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Abstract : We develop an interior-point method for nonsmooth regularized bound-constrained opti-
mization problems. Our method consists of iteratively solving a sequence of unconstrained nonsmooth
barrier subproblems. We use a variant of the proximal quasi-Newton trust-region algorithm TR of
Aravkin et al. [2] to solve the barrier subproblems, with additional assumptions inspired from well-known
smooth interior-point trust-region methods. We show global convergence of our algorithm with respect
to the criticality measure of Aravkin et al. [2]. Under an additional assumption linked to the convexity
of the nonsmooth term in the objective, we present an alternative interior-point algorithm with a
slightly modified criticality measure, which performs better in practice. Numerical experiments show
that our algorithm performs better than the trust-region method TR, the trust-region method with
diagonal hessian approximations TRDH of Leconte and Orban [17], and the quadratic regularization
method R2 of Aravkin et al. [2] for two out of four tested bound-constrained problems. On the first
two problems, RIPM and RIPMDH obtain smaller objective values than the other solvers using fewer
objective and gradient evaluations. On the two other problems, our algorithm performs similarly to
TR, R2 and TRDH.

Keywords : Regularized optimization, nonsmooth optimization, nonconvex optimization, bound
constraints, proximal gradient method, barrier method

Résumé : Nous développons une méthode de points intérieurs pour I'optimisation non lisse régularisée
avec contraintes de bornes. Notre méthode résout de maniere itérative une suite de problemes barriere
non contraints. Nous utilisons une variante de la méthode proximale de région de confiance avec
approximations quasi-Newton de Aravkin et al. [2] pour résoudre les problémes barriere, avec des
hypotheses supplémentaires inspirées des méthodes de région de confiance pour les algorithmes de
points intérieurs dans le cas lisse. Nous montrons que notre algorithme converge en utilisant la mesure
de stationnarité de Aravkin et al. [2]. Sous une hypotheése supplémentaire liée & la convexité du terme
non lisse de 'objectif, nous présentons une méthode de points intérieurs alternative utilisant une mesure
de stationnarité légerement modifiée qui est plus performante sur des cas pratiques. Nos tests montrent
que notre algorithme se comporte mieux que la méthode de région de confiance TR, la méthode de
région de confiance avec approximations quasi-Newton diagonales TRDH de Leconte and Orban [17],
et la méthode de régularisation quadratique R2 de Aravkin et al. [2] pour deux des quatre problémes
testés. Sur ces deux problemes, notre algorithme obtient un plus petit objectif final que celui obtenu
par les autres solveurs, en utilisant moins d’évaluations de I'objectif et du gradient. Sur les deux autres
problemes, il se comporte de maniere similaire a TR, R2, et TRDH.

Acknowledgements: Research partially supported by an NSERC Discovery Grant.
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1 Introduction

We consider the problem
minimize f(x) + h(z) subject to x > 0, (1)
zeR"
where f:R" — R has Lipschitz-continuous gradient with constant Ly >0 and h: R" — R U {+o0}
is proper and lower semi-continuous. Both f and h may be nonconvex. h is often considered as a
regularization function used to favor solutions with desirable properties, such as sparsity.

Problems such as (1) are classically solved with a variant of the proximal gradient method [19].
The proximal quasi-Newton trust-region algorithm of Aravkin et al. [2], referred to as TR, can be
extended to box constraints, provided that the proximal operator of h + x(- | [¢,u]), where £ < u
componentwise and x is the indicator of the box [¢, u], can be computed efficiently. Leconte and Orban
[17] present a variant of TR named TRDH that also supports box constraints, and uses diagonal
quasi-Newton approximations. For specific separable regularizers h, they provide a closed-form solution
of the trust-region subproblems with box constraints, giving rise to what they defined as an indefinite
proximal operator; a scaled generalization of a proximal operator.

At each iteration k, we solve the barrier subproblem

minimize f(x) + ¢ (z) + h(z), (2)

zeR

where ¢;, is the logarithmic barrier function
¢k($) = Z¢k,z(x)? (bk,i(m) = _Mk‘log(wi)7 1= 1a"'7na (3)
i=1

and {u;} \, 0. Each subproblem (2) is an unconstrained problem if we consider that —log(x) = 40
when 2z < 0. In Section 5.2, we explain that under reasonable assumptions, we can solve solve (2) with
a modified version of Aravkin et al.’s TR algorithm, and we expect that the solutions of (3) converge
to a solution of (1) as uy — 0.

Our approach is sometimes referred to as a trust-region interior-point method, or trust-region
method for barrier functions. We refer the reader to [9, Chapter 13] for more information on the case
where h = 0. Our algorithm, named RIPM (Regularized Interior Prozimal Method), can be seen as a
generalization of those methods to solve (1).

An inconvenient of solving (2), induced by the logarithmic barrier function (3), is that the smooth
part of the subproblem f + ¢, does not have a Lipschitz gradient, thus compromising the convergence
properties of TR established by Aravkin et al. [2]. Nevertheless, in our analysis, we establish the
convergence of the barrier subproblems using the update rules of Conn et al. [9, Chapter 13.6.3] for our
trust-region model. We also show global convergence of RIPM towards a first-order stationary point
of (1) if the trust-region radii and the step lengths used in proximal operator evaluations are bounded
away from zero, and the iterates generated by the algorithm remain bounded. In Section 5.4, under a
convexity assumption on the nonsmooth term, we provide an alternative implementation of the outer
iterations of RIPM where we change the stopping criteria to improve numerical performance.

In addition, we implement a variant of RIPM named RIPMDH (Regularized Interior Proximal
Method with Diagonal Hessian approximations) that uses TRDH to solve the barrier subproblems.
We compare the performance of RIPM and RIPMDH with TR, TRDH and R2, all available from
RegularizedOptimization.jl [5], on four bound-constrained problems. The first two problems are a
regularized box-constrained quadratic problem, and a sparse nonnegative matrix factorization problem.
These two problems require many TR and R2 iterations to converge. RIPM and RIPMDH obtain
smaller objective values than the other solvers using fewer objective and gradient evaluations, which
suggests that they may be best suited to solve difficult bound-constrained nonsmooth problems. The
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third problem is an inverse problem for finding the parameters of a differential equation. RIPM and
RIPMDH perform more objective and gradient evaluations than TR, but RIPMDH performs the
least amount of proximal operator evaluations. The last problem is a regularized box-constrained
basis-pursuite denoise problem. RIPMDH exhibits similar performance to those of TR, TRDH and R2
using a modification of some of its parameters.

Related research

Attouch and Wets [4] use f = 0 and the nonsmooth barrier —u;, >\, log(min(%, x;)) > 0. They use the
theory of epi-convergence to explain some convergence properties of barrier methods, and in particular,
that the objectives of the barrier subproblems epi-converge to the objective of their initial constrained
problem.

Chouzenoux et al. [7] use convex f and h with general inequality constraints ¢;(x) < 0fori € {1, ..., p},
p > 0 to solve large-scale image processing problems. Their algorithm uses proximal gradient steps to
solve the barrier subproblem.

Bertocchi et al. [6] solve inverse problems y = D(HZ), where y is some observed data, Z the signal
to determine, H is a linear observation operator, and D is an operator applying noise perturbation.
They solve the problem minimize, g~ f(Hz,y) + h(z) with constraints ¢;(z) = 0,¢ € {1, ..., p}, where
f is a convex function involving the observations and the signal x, f(-;y) and h are twice differentiable,
h and —¢; are convex (among other properties). They compute the proximal operator of the barrier
term, and use an interior-point algorithm. They apply their algorithm to develop a neural network
architecture for image restoration.

