 1 9.707 10.3 0.00 9.707 2.4 0.01 9.707 1.3 0.01 9.707 1.5 0.01 9.707 1.2 0.00
2 8 2 10.269 18.7 0.00 10.269 1.9 0.00 10.269 2.2 0.00 10.269 1.8 0.00 10.269 1.8 0.00
2 8 3 9.844 15.3 0.00 9.844 1.3 0.00 9.844 1.5 0.00 9.844 1.4 0.00 9.844 1.6 0.00
3 8 1 21.698 4.1 0.00 21.698 1.8 0.00 21.698 1.5 0.00 21.698 1.9 0.00 21.698 1.8 0.00
3 8 2 21.930 10.4 0.00 21.930 1.9 0.00 21.930 2.0 0.00 21.930 2.1 0.00 21.930 1.8 0.00
3 8 3 22.038 7.7 0.00 22.038 1.6 0.00 22.038 1.6 0.00 22.038 2.1 0.00 22.038 2.0 0.00
1 10 1 1.814 0.6 0.00 1.814 1.6 0.00 1.814 1.1 0.00 1.814 0.8 0.00 1.814 0.8 0.00
1 10 2 1.754 0.5 0.00 1.754 0.8 0.00 1.754 0.8 0.00 1.754 0.5 0.00 1.754 0.6 0.00
1 10 3 1.671 1.3 0.00 1.671 1.1 0.00 1.671 1.1 0.00 1.671 0.9 0.00 1.671 1.6 0.00
2 10 1 10.132 619.9 0.00 10.132 2.6 0.01 10.132 2.1 0.00 10.132 2.7 0.00 10.132 2.3 0.00
2 10 2 10.438 403.0 0.00 10.438 2.7 0.00 10.439 3.0 0.01 10.438 2.0 0.00 10.438 2.9 0.00
2 10 3 10.162 613.6 0.00 10.162 3.4 0.00 10.162 1.4 0.01 10.162 2.6 0.00 10.162 1.8 0.00
3 10 1 21.654 26.0 0.00 21.654 3.0 0.00 21.654 3.1 0.00 21.654 3.4 0.00 21.654 3.2 0.00
3 10 2 21.601 117.2 0.00 21.603 3.1 0.01 21.602 2.5 0.00 21.601 2.4 0.00 21.601 2.2 0.00
3 10 3 22.699 48.2 0.00 22.699 4.0 0.00 22.699 2.8 0.00 22.699 2.6 0.00 22.699 2.2 0.00
1 20 1 2.760 108.6 0.00 2.760 53.1 0.00 2.760 4.1 0.00 2.760 5.0 0.01 2.760 9.5 0.00
1 20 2 2.377 3.0 0.00 2.377 2.5 0.00 2.377 3.7 0.00 2.377 3.0 0.00 2.377 3.4 0.00
1 20 3 2.162 64.6 0.00 2.162 4.4 0.00 2.162 3.3 0.00 2.162 5.1 0.00 2.162 14.8 0.00
2 20 1 12.934 7200.1 35.24 12.934 36.7 0.00 12.934 37.5 0.00 12.934 29.2 0.01 12.934 42.0 0.00
2 20 2 12.415 7200.1 33.11 12.415 48.1 0.00 12.415 28.8 0.01 12.415 39.2 0.00 12.415 39.7 0.00
2 20 3 12.533 7200.2 34.36 12.533 43.7 0.00 12.533 32.4 0.00 12.533 30.4 0.00 12.533 29.5 0.00
3 20 1 24.556 7200.1 10.06 24.556 50.9 0.00 24.556 39.4 0.00 24.556 31.8 0.00 24.556 30.3 0.00
3 20 2 24.468 7200.1 8.94 24.468 57.5 0.00 24.468 60.0 0.00 24.468 42.1 0.00 24.468 45.6 0.00
3 20 3 24.205 7200.1 8.43 24.205 41.8 0.00 24.205 35.4 0.00 24.205 39.5 0.00 24.205 46.5 0.00
1 30 1 3.075 7200.1 2.91 3.075 224.8 0.00 3.075 24.4 0.01 3.075 52.6 0.01 3.075 44.6 0.00
1 30 2 2.441 53.9 0.00 2.441 8.5 0.00 2.441 9.5 0.00 2.441 8.6 0.00 2.441 21.9 0.00
1 30 3 3.359 7200.1 7.62 3.359 264.6 0.00 3.359 49.4 0.00 3.359 59.9 0.00 3.359 159.5 0.00
2 30 1 13.782 7200.1 36.44 13.768 2598.4 0.00 13.768 107.3 0.00 13.768 130.6 0.00 13.768 127.2 0.00
2 30 2 14.084 7200.1 37.15 13.826 4621.9 0.00 13.826 256.2 0.00 13.826 421.8 0.00 13.826 842.4 0.00
2 30 3 13.890 7200.1 37.77 13.890 1529.5 0.00 13.890 182.5 0.00 13.890 103.5 0.01 13.890 208.0 0.00
3 30 1 26.736 7200.1 19.81 26.567 6107.1 0.00 26.567 159.8 0.00 26.567 187.4 0.00 26.567 144.6 0.00
3 30 2 27.485 7200.6 22.32 26.755 7200.1 1.19 26.755 5001.9 0.00 26.755 2268.6 0.00 26.756 266.6 0.01
3 30 3 25.895 7200.1 13.43 25.723 1223.0 0.01 25.725 186.5 0.01 25.723 163.1 0.00 25.725 126.7 0.01
Average 12.251 2859.2 8.54 12.484 670.9 0.03 12.484 173.7 0.00 12.484 101.4 0.00 12.484 62.0 0.00
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Table 9: Performances of PHEV-TSPS-VI and PHEV-TSPSD-VI (Part 1)

