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Abstract : We consider a structural model to design and evaluate the American call, conversion,
and put options embedded in corporate bonds. We use dynamic programming and finite elements to
efficiently solve the setting. We show that the option exercise policies can be characterized via a set
of exercise thresholds. We achieve a sensitivity analysis of the option values with respect to the model
parameters, and document on the default barriers and the exercise thresholds.
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1 Introduction

We use dynamic programming (DP) and finite elements to design and evaluate the American call,

conversion, and put options embedded in corporate bonds. The call and put prices as well as the

conversion ratios and factors are key design parameters. We show that redemption, retraction, and

conversion can be characterized by a set of exercise thresholds. We approximate the value functions

of corporate securities, and analyse their sensitivities with respect to the model parameters. We also

document on the firm default barriers and the option exercise thresholds.

DP combined with finite elements in our context turns out to be highly efficient for multiple reasons.

Part of the experiment is achieved in closed form via a set of transition parameters that are available

under alternative Lévy processes. See Ayadi et al. (2016) and Ben-Ameur et al. (2023) for a derivation

under the lognormal process, jump-diffusion processes, and the variance-gamma process. The use of

the (true) transition parameters along with local interpolations results in efficient approximations of

the value functions of corporate securities at each step of the backward recursion. DP assumes only

a space, but not a time discretization. This is advantageous in case of long protection periods and

distant exercise opportunities. Moreover, DP supports only a numerical, but not a statistical error.

The call option gives the firm the right to call back the host bond at or before its maturity at a

given call price, while the put option (the conversion option) provides the investor with the right to

return the host bond to its issuer (to convert the bond into shares of the issuer’s equity) at or before

its maturity at a given put price (a given conversion factor). Options embedded in corporate bonds

are usually of American style. See Wilson and Fabozzi (1996) for further details.

According to the Securities Industry and Financial Markets Association (SIFMA), the principal

amount of US corporate bonds issued in 2021 is about $1,962 billion, 87% of which host one or multiple

embedded options. This proportion has remained relatively high (above 75% over the last five years).

According to the Mergent Fixed Income Securities Database (FISD), US corporate bonds are mostly

senior, but their convertible versions are mainly subordinated and host in addition the embedded call

option. This is also documented in Krishnaswami and Yaman (2008).

Except for a few cases for which the explicit approach is successful, numerical procedures have

been used to evaluate options embedded in bonds, including the lattice approach, finite differences,

and dynamic programming. Ingersoll (1977) develops a closed-form solution for a callable and convert-

ible pure bond under Merton’s (1974) assumptions. Along the same lines, Lewis (1991) and Bühler

and Koziol (2002) extend Ingersoll’s (1977) findings to several seniority classes and two conversion
dates, respectively, while Koziol (2006) considers a convertible console debt under Leland’s (1994)

assumptions. Zhu et al. (2018) considers a one-dimensional model for an underlying stock along with

a riskless pure bond with its embedded put and conversion options. The authors develop an integral

representation of the host-bond value, which is solved by numerical integration. Lin and Zhu (2022)

extend the setting of Zhu et al. (2018) to embedded call options.

The lattice approach has been widely used to evaluate American options embedded in corporate

bonds. Derman (1994) proposes a (semi) rational binomial tree for an underlying stock, where the

default event is implicitly accounted for via a shift of the risk-free discount rate consistent with the

observed credit spread of the host bond. Along the same lines, Ammann et al. (2003) and Ma et

al. (2020) build on Derman’s (1994) idea and suggest a one- and two-dimensional binomial trees,

respectively. Carayanopoulos and Kalimipalli (2003) propose a one-dimensional trinomial tree consis-

tent with the reduced-form construction of Duffie and Singleton (1999). Similarly, Hung and Wang

(2002) consider a reduced-form two-dimensional binomial tree à la Jarrow and Turnbull (1995) with

non-correlated state variables, while Chambers and Lu (2007) consider an extension with correlated

state variables. The lattice approach has also been used to design two-dimensional structural models

and evaluate risky host bonds with their embedded options (Acharya and Carpenter 2002, Das and

Sundaram 2007, ElKamhi et al. 2012, and Dai et al. 2022).
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Brennan and Schwartz (1977 and 1980) are pioneers at using (backward) finite differences to evalu-

ate American options embedded in risky bonds in one- then two-dimensional structural models, where

the first (second) state variable is the firm asset value (risk-free rate) that moves according to a log-

normal (a Gaussian mean-reverting process). Likewise, Carayanopoulos (1996) solves a version of

Brennan and Schwartz’s (1980) setting for which the risk-free rate moves according to a root-square

mean-reverting process. The same approach is used to solve one-dimensional reduced-form models,

and evaluate LYON pure bonds (McConnell and Schwartz 1986) and coupon bonds (Takahashi et

al. 2001) with their embedded options, while Tsiveriotis and Fernandes (1998) build on Derman’s

(1994) idea to account for default. Multiple refinements of finite differences have been proposed in

one- and two-dimensional continuous settings (Kim et al. 1993, Barone-Adesi et al. 2003, Bermúdez

and Nogueiras 2004, Yang et al. 2018, and Lin and Zhu 2020).

