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University, Université du Québec à Montréal, as well as the Fonds de
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l’accès au travail et enquêterons sur votre demande.
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Abstract : This work introduces a novel multi-fidelity blackbox optimization algorithm designed to
alleviate the resource-intensive task of evaluating infeasible points. This algorithm is an intermediary
component bridging a direct search solver and a blackbox, resulting in reduced computation time per
evaluation, all while preserving the efficiency and convergence properties of the chosen solver. This
is made possible by assessing feasibility through a broad range of fidelities, leveraging information
from cost-effective evaluations before committing to a full computation. These feasibility estimations
are generated through a hierarchical evaluation of constraints, tailored to the multi-fidelity nature of
the blackbox problem, and defined by a biadjacency matrix, for which we propose a construction. A
series of computational tests using the NOMAD solver on the solar family of blackbox problems are
conducted to validate the approach. The results show a significant improvement in solution quality
when an initial feasible starting point is known in advance of the optimization process. When this
condition is not met, the outcomes are contingent upon certain properties of the blackbox.

Keywords : Blackbox optimization, derivative-free optimization, multi-fidelity, constrained optimiza-
tion, Direct search methods, static surrogates.
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1 Introduction

This work considers the constrained optimization problem

P min
x∈Ω

f(x) where Ω = {x ∈ X : cj(x) ≤ 0, j ∈ J}

in which X = [ℓ, u] ⊂ Rn is a set defined by unrelaxable constraints with ℓ, u ∈ Rn, f : X → R =

R∪{∞} and cj : X → R, j ∈ J = {1, 2, . . . ,m}, are the objective and quantifiable constraint functions,

respectively. The set of feasible points Ω, is delimited by the constraint functions cj(x) ≤ 0, j ∈ J and

by the bounds [ℓ, u]. These constraints form the vector c(x) = (c1(x), c2(x), . . . , cm(x)). We use R
because f can be set to ∞ to reject points when using a barrier method, and constraints can be set

to ∞ when a hidden constraint is violated.

The present work considers that f and c are multi-fidelity blackboxes [12], are expensive to run,

may fail to evaluate and are such that their derivatives not available. Fidelity is defined as the degree

to which a model reproduces the state and behavior of the true object, represented here by the real

scalar ϕ ∈ [0, 1]. An evaluation of f and c at ϕ = 1 results in the highest precision, and usually the

highest cost. Conversely, an evaluation at ϕ < 1 may be interpreted as the evaluation of a static

surrogate model.

The computational time required to evaluate the blackboxes at a trial point x ∈ X using the

fidelity ϕ is denoted by t(x, ϕ) ∈ R+. This time function is assumed to be monotone increasing

with ϕ for any given value x ∈ X. The functions f , c and cj appearing in Problem P are expanded

to f(x, ϕ), c(x, ϕ), and cj(x, ϕ), with f(x) = f(x, 1), c(x) = c(x, 1), and cj(x) = cj(x, 1) for j ∈ J ,

where the parameter ϕ indicates the fidelity of an evaluation.

Recent literature concerning multi-fidelity blackbox optimization problems predominantly empha-

sizes research in the unconstrained case. The present work focuses on the exploitation of constraints

allowing multi-fidelity. This research serves as a first step, to propose an algorithmic approach that

comprehensively leverages the impact of fidelity on both constraints and objective functions values.

1.1 Motivation

The study of multi-fidelity is motivated by an asset management blackbox optimization problem en-

countered at Hydro-Québec as part of the PRIAD project [18, 23, 27], which is constituted of compu-

tationally expensive blackboxes wherein the violation of some constraints can be predicted with low

fidelity evaluations. Since the overall time allowed to the optimization process is limited, strategies

need to be devised to accelerate the evaluations.

One of the first strategy that comes to mind is parallelism, as in [4, 24, 25], but is not sufficient to

solve the problem in the allowed time. As discussed in [27], it would require thousands of processors

to solve the problem within a month or less, even if one assumes linear improvement with the number

of processors. In addition, this assumption is unlikely to be satisfied since the speed-up is less and less

important when more processors are used in the computation [26]. We anticipate that the problem will

still require months to solve even if thousands of processors are allocated to it. Instead, we suggest to

solve Problem P based on (i) the preemption concept of [37], which allows to interrupt an evaluation

as soon as it is shown that a trial point x ∈ X will not replace the current incumbent solution, and (ii)

the idea of converging to a local solution by iteratively increasing the fidelity of blackboxes [36, 40].

The purpose of using these mechanisms is to reduce the time spent on evaluating uninteresting points,

thereby increasing the total number of evaluations and exploring the solution domain more intensively.

In other words, the present work attempts to only engage the minimal computational effort to reach

better solutions within the predetermined time budget.
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1.2 Organization

The approach proposed in this document embeds interruption opportunities into an iterative fidelity

evaluation process by proposing answers to the questions of determining the fidelity to which the

blackboxes are evaluated and determining the order in which they are evaluated. The latter question

is answered by solving a small optimization subproblem modelled using a biadjacency matrix that

links various fidelities to the constraints.

