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nécessaire et un lien vers l’article publié est ajouté.
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Abstract : A challenge in aircraft design optimization is the presence of non-computable, so-called
hidden, constraints that do not return a value in certain regions of the design space. In this paper,
we present a novel method to handle hidden constraints in aircraft conceptual design using Bayesian
optimization. The method entails modifying a portion of the acquisition function of a Bayesian op-
timization formulation using supervised machine learning classifiers. The proposed approach reduces
the effect of classifiers on exploration, therefore allowing the optimization algorithm to consider re-
gions of the design space where previous information is not available. In addition, we consider different
classifiers for handling hidden constraints. We demonstrate the proposed method using two simulation-
based aircraft design optimization problems related to landing gear sizing and aircraft performance.
The obtained results show an improvement of the objective function with fewer function evaluations.

Keywords: Bayesian optimization, expected improvement, hidden constraints, simulation failure,
machine learning classification, aircraft design
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1 Introduction

Aircraft development is a complex process that involves significant investment over multi-year design

phases. This necessitates a strict approach for decision making that minimizes errors and the need

for design re-work. The first of an aircraft’s design phases is named the conceptual design phase

and entails selecting the aircraft configuration and the major design parameters. It is estimated that

about 70% of the projected life-cycle cost of an aircraft can be committed based on design decisions

taken during the conceptual design stage of the design process [14, 34]. Therefore, aircraft manufac-

turers rely heavily on tools to simulate and improve an aircraft’s conceptual design and have been

increasingly bringing disciplines typically done in later design stages into the early conceptual de-

sign phase [9, 17, 28, 39]. In addition to adding simulation disciplines to early design phases, aircraft

designers have relied on optimization algorithms since the 1970’s to aid in solving problems within spe-

cific aircraft disciplines or to address overall multidisciplinary problems by means of multidisciplinary

design optimization (MDO) [40]. MDO algorithms have been extensively studied and exploited on

aircraft design applications, for example, for solving complex aero-structural interactions of complete

aircraft configurations captured using high-fidelity models [32], or for solving conceptual design prob-

lems using lower-fidelity models that address a large number of disciplines [28]. Typical optimizations

in aircraft design involve failed (crashed) simulations that prevent the completion of an optimization

or its convergence. A failed simulation in an optimization is defined as a simulation that terminates

unexpectedly resulting in an error in the outcomes of the optimization. In this work, we refer to these

failed simulations in an optimization as hidden constraints. Hidden are not explicitly known to an

optimization solver as per [23]. In aircraft design optimization, such simulation failures can happen

due to several reasons ranging from failure of an aerodynamic solver to converge [25, 37] to limitations

in black box simulations that cause crashes such as engine performance evaluation [8].

Surrogate-based optimization (SBO) refers to a class of methods where typically lower-fidelity

physics- or data-based models are used in lieu of higher-fidelity models under the premise that the

former are less computationally expensive and/or smoother than the latter. Model surrogates can be

constructed during the optimization process. In this work, we consider the Bayesian optimization (BO)

paradigm where Gaussian processes (GP) are used to model the objective and constraint functions. BO

has become a popular method for solving optimization problems in aerospace engineering design [18,

21, 30, 35].

Handling hidden constraints in BO algorithms has been identified and investigated recently in [2,

5, 15, 24, 33, 41]. A hidden constraint typically appears when simulations within an optimization
crash which makes them not quantifiable and difficult to handle. [24], used a random forest classifier

to calculate a feasible probability and integrated the classifier within an expected improvement (EI)

acquisition function. In [33], the authors extended a method developed by [7] to handle hidden con-

straints within BO. The authors use a least-squares support vector machine technique for classification

of both known and hidden constraints which is used to model arly design phases, aircraft designers

have relied on optimization algorithms since the 1970’s to aid in solving problems within specific air-

craft disciplines or to address overall multidisciplinary problems by means of multidisciplinary design

optimization (MDO) [40]. MDO algorithms have been extensively studied and exploited on aircraft

design applications, for example, for solving complex aero-structural interactions of complete aircraft

configurations captured using high-fidelity models [32], or for solving conceptual design problems us-

ing lower-fidelity models that address a large number of disciplines [28]. Typical optimizations in

aircraft design involve failed (crashed) simulations that prevent the completion of an optimization or

its convergence. A failed simulation in an optimization is defined as a simulation that terminates

unexpectedly resulting in an error in the outcomes of the optimization. In this work, we refer to these

failed simulations in an optimization as hidden constraints. Hidden are not explicitly known to an

optimization solver as per [23]. In aircraft design optimization, such simulation failures can happen

due to several reasons ranging from failure of an aerodynamic solver to converge [25, 37] to limitations

in black box simulations that cause crashes such as engine performance evaluation [8]. the boundary
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of the feasible design space of an efficient global optimization problem. [15] proposed a framework to

perform BO under hidden constraints using a probabilistic approach where constraint satisfaction can

be determined by meeting a probability of feasibility threshold. In [2], the author presents a sequential

BO framework for problems that are undefined or partially outside the feasible region. The framework

uses a support vector machine classification method to estimate the boundary of the feasible design

space which is then used to construct surrogate models of the objective function. [41] proposed the

use of an external classifier using Gaussian processes that determines a probability of feasibility. The

calculated probability is then used to condition the acquisition function directly similar to the approach

proposed in [24]. [5] developed a Gaussian process classifier and applied it on a modified EI acquisition

function. The authors then provided proof of global convergence of the approach. [4] proposed in [4]

the use of k-nearest neighbors classifiers to build surrogate models that guide a mesh adaptive direct

search optimization algorithm. In this paper, we propose a method to handle hidden constraints and

present its application on industrial test cases.