De Marchi and Themelis [11] use the proximal gradient method to solve nonsmooth regularized
optimization problems such as (1) where f has a locally Lipschitz-continuous gradient, h is continuous
relative to its domain and prox-bounded. In addition, the constraint x > 0 is replaced by a more
general constraint ¢(z) < 0, where ¢ has locally Lipschitz-continuous Jacobian.

Shen et al. [23] present an active set proximal algorithm to solve (1) with h(z) = A|z|; for some
A >0, and where ¢ < x < u with £ < 0 < u instead of x > 0. They use a hybrid search direction based
upon a proximal gradient step for the active variables (i.e., the variables that are at one the bounds of
the constraints), and a Newton step for the other variables.

Notation

For v € R", ||v|| denotes the Euclidean norm of v. R, and R, ,, denote, respectively, the sets of positive
and strictly positive real numbers, whereas R, and R}, denote the sets of vectors having all their
components in R, and R, ,, respectively.

R denotes R U {£c0}. The unit closed ball defined with the £,-norm and centered at the origin
is B, and the ball centered at the origin of radius A > 0 is AB. If C < R", the indicator of C is
x(- 1 C) : R" — R defined by x(z | C) =0 if x € C, and x(z | C) = 40 if 2 ¢ C. For y € R", the set
y + C is composed of all the vectors s € R™ such that s = y + x with z € C.

Following the notation of Rockafellar and Wets [22], the set of all subsequences of IN is denoted
by Ngﬁ , and the set composed of the subsequences of IN containing all £ beyond some k; is denoted
by N,,. For N e N2, {a}} -~ Z indicates that the subsequence {z}}.cn (which we may also write

{x},} v for conciseness) converges to T.

X, Z and S (possibly with subscripts j, ;. ; or 4 ;1) denote the square diagonal matrices having ,
z and s as diagonal elements, respectively.
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2 Background

The following are standard variational analysis concepts—see, e.g., [22]. Let ¢ : R" — R and Z e R"
where ¢ is finite. The Fréchet subdifferential of ¢ at Z is the closed convex set d¢(Z) of elements v € R"™

such that -
Jim inf o(x) — o(T) —71) (x— 1) S 0.
e |lz — z|

The limiting subdifferential of ¢ at Z is the closed, but not necessarily convex, set 0¢(Z) of elements
v e R" for which there exist {z} — Z and {v;} — v such that {¢(z))} — ¢(Z) and v, € d¢(z},) for
all k. The inclusion 0¢(Z) < 0¢p(Z) always holds. Finally, the horizon subdifferential of ¢ at Z is the
closed, but not necessarily convex, cone 0“¢(z) of elements v € R" for which there exist {z,} — 7,
{vg} and {A;} \, 0 such that {¢(zy)} — &(Z), vy, € 5¢(zk) for all k, and {A\ v} — v.

If inf ¢ > —o0, argmin ¢ is the set of x € R™ such that ¢(x) = inf ¢. For € > 0, e-argmin ¢ is the
set of z € R" such that ¢(z) < inf ¢ + €.

If C < R" and z € C, the closed convex cone Ny () := 5)((3?" | C) is the regular normal cone to C
at . The closed cone N (Z) := 0x(z | ¢) = 0©x(z | C) is the normal cone to C at . Ng(z) S Ng (%)
always holds, and is an equality if C' is convex.

If C is convex, N (Z) is the closed convex cone of elements v € R such that v’ (z — &) < 0 for all
x € C [22, Theorem 6.9].

For a set-valued mapping S : X — U where, for any x € X, S(x) c U, the graph of S is the set
eph S = {(z,u) | ue S(x)}.

For z € R", the limit superior of S at Z is limsup,_,; S(x) := {u | 3 {z} — 7,3 {us,} — v with u; €
S(z)}, and the limit inferior of S at Z is liminf,_,; S(x) := {u | V {z;} — Z,3 N € N, {us} <
u with uy, € S(zy)}. S(Z) € limsup,_,; S(z) and S(Z) 2 liminf,_,; S(x) always hold.

The set-valued mapping S is outer semicontinuous (osc) at z if limsup,_,.S(x) < S(Z), or,
equivalently, limsup,_, - S(x) = S(Z). It is inner semicontinuous (isc) at Z if liminf,_,; S(x) 2 S(Z), or
equivalently liminf,_,- S(x) = S(Z) when S is closed-valued. If both conditions hold, S is continuous
at T, i.e., S(z) > S(T) as ¢ — Z.

Proposition 1 (22, Proposition 8.7). For ¢ : R" — R and Z where ¢ is finite, d¢ is osc at Z with
respect to ¢(x) — ¢(Z) when x — Z, i.e. for any {x,} — T with {¢(z})} — ¢(Z), there exists
vy, € 0¢(x,) for all k such that {v,} — v € do(Z).

The graphical outer limit of a sequence of set-valued mappings S}, is defined by (g-lim sup;, Sj,)(x) :=
{u|IN e N¥ {z,} a2 {u} < WUk € Si(x)}. The graphical inner limit of a sequence of set-valued

mappings Sy, is defined by (g-lim inf;, S} )(x) := {u | AN € N, {z:} <o {ur} = U Uk € Si(zy)}. I

both limits agree, the graphical limit S = g-lim .S, exists, so that we can also write S}, £, 5, and we
have S), %> § < gphS) — gph S.

The epigraph of ¢ is the set epi¢ = {(z,a) e R" x R | a = ¢(x)}.

We denote cl(¢) the (lower) closure of ¢, i.e., the largest function less than ¢ that is lower semi-
continuous. Its epigraph is the closure of epi ¢.

If ¢ : R" — R for all k > 0, the lower and upper pointwise limits of {¢1} are the functions
p-lim inf, ¢, and p-lim sup,, ¢, : R™ — R defined for all x € R" by

(p-lim inf¢)(z) := limkinf o (),
k

(p-liné sup ¢ ) (z) = 1imksup o1 ().
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When p-lim inf), ¢, and p-lim sup,, ¢, coincide, their common value is the pointwise limit of {¢;}
denoted p-lim,, ¢;,. If p-lim, ¢, = ¢, we write {¢,} — ¢.

For a sequence {E;} € R", we define
limsup Ej, := {z € R" | EINE./\/ZZE,EI{Z]-}N — z, z; € I for all j € N}
k

limkinfEk ={2eR" [IN e N, 3{z;}ny — 2, z; € E; for all j € N}.

Consider in particular E) := epi¢,. It is not difficult to see that limsup, E} and liminf, E}
are also epigraphs in the sense that if (x,t) is in either set, then so is (z,s) for any s > ¢. The
lower epi-limit of {¢;} is the function e-lim infj ¢, whose epigraph is limsup, F}, and the upper
epi-limit of {¢;} is the function e-lim sup; ¢, whose epigraph is liminf, E,. It is always true that
e-lim infy, ¢, < e-lim supy, ¢,. When the two coincide, their common value is called the epi-limit of
{¢r} denoted e-limy, ¢. If e-limy, ¢, = &, we also write {¢;,} — &.

The following result summarizes important properties of epi-limits used in the sequel.

Proposition 2 (22, Proposition 7.4). Let ¢, : R" — R for k > 0.

1. e-lim inf, ¢, and e-lim supy ¢;, are lsc, and so is e-limy ¢, when it exists;
2. if ¢y, = ¢p4q for all k, e-limy, ¢, exists and equals cl(infy, ¢, );
3. if ¢ < ¢ppyq for al k, e-limy, ¢y, exists and equals cl(supy, ¢y)-

In addition, if ¢, ¢,, ¢ : R" — R with ¢, < ¢ < ¢y for all k, and if {¢, } — ¢ and {¢y} — ¢,
then {¢;} = ¢.

The model that we will use in our algorithm uses an approximation P(;x) of h at x so that
(s, z) ~ h(z + s). For ¢ : R" x R™ — R, the function-valued mapping z — (-;z) is epi-continous
at 7 if ¥(-,z) —> (-, T) as * — T.