Ballotta and Kyriakou (2015) are pioneers at using (backward) dynamic programming to evaluate

American options embedded in risky bonds. They proposed a two-dimensional structural model, where

the firm asset value moves according to a jump-diffusion process and the risk-free rate as a mean-

reverting diffusion process. Fast Fourrier transforms are used to approximate the value functions of

corporate securities at each step of the backward recursion, including the host bond with its embedded

options.

Ammann et al. (2008) design a Monte Carlo experiment to evaluate American options embedded

in risky bonds in a one-dimensional model, where the sole state variable is an underlying stock. The

default event is accounted for as in Tsiveriotis and Fernandes (1998) and Derman (1994). Their

numerical procedure consists of an iterative search of the options exercise regions, where the host-

bond value is estimated at each step then optimized. It can be classified as a forward DP approach.

A numerical/empirical investigation is conducted under a GARCH setting.

A new research stream based on financial modeling and artificial intelligence has recently arisen,

where traditional constructions have been reworked to integrate machine learning-based techniques.

Tan et al. (2022) combine the empirical and the rational approach, and design a model in the spirit

of Tsiveriotis and Fernandes (1998) and Derman (1994). Then, they train a neural network to predict

the values of embedded options.

No-arbitrage pricing in structural models can be seen as an optimal Markov process since the value

functions of corporate securities are known at a given future date, here the firm debt maturity, in

addition to being forward looking. The value function of corporate securities depend on the future

evolution of the market and its current position, but not on its past history. Thus, dynamic program-

ming (DP) can be used to solve the model backward in time starting from the debt maturity down to

the origin. DP splits the evaluation problem into time steps [tn, tn+1], for n = N − 1, . . . , 0, over each

one, it alternates between value-function interpolation at tn+1 and value-function integration at tn to

solve the model backward in time. At step n, DP assumes that all corporate securities have already

been evaluated and all decisions have already been made optimally from tn+1 until maturity tN = T ,

for all levels of the state process, and that the firm has not been liquidated yet and its embedded

options have not been activated yet. Thus, if all decisions are made optimally at node (tn, a), where

tn is the current evaluation/decision date and a = Atn is the level of the state variable at tn, then all

decisions must have been taken optimally from that node until maturity tN = T , independently of the

firm past trajectory. DP is combined with finite elements at each step of the backward recursion to ef-

ficiently approximate the value functions of corporate securities. Valuing American options embedded

in corporate bonds is done via a difference analysis between paired scenarios on the host bond with

and without its embedded options.

The rest of this paper is organized as follows. Section 2 presents the model design and resolution.

Section 3 discusses the options embedded in corporate bonds and their (early) exercise decisions.

Section 4 exhibits a numerical investigation and Section 5 concludes.
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2 The model

We consider a public company with an option-free senior debt and a host bond with its American-style

embedded call, conversion, and put options. The firm balance-sheet equality at (t, a) is

a+TBt (a)− BCt (a) = Ds
t (a) +Dh

t (a) + Et (a) , (1)

where a = At is the level of the state process A at time t ∈ [0, T ], while T is the maturity of the

overall debt portfolio. The corporate securities A, TB, BC, Ds, Dh, D = Ds +Dh, and E represent

the value functions of the firm’s assets, tax benefits, bankruptcy costs, senior bond potfolio, host

bond, overall debt portfolio, and equity, respectively. Under survival, the firm pays coupons and

save taxes at the corporate tax rate rc, while, under default, it supports proportional bankruptcy

costs at the rate w ∈ [0, 1]. The firm is committed to paying dn = dsn + dhn at the payment date tn
to its creditors, where dsn and dhn are the outflows generated by the senior debt and the host bond,

respectively. The set of payment dates is P = {t1, . . . , tN = T}. The total outflow dn includes interest

payments Cn = Cs
n + Ch

n as well as capital payments Pn = P s
n + Ph

n . The quantities Cs
n, C

h
n , P

s
n, and

Ph
n are known to all investors from the very beginning. No payment takes place at the present date

t0 = 0. Assume that the host bond is junior and has a longer maturity than the senior bond. The case

of a senior host bond can be handled with a minor modification. We also assume that (early) exercise

decisions are taken only at coupon/principal payment dates.

Table 1 and Table 2 explicit the value functions of corporate securities without embedded options

at and before the debt maturity as in Ayadi et al. (2016) and Ben-Ameur et al. (2023).