This document is structured as follows. Section 2 presents a literature review of constraints man-

agement in a multi-fidelity blackbox optimization framework. Section 3 presents an algorithm to solve

Problem P. Details will be then be provided to construct the biadjacency matrix by solving the related

optimization subproblem, and to set the resulting interruption structure in order to reduce compu-

tational time. Section 4 shows how the algorithm performs on different benchmarking blackboxes

involving a solar thermal power plant simulator. Finally, Section 5 discusses the results.

2 Literature survey

This work addresses single objective blackbox optimization problems [12]. It also categorizes con-

straints based on the taxonomy of [29]. A constraint violation function h : Rm → R, which stems from

filter methods [7, 21, 22], is introduced in [9]:

h(x) :=


m∑
j=1

(max{cj(x), 0})2 if x ∈ X

∞ otherwise.

This function measures the level of violation of relaxable constraints. When x ∈ Ω, the function

satisfies h(x) = 0, and h(x) > 0 otherwise. A first method to deal with constraints is called the

extreme barrier (EB), which is divided into two unconstrained minimization phases [12]. The first is

the feasibility phase, where minx∈Rn h(x) is solved while disregarding the value of f , until a feasible

point is found. Then, the optimality phase takes place, where minx∈Rn fΩ(x) is solved, in which

fΩ(x) = f(x) when x ∈ Ω and fΩ(x) is set to ∞ otherwise. A more sophisticated approach for dealing

with quantifiable constraints is the progressive barrier (PB) [9]. It introduces a threshold hk
max ∈ R,

initialized at ∞, that progresses towards 0 as the iteration counter k increases. Any trial point x such

that h(x) > hk
max is rejected from consideration. Two incumbent points are updated at the end of

each iteration k: the feasible solution x with the lowest value of f(x), named xfeas, and the infeasible

solution, named xinf, with the lowest value of f(x) among the trial points satisfying h(x) ≤ hk
max.

The PB explores around both incumbent solutions, and as hk
max decreases, xinf approaches the feasible

region. Because it is frequent that f(xinf) < f(xfeas), this may lead to good feasible solutions. The

progressive-to-extreme barrier (PEB) [10] combines the EB and PB approaches. Each constraint is

initially treated by the PB, and as soon as it is satisfied by the incumbent solution, it becomes treated

by the EB for the remainder of the optimization process.

To reduce the computational burden of an expensive blackbox, the two-phase interruptible EB

algorithm [3] is a version of the EB adapted for problems where the constraint values cj are sequentially

computed through independent blackboxes. This strategy exploits the fact that h(x) is the sum of

non-negative terms. During the evaluation of trial point x, the constraint violation function h(x) value

is calculated cumulatively. An evaluation is interrupted as soon as h(x) exceeds the constraint violation

function value of the incumbent point. A second approach to the same problem is the hierarchical

satisfiability with EB algorithm [3].

It consists of solving a sequence of m optimization problems. The objective function of problem j,

for j ∈ J , is to minimize cj(x) and is subject to ci(x) ≤ 0 for i ∈ {1, 2, . . . , j − 1}. Each optimization

is stopped as soon a feasible point with a nonpositive objective function value is found. The starting
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point of each problem but the first is the final solution of the previous one. A feasible solution in

found when all problems are successfully solved. These approaches replicate the idea of interrupting

a simulation during its course when it becomes known that it will not contribute to the optimization

process [37].

To the authors’ knowledge, the term multi-fidelity often refers to the use of only two fidelities (one

high and one low), or a few more. Moreover, in the multi-fidelity setting, low-fidelity sources are

used to guide further sampling of the high-fidelity source, either by finding promising regions, or by

training a model in the context of Bayesian optimization or other uses of Gaussian processes, and in

the unconstrained case. Alternatively, constraints can be considered with via a penalty in the objective

function [1]. Reviews of the usage of such methods in the last few decades are provided in [20, 35].

In this work, multiple fidelity levels are instead exploited to reduce the overall cost of sampling the

true blackbox, and in the context of direct search methods for constrained problems. Additionally,

the proposed approach selects relevant fidelity levels instead of assuming that a low-fidelity source is

necessarily helpful.

In [38], a heuristic method is proposed for unconstrained problems where the objective function can

be queried at a continuous range of fidelities [0, 1]. The global optimization with surrogate approxima-

tion of constraints (GOSAC) algorithm [34] uses radial basis function surrogate models for constraints

to solve problems where constraints are given by an expensive blackbox, but the objective function

is easy to evaluate. In [6], machine learning is used to guide a direct search algorithm when hidden,

binary and unrelaxable constraints are present. Similarly, [33] suggests a machine learning approach

to predict the violation of hidden constraints, but it is not integrated in an optimization algorithm.