¢ is level-bounded if, for every a € R, the lower level set leve, ¢ := {z € R" | ¢(z) < a} is
bounded (possibly empty). The sequence of functions {¢,} is eventually level-bounded if, for each

a € R, the sequence of sets {levc, ¢} is eventually bounded, i.e., there is an index set N € N, such
that {leve, @r}ren is bounded.

The following theorem establishes properties about the minimization of sequences of epi-convergent
functions.

Theorem 1 (22, Theorem 7.33). Suppose the sequence {¢;} is eventually level-bounded, and
¢ — ¢ with ¢, and ¢ lsc and proper. Then,

inf ¢, — inf ¢ (4)

with —o0 < inf ¢ < +00, while there exists N € A, such that argmin ¢;, is a bounded sequence of
nonempty sets with
lim sup(argmin ¢;,) < argmin ¢. (5)
k

Indeed, for any {€,} \, 0 and z, € €,-argmin ¢y, {z;} is bounded and all its cluster points belong
to argmin ¢. If argmin ¢ consists of a unique point Z, one must actually have {z,} — Z.

The proximal operator associated with the proper lsc function A and parameter v > 0 is

prox(z) := arg min %1/71Hw —z|? + h(w). (6)
vh w
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3 Stationarity

First-order stationarity conditions for (1) may be stated as [22, Theorem 10.1]
0e Vf(x)+a(h+x(- | R}))(z). (7)
We say that the constraint qualification (CQ) holds at = if 0 (f + h)(z) contains no v # 0 such
that —v € Ny» (2).
+
Under the constraint qualification, (7) can also be written [22, Theorem 8.15]
0€ Vf(x) + oh(x) + Ny~ (). (8)
Our assumptions that f is continuously differentiable and that h is proper lsc allows us to write [22,
Exercise 8.8 and Theorem 8.9
0" (f + h)(x) = 0% h(z) = {v € R™ | (v,0) € Nepip (, h(@))}.

Due to the simple form of N]RS; , the constraint qualification states that the only v € 0“h(x) such that
v = 0 and satisfying v; = 0if z; > 0is v = 0.

A simple example where the constraint qualification is not satisfied is found by setting n = 1, f = 0,
and h(z) = |zfo, i.e., h(z) = 1 if 2 # 0 and h(0) = 0, in (1). The unique solution is z = 0. Then,
Nepin(0,0) = Nepin(0,0) = {(v,t) | t < 0} so that 0”h(0) = R. The qualification condition requires
that the only v € R such that v = 0 be v = 0, which is clearly not the case. Of course, the bound
constraint in the example above is redundant and the constrained and unconstrained solutions coincide.

Using [22, Example 6.10], Ny~ (z) = Ng, (z1) x -+ x Ng_ (2,), where Ng_(0) = (—00,0] and for
all z; > 0, Ny, (x;) = {0}. Thus, (8) can also be formulated as

0eVf(x)+oh(r)—z, Xz=0, =0, z2>0, 9)
where X = diag(z) and Z = diag(z).

For fixed z € R'} and z € R}, we define approximations

P (s32,2) = fla) + (V@) —2)7s, (10a)
Y(s;z) ~ h(xz + s) with ¥(0;2) = h(x) and 0y(0;z) = oh(x), (10b)
b(s;a) = p(s;w) + x(x + s | RY), (10c)

and the model of f + h about x
m(six,2,v) == ¢ (s;,2) + 507 s|” + ¥(s; ), (11)

where v > 0. We point out that Vgoﬁ(s; z,z) = Vf(x) — z, which is the expression of the Lagrangian in
the smooth case, thus, we use the superscript =~ to denote objects sharing similarities with the smooth
Lagrangian.

For A = 0, we further define
pﬁ(A;x,z,V) ;= min (pﬁ(s;x,z) + %V_lﬂsHQ + ’(/AJ(S,.’L’) + x(s | AB), (12a)
S
PX(A;z, z,v) := argmin ©“(s; 2, 2) + %1/71\\5H2 +4(s;x) + x(s | AB). (12b)
Our associated optimality measure is

EL(A;x,z,u) = f(z) + h(z) — @ﬁ(sﬁ;m,z) — w(sﬁ;x), (13)

where s* e PL(A,x, z,V).
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Lemma 1. Let the CQ hold at x € R}, z > 0 such that Xz = 0 and A > 0. Then, EE(A; x,z,v) =0
«— 0 e P*(A;z,2,v) = x is first-order stationary for (1).

Proof. The first equivalence follows directly from (12b)—(13). The first-order necessary conditions
for (12a) then imply

0 e Vi (02, 2) + (5 2) + x(- | AB))(0)
= V(@) =2+ 0@(52) + x( | (=2 + RE)) + x(- | AB))(0) (14)
= Vf(z) =z +d@(52) + x(- | (=2 + R}) 0 AB))(0).
As (—z + R) and AB are convex, so is (—z + R.) n AB. From this observation, we deduce that,

N osrm)naB(0) = ox(0 | (=2 + RY) n AB)
ox(0 | (—z +RY)) + ox(0 [ AB)

— ox(z | RY)

The CQ combined with the above equations indicate that there is no v € 0“h(x) = 0“9 (0;z), v # 0
such that —v € Ng» (2) = N, g7)~ap(0), thus, [22, Corollary 10.9] leads to

oW (s2) + x(- | (x +RY) 0 AB))(0) < 04 (052) + Ny g7)nan(0) (1)
= 0h(z) + Ng~ (2).
By injecting (15) into (14), we obtain
0e Vf(z) — 2+ dh(x) + Ny (2).

From the observation above (9) and the fact that Xz = 0, we deduce that for any v € N~ (z),
v —z € Ny~ (z). Thus,
0€ Vf(x) + oh(z) + Ny~ (). O

If h is convex, the CQ is not required in Lemma 1 [22, Exercise 10.8].

4 Projected-directions methods

Let us briefly recall the proximal gradient method [19] used to solve

minimize f(s) + h(s), (16)

seR"™

where f : R" — R has Lipschitz-continuous gradient and h:R"™ > R is proper and lower semi-
continuous. The method generates iterates s; such that

Sk+1 € Prox(sy — vV f(sy)) = argmin f(sy) + Vi(si) (s —si) + %V_lHS —se |+ Rh(s), (17)
vh S

where v > 0, which leads to the first-order stationarity conditions

0€ S1 — 85 + UV S (55) + vOh(s441). (18)

A first approach to solving (1), that we can reformulate as

minimize f(x)+ h(z) + x(z | RY),

zeR™
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is to use projected-directions methods. A simple example of such methods consists in performing the
identification h = h + x(- | R".) in (16), and using the proximal gradient method as in (17).

Aravkin et al.’s TR and R2 are other examples of algorithms that can solve (1) with a similar
strategy. Replacing h by h and ¥(-;x) by ¥(;2) = ¥(;2) + x(- | —z + RY) in all models of TR and
R2 is sufficient to generalize these methods to (1), if a solution of

e prox (V). (19)
v (52k) +x (| A B)
for TR, or
sp € prox (=, Vf(zy)) (20)
v (5wy,)

for R2, is available.

Leconte and Orban [17] implement a variant of TR named TRDH that handles bound constraints
for separable regularizers h (assuming that ¢ is also separable). TRDH solves at each iteration k and
for all i € {1,...,n} the problem

(sp)i € arg min VF(xe))isi + 5(di)ist + ((s; )i + x(si | AgB A (=(23); + Ry), (21)

i

with (dj,); € R. The special choice (dj,); = v ' shows that solving (21) for all i is equivalent to
solving (19).