Table 1: DP value functions at maturity without embedded options

BSE Liquidation Survival
a ≤ dN − tbN a > dN − tbN

+a = AtN a a
+TB(tN , a) 0 tbN
−BC(tN , a) −wa 0
= = =
+Ds (tN , a) min ((1− w) a, dsN ) dsN
+Dh (tN , a) max (0, (1− w) a− dsN ) dhN
+E (tN , a) 0 a− (dN − tbN )

No-arbitrage results in

E∗
na

[
ρnAtn+1

]
+ E∗

na

[
ρnTBtn+1

(
Atn+1

)]
− E∗

na

[
ρnBCtn+1

(
Atn+1

)]
= E∗

na

[
ρnD

s
tn+1

(
Atn+1

)]
+ E∗

na

[
ρnD

h
tn+1

(
Atn+1

)]
+ E∗

na

[
ρnEtn+1

(
Atn+1

)]
,

where ρn = e−r(tn+1−tn) is the risk-free discount factor over [tn, tn+1] and E∗
na [.] = E∗ [. | Atn = a]

is the conditional expectation operator under a risk-neutral probability measure given Atn = a. The

balance-sheet equality under survival and continuation at tn is

a+
[
TBtn (a) + tbn

]
−
[
BCtn (a)

]
=
[
D

s

tn (a) + dsn

]
+
[
D

h

tn (a) + dhn

]
+
[
Etn (a)− (dn − tbn)

]
,

where vtn (a) = E∗
na

[
ρnvtn+1

(
Atn+1

)]
represents the value function of a corporate security at (tn, a)

based on its future potentialities and vtn (a) its overall value function, including its current cash flows.

Thus, the balance-sheet equality under survival at (tn, a) results from the one at tn+1 and no-arbitrage

pricing. The positive amount dn− tbn is the due debt payment dn net of the tax benefits tbn = rc×Cn

under survival at tn. The survival condition at (tn, a) comes

Etn (a) = Etn (a)− (dn − tbn) > 0, (2)
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which clearly shows that Etn (a) > Etn (a). To finance the due debt payment dn = Pn + Cn net of

the tax benefits tbn at (tn, a), the firm issues new equity shares, while the price per share remains

constant. Since Etn (a) is a continuous and increasing function of a = Atn , the survival region can be

expressed as {a > bn}, where bn is the endogenous default barrier at tn (to be determined). Table 2

reports the option-free value functions of corporate securities before maturity.

Table 2: DP value functions before maturity without embedded options

BSE Liquidation Survival
a ≤ bn a > bn

+a = Atn a a
+TB(tn, a) 0 TB (tn, a)+ tbn
−BC(tn, a) −wa −BC (tn, a)
= = =

+Ds (tn, a) min
[
(1− w) a,D

s
(tn, a) + dsn

]
D

s
(tn, a) + dsn

+Dh (tn, a) max [0, (1− w) a−Ds (tn, a)] D
h
(tn, a) + dhn

+E (tn, a) 0 E (tn, a)− (dn − tbn)

The survival condition Etn (a) > (dn − tbn) is equivalent to saying that a = Atn > bn, where bn is

the endogenous default barrier at tn. This holds true in Lévy settings. For consistency, we rediscuss

the balance-sheet equality under survival at (tN , a). One has

AtN +
[
TBtN (a) + tbN

]
−
[
BCtN (a)

]
=
[
D

s

tN (a) + dsN

]
+

[
D

j

tN (a) + dhN

]
+
[
EtN (a)− (dN − tbN )

]
,

where TBtN (a) = 0, BCtN (a) = 0, D
s

tN (a) = 0, D
h

tN (a) = 0, and EtN (a) = a given the assumption

of an all-equity firm under survival from maturity on. The survival condition at maturity comes

{a = AtN > bN = dN − tbN}, which is in line with Table 1.

Assume now that the model has been solved backward in time from tN = T to tn+1, should we set

tn+1 = tN , which results in an approximation ṽtn+1
of vtn+1

on a mesh of grid points G = {a1, . . . , ap}
that span the overall state space R∗

+, with the convention that a0 = 0 and ap+1 = +∞. Set ṽtN = vtN
on G at maturity. To extend ṽtn+1 from G to R∗

+, we use a piecewise linear interpolation v̂tn , defined

as follows:

v̂tn+1
(a) =

p∑
i=0

(
αn+1
i + βn+1

i a
)
× I (ai ≤ a < ai+1) ,

where the αn+1
i ’s and the βn+1

i ’s are its local coefficients and I () is the indicator function. The local

coefficients are obtained by solving the sytem of linear equations v̂tn+1 = ṽtn+1 on each subinterval.