The fidelity of a model only indicates its predictive capability, but indicates nothing on the compu-

tational cost of the model. Both concepts are combined to describe adequacy of a model in [15]. The

authors note that the same model can have a different fidelity level in different problems, and that the

fidelity depends on the other models available. Furthermore, the fidelity of a model may vary across

the parameter space. They propose a framework to evaluate the model adequacy, and show its use with

the MADS algorithm [8]. The search step is used to select points that minimize the error induced by

low cost models within a trust region. This framework expands the use of MADS to multi-disciplinary

design optimization [16] and time-dependent multidisciplinary design optimization [17].

The computational results in this paper are conducted with version 4 of the NOMAD software

package [14], which is an implementation of the MADS algorithm [8]. When the multi-fidelity aspect

of a blackbox is of stochastic nature, many variations on the MADS algorithm and new direct search

algorithms have been proposed to take into account stochastic noise [2, 11, 13, 19].

In the multi-fidelity literature, it is often the case that benchmarks used to assess the performance

of new techniques are analytical in nature; that is, it is assumed the outputs come from a blackbox,

but instead they come from a known mathematical expression [5]. In the industrial setting however, it

is possible for the amount of low-fidelity sources to be virtually infinite, particularly when the output

is acquired via a simulation which can be sped up, and therefore approximated. Hence, benchmarks

such as [31, 39] should be favored.

3 Exploiting multi-fidelity in hierarchically constrained problems

The algorithm presented herein uses a biadjacency matrix B as described in Section 3.1 to select the

fidelity levels required to estimate feasibility at each x ∈ X. The values of B need to be adjusted at the

beginning of each optimization problem. Section 3.2 introduces a sub-problem for this purpose based

on a Latin hypercube (LH) sampling of X [32]. A strategy to simplify and solve the sub-problem

follows in Section 3.3. The complete algorithm, named the hierarchically constrained optimization

algorithm, is assembled in Section 3.4.
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3.1 Evaluation interruptions using multi-fidelity

An ordered discrete set of fidelities

Φ = {ϕi ∈ [0, 1] : i ∈ {1, 2, . . . , L}, 0 ≤ ϕ1 < ϕ2 < . . . < ϕL = 1}

with ϕL = 1 as its largest element is provided by the user. The user may choose a large set Φ, since

uninteresting fidelities are filtered out as shown later. A fidelity value of ϕ1 = 0 means that only a

priori outputs are evaluated. Such outputs have a known explicit formulation, and do not require the

execution of an expensive process [29].

The proposed method assigns each blackbox constraint to a fidelity in Φ, thus providing a hier-

archy. The assignments are represented by a biadjacency matrix B ∈ {0, 1}L×m, where Bij = 1 if

constraint cj ≤ 0 is assigned to fidelity ϕi, and Bij = 0 otherwise. The assignment Bij = 1 indicates

that ϕi is the smallest fidelity that may be trusted to predict if the constraint cj ≤ 0 is satisfied of not.

The approach is coupled with a direct-search solver. When this solver determines that xk is the k-th

evaluated point, the fidelity controller algorithm performs a sequence of calls, named sub-evaluations,

to the blackbox in increasing order of fidelity in Φ at xk, skipping the fidelities without assigned

constraints. After each call at xk with ϕi ∈ Φ, for each j ∈ J , if constraint cj ≤ 0 is assigned to ϕ ≤ ϕi

and is violated, the entire blackbox evaluation process at xk is interrupted. Then, the most recent

sub-evaluation’s outputs are returned to the solver. In this case, the solver may not receive the true

blackbox output values, but it will deem xk infeasible. Figure 1 illustrates this process.

0

Figure 1: Optimization loop with the fidelity controller algorithm. The notation f̄(x) and c̄(x) indicate the output values
at x ∈ X at the last fidelity used by the algorithm.

Performing interruptions saves time when comparing to an optimization method in which each

evaluation constitutes a single blackbox call with ϕ = 1. However, evaluating a feasible point involves

potentially numerous sub-evaluations, significantly increasing the computational cost. Thus, defining

the biadjacency matrix requires careful consideration. In counterpart, prioritizing time-saving by

assigning constraints at low fidelities while choosing this matrix carries the risk of misidentifying the

feasibility of a point with an early interruptions.

The matrix B can be such that no constraint is assigned to ϕ = 1, meaning the true output values

are never assessed. However, the scenario where the best solution given to the user by the solver at
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the end of an optimization is said to be feasible but is actually not is highly undesirable. Hence, the

algorithm also considers f∗
k , the value of the best feasible solution after evaluating xk. Whenever a

point xk that has not been sub-evaluated with ϕ = 1 is about to be labeled as the best solution so far

by the solver, an additional sub-evaluation with ϕ = 1 is introduced to ensure the feasibility of xk.

Algorithm 3.1 shows the fidelity controller algorithm, without the evaluation superscripts k as they

are not relevant to the algorithm. When values are returned before the algorithm’s last line, the

evaluation is said to be interrupted. An optimization from a solver using Algorithm 3.1 constitutes

the third step of the hierarchically constrained optimization algorithm.