The paper is organized as follows. Section 2 presents hidden constraints in aircraft design optimiza-

tion and two aircraft design optimization applications with hidden constraints. Section 3 describes the

following: BO algorithm with and without hidden constraints, the proposed acquisition function to

handle hidden constraints, supervised machine learning (ML) classifiers modeled to represent hidden

constraints, and an analytical illustration example. Aircraft design problems results are presented in

Section 4 where we compare optimization results of the proposed acquisition function with existing

methods using several types of ML classifiers. Conclusions and perspectives are given in Section 5.

2 Hidden constraints in aircraft conceptual design

Hidden constraints in aircraft design optimization are dependant on the type of problem to be solved

but can be generalized into two categories: (1) inability of models to generate solutions, (2) failure in

simulation models due to physics-based limitations, bugs in the models, or architecture and software

implementation of the models. An example of the first category is an aerodynamic optimization where

the CFD solver may not converge due to complex flow fields and geometries therefore returning an error

to the optimizer [25]. Another similar example would be a computer aided design (CAD) modeler’s or

mesh generator’s inability to create models for the aerodynamic solver thus causing a failure [13]. The

second category applies to simulation codes where failures occur due to either errors in a black box code

or regions of the design space that cannot return a value due to the physics of the problem at hand.

An example of such is presented in [11] when performing an optimization for an aircraft environment

control system. In the considered problem in [11], certain designs can lead to supersonic solutions for

which the values of temperatures and pressures predicted by the environment control system model

are considered as simulation failures. We consider such models as non-robust models since known

constraints should be created to prevent simulation failure. We note however, that there could also be

a third category of hidden constraints which could be driven by other reasons for simulation failures

that are considered random such as infrastructure related issues. An example we encountered where

communication issues between a cloud computing platform and simulation models caused failures of

some iterations of an optimization. Such failures must be addressed differently from what we consider

as hidden constraints in this paper, that is by solving the issues causing such failures. We do not

address the first category of hidden constraint problems in this paper (i.e., inability of models to

generate solutions such as CFD-based aerodynamic design optimization) as there is a dedicated field

of research to increase solver robustness as discussed in [25]. We target instead the second category of

hidden constraints, i.e., black box simulation models with failure, and consider aircraft applications of

this category.

In this paper, we use a simulation-based aircraft conceptual design optimization problem as the ap-

plication to demonstrate hidden constraints by leveraging Bombardier’s multilevel multidisciplinary op-

timization framework [28]. The chosen aircraft is based on the Bombardier Research Aircraft (BRAC)

discussed in [30, 31], see Figure 1. The problem is a minimization of aircraft maximum takeoff weight
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Figure 1: 3D model of the BRAC aircraft used in the two industrial application problems.

(MTOW) using 12 design variables and subject to 12 inequality constraints. The optimization problem

is formulated as follows: {
minimize

x∈Ω
MTOW(x)

subject to ci(x) ≤ 0, i = 1, . . . , 12,
(1)

where MTOW represents the aircraft maximum takeoff weight, x ∈ Ω, defined as the design space

⊂ R12, is the vector of the design variables (see Table 1 for a detailed description) which are all

bounded, and ci(x) i = 1, . . . , 12 are the inequality constraints described in Table 2.

Table 1: A list of the design variables related to the aircraft conceptual design.

Design variables Description

x1 Rubber engine scaling factor
x2 Wing aspect ratio
x3 Wing area
x4 Wing trailing edge sweep
x5 and x6 Wing rear spar chord-wise location
x7 Wing sweep
x8 Wing taper ratio
x9, . . . , x12 Wing thickness-to-chord ratios

Table 2: A list of the aircraft conceptual design problem constraints.

Constraint Description

c1(x) Balanced field length
c2(x) Initial cruise altitude
c3(x) Aircraft reference speed Vref
c4(x) Excess fuel weight
c5(x) and c6(x) Wing flight controls actuation height clearance
c7(x) and c8(x) Wing flight controls actuation chord clearance
c9(x) Wing chord clearance for landing gear integration
c10(x) Wing tip chord
c11(x) Aircraft climb performance
c12(x) Aircraft mission range

The extended design structure matrix (XDSM) [22] of the two problems considered in Section 2.1

and 2.2 is presented in Figure 2. The MDO environment uses the optimization framework described in

Section 3 that interfaces with an aircraft multidisciplinary analysis (MDA) environment. This MDA

environment is comprised of sizing and simulation models of all major disciplines in aircraft conceptual

design. The MDA uses design variables defined by Table 1 to first size aircraft engines (using a reference

engine), wings, and structures (based on a reference structure) and performs low-speed and high-speed

aerodynamics analyses. Then an aircraft balancing MDA loop is performed by assessing the mission

performance of the sized aircraft based on fuel volume calculations, fuel burn curves, weight estimation

of all aircraft components, tail sizing, and center of gravity envelopes. The balanced aircraft is then

used to perform constraint checks in landing gear and flight control systems volumetric codes. The

results of the MDA are fed back to the optimizer that collects all MDA parameters and quantities of
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x EngineDeck ReferenceStructure Configuration Architecture

