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University, Université du Québec à Montréal, as well as the Fonds de
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auteurs conservent leur droit d’auteur et leurs droits moraux sur leurs
publications et les utilisateurs s’engagent à reconnâıtre et respecter
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Abstract : In this work, we propose a non-intrusive and training free method to detect behind-the-
meter (BTM) electric vehicle (EV) charging events from the data measured by advanced metering
infrastructure (AMI) such as smart meters. By leveraging the contextual information of EV charging,
we formulate a mixed-integer convex quadratic program (MICQP) to detect EV charging events from
customers’ daily meter data. No labelled training data or hyperparameter tuning are required, and
the MICQP can be efficiently solved. By collecting information about the start time, the charging
duration, and the power level of each detected charging event, we infer customers’ charging patterns
in terms of probabilities of charging profiles through a data-driven approach using one year’s meter
data. In a numerical case study, we use the proposed approach to extract EV charging events from a
test dataset of customers’ meter data, and we demonstrate that similar detection accuracy is achieved
as that of other learning-based approaches which use high-solution meter data. Finally, impacts of EV
charging on the IEEE-8500 test feeder are presented in the case study by using the inferred charging
patterns.

Keywords: Convex programming, data-driven, electric vehicle, smart meter, behind-the-meter, dis-
tribution networks

Acknowledgements: The authors would like to thank Eaton’s CYME International T&D and The
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1 Introduction

With the increasing penetration levels of EVs on the power distribution networks, utility planners need

to evaluate the impacts of EV charging on their networks to maintain system reliability and power

quality. Due to the randomness associated with the usage of EVs, stochastic methods are usually

adopted to analyze the impact by characterizing EV owners’ charging habits in terms of probabilities

of charging profiles [8]. While such probabilities can be constructed based on historical EV charging

events, as EV chargers are often installed behind-the-meter (BTM), the charging events are invisible

to utilities. It is hence challenging to directly observe customers’ charging behaviours. In this work, we

propose a method to detect customers’ charging events from the smart meter data, which are readily

available to the utilities. For each charging event detected, the start time, the duration, and the power

level of the charger is extracted. We then infer customers’ charging patterns in terms of probability

distributions based on the extracted information out of all charging events detected.

In the literature, there exist mainly two groups of methods to detect EV charging events from the

smart meter data: supervised learning-based and training-free methods. Supervised machine learning

methods, e.g., convolutional neural networks and recurrent neural networks, have been trained to detect

EV charging events with the best average accuracy of 71% [4, 6, 19, 22]. These methods primarily focus

on identifying time periods associated with EV charging activities. Supervised classification methods,

e.g., random forest algorithm, k-nearest neighbour, and classification-regression trees, are also deployed

for qualitative purposes, such as distinguishing EV owners from other consumers [17, 18]. The downside

of these methods is that their performance is highly dependent on the quality and quantity of data

available for training, i.e., the training samples.

In addition to supervised learning-based methods, training-free methods have also been utilized in

EV detection. These approaches take advantage of contextual information (e.g., standardized power

level of EV chargers), and for this reason, they are widely applicable to customers’ data on different

distribution networks and/or regions. Models based on cross-correlation and pattern recognition are

proposed in [6, 23]. These models use sliding windows and pattern search techniques to identify EV’s

charging events. For improved accuracy, filtering techniques are proposed in [15, 24] to specifically

remove data segments that do not meet typical values of power levels and of duration of an EV

charging event. Signal decomposition is also utilized and takes advantage of trends in measured meter

data to target EV signatures [21]. These methods are easily interpretable, but are limited by the

assumptions made about EV charging behaviours. More refined models further leverage statistical

and probabilistic methods. For example, [10, 11] use independent component analysis (ICA) to detect

EV charging events. Probabilistic models such as hidden Markov models (HMM) allow to account

for the uncertainty around EV charging profiles in terms of the start time, the initial state-of-charge,

duration, or the power level. In [12, 20], the authors used HMM to separate individual appliances from

an aggregate load without requiring complete knowledge of the types of appliances in the households.