Algorithm 3.1: Fidelity controller

Input: trial point x; adjacency matrix B; incumbent value f∗

For each fidelity ϕi ∈ Φ to which at least one constraint is assigned∣∣∣∣∣∣
Evaluate f(x, ϕi) and c(x, ϕi), Store the values in f̄ and c̄.

If cj(x, ϕi) > 0 for some j ∈ J where Baj = 1 for some a ≤ i∣∣ Return f̄ , c̄

If no constraint is assigned to ϕL and f < f∗∣∣ Evaluate f(x, 1) and c(x, 1), Store the values in f̄ and c̄.

Return f̄ , c̄

3.2 Computing method for the biadjacency matrix

This section introduces a computing method for the matrix B which is broken down into two parts.

First, a constraints behaviour in accordance with fidelity analysis is proposed. This process requires

parallel computing to evaluate LH samples. Second, this behaviour analysis is used to construct a B

matrix.

3.2.1 Constraint behaviour analysis

The user selects a sample size nH . If a starting point x0 is provided, the LH bounds are centered

around x0 in order to analyse the constraint’s behaviour where the optimization is likely to take place.

A new optimization parameter ρ ∈ [0, 1] named the Latin hypercube sizing factor is introduced to

indicate the size of the sampled region. When ρ = 1, the region is equal toX = [ℓ, u], and smaller values

correspond to smaller regions. The centered LH bounds (ℓcen, ucen) contain the following elements:

ℓceni =max
(
ℓi, x0

i − ρ(ui − ℓi)
)

∀ i ∈ {1, 2, . . . , n} (1)

ucen
i =min

(
ui, x0

i + ρ(ui − ℓi)
)

∀ i ∈ {1, 2, . . . , n}. (2)

If no starting point is provided, the LH bounds are simply those of X. Let H ⊂ X denote the set

of LH points, and let Hap ⊆ H be the subset containing all sampled points which do not violate any

a priori constraint. Denote the cardinality of Hap by nap. Finally, define I = {1, 2, . . . , L} and the

indicator function

1(cj(x, ϕ)) :=

 0 if cj(x, ϕ) ≤ 0

1 otherwise
∀j ∈ J.

A fidelity ϕi ∈ Φ is said to be representative for a constraint cj ≤ 0 at a point x if and only if

1(cj(x, ϕ)) = 1(cj(x, 1)) ∀ϕ ∈ Φ with ϕ ≥ ϕi.

This definition allows to identify fidelities at which a sub-evaluation correctly identifies whether a

constraint is violated or not on the LH samples. The behaviour of the constraints in accordance with
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fidelity is characterized in two ways: the likeliness of a constraint to be violated at a given fidelity at any

point during the optimization, and the likeliness of a fidelity to be representative for a given constraint

at any point during the optimization. Another point of interest is the expected sub-evaluation time

for the fidelities in Φ. Define

rij :=Pr[fidelity ϕi is representative for constraint cj ≤ 0 at some x ∈ X] ∀i ∈ I , ∀j ∈ J

pij :=Pr[cj(x, ϕi) > 0 for some x ∈ X] ∀i ∈ I , ∀j ∈ J

ti :=Ex[t(x, ϕi)] ∀i ∈ I.

Assuming that t(x, ϕ) is monotone increasing with ϕ for each x ∈ X,

ta ≤ tb ∀a, b ∈ I where a < b. (3)

After the LH samples are evaluated at each fidelity in Φ, these statistical values are estimated with

the following ratios:

rij ≃ r̂ij :=
1

nap
|{x ∈ Hap : ϕi is representative for cj ≤ 0}| ∀i ∈ I , ∀j ∈ J (4)

pij ≃ p̂ij :=
1

nap
|{x ∈ Hap : cj(x, ϕi) > 0}| ∀i ∈ I , ∀j ∈ J (5)

ti ≃ t̂i :=
1

nap

∑
x∈Hap

t(x, ϕi) ∀i ∈ I. (6)

This characterization of the constraint’s behaviour constitute the first step of the hierarchically con-

strained optimization algorithm.

3.2.2 Optimal biadjacency matrix model

A biadjacency matrix is computed based on given values of rij , pij and ti. An explicit optimization

Problem Q is proposed below to compute B, which minimizes the expected evaluation time during

the optimization. It is also desired to minimize the probability of causing an interruption on a feasible

point, but a bi-objective model is avoided by introducing a new threshold parameter ε ∈ [0, 1], the

upper bound on the probability that a constraint’s feasibility is misidentified during the optimization.

Every element Bij of the biadjacency matrix B corresponds to a decision variable in the model. The yi
variables are defined as follows. They are continuous variables in Q per their unimodality.

yi =

{
1 if a sub-evaluation at fidelity ϕi would be executed by Algorithm 3.1

0 otherwise.
(7)

In Q, the objective function (10) represents the expected evaluation time of a single point according

to Algorithm 3.1. It is a sum of all the sub-evaluation times ti, multiplied by their probability of

happening, which is the probability that no interruption happen earlier in the hierarchy multiplied

by yi for each i ∈ I. It can be written as follows.

t1y1

+ t2y2Pr[no interruption at ϕ1]

+ t3y3Pr[no interruption at ϕ1]Pr[no interruption at ϕ2]

+ t4y4Pr[no interruption at ϕ1]Pr[no interruption at ϕ2]Pr[no interruption at ϕ3]

+ . . .