Instance PHEV-TSPS-VI
Speed Discretization

0.1 (m/s) 0.3 (m/s) 0.5 (m/s)

α β π
Obj

T ime Gap
Obj1 Time Gap

Obj1
Obj

Obj2 Time Gap
Obj3
Obj

Obj3 Time Gap
Obj3
Obj(×107) (×107) (×107) (×107)

1 8 1 1.602 0.7 0.00 1.602 0.5 0.01 1.000 1.603 0.2 0.01 1.000 1.603 0.2 0.01 1.000
1 8 2 1.443 0.6 0.00 1.443 0.8 0.01 1.000 1.443 0.3 0.00 1.000 1.443 0.4 0.00 1.000
1 8 3 1.139 0.5 0.00 1.139 1.4 0.00 1.000 1.139 0.2 0.00 1.000 1.139 0.2 0.00 1.000
2 8 1 9.707 1.2 0.00 9.709 1.0 0.01 1.000 9.711 0.6 0.01 1.000 9.714 1.1 0.00 1.001
2 8 2 10.269 1.8 0.00 10.288 3.3 0.00 1.002 10.304 2.2 0.00 1.003 10.296 1.0 0.00 1.003
2 8 3 9.844 1.6 0.00 9.845 0.7 0.01 1.000 9.847 0.6 0.00 1.000 9.855 0.5 0.01 1.001
3 8 1 21.698 1.8 0.00 21.703 3.2 0.00 1.000 21.713 1.1 0.00 1.001 21.730 1.5 0.00 1.001
3 8 2 21.930 1.8 0.00 21.934 2.5 0.00 1.000 21.938 1.8 0.00 1.000 21.974 1.5 0.01 1.002
3 8 3 22.038 2.0 0.00 22.058 2.4 0.00 1.001 22.090 1.6 0.00 1.002 22.073 1.6 0.00 1.002
1 10 1 1.814 0.8 0.00 1.814 2.1 0.00 1.000 1.814 0.4 0.00 1.000 1.815 0.5 0.01 1.001
1 10 2 1.754 0.6 0.00 1.754 1.0 0.01 1.000 1.754 0.7 0.01 1.000 1.754 0.5 0.00 1.000
1 10 3 1.671 1.6 0.00 1.671 4.2 0.00 1.000 1.671 1.8 0.00 1.000 1.671 1.2 0.00 1.000
2 10 1 10.132 2.3 0.00 10.133 5.4 0.00 1.000 10.136 1.2 0.00 1.000 10.138 1.1 0.01 1.001
2 10 2 10.438 2.9 0.00 10.439 1.7 0.00 1.000 10.440 1.8 0.01 1.000 10.440 1.5 0.00 1.000
2 10 3 10.162 1.8 0.00 10.162 5.2 0.00 1.000 10.163 0.5 0.00 1.000 10.169 1.7 0.01 1.001
3 10 1 21.654 3.2 0.00 21.669 4.0 0.01 1.001 21.710 0.9 0.01 1.003 21.705 0.6 0.00 1.002
3 10 2 21.601 2.2 0.00 21.602 6.1 0.00 1.000 21.606 2.2 0.00 1.000 21.606 1.3 0.01 1.000
3 10 3 22.699 2.2 0.00 22.701 5.1 0.01 1.000 22.714 3.3 0.00 1.001 22.713 3.2 0.01 1.001
1 20 1 2.760 9.5 0.00 2.760 83.1 0.01 1.000 2.761 106.7 0.01 1.000 2.761 27.2 0.01 1.000
1 20 2 2.377 3.4 0.00 2.377 10.8 0.00 1.000 2.377 8.2 0.00 1.000 2.377 3.7 0.00 1.000
1 20 3 2.162 14.8 0.00 2.162 48.8 0.00 1.000 2.162 20.6 0.00 1.000 2.163 12.1 0.00 1.000
2 20 1 12.934 42.0 0.00 12.936 42.2 0.01 1.000 12.938 22.9 0.01 1.000 12.949 15.0 0.01 1.001
2 20 2 12.415 39.7 0.00 12.416 106.0 0.00 1.000 12.420 24.7 0.01 1.000 12.422 18.0 0.01 1.001
2 20 3 12.533 29.5 0.00 12.534 123.6 0.00 1.000 12.538 62.2 0.01 1.000 12.536 46.3 0.01 1.000
3 20 1 24.556 30.3 0.00 24.558 42.1 0.00 1.000 24.560 14.4 0.00 1.000 24.574 17.1 0.01 1.001
3 20 2 24.468 45.6 0.00 24.484 101.4 0.01 1.001 24.530 43.6 0.00 1.003 24.598 30.4 0.01 1.005
3 20 3 24.205 46.5 0.00 24.207 92.4 0.01 1.000 24.229 37.3 0.01 1.001 24.223 24.5 0.01 1.001
1 30 1 3.075 44.6 0.00 3.075 182.4 0.00 1.000 3.076 104.1 0.00 1.000 3.077 78.0 0.00 1.001
1 30 2 2.441 21.9 0.00 2.441 187.7 0.01 1.000 2.442 92.6 0.00 1.000 2.442 54.6 0.00 1.001
1 30 3 3.359 159.5 0.00 3.359 201.8 0.00 1.000 3.361 108.0 0.01 1.001 3.363 81.0 0.01 1.001
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Table 9 – continued from previous page