However, for nonseperable regularizers h, projected-directions methods rely on computing search
directions such as (19), (20) or (21), which may be complicated (impossible for the latter), and therefore
seems to be a limitation of this approach. The following section describes the implementation of a
method that is different from projected directions methods, and is based upon interior-point techniques.

5 Barrier methods

Consider a sequence {p;} \, 0.
Lemma 2. Let ¢, be defined as in (3). Then, e-lim ¢;, = x(- | R}).

Proof. It is sufficient to show that e-lim ¢, ; = x(- | R;) for i = 1,...,n. Our goal is to bound each
¢y, by two functions having x(- | R".) as epi-limit. We define

400 ifxr<0 +00 ifxz<0
Gri(z) =< dpi(z) fO<z<l dri(x) =40 ifo<z<1
0 ifx>1, ¢pi(x) ifx>1.

By construction, ¢y, ;(x) = ¢y () + ¢r.i(@), {d5:(2)} \, 0 and {¢5;(x)} 1 0 as k — oo for all z > 0.
In particular, {97} —> x(- | R, ) and {¢f} = x(- | Ry) as k — o.

By [22, Proposition 7.4c], because {(i)zi} is nonincreasing with k, its epi-limit is well defined and
{(b;z} — clinfy, ¢Iii =x( [ Ry).

Similarly, by [22, Proposition 7.4d], because {¢; ;} is nondecreasing with k, its epi-limit is well

defined and ¢1§,¢ - supy, cl (lj)l?z =x( [ Ry).

Because ¢y ; < ¢p; < ¢p.i» [22, Proposition 7.4g] implies that {¢y ;} — x(- | R, ), and consequently,
we obtain {¢,} — x(- | R}). O
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Theorem 2. ellimf +h+ ¢, = f+h+ x(-| R}).

Proof. Lemma 2 and [22, Theorem 7.46a] imply {h + ¢} — h + x(- | R"}). Finally, because f is
continuous, [22, Exercise 7.8a] yields {f + h + ¢} — f +h+ x(- | R}). O

The following corollary legitimizes the barrier approach for (1).
Corollary 1. Let inf{f(z) + h(z) | = 0} be finite. For all e > 0,

lim sup(e-argmin f + h + ¢y) < e-argmin f + h + x(- | R}).
k

In particular, if {€,} \, 0,

lim sup(€,- argmin f + h + ¢;,) < argmin f + h + x(- | RY}).
k

Proof. Follows directly from [22, Theorem 7.31b]. U

If inf{f(z) + h(z) | x = 0} is finite, the definition of the limit superior of a sequence of sets
and the second part of Corollary 1 indicate that for any {e,} \, 0, there exists N € Nof and
Ty, € eg-argmin f + h + ¢y, for all k € N such that {Z,}y converges to a solution of (1).

5.1 Barrier subproblem

The k-th subproblem is
minimize f(x) + h(z) + ¢y (z). (22)

xy € RY | is first-order stationary for (22) if
* *\—1 ja *
0€ Vf(zy) — pu(Xy) e+ dh(wy). (23)

We call the process of solving (22) the k-th sequence of inner iterations, and we denote its iterates xy, ;
for j = 0. The definition of (22) along with certain parameter updates will be called an outer iteration.

For z € R}, and 6 € (0,1), let
Rj(z) :={s€ R" | min(z + s); > dminz;} < (—z + R}, ). (24)
K2 7

Note that Ry (z) is closed, and also convex, as shown in the following lemma.

Lemma 3. Let 6 € (0,1) and x € R}, . Then Ry (x) defined in (24) is convex.
Proof. Let s; and s, € Ry (z), and t € [0, 1]. By definition, min;(s; +); = é min; z; and min;(sy+x); >
0 min; z;. Now,
miin(tsl + (1 —t)s2 +x); = miin(t(sl +)); + miin«l —t)(s2 +2));
= tmiin(51 +a);+(1-t) miin(sz +2);
>t mz_inxi +(1—1) miin:z:i

= dminz;.
1

Thus, ts; + (1 —t)s, € Ry (z) and Ry () is convex. O
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Under the assumptions of Lemma 3 and for A > 0, AB n Ry (x) is convex.

At outer iteration k, we choose J; € (0, 1), and solve (22) inexactly by approximately solving a
sequence of trust-region subproblems of the form

minimize m(s; zy, ;) + x(5 | Ay ;B N RS, (2x,;)), (25a)

S

m(s;xy ;) = o(s;2y ;) + (s 25,4), (25b)

where p(s; 2y, ;) ~ (f + ¢x) (w5 ; + 5) and P(s;xy ;) ~ h(xy ; + s) model the smooth and nonsmooth
parts of (22), respectively, and A ; > 0 is a trust-region radius. Models are required to satisfy the
following assumption.

Model Assumption 5.1. For any k € IN and j € IN, ¢(-;x, ;) is continuously differentiable on R’y | with
0052y ;) = f(2g,;) + i (x) ;) and V(052 ;) = V(g ;) + Vg (g ;). In addition, V(-5 xy ;) is
Lipschitz continuous with constant L; ; = 0. We require that ¢(-;x; ;) be proper, Isc, and satisfy

V(052 ;) = h(zy ;) and 0P (052, ;) = oh(xy, ;).

Proposition 3. Let Model Assumption 5.1 be satisfied. Then s = 0 is first-order stationary for (25)
if and only if x;, ; is first-order stationary for (22).

Proof. If z ; is first-order stationary, then 0 € Vf(x ;) — ukX,;;e + 0h(zy ;) = V(052 ;) +
01p(0; 2, ;). Note that x;, ; > 0 s0 dx(0 | Ay ;B N R (21,;)) = {0}, and Ay ; > 0, so there is an
open set O < Ay ;B N Rj (z} ;) such that for all s € O, x(s | A ;B " R§ (x),;)) = 0. Thus, using
the definition of the subdifferential, (¢ (-; 2y ;) + x(- | A ;B N R, (24,;)))(0) = 0¢(0; 24 ;). We
conclude that 0 € V(052 ;) + 0(U(;5 2 ;) + x(- | Ag ;B N RE (y,;)))(0), which is the definition
of s = 0 being first-order stationary for (25). The reciprocal can also be established from these
observations, because if 0 € V(05 2y, ;) + (4 (- 25 ;) + x(- | Ag ;B A R§, (25,;)))(0), we have shown
that 0. € V p(0; 2y ;) + 00(0; 2y ;) = V f(xy ;) — ,ukX,;;e + oh(xy ;). O

As a special case of Proposition 3, if s = 0 solves (25), then x,, ; is first-order stationary for (22).

Let
0p(si2k5, Brj) = f(wg) + vf(xk,j)TS + %STB/C,J‘& (26)

where By, ; = B,{,j, be a second order Taylor approximation of f about x; ;. We are particularly
interested in the quadratic model

Ty —1 Ty —1
90(5§$k,ijk,j) = <Pf(5§$k,j,3k,j) + ¢k($k,j) — Hie Xk,js + %3 Xk,jZk,js

—1 \T 1. T —1 (27)
= (f + o) (@py) + (Vf(zp;) — e Xy je) s+ 58 (Biy + Xy i Zi5)8,

where z; ; is an approximation to the vector of multipliers for the bound constraints of (1).