= t1y1 +

L∑
i=2

(
tiyi

i−1∏
k=1

Pr[no interruption at ϕk]

)
. (8)
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An index k denotes a fidelity index smaller than or equal to a given i ∈ I. The probability that no

interruption happens at a sub-evaluation at ϕk is the probability that all constraints assigned to ϕk

are satisfied after the sub-evaluation. Under the hypothesis that these probabilities are independent,

the product of each (1− pkj) where Bkj = 1 for each j ∈ J is computed. Therefore,

Pk(B) := Pr[no interruption at ϕk] =
∏
j∈J

1− pkjBkj . (9)

The substitution of (9) in (8) results in (10). Problem Q is defined as follows

Q

min
B∈BL×m,y∈RL

f(B) = t1y1 +

L∑
i=2

tiyi

i−1∏
k=1

Pk(B) (10)

s.t.
∑
i∈I

Bij = 1 ∀ j ∈ J (11)

Bij − ε ≤ rij ∀ i ∈ I, ∀ j ∈ J (12)

Bij ≤ yi ≤ 1 ∀ i ∈ I, ∀ j ∈ J (13)

yi ≤
∑
j∈J

Bij ∀ i ∈ I. (14)

Equation (11) ensures that every blackbox constraint is assigned to exactly one fidelity, Equa-

tion (12) enforces the ε upper bound, and Equations (13) and (14) ensure the yi variables respect their

definition (7).

The potential extra sub-evaluation at ϕ = 1 if the evaluated point is about to become the best

solution so far is not considered, as the moments when it happens are unpredictable. Also, by cal-

culating the estimations with the points from Hap, the a priori constraints are disregarded by the

model, which is not a problem because they have no impact on the optimal biadjacency matrix. A

hypothesis assumed by this model is that if a constraint is satisfied at the fidelity it is assigned to, it

is also satisfied at any greater fidelity.

3.3 Solving the model

Notice that Problem Q is mixed-integer with a polynomial objective function. As today’s solvers

require a lot of solving time and have no guarantee of optimality for such problems, an alternative

solving method is proposed. Indeed, the set of possible solutions may be reduced to the point where

a simple exhaustive search is sufficient.

3.3.1 Reduction by introducing non-differentiability

The first reduction consists of simplifying the model by introducing non-differentiable elements, which

are allowed since only an exhaustive search will be conducted. First, the yi variables are determined

by the biadjacency matrix as:

yi(B) =


0 if

∑
j∈J

Bij = 0

1 otherwise

∀i ∈ I.

Hence, Equations (13) and (14) are removed, and a B matrix alone constitutes a solution to the

model. The function i : J → I is introduced, which returns the index of the smallest fidelity in Φ

where constraint cj ≤ 0 can be assigned without violating Equation (12):

i(j) = min{i ∈ I : rij ≥ 1− ε}.
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Equation (12) is then equivalent to imposing that a constraint cj ≤ 0 can not be assigned to a fidelity ϕi

when i < i(j). These new definitions allow for the definition of Problem Q1, which is equivalent to Q.

Q1

min
B∈BL×m

t1y1(B) +

L∑
i=2

(
tiyi(B)

i−1∏
k=1

Pk(B)

)

s.t.
∑
i∈I

Bij = 1 ∀ j ∈ J (15)

Bij = 0 ∀ (i, j) ∈ I × J such that i < i(j). (16)

3.3.2 Reduction by filtering fidelities

The second reduction aims to reduce the number of rows of the biadjacency matrix B. It follows

from Theorem 1, which indicates that there exists an optimal solution for Q1 where each constraint is

assigned to a fidelity ϕi such that

i ∈ IF :=
⋃
j∈J

i(j) ⊆ I, (17)

with IF the filtered set of fidelity indexes. Each fidelity ϕi where i /∈ IF can therefore be removed

without excluding an optimal solution for Q1, by replacing I with IF . Note that i(j) is a function

that expresses a direct link between a fidelity index i and a constraint index j. Conversely, the set IF
removes that link. Theorem 1 states that an optimal solution exists where all constraints are assigned

to fidelities ϕi where i = i(j) for some j ∈ J , no matter what this j is. The theorem is true under the

assumption that probabilities pij are monotonic decreasing with i for each i where constraint cj ≤ 0

can be assigned to fidelity ϕi without violating Equation (16), for each j ∈ J :

paj ≥ pbj ∀j ∈ J, ∀a, b ∈ I where i(j) ≤ a < b. (18)

The theorem can remain valid without this assumption. Indeed, as ε becomes smaller, the likelihood

of the theorem becoming invalid decreases [30].