Even though no training is required, hyperparameter tuning is still necessary for optimal performance.

In this work, we develop a method that can accurately detect the EV charging events from smart

meter data through a mixed-integer convex program, which can be solved in a computationally efficient

way. Our method leverages the contextual information of EV charging, and does not rely on any

supervised or unsupervised learning models hence no labelled training samples or hyperparameter

tuning are necessary, making it readily implementable for utilities. Through a data-driven approach,

we construct the charging patterns of all customers in terms of probability distributions from the

detection results. Using the inferred charging patterns, impacts of these customers’ EV charging

behaviours to the power distribution network can then be analyzed [8].

The rest of the paper is organized as follows: in Section 2 we state the main assumptions about the

contextual information of EV charging. We then formulate a mixed-integer convex quadratic program

to detect a customer’s EV charging events during a day. In Section 3, we present our methodology to

infer EV charging patterns for a set of customers on the distribution network, based on the detected
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EV charging events. The charging patterns are represented by distributions of charging start time,

duration, and power levels. We present a case study to illustrate the EV charging patterns extracted

by our proposed approach. We then showcase the quality and accuracy of the inferred patterns by

using them in a stochastic analysis of EV impacts to a test distribution network in Section 4. Finally,

we conclude in Section 5 and point out some future work directions.

2 Detection of EV charging events

Let P = [Pi]
N
i=1 ∈ RN×NDT be the real power data measured in kW by the smart meters for a set

of N customers and for ND days, where T is the time horizon or the number of data samples during

a day. Here, we assume that Pi ∈ RNDT is measured at a 15-minute interval, hence T = 96. Let

PEV,PBL ∈ RN×NDT refer to, respectively, the power demands to charge customers’ EVs and those of

the baseload, i.e., all other appliances and devices in the households. Hence, we write P = PEV+PBL.

Our goal is to disaggregate PEV from P through a detection procedure for EV charging events.

2.1 Contextual information

In this section, we state several assumptions based on characteristics of EV charging events and results

of statistical studies. In this work, we consider only the residential customers, as they account for up

to 80% of charging events with diversified and stochastic charging patterns [16].

• The charging power levels depend on the vehicle models and the type of chargers. For residential

customers, Level 1 or Level 2 chargers are usually used. As the time required for a full-charge by

Level 2 chargers is shorter and the associated costs to install them keep decreasing over time, they

are becoming more popular among residential customers [5]. Hence, the set of possible charging

power levels depending on vehicle models is assumed to be P = {3.6, 6.6, 7.2, 9.6, 11.5, 15}, in kW.

• Based on a statistical study on Pecan Street data [13], the duration of charging events is usually

more than 30 minutes, and the number of charging events during a day is usually less than 3 [21].

In another statistical study on HVAC systems, the average duty cycle of an HVAC system is

about 30 minutes [2]. In order to differentiate EV charging events from HVAC duty cycles, in

this work we ignore charging events that last less than 1 hour.

• We assume that the profile of a charging event follows a rectangular waveform, i.e., the power

consumption is constant during the entire charging period [14]. The transients in power con-

sumption are ignored when the charging starts and completes, and the variations due to voltage

fluctuations during the charge are also ignored. As shown later in the case study section, the

assumption is valid, e.g., when comparing the waveform of the detected EV charging event with

the true waveform.

• According to a survey on multi-vehicle households [3], 90% of EV owners have more than 1

vehicle but only 1% of them own another EV. Hence, we assume that only 1 EV is charged each

day, even for households with multiple EVs. Hence, all charging events in a day should have the

same power level.

We remark that in some cases where utilities only have data of lower temporal resolution, e.g.,

hourly measurements, our EV detection approach can still be applied but reduced accuracy may be

expected.