MTOW , c 0, 14− 1 : MDA x0 x x

1 : Engine Thrust,SFC Weight

2 : Wing Volume

3 : Aerodynamics

4 : Structure

10 : MTOW , c 5, 10− 6 : Balancing

c 6 : AircraftPerformance

7 : Fuel

MTOW 8 : Weights

9 : Tail

12 : c9 11 : LandingGear

14 : c5 13 : FlightControls

Figure 2: XDSM representation of the aircraft conceptual design optimization problem.

interest and associated design variables are obtained. The optimization process is performed by firstly

defining a reference aircraft as a starting point and used later on a reference for engine and structures

scaling and secondly defining the bounds of the design variables to meet aircraft design requirements

which are defined as part of the constraints. It is noted that in this industrial MDO environment, any

improvements of the minimum relative to the starting aircraft are deemed beneficial, for example, a

15% reduction in MTOW between the starting aircraft and the obtained minimum after optimization

is considered a significant improvement. Due to Bombardier intellectual property considerations, some

industrial cases have been modified and reproduced for the purpose of this work.

In the following subsections, we present descriptions of the two aircraft design problems subject to

hidden constraints that will be used in this paper as the industrial applications.

2.1 Landing gear sizing simulation

For the first problem, a landing gear code from [38] was added to simulate a hidden constraint which

is comprised of the following subroutines:

• Positioning subroutine: ground contact point positioning which starts with a defined wing and

fuselage configuration. Given aircraft center of gravity (CG) limits and wing and fuselage ge-

ometry, the main and nose landing gear are positioned to satisfy a set of predefined constraints.

Examples of such constraints are the tip over and tail strike angles shown in Figure 3.

• Sizing subroutine: structural sizing using three major load cases that typically size landing gear

structure and then select main and nose landing gear tires and rims.

• Kinematics subroutine: kinematics of retraction analysis is performed to determine the stowage

location of the gear and the feasibility of the proposed design from the previous processes.

Landing gear simulation failure in this problem is due to the kinematics subroutine and is driven by

two distinct possible simulation failures. The first possible simulation failure occurs when calculating

the extended position of a trailing arm type main landing gear as shown in Figure 4 (a). Compressed

position is based on landing gear geometry, aircraft loads, wing or fuselage attachment points. The

calculation of the extended position is based on aircraft weight, landing sink speed, compressed position,

and fixed attachment points to the aircraft structure represented by the so-called pintle pin. In certain

scenarios, the calculation of this extended position leads to an infeasible configuration and a simulation

crash occurs. The second possible simulation failure occurs when analyzing landing gear kinematics
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Figure 3: Landing gear positioning constraints examples showing tip over angle and tail strike angle (adapted from [10]).

Wing rear spar

Auxiliary spar

Pintle pin

Retracted
landed gear

Extended
landed gear

(a) A landing gear retraction kinematics [38] (b) A landing gear arrangement [36]

Figure 4: Representation of kinematics of retraction, compression, and extension of a trailing arm landing gear model

of retraction, e.g., simulation failure occurs if the position of the wing is not aligned with the landing

gear bays which causes an error when calculating landing gear pintle pin (retraction axis) orientation.

Figure 4 (b) shows an example aircraft illustrating a compressed landing gear and a corresponding

retracted landing gear inside dedicated bays. We treat this code as a black box simulation. Therefore,
we assume that we cannot adjust the internal code to avoid the hidden constraint or create a known

constraint.

2.2 Aircraft performance simulation

A second problem that occurs due to an aircraft performance model simulation failure is presented

herein. The aircraft performance model is responsible for analysis and simulation of aircraft ground,

takeoff, climb, cruise, and descent performance. This model crashes when aircraft design variables

lead to insufficient engine thrust at the beginning of the cruise flight phase, known as the initial cruise

altitude. Takeoff is the first phase of flight starting from an initial aircraft velocity of zero and ending

when the aircraft reaches an altitude of 35 ft as illustrated in Figure 5. An aircraft then transitions

to a so-called en route climb where a rate of climb is set at a fixed aircraft speed until engine thrust

is incapable to maintain the rate of a minimum set rate of climb. The initial cruise altitude is set

when the minimum rate of climb condition is no longer met, and the engine thrust setting is adjusted

to the cruise setting to meet the required cruise speed. Aircraft takeoff performance is driven by

aircraft weight, drag, lift, engine thrust, airport altitude, and ground rolling friction. Climb and cruise

performance are dependant on aircraft speed and altitude. The thrust produced by an aircraft engine

is reduced with increasing speed of the aircraft and with increasing altitude. In this optimization
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Figure 5: Aircraft takeoff phase illustration (adapted from [3]).