Let s;; be an approximate solution of (25). If s;; is accepted as a step for our algorithm
used to solve (22) (the acceptance condition is detailed in Algorithm 2), we perform the update

Toj+1 = Thyj T Sk,j-

By analogy with the smooth case, we use z; ; := ukX,;Jl-e when z;, ; is first-order stationary for (22).
Multiplying through by Xj, ;, we obtain X}, ;z;, ; = ppe. Linearizing the continuous equality Xz —pe = 0
with respect to 2 and z and evaluating all quantities at iteration (k, j) yields X ;Azy i+Zy ;55 ; = ppe—
Xkdzk’j, which suggests that if ‘Tk,j+1 = ka‘ +Sk,j7 then Zk’j+1 = Zk,j +Azk,j = ,UJka_’Jl6*Xk_lek’]SkJ

However, the latter z;, ;; may not be positive. We perform the update described by Conn et al.
[9], by defining
N —1 —1
Rkj+1 = /U'ka:,je - Xk,j Zy jSk.j» (28)
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and projecting Z;, ;1 componentwise into the following interval to get 2, ;1

. -1 - -1
T = [Fpm mln(eazk,j,/ika,jHe)a maX(quuevzk,jv"{zuu/u’k 16’ /‘Ezuu/ika,jHe)]» (29)

with 0 < K,y < 1 < ki y,. Projecting 2 ;. into (29) always generates a positive zj, ;1. The choice
2k j+1 = 2k,; is also available. The other bounds of (29) will be useful in Section 5.2 and Section 5.3.

We define the following model, based upon a first-order Taylor approximation
Gop(8371 ) 1= (f + Q) (@h ) + (Vf(wp ;) — Mka_,;@)T& (30a)
Mep (85 Tp js Vi i) 1= Pep(85Tp ) + %Vk_jl H5H2 + (85w 5), (30b)

where “cp” stands for “Cauchy point”. Let s ;; be the solution of (25) with model m,(s;zy ;, Vg ;)-
As stated in [2, Section 3.2], sy, ;; is actually the first step of the proximal gradient method (17) from
k.50 = 0 applied to the minimization of ¢, + 1 with step length v, ;:

Sk,5,1 € prox (*Vk,jv%p((); T, j» Vlc,j))- (31)
Vk,jw('§zk,j)“"X("Ak,jIBmIR':SLk(xk,j))
Let
Eep(Asmy g, v ) == (f + O + W) (2 5) — (Pep + V) (Sk g1 Thj) (32)
where A > 0, and let V];;/2§CP(A;J,‘]€J, Vk’j)l/Q be our measure of criticality. Aravkin et al. [2] and

its corrigendum [1] indicate that V,;;/chp(A; Ty yk’j)l/Z is similar to yk_jl Isk,j,1]l, which is the norm
of the generalized gradient at x; ;. We can apply [22, Theorems 1.17 and 7.41] to conclude that
Eep(Asmy, j, vy ) is proper lsc in (zy, ;v ;) € RY 4 x Ry . In particular, y,;}/%cp(A;xk’j, l/k’j)l/Q =0
for any A >0 and v, ; > 0 == s = 0 solves (25), and =}, ; is first-order stationary for (22).

Algorithm 1 summarizes the outer iteration.

Algorithm 1 Nonsmooth interior-point method (outer iteration).

1: Choose € > 0, sequences {p;} 0, {€4x} \ 0, {€, 1} \. 0, and {6} — & € [0,1) with &, € (0,1) for all k.
2: Choose z o € R’ | where h is finite.
3: for k=0,1,... do

4: Compute an approximate solution zj, := zj, ; to (22) and zj, := zj, ; in the sense that
—1/2 1/2
V}g’j/ Eop (AL j3 Tl s Vi 5) 2 < €d,k (33)
and
[ Xk j2k,5 — trel < €p - (34)
5: Set xp 11,0 1= T-
6: end for

For each outer iteration k, the inner iterations generate a sequence {x;, ;} according to an adaptation
of [2, Algorithm 3.1] in which the subproblems have the form (25) with the smooth part of the model
defined by (27). Each trust-region step is required to satisfy the following assumption.

Step Assumption 5.1. Let k € IN. There exists #,,; > 0 and Kpqgcx € (0, 1) such that for all j,
Sk.j € Ak,j]B N ]R‘Sk ({Ekd)?

’im,kHSk,j |27 (35a)

Kmdc,kgcp(Ak,j;mk,]ﬁyk,j)a (35b)

|(f + br + h)(xp; + sk,5) — m(Sk,j5 Th j» Br,j)| <
m(0;xy, ;, By ;) —m(sg 32 4, By ;) =
where m is defined in (25b)—(27), and &, (A ;3 Tk j, Vk,;) is defined in (32).

In Step Assumption 5.1, the subscript “m” of &, ;, refers to the model adequacy, and the subscript
“mdc” of kpqc p refers to the model decrease.

Algorithm 2 summarizes the process.
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Algorithm 2 Nonsmooth interior-point method (inner iteration).

1: Choose constants

0<771$772<17 0<71<72<1<'73<74’ AmaLx>Ak,O>Oz a>0’B>1~
2: Compute f(zy0) + ¢ (Tr,0) + M(Tk,0)-
3: for 5 =0,1,... do
4: Choose 0 < vy, ; < 1/(Ly ; + oflAI;;).
5: Define m(s; zy, ;, By, ;) as in (25b) satisfying Model Assumption 5.1.
6: Define mp(s; @ 5, vk, ;) as in (30D).
T Compute sy, ; 1 as a solution of (31).
8: Compute an approximate solution sy, ; of (25) such that |sj ;| < min(Ay ;, Bllsk ;1])-
9: Compute the ratio
= (f + b1 + h)(zg ;) — (f + ¢ + h) (g j + 55,5)
k7 e .
J m(0;zy, ;, By ;) — m(sk ;3 g, j» B, j)
10: If p ; = M, set T j 41 = @y j + Sp,; and update 2, ;11 according to (28) and (29). Otherwise, set ), ;11 =
and zy j1 = 2p ;-
11: Update the trust-region radius according to
A (V3 js Valk, ;] if pj = n9, (very successful iteration)
Apit1 €3 [128%; Akl if 7y < p,j <m2, (successful iteration)
[(M1Ak s 724k ] ifpr; <m (unsuccessful iteration)

and Ak,j+1 = min(Ak1j+17 Arna»x)'
12: end for

5.2 Convergence of the inner iterations

Let k and j be fixed positive integers, and x; ; > 0. We may rewrite our “Cauchy point” subproblem
for the inner iterations as in [2]:

P(As g 4, Vg 5, Op) 1= minismize Mep (852 4, Vi ;) + X (55 AB N ]ng (zh,5)) (36a)

P(A;xy, , vy 5, 0)) i= argminme, (s; o 4, vy ;) + x(s; AB N R?k (T;)) (36b)

First, we present some properties of the subproblem (36a) in the following result.

Proposition 4 (2, Proposition 3.1). Let Model Assumption 5.1 be satisfied, v > 0, 6 > 0 and
z € RY. If we define p(0;x,v,0) := ¢.,(0;2) + ¥(0;2) and P(0;z,v,0) = {0}, the domain of
p(;x,v,0) and P(-;2,v,0) is {A | A = 0}. In addition,

1. p(:;x,v,0) is proper lIsc and for each A > 0, P(A;x,v,d) is nonempty and compact;

2. if {Ay;} = Ay = 0 in such a way that {p(A ;;2,v,6)} — p(Ag;z,v,6), and for each j,
sk,; € P(Ay j;7,v,0), then {sy ;} is bounded and all its limit points are in P(A;z,v,0);

3. if pep(52) + %u_1\|s|\2 + () is strictly convex, P(A;z,v,d) is single valued,;

4. if Ay, > 0 and there exists § € P(Ay;x,v,§) such that 5 € int(A,BNRg, ()), then p(; z,v,0)

is continuous at A, and {p(Ay j52,v,0)} — p(Ay;z,v,0) holds in part 2.