No-arbitrage pricing allows one to move backward in time and approximate vtn (ak) on G by

ṽtn (ak) =E∗
nak

[
ρnv̂tn+1

(
Atn+1

)]
(3)

=ρn

p∑
i=0

αn+1
i × T 0

k,i + βn+1
i × T 1

k,i,

where T ν
k,i = E∗

nak

[
Aν

tn+1
× I

(
ai ≤ Atn+1

< ai+1

)]
, for ν ∈ {0, 1}, are transition parameters of the

underlying Markov process. For example, T 0
k,i is the transition probability that the underlying process

moves from ak at tn and visits the interval [ai, ai+1] at tn+1. These parameters are known in closed

for several Lévy processes. They remain constant for homogenous Markov dynamics as long as ∆tn =

tn+1 − tn and G are fixed. From the perspective of an investor at (tn, ak), formula (3) decomposes
vtn (ak) into small future value pieces (the αn+1

i ’s and βn+1
i ’s) multiplied by their associated transition

parameters (the T 0
k,i’s and T 1

k,i’s), sums the products, and discounts it back from tn+1 to tn. Table 1,
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Table 2, and formula (3) result in the DP value functions ṽtn , defined on G, and v̂tn , defined on R∗
+,

along with their Greeks ∆, Γ, and Θ. A second run is required to approximate υ and ρ. The rest

comes by backward induction.

3 The embedded options

We herein discuss each option exercise policy alone, then we specify their common impact on the

firm balance sheet. We assume that conversion and retraction have priority on redemption, but other

conventions can be analysed as well. A value function in the form vtn (a) = E∗
na

[
ρnvtn+1

(
Atn+1

)]
represents now the future potentialities of a corporate security in the presence of one or multiple

options embedded in the host bond. One can make the parallel with the holding value of an American

vanilla option. The following notation is case sensitive.

3.1 The call option (redemption)

A callable bond provides its issuer with the privilege of redeeming the host bond from its holder at or

before maturity for a known call price. The host bond is redeemed at (tn, a) if its value, based on its

future and present potentialities, exceeds its exercise value on redemption:

D
h

tn (a) + Ph
n + Ch

n ≥ cn + Ch
n , for tn ∈ P, (4)

where cn is the call price at tn. It is worth noticing that the call price cn is compared to the bond value

net of the current interest reimbursement Ch
n at tn. Given that D

h

tn (a) is a continuous and increasing

function of a = Atn in Lévy models, redemption takes place when a = Atn is higher than a certain call

threshold. See Figure 3 for an illustration.

As redemption has no impact on the value of the portfolio made of the host bond and equity, one

has

Dh
tn (a) = cn + Ch

n

and

Etn (a) = Etn (a)− (dn − tbn) +
(
D

h

tn (a) + Ph
n − cn

)
,

on redemption, which reinforces the firm healthiness. New equity shares quoted at the same price are

issued to the benefit of equity holders. The same expressions hold at maturity, with the convention

that EtN (a) = a and D
h

tN (a) = 0 to say that the firm becomes an all-equity firm from debt maturity

on. The call price cN is usually set at the host-bond principal amount Ph
N so that redemption is

neutralized at debt maturity.

3.2 The conversion option

A convertible bond provides its holder with the privilege of converting the host bond at or before

maturity into equity shares according to a known convertion ratio or factor. The host bond is converted

into equity shares at (tn, a) when its exercise value based on conversion exeeds its value based on its

future and present potentialities, that is,

D
h

tn (a) + Ph
n + Ch

n ≤ mtn (a)× utn (a) + Ch
n ,

where utn (a) is the price per share on conversion and mtn (a) is the number of shares issued on

conversion, namely, the conversion ratio.

As conversion has no impact on the value of the portfolio made of the firm’s host bond and equity,

one has

D
h

tn (a) + Ph
n + Ch

n +Mtn (a)× Utn (a) =mtn (a)× utn (a) + Ch
n +Mtn (a)× utn (a) ,
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where Mtn (a) is the number of shares, Utn (a) the price per share, and Mtn (a)× Utn (a) = Etn (a)−
(dn − tbn) the value of equity on holding. The last equation and the conversion condition highlight

the dilution effect on conversion, that is,

utn (a) ≤ Utn (a) .

The fact that

utn (a) =
1

Mtn (a) +mtn (a)

[
D

h

tn (a) + Ph
n + Etn (a)− (dn − tbn)

]
provides the conversion condition

D
h

tn (a) + Ph
n ≤ κn

(
D

h

tn (a) + Ph
n + Etn (a)− (dn − tbn)

)
, (5)

which results in the following value functions of the host bond and equity

Dh
tn (a) = κn

(
D

h

tn (a) + Ph
n + Etn (a)− (dn − tbn)

)
+ Ch

n

and

Etn (a) = (1− κn)
(
D

h

tn (a) + Ph
n + Etn (a)− (dn − tbn)

)
where

κ
n
(a) =

mtn (a)

Mtn (a) +mtn (a)
∈ [0, 1] ,

is the fraction of shares obtained by the host-bond holders on conversion, namely, the conversion

factor. The conversion factors are usually assumed to be fixed and known in advance. They are simply

indicated by κn or κ. The value function on conversion of the portfolio made of the host bond (net

of its current coupon) and equity, that is, D
h

tn (a) + Ph
n + Etn (a)− (dn − tbn), is shared between the

new equity holders (old host-bond holders) and old equity holders. Clearly, conversion strengthens the

firm healthiness. Again, the above expressions hold at maturity with the property that EtN (a) = a

and D
h

tN (a) = 0.