problem, design variables affecting wing design x2, . . . , x12 impact drag and lift whereas the engine

scaling factor x1 impacts all thrust ratings and altitude/speed combinations. Failure of the simulation

occurs when the combination of design variables lead to insufficient thrust to overcome aircraft drag

at high speed at initial cruise altitude. The aircraft model would be able to simulate takeoff and climb

at climb speed. However, the mission fails when initial cruise altitude is reached at the high speed

aircraft requirement. Aircraft thrust requirement is calculated based on aircraft drag using [3]

D =
ρv2CdSref

2
, (2)

where D is total aircraft drag, Cd is the drag coefficient, ρ is the dynamic pressure, v is aircraft speed,

and Sref is the reference aircraft wing area. T is engine thrust, and maximum T is defined based on

x1, whereas Cd and Sref are dependant on x2, . . . , x12. If D is higher than the T values at different

flight phases determined using the engine scaling factor x1, the code leads to a simulation failure as

the aircraft performance model is not able to maintain the required aircraft speed. The non-linear

relationships between D, Sref, and x2, . . . , x12 and the corresponding non-linear behaviour of this

failure region presents a valuable demonstration of methods used to handle hidden constraints. This

type of simulation failure falls within category (2) of hidden constraints since the failure occurs due

to the specific software implementation of the aircraft performance model. Similar to the landing gear

model in Section 2.1, we assume that the aircraft performance model is a black box simulation and a

known constraint cannot be created to prevent this simulation failure.

3 Bayesian optimization with hidden constraints

A black box constrained surrogate-based optimization creates surrogate models of an objective y(x)

and equality and inequality constraints c1(x), . . . , cm(x) that are evaluated using black box simulations

without knowledge of the internal model of these simulations. In this work, an inequality-constrained

surrogate-based optimization problems is formulated as{
minimize

x∈Ω
ŷ(x)

subject to ĉi(x) ≤ 0, i = 1, . . . ,m,
(3)

where ŷ(x) is a surrogate model of objective function and ĉ1(x), . . . , ĉm(x) are surrogate models of

the constraints. In the case of Bayesian optimization, the surrogate models are Gaussian process, or

variations thereof, to be able to estimate probability distributions. These models are reconstructed

during the optimization process. Prior to the optimization, a fixed number of evaluations design

of experiments (DOE) is typically conducted to create the initial surrogate models and probability

distributions. The optimization loop starts after the DOE evaluations as described in Algorithm 1.

A so-called sequential enrichment problem is solved at every optimization iteration. The sequential

enrichment problem aims to maximize an acquisition function that uses surrogate model values along
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with the probability distributions to balance exploration and exploitation of the optimization process.

The solution of the sequential enrichment problem then recommends a new location in the design space

for the objective and constraint functions to be evaluated using black box simulations. The newly

evaluated location is then added to the data sets of the optimization. The optimization continues

until a certain convergence threshold is met or until a maximum number of iterations is reached as per

Algorithm 1.

Algorithm 1: The constrained Bayesian optimization framework.

Input: Initial DOE
Output: Best feasible point from the DOE

1 for i = 1, . . . ,max iter do
2 Build GP surrogate models of the objective and constraints functions.;

3 Maximize an acquisition function to find xi+1. ;

4 Evaluate objective and constraint functions at xi+1.;
5 Update the DOE.;

6 end

3.1 Feasibility enhanced acquisition functions

Several acquisition functions have been proposed and investigated, ranging from traditional and widely

used functions such as probability of improvement (PI) [20] and expected improvement (EI) [19] to

newly developed functions such as scaled Watson Barnes (WB2S) [6]. The probability of improve-

ment [20] is given by

PI(x) = P(y(x) ≤ ymin) = Φ

(
ymin − ŷ(x)

ŝ(x)

)
, (4)

where ymin is the minimum value of the objective function observed so far, ŷ(x) and ŝ(x) are mean

and standard deviation of the Gaussian process, and Φ is the normal cumulative distribution function.

The expected improvement (EI) [19] is of the form:

EI(x) = (ymin − ŷ(x)) Φ

(
ymin − ŷ(x)

ŝ(x)

)
+ ŝ(x)ϕ

(
ymin − ŷ(x)

ŝ(x)

)
, (5)

where ymin is the value of the incumbent objective function, ŷ(x) and ŝ(x) are mean and standard

deviation of the Gaussian process. Φ and ϕ are the cumulative distribution function and probability

density function of the Gaussian process respectively. If ŝ(x) = 0, EI(x) is set to zero.

The scaled Watson Barnes WB2S [6] is:

WB2S(x) = sEI(x)− ŷ(x), (6)

where s is a non-negative scaling factor defined in [6]. In previous work, methods to adapt BO to handle

hidden constraints included the conditioning of the acquisition function by either the probability of

non-failure or class of non failure [5, 15, 24, 33, 41]. Another method that is also used in the literature

is constraining the design space of an optimization based on regions of predicted failures as shown

in [2, 7, 33]. Typical expected feasible improvement acquisition functions are defined by:

EFIP(x) = pnf(x) EI(x) (7)

and

EFIC(x) = cnf(x) EI(x), (8)

where pnf is the probability of non-failure and cnf is the class of non-failure calculated using a surrogate

model Z(x). The main drawback of the existing methods that condition the acquisition function by the
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probability, or class, of non-failure is that during the early phase of an optimization process EFIP(x)

and EFIC(x) could be incorrectly driven by the non-failure predictor, Z(x), away from exploration

regions of the design space especially if a non-sequential based framework is used. To demonstrate this

behaviour, we present in Figure 6 a 1-dimensional function y(x) constrained by two hidden simulation

failure regions. The minimum of y(x) lies in between these two hidden simulation failure regions. We

use a BO algorithm per Algorithm 1 and a k-nearest neighbors classifier (kNN) at k=3 to calculate pnf.