Proof. Model Assumption 5.1 and the compactness of AB N R§, (z) ensure that the objective of (36a)
is always level-bounded in s locally uniformly in A, because for any A > 0, ¢ > 0, and A € (A—¢, A +e)
with A > 0, its level sets are contained in ABN R, (z, ;) = (A+€)BnRg, (x4 ;). From this observation,
we can draw similar conclusions to the analysis of [2, Proposition 3.1]. O

The observation in the proof of Proposition 4 and Model Assumption 5.1 allows us to derive directly
some of the convergence properties of Aravkin et al. [2] for Algorithm 2.
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Proposition 5 (2, Theorem 3.4). Let Model Assumption 5.1 and Step Assumption 5.1 be satisfied
and let
Hmdc,k(l - 772)

> 0. 37
2/im7kaﬁ2 (87)

Asucc,k =

If 2, ; is not first-order stationary for (22) and A ; < Ay, then iteration j is very successful
and Ak:,j+1 2 Ak,j'

Proof. If z;, ; is not first-order stationary, Ry (zj ;) # {0}, thus s, ;; # 0 and s ; # 0. The rest of
the proof is identical to that of [2, Theorem 3.4]. O

Now, let Ayin i := min(Ag o, 71 Aguee,x) > 0. Then, Ay ;> Apy,  for all j € IN. If we consider ¢
defined in (27), for s; and s, in R,

IVip(s1) = Vip(sy)| = ||B/c,j(51 — 83) + Xk_,]l‘Zk,j(Sl — s9)|- (38)

As Ly ; = |Byj + X Zi s < |Bjll + 1Xe 511 Zx 51, if {By;}; remains bounded, {z} ;}; must be
bounded away from zero to guarantee the existence of some M;, > 0 such that L; ; < M, for all

j € IN. To apply the complexity results, and to establish that lim inf V,;;/QSCP(A,W»; Ty I/k’j)l/Q =0 if
[+ h+ ¢, is bounded below on R'., we need a stronger assumption on the Lipschitz constant of our
model.

Model Assumption 5.2 (2, Model Assumption 3.3). In Model Assumption 5.1, there exists M}, > 0 such
that 0 < Ly, ; < M, for all j € N. In addition, we select v, ; in line 4 of Algorithm 2 in a way that
there exists vy, , > 0 such that vy, ; > vy, for all j € IN.

As in Aravkin et al. [2], we can set vy, ; 1= 1/(Ly; + oflA;;-) in Algorithm 2 to ensure v, ; >
Viin ke = 1/(Mj, + o 'Apd ) > 0if the first part of Model Assumption 5.2 holds with M. The
observations below (38) motivate us to prove that {z; ;}, is bounded away from zero in the next result.

Proposition 6. Let k € IN, Model Assumption 5.1 be satisfied for ¢ in (27), and (f + h)(zy ;) =
(f 4 R)iow,k- Then, there exists fy,qp, ; > 0 such that, for all j, we have

Inl_in(xk,j)i Z Kmdb,k- (39)

Proof. We proceed similarly as in Conn et al. [9, Theorem 13.2.1]. Let k be a positive integer
and {z; ;} be a sequence generated by Algorithm 2. As {(f + ¢, + h)(xy ;)}; is decreasing and
(f + h)(wg ;) = (f + h)iow,ks We have limsup; ¢, (wy, ;) < 00, which implies that (39) holds. O

The following proposition shows that we can use the convergence results of Aravkin et al. [2] using
the same assumptions they used for ¢;. It will justify that Model Assumption 5.2 can be used for ¢
defined in (27).

Proposition 7. Under the assumptions of Proposition 6, let ¢ be defined as in (26) so that
Vsps(ss2y 4, Bg ;) is Lipschitz continuous with constant -Z’k,j > 0 and there exists Mk > (0 such
that 0 < INJ,w- < Mk for all j € IN. Then ¢ satisfies Model Assumption 5.2.

Proof. We can use (29) and (39) to say that X,;;Zkyj is bounded for all j, and we deduce from (38)
that ¢ satisfies Model Assumption 5.2. O

Now, we justify that Step Assumption 5.1 holds when h(xy ; + s ;) = V(s ;3 Th ;). As {z;};
remains bounded away from 0R} with Proposition 6, so does {zy, ; + s, ;}; by definition of Ry, (2, ;).
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Since V f is Lipschitz-continuous,

T 2
F@rg +spy) = F@rg) = V(@) sk < 5Lglsel" (40)
and a second-order Taylor approximation of ¢, about xj ; + s; ; gives
T -1 T -2 2
G (e + 55.5) — O (r ) — sk Xgj€ = 515 X565 + o sg ;). (41)

Under the assumptions of Proposition 7, Ly ; = | By, ; + X];;Zk,j | < M, and

|(f + & + h)(wg; + 8k ;) — m(8k 53 Th js B ;)
= f(@ry +s65) = F@ng) = Vi (@r) sk + Snl@n + si5) — de(@n,)—
,“ksg,le;gl‘e — L5k (By, + XI;}Zk,j)Sk,j| +o(]|s.51)-
The above equality combined with (40) and (41) implies that (35a) holds.

To emphasize the similarities between our inner iterations and the trust-region algorithm of Aravkin
et al. [2], and in light of Proposition 7, we use in our next results that ¢ satisfies Model Assumption 5.2,
instead of writting assumptions on ¢ . The following proposition gives us a sufficient condition for (35b)
to be satisfied.

Proposition 8 (1, Proposition 1). If Model Assumption 5.2 is satisfied with bounded Hessian
approximations {By, ;},, then there exists k,qc , € (0,1) such that (35b) holds for all j.

Proof. The proof is identical to that of [1, Proposition 1] when replacing By, by By, ; + X,;;Zk’j, and
using the subscripts j ; where j is the iteration number of the algorithm instead of the subscript ;. [

Proposition 6 allows us to write the following convergence results for algorithm 2. As in Aravkin
et al. [2], we define the smallest iteration number ji(¢) such that

Vet 2o (D i ayovny) P <e (0<e<1), k=0,1,..., (42)

and we express the set of successful iterations, the set of successful iterations for which (42) has not yet
been attained, and the set of unsuccessful iterations for which (42) has not yet been attained as

Spi={jeN|py; =m} (43a)
Si(e) :=1{jeSp|Jj<irle)} (43b)
Up(e) :={jeIN|j¢ S, and j < ji(e)}. (43c)

Proposition 9 (2, Theorem 3.5). Let Model Assumption 5.1 and Step Assumption 5.1 be satisfied.
If Algorithm 2 only generates finitely many successful iterations, then z;, ; = oy for all sufficiently
large j and w7} is first-order critical for (22).

Proof. The proof is inspired from [2, Theorem 3.5], which itself follows that of Conn et al. [9,
Theorem 6.6.4]. The assumptions indicate that there is j, € IN such that all iterations j > j, are
unsuccessful, and z;, ; = z;, ; = xp because of the update rules of Algorithm 2. We assume by
contradiction that x} is not first-order critical. x} does not have any of its components equal to +o0
because it is attained after a finite number of iterations of Algorithm 2. As h is proper, (f+h)(x}) > —c0.
Thus, Proposition 6 implies that there exists A} such that AB Rs, (x}). Since all iterations j > j,
are unsuccessful, there will be some j; > jy such that A; < min(Agyec A}), which implies that
iteration j; is very successful with Proposition 5, and contradicts the fact that zj is not first-order
critical. O

Finally, we have the following result for the inner iterates.
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Proposition 10 (2, Theorem 3.11). Let k& € IN, Model Assumption 5.1 and Model Assumption 5.2
be verified for ¢ defined in (27), and Step Assumption 5.1 be satisfied for algorithm 2. If there are
infinitely many successful iterations, then, either

jlingo(f + ér + h)(zy ;) = —0 or jlin;ou,;;/chp(Ak,j;xk,j7 Vlc,j)l/2 =0. (44)
Proof. The proof is identical as that of [2, Theorem 3.11]. O

Now, the definitions of ¢, in (30a) and sy ; | as a minimizer of (25) with model m,,, indicate that

(f + O+ h)(xp) = Pep(05 75 5) + V(0525 ;) = Moy (0525 5, vk ;) =

—1 2
My (Sk.j 13 Tk jis Vk ) = Pep(Sk,515 Tk ) + 3V l18kgall” + ¥ (sk505 Tk 5)-

By reinjecting this inequality into the definition of &, in (32), we obtain

%

Eep(Dji Thjs Ving) = 3VijIsn,51

so that
—1/2 1/2 —1
Vk,j/ Eep( Dy i) = %Vk,jHSk,j,ﬂ

. (45)

From this observation, we deduce that s, ; — 0 in the following result.
J—0
Lemma 4. If Model Assumption 5.1 holds for ¢ defined in (27) and
.12 _ 1/2
jhjgo Vij Sop(Bbk,j5 Thjs Vi) '~ — 0,
then lim;_, ., ||sg ;1] = lim;_,o, sy ;]| = 0.