Instance PHEV-TSPS-VI
Speed Discretization

0.1 (m/s) 0.3 (m/s) 0.5 (m/s)

α β π
Obj

T ime Gap
Obj1 Time Gap

Obj1
Obj

Obj2 Time Gap
Obj3
Obj

Obj3 Time Gap
Obj3
Obj(×107) (×107) (×107) (×107)

2 30 1 13.768 127.2 0.00 13.769 259.5 0.00 1.000 13.773 107.2 0.01 1.000 13.776 51.9 0.00 1.001
2 30 2 13.826 842.4 0.00 13.829 268.1 0.01 1.000 13.833 74.3 0.01 1.000 13.842 55.5 0.01 1.001
2 30 3 13.890 208.0 0.00 13.890 287.7 0.00 1.000 13.896 91.2 0.01 1.000 13.896 73.8 0.01 1.000
3 30 1 26.567 144.6 0.00 26.573 241.7 0.00 1.000 26.578 111.7 0.01 1.000 26.660 100.8 0.01 1.003
3 30 2 26.756 266.6 0.01 26.772 198.7 0.00 1.001 26.817 126.1 0.01 1.002 26.785 75.2 0.00 1.001
3 30 3 25.725 126.7 0.01 25.734 228.5 0.00 1.000 25.776 61.9 0.00 1.002 25.780 34.9 0.01 1.002
1 40 1 4.296 119.3 0.00 4.297 508.1 0.00 1.000 4.299 229.7 0.01 1.001 4.303 132.2 0.01 1.001
1 40 2 3.725 312.6 0.00 3.726 1906.1 0.00 1.000 3.727 303.9 0.00 1.000 3.729 201.7 0.00 1.001
1 40 3 3.869 164.3 0.00 3.870 1050.6 0.00 1.000 3.871 245.6 0.00 1.001 3.874 171.6 0.00 1.001
2 40 1 15.710 1408.5 0.00 15.712 922.6 0.00 1.000 15.720 397.9 0.01 1.001 15.723 269.9 0.01 1.001
2 40 2 15.968 3410.8 0.00 15.970 1520.2 0.00 1.000 15.976 775.8 0.00 1.001 15.984 606.7 0.00 1.001
2 40 3 15.407 637.1 0.00 15.409 905.7 0.00 1.000 15.413 257.4 0.00 1.000 15.421 251.2 0.00 1.001
3 40 1 27.957 1010.9 0.01 27.979 1452.6 0.00 1.001 27.989 399.8 0.01 1.001 28.047 2741.8 0.01 1.003
3 40 2 28.151 574.7 0.00 28.155 981.0 0.00 1.000 28.163 342.7 0.00 1.000 28.168 177.6 0.00 1.001
3 40 3 27.562 767.1 0.00 27.577 625.2 0.00 1.001 27.640 207.4 0.00 1.003 27.642 297.5 0.00 1.003
1 50 1 5.489 287.7 0.00 5.490 1460.6 0.00 1.000 5.494 337.2 0.01 1.001 5.497 424.4 0.01 1.002
1 50 2 4.559 391.2 0.00 4.560 2190.2 0.00 1.000 4.563 419.8 0.00 1.001 4.565 298.8 0.00 1.001
1 50 3 4.913 326.9 0.00 4.913 1484.5 0.00 1.000 4.915 578.3 0.01 1.001 4.918 391.1 0.01 1.001
2 50 1 17.367 2639.8 0.00 17.370 1471.6 0.00 1.000 17.377 508.4 0.01 1.001 17.382 745.4 0.00 1.001
2 50 2 17.320 5879.2 0.00 17.323 6528.7 0.00 1.000 17.328 1126.5 0.00 1.000 17.334 431.6 0.01 1.001
2 50 3 16.566 2939.8 0.00 16.568 1215.6 0.00 1.000 16.575 624.8 0.00 1.001 16.584 305.7 0.01 1.001
3 50 1 29.489 2481.6 0.00 29.494 2792.4 0.00 1.000 29.509 536.3 0.01 1.001 29.520 346.9 0.00 1.001
3 50 2 29.997 5671.7 0.00 30.000 1942.1 0.00 1.000 30.009 1021.5 0.00 1.000 30.022 1052.9 0.01 1.001
3 50 3 29.598 6965.0 0.00 29.603 3337.3 0.00 1.000 29.611 1269.0 0.00 1.000 29.617 628.1 0.01 1.001
Average 13.840 707.8 0.00 13.844 649.1 0.00 1.000 13.853 200.4 0.00 1.001 13.859 190.6 0.01 1.001
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Table 10: Performances of PHEV-TSPS-VI and PHEV-TSPSD-VI (Part 2)