After 50 iterations, the acquisition function no longer explores any of the hidden constraint regions

nor the feasible region in between. This is driven by the non-failure predictor, Z(x), where EFIP(x)

is estimated to be equal to zero even within the feasible region where the minimum lies. In addition,
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(a) Function visualization and function evaluations at iteration
50.

2 3 4 5 6 7 8
x

0.0

0.2

0.4

0.6

0.8

1.0

P n
f Pnf

(b) Values of pnf using a classifier at iteration 50.
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(c) Values of ŝ(x) at iteration 50.
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(d) Values of the EFIP(x) at iteration 50.

Figure 6: 1-dimensional function BO example (sin(x) + sin( 10
3
x))using EFIP(x) showing the hidden regions (3.5 < x <

4.8 and 5.2 < x < 6.3) (in red).

global convergence cannot always be guaranteed using the expected feasible improvement acquisition

functions in Eq. (7) and Eq. (8) for all types of classifiers. Global convergence proof of Eq. (7) has

been shown using a Gaussian process classifier in [5], however using different types of classifiers do

not always guarantee global convergence. For a BO algorithm that uses a Gaussian process ζ(x), an

acquisition function can be written in a form that separates an exploitation portion from an exploration

portion as presented in the formulation of EI in Eq. (5). The exploration term is dependant on the

standard deviation term ŝ(x). We hypothesize that in regions of the design space where ŝ(x) is high

for ζ(x), the non-failure predictor model Z(x) would be inaccurate. In order to minimize the impact

of the inaccuracy of Z on the acquisition function, we try to reduce the influence of the former on the

exploration region of the latter by means of an exploration factor α. Therefore, for a given x ∈ Ω and

as far as ŝ(x) ̸= 0, a feasibility enhanced expected improvement acquisition function EFIFE(x) at x is
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defined by:

EFIFE(x) = pnf(x) (ymin − ŷ(x)) Φ

(
ymin − ŷ(x)

ŝ(x)

)
+ pnf(x)

α(x)ŝ(x)ϕ

(
ymin − ŷ(x)

ŝ(x)

)
. (9)

If ŝ(x) = 0, EFIFE(x) is set to zero. The parameter α ∈ [0, 1] can be seen as an exploration factor

that allows the acquisition function to approach failure regions of the design space.

The EFIFE acquisition function conditions the exploitation portion of EI similar to EFIP; however

the impact on the exploration portion is minimized by the term α. We note that when α = 1 one has

EFIFE = EFIP. We propose a dynamic calculation of the term α during an optimization based on x.

The goal of this dynamic calculation is to prevent the acquisition function from solely relying on pnf
considering the example shown in Figure 6. Therefore, we use a term s̄c(x) that relies on information

from ŝ(x) of ζ to determine the value of α as follows

α(x) =


1.0, if s̄c(x) ≤ ϵ,

0.0, if s̄c(x) > ϵ and pnf(x) = 0,

α0, if s̄c(x) > ϵ,

(10)

where ϵ is a pre-specified tolerance and s̄c(x) is defined as follows

s̄c(x) =

{
0.0, if x ∈ A

ŝ(x), otherwise,
(11)

where A is a set containing all simulation failure data with a predefined tolerance. The fixed term

α0 is the fixed exploration factor that allows the acquisition function to explore closer to a failure

region even if pnf is low. We also note that another approach instead of Eq. (11) could be to directly

equate s̄c(x) = ŝ(x) and apply a filter after the acquisition function optimization results to remove any

values that lie within A. To visualize the impact of α(x) on the acquisition function, we consider the

same example from Figure 6 and calculate EFIFE as shown in Figure 7. We note that the exploration

portion of the acquisition function is not affected by pnf as opposed to EFIP from Figure 6 (d). In

this case, the impact of α0 is negligible since α(x) falls either under the first or the second conditions

from Eq. (10). Nonetheless, it is evident that the acquisition function in this case will keep exploring

the regions where pnf = 0 until the design space meets the standard deviation tolerance ϵ.
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Figure 7: EFIFE values of the 1-dimensional function after the same 50 function evaluations from Figure 6.

In this paper, we implement and test the proposed acquisition function based on EI, however

the approach can be expanded for any type of acquisition function where its formulation allows the

separation between exploration and exploitation. For example, the WB2S acquisition function in

Eq. (6) can be reformulated as

WB2SFE(x) = sEFIFE(x)− pnf(x)ŷ(x). (12)
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A Bayesian optimization algorithm can be adapted to handle hidden constraints using EFIFE(x)

as shown in Algorithm 2. It is noted in this updated algorithm that the classifier model of the hidden

constraint is updated once at every loop of the Bayesian optimization and that the probability of

feasibility is then calculated using this classifier model at every call within the sequential enrichment

problem to calculate EFIFE(x). This approach reduces the impact of building the classifier model on

computational costs by building a single classifier model for all hidden constraints. Calculation of pnf
is dependant on the selection of the failure classifier Z and is shown in Section 3.2.