Lemma 1. Let B be a feasible solution for Q1. If there exists a fidelity index i′ ∈ I\IF to which at

least one blackbox constraint is assigned, then the matrix B′ where

B′
ij =


0 if i = i′

1 if i = i′ − 1 and Bi′j = 1

Bij otherwise

∀i ∈ I, ∀j ∈ J (19)

is feasible for Q1.

Proof. Let B be a feasible solution for Q1 and i′ ∈ I\IF be a fidelity index to which at least one blackbox

constraint is assigned. Equation (15) is satisfied by B′, because it is satisfied by B and B′
i′−1 j +B′

i′j =

1 = Bi′−1 j +Bi′j for each j ∈ J . Concerning Equation (16), on the one hand, if (i, j) ∈ I × J is such

that i < i(j), then Bij = 0 since B is feasible. On the other hand, if j′ ∈ J is such that Bi′j′ = 1

then i′ > i(j′), which is equivalent to i′ − 1 ≥ i(j′). The last condition in Equation (19) ensures that

B′
ij = Bij = 0 for each pair (i, j) ∈ I × J such that i < i(j), which implies that the matrix B′ is

feasible for Q1.

Lemma 2. Let B be a feasible solution for Q1. Under Assumption (18), if there exists a fidelity

index i′ ∈ I\IF to which at least one blackbox constraint is assigned, then the matrix B′ given by (19)

satisfies f(B′) ≤ f(B).

Proof. Let B be a feasible solution for Q1 and i′ ∈ I\IF be a fidelity index to which at least one

blackbox constraint is assigned. The objective function (10) maybe be divided into four terms, which

correspond to the fidelity indexes smaller than i′ − 1, equal to i′ − 1, equal to i′ and greater than i′ of

the sum

f(B) = T<i′−1(B) + Ti′−1(B) + Ti′(B) + T>i′(B)
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where

T<i′−1(B) = t1y1(B) +

i′−2∑
i=2

tiyi(B)

i−1∏
k=1

Pk(B), Ti′−1(B) = ti′−1yi′−1(B)

i′−2∏
k=1

Pk(B),

Ti′(B) = ti′yi′(B)

i′−1∏
k=1

Pk(B), T>i′(B) =

L∑
i=i′+1

tiyi(B)

i−1∏
k=1

Pk(B).

Equation (19) ensures that the first term satisfies T<i′−1(B) = T<i′−1(B
′). Assumption (18) ensures

that the last term satisfies T>i′(B) ≥ T>i′(B
′), as the only change from T>i′(B) to T>i′(B

′) is that

all pi′j become pi′−1 j. For the two central terms, two cases are considered. First, if yi′−1(B) = 0,

then Ti′−1(B) = Ti′(B
′) = 0 as yi′(B

′) = 0. Furthermore, Assumption (3) ensures that

Ti′(B) = ti′
i′−1∏
k=1

Pk(B) = ti′
i′−2∏
k=1

Pk(B
′) ≥ ti′−1

i′−2∏
k=1

Pk(B
′) = Ti′−1(B

′).

Second, if yi′−1(B) = 1, then Ti′−1(B) = Ti′−1(B
′) as the sub-evaluations at ϕi′−1 and at lower

fidelities are unchanged, and Ti′(B) > Ti′(B
′) = 0 as yi′(B

′) = 0. In both cases, the sum of the four

terms of f(B) is greater than or equal to those of f(B′). Consequently, f(B) ≥ f(B′).

Theorem 1. There exists an optimal solution for Q1 in which every blackbox constraint is assigned to

a fidelity ϕi where i ∈ IF .

Proof. The argmin of Q1 can possibly contain only solutions where every blackbox constraint is

assigned to a fidelity ϕi where i ∈ IF . The theorem is then trivial. Otherwise, there exists a solution

B∗
0 in the argmin of Q1 such that the set

I ′(B∗
0) := {i ∈ I\IF : yi(B

∗
0) = 1}

is not empty. For a given i′ ∈ I ′(B∗
0), it is possible to find another solution, B∗

1 , where every constraint

assigned to ϕi′ is rather assigned to ϕi′−1, and where every other assignment is unchanged. Lemma 1

indicates that B∗
1 is feasible, and Lemma 2 indicates that it yields an equal or better objective function

value than B∗
0 . Therefore, B∗

1 is also part of the argmin. Then, the set I ′(B∗
1) can then be calculated.

As long as I ′ is non-empty, this process is repeated to find B∗
2 , B

∗
3 and so on. The maximum number

of such iterations is max{L − i(j) : j ∈ J}, implying this process always terminates. When it does

in K iterations, I ′(B∗
K) = ∅, and B∗

K is an optimal solution for Q1 in which every blackbox constraint

is assigned to a fidelity belonging to IF .

3.3.3 Reduction by filtering constraints

The third reduction simply consists of filtering out all a priori constraints, as they have no impact on

the optimal biadjacency matrix. This reduces the number of columns of the biadjacency matrix B.