Given Equation (5), conversion is activated more frequently for high κ than for low κ (ceteris

paribus). This is perfectly consistent with Ingersoll’s (1977) conversion condition

a ≥ P
N

κ
,

when the overall debt portfolio is reduced to a convertible pure bond, in which case, one has Ph
N = PN ,

Ch
N = CN = 0, a = AtN , TBtN (a) = 0, BCtN (a) = 0, D

h

tN (a) = DtN (a) = 0, and EtN (a) = a.

There is no obvious theoretical argument that the conversion region can be characterized by a con-

version threshold. Although our numerical investigation shows that conversion is optimally activated

when the asset value is higher than a certain threshold, we keep checking for optimal conversion from

the default barrier on. See Figure 3 for an illustration.

3.3 The put option (retraction)

A putable bond provides its holder with the privilege of retracting (retrurning) the host bond to its

issuer at or before maturity for a known put price. The host bond is returned at (tn, a) when its value

based on retraction exceeds its value based on its future and present potentialities, that is,

D
h

tn (a) + Ph
n + Ch

n ≤ pn + Ch
n , (6)
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where pn is the put price at tn. New equity shares are issued with a dilution effect to finance the

benefit to the host-bond holders on retraction. The value functions of the host bond and equity on

retraction become

Dh
tn (a) = pn + Ch

n ,

and

Etn (a) = Etn (a)− (dn − tbn)−
[
pn −

(
D

h

tn (a) + Ph
n

)]
,

which tends to increase the default probability. The same expressions hold at maturity with the

convention that EtN (a) = a and D
h

tN (a) = 0. The put price pN is usually set at the principal amount

Ph
N so that retraction is neutralized at the debt maturity.

The put option has been used as protection against takeovers, but it can drastically weaken the

firm healthiness upon retraction. David (2001) discusses the strategic value of poison puts in a game-

theory framework. The author reports that junior host-bond holders can force concessions from equity

holders under survival, and appropriate the most liquid assets under liquidation. A parallel can be

made in our setting if we account for reorganization processes and illiquidity costs as new intangible

assets in the firm’s balance sheet. This is left for a future research investigation. For simplicity, we

assume that the put option cannot provoke default.

Given that D
h

tn (a) is a continuous and an increasing function of a = Atn under Lévy processes, the

retraction region at tn is bounded above by a certain put threshold. See Figure 3 for an illustration.

3.4 The exercise decisions

We assume that the host-bond holders have priority over equity holders on exercise decisions. We also

assume that pn ≤ cn, for tn ∈ P, and that pN = cN = Ph
N . In case the host bond is protected against

exercise decision(s) at certain payment dates tn ∈ P, set pn = κn = 0 and/or cn = ∞. The fact that

pn ≤ cn, for tn ∈ P, results in distinct redemption and retraction regions, while both exercise regions

can intersect with conversion regions. See Figure 2 in Section 4 for a numerical illustration.

Case 1. Redemption is profitable for equityholders when

D
h

tn (a) + Ph
n ≥ cn,

which results in

1. an optimal conversion whenever conversion is profitable for the host-bond holders:

cn ≤ D
h

tn (a) + Ph
n ≤ κn

[
D

h

tn (a) + Ph
n + Etn (a)− (dn − tbn)

]
;

2. a forced conversion when conversion is not profitable for host-bond holders, but represents a less

bad outcome than redemption:

cn ≤ κn

[
D

h

tn (a) + Ph
n + Etn (a)− (dn − tbn)

]
≤ D

h

tn (a) + Ph
n ;

3. an optimal redemption when convertion further deteriorates the position of the host-bond holders:

κn

[
D

h

tn (a) + Ph
n + Etn (a)− (dn − tbn)

]
≤ cn ≤ D

h

tn (a) + Ph
n .

Case 2. Retraction is profitable for the host-bond holders when

Dh
tn (a) + Ph

n ≤ pn,

which results in
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1. an optimal conversion when conversion is more profitable than retraction for the host-bond

holders:

D
h

tn (a) + Ph
n ≤ pn ≤ κn

[
D

h

tn (a) + Ph
n + Etn (a)− (dn − tbn)

]
;

2. an optimal retraction when retraction is more profitable than conversion for the host-bond hold-

ers:

max
(
D

h

tn (a) + Ph
n , κn

[
D

h

tn (a) + Ph
n + Etn (a)− (dn − tbn)

])
≤ pn,

under survival

Etn (a)− (dn − tbn)−
[
pn −

(
D

h

tn (a) + Ph
n

)]
> 0;

3. or a continuation (no-exercise).