Algorithm 2: Bayesian optimization with hidden constraints.

Input: Initial DOE and simulation failure set A
Output: Best feasible point from the DOE

1 for i = 1, . . . ,max iter do
2 Build GP surrogate models of the objective and constraints functions.;
3 Build failure classifier Z to estimate the probability of non-failure pnf.;
4 Estimate parameter α using Eq. (10).;

5 Maximize a pnf based acquisition function (EFIFE or WB2SFE) to find xi+1. ;

6 Evaluate objective and constraint functions at xi+1.;
7 Update the DOE and simulation failure set A.;

8 end

3.2 Non-failure probability estimation

Several models have been proposed in the literature to represent hidden constraints using supervised

ML techniques. The use of Gaussian process classifiers, conditioned by signs of observations was

proposed in [5]. Random forests were used in [24]. We consider additional popular ML classification

means to compare with existing literature, including nearest neighbor classifiers, decision trees and

rule-based classifiers, probabilistic models, and support vector machines. We use labeled data from

failed evaluations to construct and adapt these classifiers on supervised data.

The k-nearest neighbors classifier is commonly based on the Euclidean distance d between a sample

x and the specified training samples xtrain ∈ N samples [1]. In a 2 class set where simulation failure

is one class and non-failure is another, the probability of the non failure class at a given point x is

computed by

pnfkNN
(x) =

∑
i∈N I(x)d(x, xi)∑

i∈N d(x, xi)
, (13)

where d(x, xi) is the distance between the point x and a training point xi and I(x) is an index function

that is equal to one when the predicted class is non-failure and zero otherwise [27].

Decision trees use a set of tree-like hierarchical decisions on the input variables to model the

classification process; however, such methods may suffer from over-fitting or coarse approximations of

a true classification boundary layer if the amount of training data is insufficient [16]. In this context,

the probability for a decision tree for pnf is computed at a terminal node m of the tree with Nm

samples by

pnfDT(x) =
1

Nm

∑
x∈Nm

I(x). (14)

Probabilistic classifiers such as logistic regression construct a relationship between the input features

and output class as a probability [1]. In logistic regression, the probability of a class-membership is

expressed in terms of feature variables using a discriminative function. In a binary classification

problem of failure and non-failure, the probability of an instance x belonging to the non-failure class

is modeled using the logistic function from [1, 16]

pnfLR(x) =
1

1 + exp (θ0 + θ⊤x)
, (15)
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where θ0 is an offset parameter and θ is a coefficient with the same dimensions as x. Training a logistic

regression model entails solving an optimization problem that maximizes a likelihood function using

(θ0, θ) as design variables where the likelihood function is defined as the product of the probabilities

of all the training examples predicting their assigned classes using Eq. (15).

Non-linear support vector machines (SVM) classify instances by defining a boundary that sepa-

rates classes of samples from a dataset. SVM does not directly compute probability to obtain class

predictions. We present the method used in [27] to compute this probability. In a case of two class

classification, the class probabilities are calibrated using the scaling proposed in [29].

pnfSVM
(x) =

1

1 + exp (af(x) + b)
, (16)

where f(x) is the SVM uncalibrated prediction of the hidden constraint at x and parameters a and

b are found by minimizing an error function on the training data [29]. The uncalibrated SVM model

prediction f(x) is obtained using data from N training samples as follows

f(x) =

N∑
i=1

λizik(xi, x),

where xi is the ith training sample, λi is the corresponding Lagrangian multiplier of the sample and

is obtained by solving a so-called Lagrangian relaxation problem defining the boundary of the SVM,

zi is the class of the training sample, and k is a kernel function used to handle non-linearity in the

defined boundary. In this paper, we use the Gaussian radial basis function kernel for SVM modeling

similar to [2].

Gaussian processes are also used as classifiers to estimate the probability of non-failure [42].

[5] proposed a Gaussian process classifier (GPC) method to modify the acquisition function of a

BO as in Eq. (7) in order to handle hidden constraints. The proposed GPC is conditioned on the

signs of the observations rather than their values where pnf is approximated as follows after sampling

N samples from the probability density function of the Gaussian process:

pnfGPC(x) =
1

N

∑
i∈N

ϕ̄

(−ĉ(x)

ŝ2c(x)

)
, (17)

where N is the number of observation samples, and ĉ(x) and ŝ2c(x) are the mean and variance of

the Gaussian process of the constraint at x. ϕ̄ is calculated from the standard Gaussian cumulative

distribution function:

ϕ̄(
a

b
) =

1− ϕ(
a

b
), if b ̸= 0

1, if b = 0.