The set J is replaced for

JF := {j ∈ J : cj ≤ 0 is not an a priori constraint}, (20)

the set of filtered constraint indexes.

3.3.4 Exhaustive search

First, consider Q1, and replace I for IF and J for JF , therefore removing columns and rows of variables

from matrix B, and removing multiple pij , rij and ti elements from the model. This new problem

is named Q2. Equation (12) indicates that Bij = 0 if rij < 1 − ε. Equation (11) indicates that

every constraint is assigned to exactly one fidelity. Every solution for Problem Q2 that satisfies these

two equations is then exhaustively listed. For each solution, the objective function value is computed
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with (10), and an optimal solution is found. From this solution, an optimal biadjacency matrix B∗ of

size L×m can be created by reintroducing columns J\JF and rows I\IF , and by giving the value of 0

to these new elements. Computing an optimal assignment with the estimations p̂ij , r̂ij and t̂i rather

than the true values which are unavailable constitutes the second step of the hierarchically constrained

optimization algorithm.

3.4 Hierarchically constrained optimization algorithm

Now that every part of the hierarchically constrained optimization algorithm has been presented, see

Algorithm 3.2 for the full algorithm. When constructing Q2 and IF during the algorithm, rij and pij
are substituted by r̂ij , p̂ij for each i ∈ I, and for each j ∈ J , and ti is substituted by t̂i for each i ∈ I.

Algorithm 3.2: Hierarchically constrained optimization

Input:∣∣∣∣∣∣∣∣∣∣∣

x0 : optimization starting point (optional)

P : problem containing X ⊆ Rn, f and c

Φ : ordered set of fidelities ending with 1

ε : upper bound on the probability that a constraint’s feasibility is misidentified

ρ, nH : Latin hypercube sizing factor and sample size

1. Constraint behaviour in accordance with fidelity analysis.∣∣∣∣∣∣∣∣∣∣∣

If x0 is provided, find the (ℓcen, ucen) bounds from X, ρ and x0 using (1) and (2).

Else, set (ℓcen, ucen) = (ℓ, u) and at end of step 1, set x0 as the best point in H.

Randomly determine H, the nH LH points bounded by ℓcen and ucen.

Evaluate each point in H at each fidelity in Φ by parallelizing as much as possible.

Calculate all r̂ij , p̂ij and t̂i estimations using (4), (5) and (6), respectively.

2. Optimal biadjacency matrix computation.∣∣∣∣∣∣∣
Find JF , and find IF with ε using (20) and (17), respectively.

Solve problem Q2 with an exhaustive search on Ω.

Create a matrix B ∈ BL×m from an optimal solution for Q2.

3. Blackbox optimization.∣∣∣∣∣∣∣
Solve P with the chosen solver, providing Algorithm 3.1 with matrix B

as the blackbox evaluation function and x0 to the solver. Update f∗
k at

end of evaluation k.

Return the solver output

4 Computational results

This section shows an application of Algorithm 3.2 with the NOMAD software [14, 28]. It is not

an in depth analysis, but rather a proof of concept of the theoretical method. Computing is done

on Intel Xeon Gold 6150 CPU @ 2.70GHz processors. The benchmark problems are sourced from

the solar1 family of blackboxes [31]. As far as the authors are aware, solar is the only benchmarking

blackbox collection of problems where constraints that are affected by fidelity can be found. Hence,

benchmarking is only conducted on problems from this collection. In NOMAD, constraints can be

managed using the EB or the PB methods. Literature suggests that the PB generally yields better

results. However, due to Algorithm 3.1 not returning the true outputs when the evaluation of a point

is interrupted, the EB might be more adapted, as it rejects these points. Conversely, the PB uses

output values to compute new incumbent points. Therefore, two implementations and a base case are

tested for comparison:

1Available at https://github.com/bbopt/solar (version 1.0)

https://github.com/bbopt/solar
https://github.com/bbopt/solar
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• Inter PB: Algorithm 3.2 with NOMAD and the PB;

• Inter EB: Algorithm 3.2 with NOMAD and the EB;

• Base case: NOMAD with default parameters and blackbox fidelity fixed at 1.

The method introduced in this paper is motivated by computationally expensive problems, such

as PRIAD’s blackbox, where the solver and the Algorithm 3.1 computation times are insignificant in

comparison. To replicate such problems with solar instances that are computationally less demanding

but possess desirable characteristics, only blackbox computation times are considered in the following

profiles. For both implementations of the algorithm, the empirically determined values of nH = 104,

ε = 0.05 and

Φ = {10−10, 2−10, 2−9, 2−8, 2−7, 2−6, 2−5, 2−4, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}

are chosen.

4.1 Without a starting point for the optimization

This section presents optimizations where no starting point is provided by the user. Consequently,

the LH bounds are those of X. The base case also performs a LH with the same parameters to

find a starting point. Optimizations on three constrained multi-fidelity instances of the solar family

of blackboxes: solar2, solar3 and solar4 are conducted. By varying the unfeasible starting point, 20

optimization runs are executed for each tested instance. The results are illustrated in data profiles,

with the initial two profiles relating to solar2, and shown in Figure 2. As the LH times are identical,

only the optimization times are shown.