Case 3. The event

pn ≤ D
h

tn (a) + Ph
n ≤ cn

results in

1. an optimal conversion whenever conversion is profitable for the host-bond holders:

D
h

tn (a) + Ph
n ≤ κn

[
D

h

tn (a) + Ph
n + Etn (a)− (dn − tbn)

]
;

2. or a continuation (no-exercise).

4 Numerical investigation

The code lines are written in C, compiled under GCC, and make use of the scientific library GSL to

perform specif computing tasks. The experiments are run with a laptop computer equiped with an

8 GB of RAM and an i5 processing CORE.

4.1 DP vs Ingersoll (1977)

Ingersoll (1977) considers a strural setting à la Merton (1974) with a debt made of a pure bond that

is callable and convertible at the debt maturity. DP values of convertible bonds, obtained with a

coarse mesh of grid points, exactly coincide with their targets, as shown in Table 3. Set A0 = $100,

N = 1, P1 = P = $100, c1 = c = $100, p1 = p = $0, and κ1 = κ ∈ {0.4, 0.5}. The time step

∆t = t1 − t0 = T = 1 (year) needs not be small for our DP procedure to run backward and solve

the model. Set σ ∈ {0.1, 0.2, 0.3} (per year) and rf = 0.05 (per year). Tax benefits and bankruptcy

costs are not accounted for (rc = 0 and w = 0). PVEO stands for the present value of the embedded

option(s).

Table 3: Exact evaluation of convertible pure bonds

Grid size κ = 0.4 κ = 0.5
p σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.1 σ = 0.2 σ = 0.3

E0 DP–4 24.9136 26.1680 28.8024 24.9136 26.1146 28.2740
Ingersoll 24.9136 26.1680 28.8024 24.9136 26.1146 28.2740

D0 DP–4 95.0864 93.8320 91.1976 95.0864 93.8854 91.7260
Ingersoll 95.0864 93.8320 91.1976 95.0864 93.8854 91.7260
Merton 95.0864 93.8310 91.1196 95.0864 93.8310 91.1196

PVEO 0.0000 0.0010 0.0780 0.0000 0.0544 0.6064

This is not surprising since (DP) piecewise linear interpolations can be designed to perfectly re-
cover the value function of each convertible pure bond at maturity, that is, D̂T = DT , which makes
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formula (3) equivalent to Ingersoll’s (1977) closed-form solution, that is, D̂0 = D0. Figure 1 is an

illustration with σ = 0.2 (per year), κ = 0.5, and G = {50, 100, 200, 250}, where 100 and 200 = 100/0.5

are the survival barrier and conversion threshold at maturity, respectively.

The PVEO is obtained as a difference between the value of the host bond and its option-free

counterpart at (t0, A0), while DP solves the model for all t ∈ P and a = At > 0. The higher is κ

then the higher is the PVEO. This is consistent with Ingersoll’s (1977) exercise (conversion) region

{a > P/κ}. Likewise, the higher is σ then the higher is the PVEO. A higher dispersion of the firm.s

asset value at maturity increases its probability to exceed the conversion threshold P/κ.

Figure 1

We now experiment under the same set of parameters, except for N = 52 and p ∈ {500, 1000, 2000,
4000}, while the sole conversion opportunity remains at maturity. Table 4 shows clear convergence of

DP approximations to their Ingersoll’s (1977) counterparts when the grid size p increases. CPU times

for p = 500, 1000, 2000, and 4000 are 3, 9, 37, and 151 seconds, respectively.

Table 4: DP vs Ingersoll’s (1977) values of convertible bonds

Grid size κ = 0.4 κ = 0.5
p σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.1 σ = 0.2 σ = 0.3

E0 DP−500 24.9164 26.1718 28.8067 24.9164 26.1206 28.2809
DP−1000 24.9159 26.1706 28.8045 24.9159 26.1187 28.2796
DP−2000 24.9145 26.1694 28.8037 24.9145 26.1157 28.2757
DP−4000 24.9139 26.1682 28.8027 24.9139 26.1149 28.2744
Ingersoll 24.9136 26.1680 28.8024 24.9136 26.1146 28.2740

D0 DP−500 95.0836 93.8282 91.1933 95.0836 93.8794 91.7191
DP−1000 95.0841 93.8294 91.1955 95.0841 93.8813 91.7204
DP−2000 95.0855 93.8306 91.1963 95.0855 93.8843 91.7243
DP−4000 95.0861 93.8318 91.1973 95.0861 93.8851 91.7256
Ingersoll 95.0864 93.8320 91.1976 95.0864 93.8854 91.7260
Merton 95.0864 93.8310 91.1196 95.0864 93.8310 91.1196