3.3 Illustration example

The behaviour of the proposed method (see Algorithm 2) is illustrated using an analytical example

showing the impact on the acquisition function and convergence. EFIP and EFIFE functions and se-

lected classifiers are implemented in an open-source Python Bayesian optimization tool [26] in addition

to Scikit-learn libraries [27].The selected illustration example is an unconstrained optimization prob-

lem based on the scaled Branin-Hoo function presented in [12] shown by Eq. (18) and in Figure 8 (a).

minimize
x1,x2∈R2

f(x1, x2)

f(x1, x2) =

(
x̄2 −

5.1x̄1

4π2
+

5x̄1

π
− 6

)2

+ 10

(
(1− 1

8π
) cos x̄1 + 1

)
+ 3x̄1

where, x̄1 = 15x1 − 5, x̄2 = 15x2

and x1, x2 ∈ [0, 1]

(18)
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A hidden simulation failure region H is defined where f(x1, x2) returns non-valid values (i.e., Nan)

when x1 < 0.4 and x2 > 0.5 except for an inner region where the minimum lies where 0.05 < x1 < 0.2

and 0.7 < x2 < 0.9. A 50 evaluation optimization using EFIP is performed to test the behaviour of

the acquisition function. The hidden region H is illustrated in Figure 9 (a) and the updated function

including H is shown in Figure 8 (b). It is noted that H is selected so that the minimum of the

unconstrained problem shown in Figure 8 (a) lies in the feasible region within H in order to highlight

the impact of EFIFE acquisition function when the minimum is close to a failure region assuming that

pnf would be inaccurate in such a region.
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(a) Branin-Hoo objective function
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(b) Masked Branin-Hoo function

Figure 8: Visualization of the unmasked (contour map) and masked (white area) Branin-Hoo function showing results of
a 50-evaluation optimization using EFIP.

The 50 evaluation points are used to create a Gaussian process of the objective function and a clas-

sifier of the hidden region to predict the probability of non-failure pnf. The classifier selected is a kNN

classifier with k = 3 and pnf calculations using the classifier are shown as contour plots in Figure 9 (b).
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(a) Hidden region (in blue) and the non-failure region (in red)
at iteration 50.
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(b) Values of pnf using a kNN classifier with k = 3 at iteration
50.

Figure 9: Hidden region and classifier visualization using the 50-iteration DOE.

Using the kNN classifier with k = 3, EFIFE acquisition function is compared against EFIP using

the same classifier in Figure 10 where red contours represent higher values and blue contours present

lower values. Firstly, comparing the two acquisition function at the first iteration in Figure 10 (a)

and (b), we note that the behaviour of EFIFE differs in the left side of the Figure which can be
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(a) EFIP at iteration 1.

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x2

Non-failed simulations
Failed simulations

0

2

4

6

8

10

12

14

(b) EFIFE at iteration 1.
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(c) EFIP at iteration 17.
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(d) EFIFE at iteration 17.
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(e) EFIP at iteration 50.
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(f) EFIFE at iteration 50.

Figure 10: Acquisition function comparison at the first iteration, 17th iteration, and 50th iteration during an optimization
starting with a DOE of 5 samples.

attributed to high variance and a prediction of pnf of 0. We also note that EFIP favors exploitation

outside the hidden constraint region H compared to EFIFE. Secondly, we performed an optimization

using EFIFE and we show the acquisition function at the iteration where the failure region starts

to be explored (i.e., iteration 17 in Figure 10 (d)). Using the same 17 evaluations we show EFIP in

Figure 10 (c) and we note that: 1) EFIP prevents the optimizer from selecting future evaluation

points within H due to pnf, and 2) EFIFE favors exploring regions where there is a high variance of

the classifier Z(x). Finally, at iteration 50 using two different acquisition functions in Figure 10 (a)
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and (b), we can see that using EFIFE enables the optimizer to find the minimum in Figure 8 (b)

whereas EFIP still cannot access the region H.

In Section 4, we use optimization results directly to assess the use of EFIFE using the industrial

application problems considered in this paper.

4 Aircraft design optimization

The results of the industrial application problems introduced in Section 2 are presented here. All

results are obtained using an Intel® Xeon® CPU E5-1650 v3 @ 3.50 GHz core and 32 GB of memory.

Optimization results are normalized with respect to the considered baseline aircraft design. We first

compare results based on the choice of classifiers using the landing gear sizing problem from Section 2.1.

The five tested classifiers, as detailed in Section 3.2, are:

1. a k-nearest neighbors classifier with k=3 (kNN3),

2. an SVM classifier (SVM),

3. a Gaussian process classifier (Gaussian Process),

4. a decision tree classifier (Decision Tree), and

5. a logistic regression classifier (Logistic Regression).

We conducted 10 optimization runs using a DOE with as many sample points equal to the number

of design variables and 150 BO iterations. Figure 11 shows that the kNN3 classifier yields the best

convergence rate and lowest computational time. For that reason, in the remainder of this paper, a

kNN3 classifier will be used.
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Figure 11: Convergence of the landing gear sizing problem with respect to (a) number of iterations and (b) computational
time for an average of 10 optimization runs.

The impact of the exploration factor α0 on optimization convergence was also studied. Figure 12

depicts the convergence rate using 5 different values of α0: 1, 0.7, 0.3, 0.1, and 0. We first note that at

α0 = 1 and α0 = 0.7 the corresponding convergence rate is inferior compared to other lower values of

α0. This is expected since a lower value of α0 leads to more acquisition function exploration in regions

where pnf is low, and if the minimum lies close to the simulation failure regions, pnf may estimate

low probability of simulation non-failure at the minimum. It is also noted that convergence plots of

α0 = 0.3, 0.1, 0 are similar in minimum value and rate of convergence with α0 = 0.3 having the lowest

minimum marginally. For that reason, in the remainder of this paper, an α0 value of 0.3 will be used.