(a) τ = 0.0001 (b) τ = 0.001

Figure 2: solar2 data profiles from 20 runs with no x0.

The Algorithm 3.2’s success, whether paired with the EB or the PB, is mainly attributed to two

factors. Firstly, solar2 contains a frequently violated constraint with a high estimated probability of

representativity at low fidelities, which allows for numerous quick interruptions on infeasible points.

Secondly, the calculated B matrix is accurate because the constraint’s behaviour is homogeneous

throughout X. On the other hand, this is not the case for solar3 and solar4, where the calculated B

matrix does not accurately reflect the constraint’s behaviour for the encountered points during opti-

mization. The results show that when using Algorithm 3.2, every evaluated point is systematically

considered infeasible. No figures are shown as there are no curves for the 3.2 implementations. Con-

versely, the base case finds numerous feasible solutions.

4.2 With a starting point for the optimization

This section presents optimizations where a known feasible starting point is provided by the user.

The optimization runs are conducted on each constrained multi-fidelity instances of the solar family of
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blackboxes: solar2, solar3, solar4 and solar7, with ρ values of 1
4 ,

1
10 ,

1
20 and 1

4 respectively. Those values

are based on preliminary results. In this scenario, the base case does not perform any LH sampling,

which grants it a time advantage. However, this advantage is inconsequential due to the extensive

parallelization of samples using Hydro-Québec’s facilities. By varying the NOMAD seed for random

polls, 20 optimization runs are executed for each tested instance, and the results are illustrated in data

profiles. Two data profiles for solar2 are shown in Figure 3.

(a) τ = 0.1 (b) τ = 0.5

Figure 3: solar2 data profiles with a starting point. Curves from implementations of Algorithm 3.2 start at 642.22 seconds
to account for LH sampling time.

With τ = 0.5, the base case solves a greater number of problems compared to the proposed

algorithm with the EB, as the implementation is highly inefficient for one of the 20 optimization runs.

In general, both implementations of Algorithm 3.2 are preferable.

Data profiles for solar3 and solar4 are shown in Figure 4 and Figure 5, respectively.

(a) τ = 0.05 (b) τ = 0.3

Figure 4: solar3 data profiles from 20 runs with a given x0. Curves from implementations of Algorithm 3.2 start at 45.64
seconds to account for LH sampling time.

For both instances, the base case yields results comparable to Algorithm 3.2 paired with the PB.

On the other hand, when pairing the algorithm with the EB, it performs significantly better. This

can be attributed to a higher scarcity of feasible points in solar3 and solar4 compared to solar2. This

section also studies solar7, a constrained multi-fidelity blackbox where infeasible points are much less

common than for the other tested instances. It serves as a test to assess how Algorithm 3.2 performs

when it has limited opportunities to interrupt evaluations and save time in contrast to the base case.

Additionally, the objective function value is affected by multi-fidelity for this instance. Thus, the

condition yL = 1 is imposed. Results show that the optimal biadjacency matrix computed for this
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(a) τ = 0.01 (b) τ = 0.1

Figure 5: solar4 data profiles from 20 runs with a given x0. Curves from implementations of Algorithm 3.2 start at 94.75
seconds to account for LH sampling time.

problem assigns all constraints to ϕL = 1. This suggests that the method has discerned the absence of

meaningful opportunities for interruptions and that emulating the base case is the optimal approach.

No figure is shown; the base case and the PB implementation exhibit identical data profiles, except for

the fact that the base case consistently precedes by 181.07 seconds due to its absence of LH sampling

prior to any optimization.

5 Discussion

We have introduced a novel approach to computationally expensive multi-fidelity blackbox optimization

problems by leveraging low-fidelity assessments of constraints violation to interrupt evaluations. Our

computational results demonstrate that, under specific conditions, pairing the NOMAD solver with the

hierarchically constrained optimization algorithm yields significantly superior solutions compared to

NOMAD alone. Here is a summary of favorable conditions:

• scarce feasible points;

• accurate constraint violation assessments at lower fidelity levels;

• homogeneity in constraint behaviour relative to fidelity within the LH bounds defined by the

sizing factor ρ.

When this final condition is not fulfilled with ρ = 1, the existence of a known feasible solution

prior to the optimization becomes vital; it enables the selection of a sizing factor ρ that increases the

homogeneity in constraint behaviour.

When utilizing the NOMAD solver, we observe that the preferred barrier choice depends on the

blackbox. For problems with infrequent feasible points, the EB is more suitable, while the PB is mostly

preferred when feasible points are more common.

Future work involve dynamically computing the biadjacency matrix and applying the proposed

algorithm to complex industrial problems, such as PRIAD’s. Additionally, as indicated by [6, 33], the

constraint behaviour analysis can potentially be improved with machine learning methods.
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