2.2 Mixed-integer convex quadratic program

Let Pi,d ∈ RT be customer i’s power demand during day d, and PEV
i,d ,P

BL
i,d ∈ RT be the demand for

EV charging and baseload, respectively. The mixed-integer convex quadratic program (MICQP) to
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determine PEV
i,d is formulated as:

min
PEV

i,d ,x,y,z,δ
Var(PBL

i,d ) =
1

T

T∑
t=1

(
PBL
i,d (t)− PBL

i,d

)2

(1)

subject to PBL
i,d =

1

T

∑T
t=1 P

BL
i,d (t), (2)

Pi,d = PEV
i,d + PBL

i,d , (3)

x,y, z ∈ {0, 1}T , (4)

δ ∈ {0, 1}|P|×T , (5)

δh ∈ R|P|, (6)

1
⊤

Ty ≤ 2, (7)∑min{T−t,3}
n=0 y(t+ n) + z(t+ n) ≤ 1, ∀t, (8)

δ
⊤
1|P| ≤ x, (9)

δ
⊤
(P − ε1|P|) ≤ PEV

i,d ≤ δ
⊤
(P + ε1|P|), (10)

δh =
1

T
δ1T , (11)

δ(p, t) ≤ 1−
∑|P|−p

n=1 δh(p+ n), ∀p, t, (12)

PEV
i,d (t)− PEV

i,d (t− 1) ≤ y(t)M, ∀t, (13)

PEV
i,d (t− 1)− PEV

i,d (t) ≤ z(t)M, ∀t, (14)

PEV
i,d (t) ≤ x(t)M, ∀t, (15)

PEV
i,d (t),P

BL
i,d (t) ≥ 0, ∀t, (16)

x(t)− x(t− 1) = y(t)− z(t), ∀t. (17)

The objective (1) is to minimize the variance of the baseload PBL
i,d after PEV

i,d is subtracted from Pi,d,

where PBL
i,d is the mean value of the resulting baseload as computed in (2). The binary variables

x,y, z ∈ {0, 1}T indicate, respectively, whether an EV is being charged (x(t) = 1), the start time

(y(t) = 1), and the end time (z(t) = 1) of a charging event for each time step t during the horizon T .

Here, as we assume that EVs are not charged more than twice during a day, we limit the detection of
charging events to 2 by (7), i.e., y(t) = 1 at no more than 2 time steps. As we do not consider charging

events that last less than 1 hour, we use (8) to enforce that we cannot have an active y and an active z

during any time window of 4 time steps. With (9) and (10), the power level at each time step t takes

a single value from P (within some tolerance ε > 0), and the activated power level is indicated by

the binary variable δ ∈ {0, 1}|P|×T . Here, |P| is the cardinality of P, and 1|P| is the column vector

of ones of dimension |P|. It is possible that different power levels may occur during a charging event,

i.e., step changes, hence we need to ensure that the same power level is adopted during all charging

events of the day. An intermediate variable δh ∈ R|P| is defined in (11) to calculate the fraction of

power levels activated during the day, where 1T is the column vector of ones of dimension T . By (12)

we force that the higher power level with a corresponding non-zero δh value is always used during this

day. By (13)–(17), the profile of a charging event must follow a rectangular waveform at the selected

power level, where M is a large constant, i.e., M ≫ max(P). Finally, the resulting PEV
i,d and PBL

i,d (t)

should be non-negative at all times.

Note that for the simplicity in notation, the subscripts i and d on all binary and intermediate

variables, namely x,y, z, δ, and δh, are omitted in the formulation of the MICQP.
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3 Customers’ EV charging patterns

Let T s and T d be random variables on sample space T and P c be a random variable on sample space P,

which represent, respectively, the start time, the duration, and the charger power level of EV charging

events for all customers on a given network. Here, T = [0,∆t, 2∆t, · · · , (T − 1)∆t] is the discretized

time horizon with a time step ∆t = 15 minutes. The charging patterns can be characterized through

the inferred probability mass functions (PMFs) of these random variables, namely, f̂T s(t), f̂Td(t), and

f̂P c(p).