PVEO 0.0000 0.0010 0.0780 0.0000 0.0544 0.6064

4.2 DP vs Brennan and Schwartz (1977)

Brennan and Schwartz (1977) consider a structural model à la Geske (1977) with a debt made of a

coupon bond that hosts the call and conversion options. Set N = 40, T = t40 = 20 (years), ∆tn =
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tn+1 − tn = 0.5 (years), for n = 0, . . . , 39, P1 = · · · = P39 = 0 and P40 = 40 $, C1 = · · · = C40 = $1,

cn = $0, for n = 1, . . . , 10 (first 5 years), cn = $43, for n = 11, . . . , 20 (next 5 years), cn = $42, for

n = 21, . . . , 30 (next 5 years), and cn = $41, for n = 31, . . . , 40 (last 5 years). The bond is protected

against early redemption for the first 5 years. Set κn = 0.1 and pn = $0, for n = 1, . . . , 40. The put

option is not active. Finally, set rc = 0, w = 0, σ = 0.1095 (per year), and rf = 0.0617 (per year).

We use DP with a grid size of p = 4000 to replicate Figure 5 of Brennan and Schwartz (1977). We

also report the DP value function of the option-free coupon bond (dashed line) associated to the host

bond under interest (solid line) for comparison purposes.

Figure 2

The value functions of the host bond and its option-free counterpart coincide under default. The

value of the option-free bond converges to its risk-free counterpart, while the value of the host bond

diverges to infiinity, when the asset value tends to infinity. This results from the assumed priority of

conversion over redemption.

4.3 Multiple embedded options

The case study is conducted under the lognormal assumption. Consider a balance sheet with A0 ∈
{25, 50, 100}, rc = 0.25 (per year), w = 0.25, σ ∈ {0.15, 0.30} (per year), and rf = 0.06 (per year).

The host bond is characterized by N = 5, T = t5 = 5 (years), ∆t = 1 (year), P1 = · · · = P4 = $0,

P5 = $20, and C1 = · · · = C5 = $2. The call price is cn = $20.5, for n = 1, . . . , 4, and c5 = $20, the

conversion factor is κn = κ = 0.20 , for n = 1, . . . , 5, while the put price is pn = $19.5, for n = 1, . . . , 4,

and p5 = $20.

Table 5 reports DP values of host bonds and their embedded options. CCP stands for the Call,

Conversion, and Put option(s). For example, CCP = 110 means that the bond hosts the Call and the

Conversion options, but not the Put option, while CCP = 000 means that the bond is option free. A

positive/negative sign of the PVEO indicates a premium/discount value of the host bond with respect

to its option-free counterpart.

Figure 3 displays the default/holding/exercise regions at tn ∈ P, for σ = 0.3 (per year). The

letters D, P, H, R, F, and C stand for Default, Put, Holding, Redemption, Forced conversion, and

Conversion. The letter H between D and P results from our simplified assumption that retraction

cannot provoke default. Forced conversion takes place when conversion is not optimal, but it represents

a better outcome than redemption for the host-bond holders. Finally, retraction and redemption are

not optimal at maturity since p5 = c5 = P5.

Redemption tends to decrease the (host) bond value since the call option is at the discretion of the

issuer. We find that the (absolute) present value of the call option is higher for low levels of volatility,

which is consistent with Kim et al. (1993). The conversion and put options tend to increase the

(host) bond value since they are at the discretion of the investor. On the one hand, the put option is
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Table 5: DP values of host bonds and their embedded options

σ = 0.15 σ = 0.30
CCP A0 Dh

0 (A0) PVEO E0 (A0) Dh
0 (A0) PVEO E0 (A0)

000 25 21.4619 0 4.4057 18.5982 0 6.4489
100 25 20.5118 −0.9501 5.4256 18.3401 −0.2581 6.7149
010 25 21.4623 0.0004 4.4053 18.7135 0.1153 6.3318
001 25 21.4643 0.0024 4.3673 19.0486 0.4504 5.8318
110 25 20.5118 −0.9501 5.4256 18.3402 −0.2580 6.7148
101 25 20.5255 −0.9364 5.3767 18.7874 0.1892 6.1016
011 25 21.4647 0.0028 4.3669 19.1510 0.5528 5.7271
111 25 20.5255 −0.9364 5.3767 18.7874 0.1892 6.1016

000 50 23.1956 0 28.8974 22.4602 0 29.2668
100 50 21.1897 −2.0059 30.9033 21.0977 −1.3625 30.6294
010 50 23.4165 0.2209 28.6765 23.7884 1.3282 27.9387
001 50 23.1957 0.0001 28.8973 22.5951 0.1349 29.1224
110 50 21.1897 −2, 0059 30.9033 21.1187 −1.3415 30.6084
101 50 21.1897 −2.0059 30.9033 21.1427 −1.3175 30.5749
011 50 23.4166 0.2210 28.6764 23.9220 1.4618 27.7955
111 50 21.1897 −2.0059 30.9033 21.1637 −1.2965 30.5539