Instance PHEV-TSPS-VI
Speed Discretization

0.1 (m/s) 0.3 (m/s) 0.5 (m/s)

α β π
Obj

T ime Gap
Obj1 T ime Gap

Obj1
Obj

Obj2 T ime Gap
Obj3
Obj

Obj3 T ime Gap
Obj3
Obj(×107) (×107) (×107) (×107)

1 60 1 6.557 3055.0 0.00 6.559 4172.8 0.01 1.000 6.561 1275.3 0.00 1.001 6.570 751.3 0.00 1.002
1 60 2 5.450 1446.8 0.00 5.451 4628.0 0.00 1.000 5.454 638.6 0.00 1.001 5.460 924.9 0.01 1.002
1 60 3 5.902 7200.2 0.97 5.904 4756.0 0.00 1.000 5.907 1493.9 0.00 1.001 5.910 917.2 0.00 1.001
2 60 1 19.970 7201.3 18.41 18.977 4582.8 0.00 0.950 18.983 3569.9 0.00 0.951 18.994 871.3 0.00 0.951
2 60 2 NaN NaN NaN NaN NaN NaN 18.656 7201.0 0.12 18.660 698.8 0.01
2 60 3 17.730 7200.2 3.72 17.733 1810.4 0.01 1.000 17.741 375.1 0.01 1.001 17.745 378.2 0.00 1.001
3 60 1 32.223 7200.2 24.07 31.249 5375.6 0.00 0.970 31.264 6070.4 0.01 0.970 31.271 875.8 0.01 0.970
3 60 2 32.655 7200.9 20.76 NaN NaN NaN 31.424 1404.9 0.01 0.962 31.426 1722.2 0.00 0.962
3 60 3 33.552 7200.4 17.88 31.469 4984.8 0.00 0.938 31.480 1011.2 0.00 0.938 31.487 1203.6 0.00 0.938
1 70 1 NaN NaN NaN NaN NaN NaN 8.181 3004.6 0.01 8.190 1857.8 0.00
1 70 2 NaN NaN NaN NaN NaN NaN 7.206 2719.5 0.01 7.210 1634.6 0.00
1 70 3 6.998 7200.5 1.33 NaN NaN NaN 6.986 3439.5 0.00 0.998 6.991 7202.1 1.12 0.999
2 70 1 NaN NaN NaN NaN NaN NaN 21.106 7201.2 65.97 21.118 5842.5 0.01
2 70 2 NaN NaN NaN NaN NaN NaN 20.087 7200.5 0.86 20.090 1638.0 0.00
2 70 3 NaN NaN NaN NaN NaN NaN 19.415 7203.8 0.64 19.404 1934.6 0.00
3 70 1 NaN NaN NaN NaN NaN NaN 32.145 5562.6 0.00 32.152 5426.7 0.01
3 70 2 NaN NaN NaN NaN NaN NaN 32.804 1658.5 0.00 32.808 3312.3 0.01
3 70 3 NaN NaN NaN NaN NaN NaN 31.880 1568.2 0.00 31.892 1105.5 0.00

a The term ‘NaN’ indicates that the instance cannot be solved within 7200 seconds.
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Table 11: Comparison of PHEV-TSPS with some other policies