Let tdi,d, t
s
i,d, t

e
i,d, and P c

i,d be, respectively, the duration, the start time, the end time, and the power

level of the EV charging events detected for customer i on day d by solving the MICQP proposed in

the previous section. From the solution obtained, we compute tsi,d = {t ∈ T | y(t) = 1}, tei,s = {t ∈
T | z(t) = 1}, tdi,d = tei,s− tsi,s, and P c

i,d = {maxt(P
EV
i,d )}. We note that as we detect up to two charging

events in each day, two values may be collected in each of them. By repeatedly solving the MICQP

for all customers and for all days, i.e., to extract all charging events in P, we obtain the following

multisets of detected results:

T s = {tsi,d, d = 1, 2, · · · , ND, i = 1, 2, · · · , N}
T d = {tdi,d, d = 1, 2, · · · , ND, i = 1, 2, · · · , N}
Pc = {P c

i,d, d = 1, 2, · · · , ND, i = 1, 2, · · · , N},

We remark that T s, T d, and Pc contain the same number of elements. The probability mass functions

(PMFs) for the random variables T s, T d, and P c are then approximated by the empirical distributions:

f̂T s(t) =
1

|T s|
∑
ts∈T s

1{ts}(t), t ∈ T

f̂Td(t) =
1

|T d|
∑

td∈T d

1{td}(t), t ∈ T

f̂P c(p) =
1

|Pc|
∑

pc∈Pc

1{pc}(p), p ∈ P,

(18)

where 1 is an indicator function, i.e., 1{pc}(p) = 1 if pc = p and 1{pc}(p) = 0 otherwise.

Based on T s and T d, we then construct a set of all possible charging profiles in per-unit (p.u.)

values:

L = {lts,td(t) | ts ∈ T s, td ∈ T d}, (19)

where T s and T d are the support of T s and T d, respectively, and

lts,td(t) =

{
1, if ts ≤ t < ts + td,

0, otherwise.
(20)

A profile lts,td(t) reconstructs the per-unit rectangular waveform of a charging event that has been

detected from customers’ smart meter data. To conduct an impact analysis of EV charging, we also

need to calculate the probability that each lts,td(t) is adopted, which is given by:

Pr[lts,td ] = Pr[T s = ts, T d = td]

= Pr[T s = ts | T d = td]f̂Td(td),
(21)

where Pr[T s = ts | T d = td] is approximated by m
n , where n is the total number of detected charging

events lasting for td and m is the number of charging events starting at ts out of the n events. We

remark that as td ∈ T d, we have n ≥ 1.
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4 Case study

We use the Pecan Street data [13] to evaluate the performance of our method to extract customers’

EV charging habits. The dataset contains smart meter data measured for 76 customers with EVs for

the full year of 2021. Daily power demand of EV charging is also recorded for each customer, which

serves as the “ground truth” to verify the accuracy of the detection results using our approach.

4.1 Distributions of charging patterns

The first step is to detect daily charging events of each customer from the smart meter data by

solving the MICQP. We remark that some customers have photovoltaic (PV) systems, so the measured

consumption has already been offset by the PV generation. In order to compare the detected events

with the ground truth, the smart meter data for these customers are pre-processed by subtracting

the PV generation. Figures 1 and 2 show examples of the charging events detected during a day

of selected customers. Two experiments are performed: (1) using smart meter data measured at a

15-minute interval and (2) using hourly measurements.

0 20 40 60 80
Time (every 15min)

0

5

10

kW

Load 1517- Day 217
AMI
EV
EV (truth)

0 20 40 60 80
Time (every 15min)

0

5

kW

Load 2470- Day 246
AMI
EV
EV (truth)

0 20 40 60 80
Time (every 15min)

0.0

2.5

5.0

kW

Load 2018- Day 58
AMI
EV
EV (truth)

Figure 1: Examples of EV charging events detected from smart meter data measured throughout a day at every 15 minutes

We observe in Figure 1 that EV charging events are accurately detected from the meter data

measured at every 15 minutes in terms of start time, duration, and the power level. We demonstrate

that our method can accurately detect the EV charging events in the following cases: multiple events

occur during the day (e.g., Load 1517 and Load 2018), periods with constant higher power consumption

are not identified as EV charging (e.g., Load 2470), and the pause between two charging events is

correctly recognized (e.g., Load 2018). We also test our approach on the same customers/days but

using hourly meter measurements, and the results are shown in Figure 2. We observe that while