Proof. We use fsx ;1] = [si;|° and (45) to conclude that

—1/2 1/2 —1 —15—1/2
Vk,j/ Eop (B ji T Vi,j) 2> %Vk,j Isk.jall = %Vk,jﬁ /

”Sk,j | > O

With Model Assumption 5.1, v, ; — 7, > 0, and we have ||s; ;| — 0. O
j—oo j—o

Now, we study the asymptotic satisfaction of the inner perturbed complementarity. We show
that (34) is eventually satisfied, similarly to [9, Theorem 13.6.4] in the smooth case.

Proposition 11. Let k£ € IN, Model Assumption 5.1 and Model Assumption 5.2 be verified for
¢ defined in (27), Step Assumption 5.1 be satisfied for algorithm 2, and (f + ¢y + h)(zy ;) =
(f + &k + h)1ow . for all j € IN. Then,

] =i
jlg{.lo HMka,je — 2k, I =o0.
Proof. We proceed similarly as in the proof of [9, Theorem 13.6.4]. With the formula 2, ;. ; =
X € = X1 Zh, g

. —1 1 —1 —1
12k 41 — e Xp el < Xk Z skl + el Xi e — Xy el

—1 —1 —1

< | X5 Zi il sk sl + v/ nl X i1 — X
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Using Proposition 10, we have lim;_,, V,;;/2§CP(A,€J; Ty, Vk,j)l/Q = 0. This leads to lim;_,, |55 ;| =0
with Lemma 4, and we have that xj, ; is bounded away from 0 using Proposition 6. Therefore, either
iteration j is not successful and Xy, ;1 = X, ;, or

| X7 de1 — X i = 1 X (Xe s Xis 41 = D
= HXk_,jl'(Xk,j(Xk,j + Sk,j)_l =1
= | X (I + X3 5Sk) ™ = D] — 0.

Since X,;jl-ﬂzk,j is also bounded for all j using Proposition 6 and (29), we have

]Lnolo Hék,jJrl - Mka_,}H@H — 0. (46)

For j large enough, we have
ﬁzuleXk_,Jl‘H@ < Zpji1 < ’izuuMka_,Jl‘H@a (47)
so that 2 ;11 = 25 41 if j is large enough. O

In Algorithm 1, each subproblem is solved approximately with tolerances €45 ~\, 0 and €, ; \, 0.
This gives rise to the analysis in Section 5.3.

5.3 Convergence of the outer iterations

For each k € IN, the stopping condition of Algorithm 2 occurs in a finite number of iterations. Let
jr denote the number of iterations performed by Algorithm 2 at outer iteration k. To simplify the
notation, let T, 1=y, , Z := 25 5,5 Sp1 = Sk 1, Dk = Ay, and Uy 1= v .

First, we present two assumptions that will be useful for our analysis.

Parameter Assumption 5.1. liminf A, , = A>0
To satisfy the second part of Parameter Assumption 5.1, we need to change ¢ in (27) to

(83w 5, By j) = 0p(8;05 , By j) + op(wp ;) — MkeTX};;S + %ST@k,jS
= (f + &) (zp ;) + (Vf(2g,) — MkX/g_,jl‘e)TS + %ST(Bk,j + Oy ;)s,

where O, ; = min(Xk_Jl- Z} ;> Fbarl) with the min taken componentwise and fip,,, > 0.

(48)

Since the results of Section 5.2 involving ¢ defined in (27) are all based upon Step Assumption 5.1,
those results continue to apply if Step Assumption 5.1 holds for ¢ defined in (48). We now show that
that is the case.

Fist, we observe that
(f + bp)(wg j + 5k5) — ©(Sk 3 p g B j) = [(wg; + sg5) — fog,5) — Vf(xk,j)T

A T
G (g + S5.5) — On(h ;) — 1S, Xg € — 555, (Brj + O j)sk -

sk,j+

Assume, as in Proposition 7, that | By ;| < M, Since ©y,; is bounded by definition, we use (40)
and (41) to conclude that f(zy ; + si ;) + Op(Tg; + sk;) — ©(5kj Th js Br,j) = O(HSk’jHQ), and, if
Y(s;xy ;) = h(zy; + s), (35a) holds. The proof of Proposition 8 is still valid when considering
By, ; + Oy, ; instead of By, ; + X,;;Zk’j, so that (35b) also holds. As a consequence, Step Assumption 5.1
still holds with ¢ defined in (48).

Now, our goal is to find a sequence {wy} — 0 such that wy € V f(Zy) — 2, + 0¥ (55,1; 7). Under
some additional assumptions on v, this will allow us to establish that Algorithm 1 generates iterates
that satisfy asymptotically (9). We begin with preliminary lemmas.
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Lemma 5. Assume that s; ;; is not on the boundary of A; ;B n ng (7, ;) and that Model
Assumption 5.1 holds. Then,

—VjojSk,g1 + e Xi € € VI (@ 5) + 0 (.15 T )- (49)

Proof. The first step of the proximal gradient method sy ;; satisfies (31). According to (18), its
first-order optimality conditions are

0€ 541+ Vi jVoep (05 ;) + O j (5 2 5) + X | A jB RS (25,5))) (555,1)- (50)

As sy, ;1 is not on the boundary of A, ;B n ng (z, ), there exists r > 0 such that for all s in an
open ball of center sy ;; and radius 7, x(s | A ;B N R§ (25,;)) = 0. Thus, the definition of the
subdifferential guarantees that

O(we (5 2p5) + X(- | Ag ;B R?k (75,;))) (8K 1) =
Vi jO(81,j,15 Th ) + OX (81 | Ag ;B N RS (25))-

We know that dx(sp ;1 | Ap,;B N Ry (24,;) = NAk,j]BmR?k(mk,j)(Sk’jll) using Lemma 3, and
N, /BAR? (ij)(sk’j,l) = {0} because sy ;; is not on the boundary of A, ;B n Rj (z) ;). There-
fore, (50) simplifies to

-1 -1
Oevy ;Sk 1+ Vf(zg,;) — prp Xy e + 0V (S 15 Tk j)

using Model Assumption 5.1 for V., (0; zy ;). O

Lemma 6. Let Parameter Assumption 5.1 be satisfied. Then, for all k € IN,

15,11 < \@Dked,lv

Proof. Since (33) holds, (45) leads to

1
|

_—1/2 X . = \1/2 1
€a =V Eop(Aps Ty, Ug) 17 2 Y

|‘§k71|7

which completes the proof. O

The following assumption will be useful to establish that 5, ; converges to zero sufficiently fast to
guarantee the convergence of the outer iterations.