Instance PHEV-TSPS-VI Only Fuel Mode Only Electricity Mode Sequential Method

α β π Obj(×107) Obj(×107) Diff Obj(×107) Diff Obj(×107) Diff

1 8 1 1.602 3.205 100.00 1.602 0.00 1.602 0.00
1 8 2 1.443 2.886 100.00 1.443 0.00 1.443 0.00
1 8 3 1.139 2.278 100.02 1.139 0.00 1.139 0.01
2 8 1 9.707 12.818 32.05 Inf Inf 9.751 0.45
2 8 2 10.269 13.288 29.41 Inf Inf 10.357 0.87
2 8 3 9.844 12.954 31.59 Inf Inf 9.849 0.05
3 8 1 21.698 24.826 14.42 Inf Inf 21.703 0.02
3 8 2 21.930 25.025 14.11 Inf Inf 23.243 5.99
3 8 3 22.038 25.164 14.18 Inf Inf 23.585 7.02
1 10 1 1.814 3.659 101.70 1.814 0.00 1.815 0.05
1 10 2 1.754 3.531 101.32 1.754 0.00 1.757 0.18
1 10 3 1.671 3.354 100.73 1.671 0.00 1.674 0.19
2 10 1 10.132 13.241 30.68 Inf Inf 10.138 0.06
2 10 2 10.438 13.548 29.80 Inf Inf 10.438 0.00
2 10 3 10.162 13.272 30.61 Inf Inf 10.164 0.03
3 10 1 21.654 24.765 14.37 Inf Inf 23.021 6.31
3 10 2 21.601 24.714 14.41 Inf Inf 21.604 0.01
3 10 3 22.699 25.736 13.38 Inf Inf 24.313 7.11
1 20 1 2.760 5.394 95.45 Inf Inf 2.768 0.30
1 20 2 2.377 4.769 100.62 2.377 0.00 2.378 0.06
1 20 3 2.162 4.353 101.34 2.162 0.00 2.166 0.18
2 20 1 12.934 16.068 24.23 Inf Inf 12.934 0.00
2 20 2 12.415 15.578 25.48 Inf Inf 12.439 0.19
2 20 3 12.533 15.685 25.15 Inf Inf 12.534 0.00
3 20 1 24.556 27.704 12.82 Inf Inf 24.565 0.04
3 20 2 24.468 27.325 11.68 Inf Inf 24.936 1.91
3 20 3 24.205 27.326 12.90 Inf Inf 24.920 2.95
Average 11.852 14.536 47.50 12.120 1.26

a Diff : the percentage increase (positive) or decrease (negative) compared to PHEV-
TSPS-VI; the term ‘Inf’ indicates that the instances are infeasible using only electricity.
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Table 12: Performance of the PHEV-TSPS with fixed speeds

Instance PHEV-TSPS-VI Doppstadt, Koberstein, and Vigo (2016) Speed limits

α β π Obj(×107) Obj(×107) Diff Obj(×107) Diff

1 8 1 1.602 1.622 1.26 2.411 50.44
1 8 2 1.443 1.456 0.92 2.251 56.03
1 8 3 1.139 1.171 2.80 1.788 57.00
2 8 1 9.707 11.993 23.54 14.149 45.76
2 8 2 10.269 12.865 25.28 13.899 35.36
2 8 3 9.844 12.108 22.99 14.072 42.95
3 8 1 21.698 26.257 21.01 27.963 28.87
3 8 2 21.930 26.392 20.35 28.357 29.31
3 8 3 22.038 26.915 22.13 28.335 28.57
1 10 1 1.814 1.860 2.53 2.563 41.28
1 10 2 1.754 1.773 1.10 2.387 36.12
1 10 3 1.671 1.691 1.21 2.357 41.08
2 10 1 10.132 12.319 21.59 14.246 40.60
2 10 2 10.438 12.781 22.45 14.374 37.71
2 10 3 10.162 12.699 24.97 14.460 42.30
3 10 1 21.654 26.372 21.79 28.851 33.24
3 10 2 21.601 26.600 23.14 28.091 30.04
3 10 3 22.699 27.131 19.53 28.523 25.66
1 20 1 2.760 3.973 43.95 4.275 54.90
1 20 2 2.377 3.781 59.08 3.783 59.13
1 20 3 2.162 2.343 8.38 3.027 40.03
2 20 1 12.934 15.364 18.79 16.959 31.12
2 20 2 12.415 14.369 15.74 15.764 26.97
2 20 3 12.533 14.404 14.93 16.159 28.93
3 20 1 24.556 27.767 13.08 30.537 24.36
3 20 2 24.468 27.829 13.74 28.850 17.91
3 20 3 24.205 27.630 14.15 28.862 19.24
Average 11.852 14.128 17.79 15.455 37.22