EV charging events can still be detected, the level of accuracy is reduced mainly due to the lack of

data. For example, the power level is determined to be 3.6kW for Load 1517 because the baseload
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Time (hourly)
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Load 1517- Day 217
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EV
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Load 2470- Day 246
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EV
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Time (hourly)
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kW

Load 2018- Day 58
AMI
EV
EV (truth)

Figure 2: EV charging events detected for the same customer/day as in Figure 1 but from smart meter data measured at
every hour

consumption during the day would become negative if the power level were set at 7.2kW. For Load

2470, a peak demand at 2AM is mistakenly identified as a charging event for 1 hour. Lastly, the brief

pause between the two charging events for Load 2018 is not picked up, hence the extracted information

on start time and duration of the charging event is not exact.

To benchmark the performance of our proposed approach to detect the EV charging events, we

compare it with two other algorithms: one based on signal decomposition [21] and the other using a

trained CNN model [22]. We adopt the two metrics used in [21] to evaluate the detection performance

on customer i’s data:

• F1 Score F1 that measures the accuracy of detection results. The score is defined in terms of

sample counts in True Positive (TP ), False Positive (FP ), and False Negative (FN) conditions:

F1i =
2TPi

2TPi + FPi + FNi
.

• Explained Variance Score Evar that measures the dispersion or discrepancy between the detected

and true EV consumption data. The Evar score is defined as:

Evar,i = 1−
Var(PEV

i − PEV
i,true)

Var(PEV
i,true)

,

where PEV
i ,PEV

i,true ∈ RNDT are the detected and true EV charging consumption for all days,

respectively.

We remark that the closer the two metric values are to 1, the better the performance of the algorithm is.

Although the benchmark algorithms also use Pecan Street datasets to test the performance, it is

not clear what customers and time periods are included in the datasets. Therefore, it is not possible
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to directly compare the metric values of a specific customer. Instead, we report the minimum, mean,

median, and maximum of F1 and Evar values obtained for all customers in the dataset used in this work,

and compare them with those reported in [21, 22] using their datasets. The values are shown in Table 1.

We note that the performance of our approach is comparable to that of the benchmark algorithms.

Although the minimum, mean, and median values from our approach are slightly lower, we should

emphasize that the meter data used in both benchmark algorithms have 1-minute intervals, while

data with 15-minute intervals are used in our work. As pointed out in [21], as the data measurement

interval increases, the accuracy of the algorithm decreases (e.g., the mean Evar drops to 0.69 if data

with 15-minute intervals are used in [21]). Further, to obtain high accuracy, the CNN approach [22],

being a supervised-learning method, needs a large number of labelled training samples which are

difficult to obtain in practice. While the method in [21] does not require training, tuning of the

hyperparamters in both stages of the decomposition is required to differentiate EV charging from the

use of air conditioners. In our approach, by leveraging the readily available contextual information of

EV charging events, we do not require high-resolution data, and we achieve comparable accuracy with

that of the literature without any model training or hyperparameter tuning.

Table 1: Performance comparison with other algorithms

Proposed approach Decomposition [21] CNN [22]

F1 Evar F1 Evar F1 Evar

Min 0.696 0.512 0.771 0.611 0.765 0.857
Mean 0.876 0.805 0.906 0.831 0.892 0.890
Median 0.889 0.819 0.909 0.852 0.911 0.891
Max 0.967 0.972 0.982 0.974 0.925 0.924

Next, we compute the empirical distributions for customers’ charging habits as in (18) based on

charging events detected for all customers during a full year. We use the meter data with 15-minute

intervals due to the better accuracy of the detection results. We compare the estimated PMFs and

the cumulative distribution functions (CDFs, except for the charger power levels) computed from the

detection results with those from the ground truth in Figure 3. The following can be inferred from the

results for the customers in this Pecan Street dataset:

• Customers tend to charge EVs during evenings until early mornings, with slightly higher proba-

bilities starting in the evenings;

• Each charging event usually does not last more than 9 hours;

• Daily energy consumption for charging EVs rarely exceed 60kWh, and;

• More than half of the EVs are charged at 3.6kW.