000 100 23.1992 0 78.8965 23.1413 0 78.9216
100 100 21.1897 −2.0095 80.9060 21.1896 −1.9517 80.8733
010 100 28.7948 5.5956 73.3009 30.6152 7.4739 71.4478
001 100 23.1992 0.0000 78.8965 23.1510 0.0097 78.9118
110 100 22.7680 −0.4312 79.3277 23.9162 0.7749 78.1468
101 100 21.1897 −2.0095 80.9060 21.1897 −1.9516 80.8732
011 100 28.7948 5.5956 73.3009 30.6249 7.4836 71.4379
111 100 22.7680 −0.4312 79.3277 23.9162 0.7749 78.1466

dominant for A0 = $25 and σ = 0.3 (per year) as retraction is very likely to happen in the near future.

On the other hand, the call option is dominant for A0 = $50 and σ = 0.3 (per year) as redemption is

very likely to happen in the near furture. Finally, for A0 = 100 $, the conversion option alone is the

most valuable with a PV of $7.4739, but its potentialities are drastically challenged in the presence of

the call option even though conversion has priority over redemption.

Figure 3
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Table 6 displays the term structure of default probabilities of the firm for the case σ = 0.3 (per

year). As expected, redemption drives down the default probabilities, while retraction and conversion

have the opposite effect.

Table 6: Default probabilities for the horizon tn ∈ P (in %)

CCP A0 t1 = 1 t2 = 2 t3 = 3 t4 = 4 t5 = 5

000 25 9.32 20.57 29.35 36.86 45.97
100 25 9.12 20.42 29.25 36.78 45.91
010 25 9.36 20.61 29.38 36.87 45.99
001 25 12.48 24.40 32.66 39.12 47.64
110 25 9.12 20.42 29.25 36.77 45.91
101 25 12.24 24.20 32.53 39.01 47.56
011 25 12.55 24.44 32.69 39.15 47.66
111 25 12.24 24.20 32.53 39.01 47.56

000 50 0.01 0.53 2.02 4.50 9.44
100 50 0.01 0.52 2.02 4.50 9.44
010 50 0.01 0.53 2.02 4.50 9.44
001 50 0.02 0.70 2.34 4.68 9.55
110 50 0.01 0.52 2.02 4.50 9.44
101 50 0.02 0.70 2.34 4.68 9.55
011 50 0.02 0.70 2.34 4.68 9.56
111 50 0.02 0.70 2.34 4.68 9.55

000 100 0.00 0.00 0.03 0.19 0.84
100 100 0.00 0.00 0.03 0.19 0.84
010 100 0.00 0.00 0.03 0.19 0.84
001 100 0.00 0.00 0.04 0.19 0.84
110 100 0.00 0.00 0.03 0.19 0.84
101 100 0.00 0.00 0.04 0.19 0.84
011 100 0.00 0.00 0.04 0.19 0.84
111 100 0.00 0.00 0.04 0.19 0.84

For A0 = $100, the entries 000, 100, 010, and 110 of Table 5 are puzzling since the PV of the

conversion option alone is $7.4739, the PV of the call option alone is ($1.9517), while the PV of the

conversion and call options together is 0.7749 $. The high potentialities of the conversion option are

challenged. Where have they gone? Figure 3 shows that a first half of them is collected at t1, while a

second half of them is collected at t2, . . . , t5 = T . The second half becomes de facto unattainable in

the presence of the call option. We run a new experiment with the same parameters except for the

debt maturity date T set at t1, and we find a PV of the conversion option alone of $2.7994.

5 Conclusion

We consider an extended structural model with a debt portfolio that contains a host bond with its

call, conversion, and put options. We use DP and finite elements to design and solve the model. We

show that (early) exercise decisions can be expressed as functions of some redemption, conversion, and

retraction thresholds. We replicate a couple of seminal papers, and conduct a numerical investigation

that details the effect of each embedded option alone, then their combined effect on the values of the

host bond and equity.

Our construction is highly efficient, as it combines DP with local interpolations to approximate

the value functions of corporate securities. It is also highly flexible in that it accomodates alternative

Lévy processes, various tangible and intangible corporate securities, realistic debt payment schedules,

multiple seniority classes, and the call, conversion, and put options embedded in corporate bonds.
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Promizing research avenues consist of extending our DP approach to

1. additional intangible assets, such as reorganization costs and illiquity costs, to design and evaluate

strategic poison puts;

2. alternative Lévy dynamics of the asset value and the risk-free rate in order to design and evaluate

exchangeable bonds.
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