Table 13: Performance of PHEV-TSPS on different road gradients

Instance Max Elevation = 100 (m) Max Elevation = 200 (m) Max Elevation = 300 (m) Obj2
Obj1

Obj3
Obj2α β π Obj1(×107) T ime Obj2(×107) T ime Obj3(×107) T ime

1 8 1 1.602 0.4 2.265 1.0 2.599 1.7 1.413 1.148
1 8 2 1.443 0.5 1.840 0.7 1.973 0.4 1.275 1.072
1 8 3 1.139 0.4 1.690 0.1 2.465 0.3 1.484 1.459
2 8 1 9.707 1.3 10.574 1.5 10.939 1.4 1.089 1.035
2 8 2 10.269 1.8 10.506 1.5 10.575 1.8 1.023 1.007
2 8 3 9.844 1.8 11.128 1.9 11.394 1.9 1.130 1.024
3 8 1 21.698 1.7 21.632 1.8 21.910 1.4 0.997 1.013
3 8 2 21.930 1.6 22.118 1.7 22.208 1.7 1.009 1.004
3 8 3 22.038 1.9 22.066 1.8 22.202 1.6 1.001 1.006
1 10 1 1.814 0.9 2.429 0.4 3.157 1.4 1.339 1.300
1 10 2 1.754 0.6 2.359 1.3 2.191 0.5 1.345 0.929
1 10 3 1.671 0.9 1.980 0.6 2.444 0.2 1.185 1.234
2 10 1 10.132 2.3 10.620 2.0 10.688 1.5 1.048 1.006
2 10 2 10.438 2.0 11.501 2.2 11.428 2.5 1.102 0.994
2 10 3 10.162 2.5 11.618 2.7 12.182 2.3 1.143 1.048
3 10 1 21.654 2.4 21.680 2.8 22.293 3.0 1.001 1.028
3 10 2 21.603 2.7 22.795 2.8 22.516 2.7 1.055 0.988
3 10 3 22.699 2.9 23.227 3.0 23.619 2.6 1.023 1.017
1 20 1 2.760 14.1 3.277 11.1 4.344 8.6 1.187 1.326
1 20 2 2.377 3.5 2.789 8.2 4.173 20.7 1.173 1.496
1 20 3 2.162 13.8 2.589 7.4 2.950 6.7 1.198 1.139
2 20 1 12.934 31.5 14.277 30.2 14.691 25.5 1.104 1.029
2 20 2 12.415 42.4 13.251 30.3 14.033 36.1 1.067 1.059
2 20 3 12.533 41.3 13.416 25.3 13.773 26.5 1.070 1.027
3 20 1 24.556 34.2 26.166 35.2 26.521 42.2 1.066 1.014
3 20 2 24.468 49.7 25.460 47.3 27.465 31.1 1.041 1.079
3 20 3 24.205 49.3 25.403 40.5 26.265 19.3 1.050 1.034
Average 11.852 10.8 12.543 10.2 13.000 9.1 1.134 1.093
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Table 14: Performance of PHEV-TSPS without energy recuperation

Instance Max Elevation = 100 (m) Max Elevation = 200 (m) Max Elevation = 300 (m)