We remark that in the distributions of the charging start time, high probabilities of starting the

charging at midnight are observed. This is because some charging events start during the evening and

continue until the next day. In this case, as we only detect events during one day’s time window, the

event is broken into two parts with the second part starting at midnight the next day. Also, as we

only detect events lasting more than 1 hour, we obtain a zero probability for charging events starting

on and after 11PM and for charging duration less than 1 hour, which are observable differences when

comparing the distributions in Figure 3.

4.2 Impact analysis of EV charging

In this part of the case study, we use the inferred charging patterns to study the impact of EV charging

to the distribution network using the stochastic method described in [8]. The IEEE-8500 test feeder [1]

is selected with some modifications to demonstrate the results. We construct the set of all possible per-

unit charging profiles based on the detected results using (19) and (20). The resulting set contains a

total of 4224 profiles. We then use (21) to calculate the probability that each profile will be adopted by
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Figure 3: Distributions of start time, duration, daily energy, and charger power levels based on detected charging events

the customers on the network. We illustrate the probabilities of all profiles as a heat map in Figure 4,

where each profile is represented by the tuple (start time, duration). For example, (8PM, 2h30m)

represents the profile for which charging starts at 8PM and lasts for 2 hours and 30 minutes. To get

the EV charging profiles in kW, we multiply the per-unit profiles with the 6 power levels in P. The

distribution of the power levels is shown in the bottom right plot of Figure 3. For simplicity, we assume

that the distribution of power levels and the probabilities that per-unit charging profiles are adopted

by the customers are independent.

In Figure 5 we show the impacts of EV charging on the loading level of the substation transformer

at penetration rates of 10%, 30%, 50%, and 80%. The penetration rate is defined as the ratio of

the number of EVs connected to the network over the total number of customers. We use both the

inferred probabilities and the true probabilities as in Figure 4 to perform the impact analyses. At each
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Figure 4: Probabilities of profiles

penetration rate, we show the loading curve over one day without any EV connected and compare the

loading curves obtained from the two sets of probabilities. We observe that as the penetration grows,

impacts to the transformer loading level increase, and the transformer becomes overloaded during the

evening hours at 80% EV penetration. Due to differences in the profile distributions, errors between

the two loading curves are more observable at higher penetration rates. We extract the per-unit errors

at all penetrations and show them in Figure 6. Errors are mostly higher during 9AM-11AM and

evening hours, which correlates with the differences of the profile distributions observed in Figure 4.

At 80% penetration rate, the worst error is around 0.06 p.u. or 6%.
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Figure 5: Comparison of the substation transformer loading levels using detected and true profile probabilities at various
EV penetration rates
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5 Conclusion

In this work, a non-intrusive and training-free method is proposed to detect BTM EV charging events

based on customers’ smart meter data. Our approach does not require labelled training data nor

hyperparameter tuning, and achieves a similar level of accuracy in extracting information of charg-

ing events as that of the literature by using meter data measured at every 15 minutes. Through a

data-driven approach, we infer customers’ charging patterns in terms of probability distributions of

charging profiles from the detection results during an entire year. We compare the inferred probability

distributions with those from the ground truth, and illustrate that even if there exist some minor dif-

ferences between the two sets of distributions, no significant error occurs in the results of EV charging

impact analyses. The inferred probability distributions from our approach allow utilities to not only

evaluate impacts that EV charging may bring to power distribution networks, but also design incentive

programs to mitigate equipment overload for better planning and operation of their networks [7].

Our detection approach requires that the meter data contain only consumption; in other words, if

customers have power-generating devices installed such as PV or battery systems, the generation must

be subtracted from the meter data. As this information may not be available in practice, in the future

we wish to extend our approach by adding an extra step to estimate BTM generation (e.g., [9]) and

exclude them from the meter data.
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