We used an average of 20 optimization runs for the two industrial problems, landing gear sizing and

aircraft performance simulation, to perform the comparison between EFIFE and EFIP. Results for the

landing gear sizing problem and aircraft performance simulation problem are presented in Figure 13

and Figure 14. Convergence plots show the average of the minimum normalized objective values at
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(b) Box plots of the obtained solutions

Figure 12: Comparison of landing gear sizing problem results (average of 10 runs) for different values of α0.
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Figure 13: Comparison of obtained results for the landing gear sizing problem using a kNN classifier with k = 3 (average
of 20 optimization runs).
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Figure 14: Comparison of obtained results for the aircraft performance problem using a kNN classifier wit k = 3 (average
of 20 optimization runs).

every iteration (shown as a line per acquisition function) and the variance at every iteration (shown

as pastel colors of the corresponding line).

The robustness of the proposed approach against the choice of the number of DOE evaluations is

verified to check the sensitivity of optimization results to the choice of the size of the initial DOE.

Figure 15 depicts the convergence rate using different initial values of DOE evaluations: 1d, 3d, and

10d, where d is the number of design variables of 12. Results are presented such that the DOE

evaluations are shown as a flat horizontal line presenting the best valid objective value of the DOE

until a better minimum is found. We note that DOE evaluations of 1d and 4d are able to converge

to similar optimum values whereas the 10d DOE evaluation results in a slightly inferior convergence

and a higher optimum. However, we conclude that the presented optimization framework and the
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acquisition function are robust with respect for the number of evaluations of the DOE, and that the

suggested number of evaluations to be between 1d and 4d.
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Figure 15: Comparison of obtained results for the landing gear sizing problem for different DOE sizes (average of 10 runs).

It is noted that in this work, the aircraft design problems along with the simulation failure problems

have been chosen purposefully to highlight the behaviour of the proposed Bayesian algorithm with

EFIFE, that is by selecting a limited design space where a major part of which is within regions

of the hidden constraints. As presented in Sections 2.1 and 2.2, the hidden failure regions are well

understood. However, for similar problems where the design space or the hidden failure regions are

within a black box simulation model invisible to the optimization engineer, we recommend to perform

a thorough analysis of the design space to avoid the presence of any hidden constraints unrelated to

the black box simulation model as discussed in Section 2. Another approach would be to analyze the

design space and create a known constraint of the hidden failure region. We tested such an approach

on the landing gear sizing problem from Section 2.1 by creating known constraints of the two possible

simulation failure scenarios.

We also compared EFIFE to a scenario where the simulation failure is a known constraint. We used

the landing gear simulation in Section 2.1 and we adjusted the code to return a value to be used as the

known constraint instead of what would have been a simulation failure. This scenario is normally not

feasible if the simulation causing failures is a black box simulation that cannot be adjusted. We only

consider this scenario here to compare the behaviour of EFIFE when compared to a conventional BO

with known constraint where the known constraints are modeled using Gaussian processes. Figure 16

compares the convergence between the known constraints method (labeled as Known constraint) and
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Figure 16: Comparison of obtained results between using a known constraint Gaussian process and a hidden constraint
with a kNN3 classifier (average of 10 runs).

EFIFE using a kNN3 classifier using an average of 10 different initial DOE runs since the number of

constraints is different due to the addition of the known constraint. It is noted that both approaches

lead to similar convergence rates with the hidden constraint using a kNN3 classifier producing a slightly
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lower minimum. This can be attributed to the fact that the constrained failure approach uses a

Gaussian process with radial bases function (RBF) kernel to model the constraints (as is the standard

approach used in the Bayesian optimizer from [26]). A Gaussian process with a RBF kernel models the

boundary of the constraint as a smooth transition. However, we know that the failure regions presented

in the landing gear sizing problem possess a sharp boundary between the non-failure simulation region

and the failure simulation region, and a kNN3 classifier is better suited for such deterministic failures.

5 Conclusion

We investigated solutions to handle hidden constraints in aircraft design optimization problems. We

targeted black box simulation models with failure as the candidates of hidden constraints. Then

we used a feasibility enhanced acquisition function, EFIFE, in a Bayesian optimization algorithm to

perform aircraft conceptual design optimizations. Finally, we validated EFIFE using two industrial

aircraft conceptual design problems based on landing gear sizing and kinematic simulation and aircraft

performance simulation. Using the two industrial problems, we performed comparative analyses rela-

tive to the choice of the supervised ML classifiers used in addition to the internal exploration factor α

of EFIFE. We also showed the benefits of EFIFE over existing methods in literature with respect to

convergence rates and optimum values. Future work on this topic includes extending the application

to more industrial test cases with varying fidelity of the simulation models to understand the impact

of the choice of simulation fidelity on optimizations with hidden constraints.
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[4] Charles Audet, Gilles Caporossi, and Stéphane Jacquet. Binary, unrelaxable and hidden constraints in
blackbox optimization. Operations Research Letters, 48:467–471, 2020.
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