α β π Obj1(×107) T ime Ratio Obj2(×107) T ime Ratio Obj3(×107) T ime Ratio

1 8 1 1.602 0.6 1.000 2.290 0.3 1.011 2.652 0.5 1.020
1 8 2 1.443 0.3 1.000 1.840 0.5 1.000 1.992 0.1 1.010
1 8 3 1.139 0.3 1.000 1.721 0.1 1.018 2.527 0.3 1.025
2 8 1 9.707 1.1 1.000 10.574 1.7 1.000 10.982 1.3 1.004
2 8 2 10.280 1.4 1.001 10.507 1.1 1.000 10.575 1.3 1.000
2 8 3 9.844 1.4 1.000 11.154 1.8 1.002 11.398 1.4 1.000
3 8 1 21.716 1.4 1.001 21.632 1.1 1.000 21.910 1.3 1.000
3 8 2 21.930 1.4 1.000 22.118 1.6 1.000 22.227 1.3 1.001
3 8 3 22.060 2.0 1.001 22.088 1.4 1.001 22.205 1.4 1.000
1 10 1 1.830 0.7 1.008 2.449 1.0 1.008 3.230 1.0 1.023
1 10 2 1.765 0.6 1.007 2.386 0.9 1.011 2.209 0.1 1.008
1 10 3 1.677 0.8 1.004 1.994 0.3 1.007 2.476 0.3 1.013
2 10 1 10.132 2.2 1.000 10.624 2.2 1.000 10.703 1.6 1.001
2 10 2 10.438 1.9 1.000 11.529 1.8 1.002 11.433 1.6 1.000
2 10 3 10.162 2.9 1.000 11.671 2.6 1.005 12.221 2.0 1.003
3 10 1 21.658 2.3 1.000 21.708 2.1 1.001 22.335 2.1 1.002
3 10 2 21.604 2.7 1.000 22.827 2.1 1.001 22.541 2.5 1.001
3 10 3 22.704 2.6 1.000 23.252 2.9 1.001 23.657 2.7 1.002
1 20 1 2.781 6.2 1.008 3.304 8.8 1.008 4.435 8.0 1.021
1 20 2 2.384 4.1 1.003 2.846 5.4 1.021 4.288 13.4 1.027
1 20 3 2.177 4.7 1.007 2.620 4.6 1.012 3.028 4.1 1.026
2 20 1 12.958 23.4 1.002 14.299 25.0 1.002 14.784 11.4 1.006
2 20 2 12.468 18.1 1.004 13.366 14.7 1.009 14.086 12.7 1.004
2 20 3 12.575 20.8 1.003 13.483 16.1 1.005 13.822 26.2 1.004
3 20 1 24.594 16.2 1.002 26.225 18.0 1.002 26.655 11.8 1.005
3 20 2 24.485 21.3 1.001 25.545 16.8 1.003 27.558 15.8 1.003
3 20 3 24.226 21.6 1.001 25.494 11.9 1.004 26.288 12.9 1.001
Average 11.865 6.6 1.003 12.576 5.3 1.006 13.045 5.3 1.009

a Ratio represents the objective values in Table 14 divided by the objective values in Table 13.
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Table 15: Impact of charging stations on PHEV-TSPS

Instance PHEV-TSPS-VI PHEV-TSPS-CS PHEV-TSPS-CSwF

α β π Obj T ime Gap Obj T ime Gap Diff Obj T ime Gap Diff

1 8 1 1.525 0.1 0.00 1.525 0.1 0.00 0.00 1.525 0.0 0.00 0.00
1 8 2 1.392 0.0 0.00 1.392 0.1 0.00 0.00 1.392 0.1 0.00 0.00
1 8 3 1.124 0.1 0.00 1.124 0.1 0.00 0.00 1.124 0.0 0.00 0.00
2 8 1 7.789 0.6 0.00 5.491 0.5 0.00 -29.51 5.491 0.6 0.00 -29.51
2 8 2 7.999 1.1 0.00 5.613 1.0 0.00 -29.83 5.613 0.5 0.00 -29.83
2 8 3 7.828 0.7 0.00 5.510 0.5 0.00 -29.61 5.510 0.3 0.00 -29.61
3 8 1 16.709 1.6 0.00 13.355 1.8 0.00 -20.07 Inf Inf Inf Inf
3 8 2 16.687 1.7 0.00 12.359 1.8 0.00 -25.93 Inf Inf Inf Inf
3 8 3 16.867 1.6 0.00 11.881 1.7 0.00 -29.56 Inf Inf Inf Inf
1 10 1 1.728 0.2 0.00 1.728 0.1 0.00 0.00 1.728 0.2 0.00 0.00
1 10 2 1.700 0.0 0.00 1.700 0.1 0.00 0.00 1.700 0.1 0.00 0.00
1 10 3 1.599 0.4 0.00 1.599 0.3 0.00 0.00 1.599 0.3 0.00 0.00
2 10 1 8.071 1.3 0.00 5.643 0.8 0.00 -30.08 5.643 0.8 0.00 -30.08
2 10 2 8.184 1.8 0.00 5.687 0.7 0.00 -30.51 5.687 0.9 0.00 -30.51
2 10 3 8.080 1.2 0.00 5.648 1.0 0.00 -30.10 5.648 1.0 0.00 -30.10
3 10 1 16.785 1.8 0.00 12.126 2.5 0.00 -27.75 Inf Inf Inf Inf
3 10 2 16.600 2.6 0.00 11.829 2.6 0.00 -28.75 Inf Inf Inf Inf
3 10 3 17.211 2.0 0.00 12.054 2.4 0.00 -29.96 Inf Inf Inf Inf
1 20 1 2.497 12.5 0.00 2.497 8.1 0.00 0.00 2.497 5.4 0.00 0.00
1 20 2 2.246 2.7 0.00 2.246 2.2 0.00 0.00 2.246 1.6 0.00 0.00
1 20 3 2.053 11.4 0.00 2.053 9.8 0.00 0.00 2.053 5.8 0.00 0.00
2 20 1 10.194 13.6 0.00 6.759 9.9 0.00 -33.69 6.759 5.4 0.00 -33.69
2 20 2 9.778 20.3 0.00 6.530 9.4 0.00 -33.22 6.530 4.7 0.00 -33.22
2 20 3 9.859 16.1 0.00 6.579 12.9 0.00 -33.27 6.579 10.1 0.00 -33.27
3 20 1 18.810 23.5 0.01 12.838 93.2 0.00 -31.75 Inf Inf Inf Inf
3 20 2 18.178 19.4 0.00 12.864 34.6 0.00 -29.23 Inf Inf Inf Inf
3 20 3 18.363 16.0 0.00 12.900 27.9 0.00 -29.75 Inf Inf Inf Inf
1 30 1 2.776 59.9 0.00 2.690 30.1 0.00 -3.08 2.690 12.6 0.00 -3.08
1 30 2 2.285 17.9 0.00 2.285 10.2 0.00 0.00 2.285 10.3 0.00 0.00
1 30 3 2.889 81.2 0.01 2.747 21.8 0.00 -4.90 2.747 19.2 0.00 -4.90
2 30 1 10.743 67.7 0.00 7.048 38.2 0.00 -34.39 7.048 18.4 0.00 -34.39
2 30 2 10.688 75.9 0.00 7.017 46.1 0.00 -34.35 7.017 42.9 0.00 -34.35
2 30 3 10.888 174.5 0.00 7.112 56.0 0.00 -34.68 7.112 71.2 0.00 -34.68
3 30 1 19.979 100.3 0.00 13.716 152.6 0.00 -31.35 Inf Inf Inf Inf
3 30 2 19.921 132.8 0.00 13.563 183.8 0.00 -31.92 Inf Inf Inf Inf
3 30 3 19.725 160.1 0.00 13.468 102.3 0.00 -31.72 Inf Inf Inf Inf
1 40 1 3.717 114.9 0.01 3.210 48.2 0.00 -13.64 3.210 40.1 0.00 -13.64
1 40 2 3.227 212.0 0.00 2.926 99.8 0.00 -9.31 2.926 157.3 0.01 -9.31
1 40 3 3.285 152.5 0.00 2.973 102.7 0.00 -9.48 2.973 87.1 0.00 -9.48
2 40 1 12.022 179.2 0.00 7.751 119.6 0.00 -35.53 7.751 143.9 0.00 -35.53
2 40 2 12.167 1430.7 0.00 7.814 623.7 0.00 -35.78 7.814 393.1 0.00 -35.78
2 40 3 11.870 539.1 0.00 7.644 256.7 0.00 -35.60 7.644 164.4 0.00 -35.60
3 40 1 21.008 313.6 0.00 14.130 669.8 0.00 -32.74 Inf Inf Inf Inf
3 40 2 20.911 308.2 0.00 14.135 753.2 0.00 -32.40 Inf Inf Inf Inf
3 40 3 20.946 761.1 0.00 14.177 7200.2 0.04 -32.32 Inf Inf Inf Inf
1 50 1 4.639 388.1 0.00 3.741 414.8 0.00 -19.35 3.741 306.3 0.00 -19.35
1 50 2 3.907 627.2 0.00 3.308 170.8 0.01 -15.33 3.308 176.1 0.00 -15.33
1 50 3 4.172 161.5 0.00 3.465 210.5 0.00 -16.96 3.465 191.6 0.00 -16.96
2 50 1 13.165 1189.7 0.00 8.403 1360.2 0.00 -36.17 8.403 732.9 0.00 -36.17
2 50 2 13.283 7200.2 0.28 8.413 4251.5 0.00 -36.66 8.413 6274.2 0.01 -36.66
2 50 3 12.716 1518.8 0.01 8.093 419.5 0.00 -36.36 8.093 586.9 0.00 -36.36
3 50 1 22.233 2160.7 0.00 14.831 7200.1 0.74 -33.29 Inf Inf Inf Inf
3 50 2 21.981 997.9 0.00 14.701 6347.0 0.00 -33.12 Inf Inf Inf Inf
3 50 3 22.091 7200.6 0.41 14.847 7200.2 1.05 -32.79 Inf Inf Inf Inf
Average 10.687 490.4 0.01 7.514 709.5 0.03 -22.89
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