Parameter Assumption 5.2. The sequences {€, ;. } used in Algorithm 1 and {yqp 1} from Proposition 6
satisfy
-1
Kdb,k€d,k — 0. (51)

To justify that Parameter Assumption 5.2 is reasonable, assume for simplicity that ¢ is an index
such that (Z)); = Kpap k- We have

Ty = > =
—ei XiZx + i < | XiZyp — ppel < €
so that
—\ (5 To -
(Tr)i(Z)i = €; XpZh = g, — €

and, if €, ;, < puy,
_ 1 (Zk);
1 k)i
Bmdbk = 72 <
" (Tk)s h B — €pk
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We multiply the above inequality by €, , to obtain

-1 (Z1)s
Kmdb kEpk < ——1——-
Hr€p e — 1
If 6‘“—: — 0, eg., e = ,ulljv’“ with 0 < v, < 1, n;éb)kep,k — 0. Then, the choice ¢, = O(€, 1)
guarantees that Parameter Assumption 5.2 is satisfied.

Lemma 7. Let Model Assumption 5.1, Parameter Assumption 5.1 and Parameter Assumption 5.2
be satisfied, and for all j, (f + h)(wg ;) = (f + h)iow,x- Then, there exists N € NV, such that for
all k € N, 551 is not on the boundary of A;B N R, (Zy,).

Proof. For all s € R", ||, < |s|, thus Lemma 6 leads to |54 ] < [Sp1] < V20keqp. As a
consequence, if \/ied,kpk < Apin,k, then 5 1 is not on the boundary of A;IB. This is certainly true for
k sufficiently large, because A > 0 in Parameter Assumption 5.1 and ¢, — 0.

Now, we show that s;, ; is not on the boundary of ng (z4) if k is large enough. First, we point out

that 7, - o0, because
1

Vk,j = < aAk,j'

|Br.;

+ Ok

)
gl +a A

Then, we have

|mini(§k,1)i‘< 155,100 < I5k,1

0<
Coming(zy);  ming(Z);  ming(zy);
20;.€
< M using Lemma 6
min, ()
20;,€
< M using Proposition 6,
Kmdb,k

and Parameter Assumption 5.2 indicates that \/in;(libka/ked’k — 0. As §;, — 8 < 1, the inequality

min, (5 1);
i (S g 5y (52)
min; (Z,);
is satisfied if k is large enough, and
min(5y 1 + &y); = min(5; 1); + min(Z,) by properties of the min
7 7 7

- . (53)
> 0, miln(:ck) with (52).

Therefore, 5 ; is not on the boundary of Ry, (7)) if k is large enough. We conclude that there exists
N € N, such that for all k € N, 5 ; is not on the boundary of A,B N R, (7). O

Theorem 3. Let Model Assumption 5.1, Parameter Assumption 5.1 and Parameter Assumption 5.2
be satisfied, and for all j, (f 4+ h)(xy ;) = (f + h)iow k- We define

Wy, 1= _Dlzlgk,l +‘LLkX]:1€—2k. (54)
Then, there exists a subsequence N € N, such that for all k€ N,

wy, € V f(Ty) — 2 + 0 (3y,1; T, (55)

and
1
lwill < V2€qk + Kmap.repx — 0 (56)
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Proof. Lemma 7 indicates that there is a subsequence N € N, such that, for k € N, 5, ; is not on the
boundary of A;B N R§ (). Thus, Lemma 5 holds, and

*1716_151@,1 + Xy e — 2, € V(@) — 2 + OY(5k,13Ty,)- (57)

With w), defined in (54), we have (55). Now, for all < € {1,...,n}, we use Proposition 6 to establish
that

(,uka_le —Z)i = (e — (%1)i(Z1)i)/(Tr)s < (e — (%1)i(Zk)i) /Foandb, o>

and, by summing the square of the above inequality for all i € {1,...,n},

(Mka €— Zk)2

Mz

Xt e = z* =

.
Il
—

(g — (Tg)s (fk)z’)z/’iildb,k (58)

Mz

Il
it

1
v = 112 2
= Hﬂke — Xk Ze|™ /Kb, k

<K mdb kep « because (34) holds,

so that ||, Xy e — 2| < m;éb7kep’k. As €, — 0 and Parameter Assumption 5.2 holds, we deduce that
SR
I Xy e = 2| = 0.

Finally,
Jw| = | = 7 Spp + X e — Z
< ISl + Xy e = 2|
< \fed BT nmdb KEp k k—+>oo 0,
where we used Lemma 6 and (58) in the last inequality. 0

Now, we present two assumptions on 1. The first will not be necessary for the remaining results of
this subsection, except as one of the justifications for the second assumption. However, it will be used
in Section 5.4.

Model Assumption 5.3. z — ¢(; ) is epi-continuous on R/ .

Model Assumption 5.3 holds if ¢ is continuous on R} x R}, but this condition is only sufficient,
not necessary [22, Exercise 7.40]. Let us consider the case where ¢(-;x) = s — h(z + s). Because h
is Isc, its epigraph is closed, thus the sequence of functions {h, h, ...} satisfies {h,h,...} = h. Let
z e R! and {x,} — Z. [22, Exercise 7.8d] indicates that for h, = s — h(z;, + s) and h = s > h(Z + s),
hj, — h. Since the latter is true for all € R}, we conclude that Model Assumption 5.3 is satisfied.
Model Assumption 5.4. For any sequences {s,} — 0 and {z;,} — Z > 0 such that z;, + s;, > 0 for all
ke NN,

lim sup 0v(s; x1,) < 0v(0;T) = Oh(T). (59)
k—o0

We present some cases for which Model Assumption 5.4 holds.

e When g-lim;_,, 0Y(-; ;) = 0(-;T). Attouch’s theorem [3] (also written in [22, Theorem 12.35])
indicates that this condition is satisfied when ¢ (-; ;) and 9 (-; Z) are proper, lsc, convex functions
with ¢ (;21,) —> 9(+; %) (i.e., Model Assumption 5.3 holds). An extension to non-convex functions
under some more Sophlstlcated assumptions is established by Poliquin [21].
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e When ¥(s;x) = h(x + s) and h(zy, + s;,) — h(Z) (e.g., h = | - ||1), using Proposition 1 applied to
{z), + s} — 7.

e When ¢(s;z) = h(xz + s) but h is not continuous, we may still be able to show that Model
Assumption 5.4 holds. For example, with h = |- |y, [16, Theorem 1] shows that dh(x) = {v | v; =
0 if x; # 0}. Thus, dY(sg;z) = (|| - lo)(z + sg) = {0} < Oh(T).

Corollary 2. Under the assumptions of Theorem 3 and Model Assumption 5.4, let Z and Z be limit
points of {Z,} and {Z,}, respectively. Then,
0eVf(Z)—z+0h(Z) and XZe=0. (60)

In this case, when the CQ is satisfied at Z, Z is first-order stationary for (1).

Proof. In Theorem 3, N can be chosen such that z, p Z and %z, o Z. We apply Model Assump-
€ €
tion 5.4 to (55) and (56) to deduce

=V f(Z) + z € 0Y(0;Z) = dh(T), (61)

which indicates that 0 € P*(A;Z,z, 7). The condition (34) implies that X Ze = 0. When the CQ is
satisfied, we can use Lemma 1 to conlude that Z is first-order stationary for (1). O

In Theorem 3, wy, evokes of the concept of (e,,e,)-KKT optimality for interior-point methods
introduced in [11, Definition 2.1]. We slightly modify this concept in the following definition.

Let €),¢4 >0, 2 >0, and A,v > 0. z is said to be (¢, ¢;)-KKT optimal if there exist z > 0 and
v € 0h(z) such that
IVf(z) =z +v| < eq, (62)

and, for all ¢ € {1,...,n},

Tz

< e, (63)

The main modification to the original formulation in [11, Definition 2.1] is that we require x;z; <€,
instead of min(x;,2;) < ¢, for all 4, but this is linked to our different choices of stopping condition for
the complementary slackness. The first part of the definition (62) is similar to the e-stationarity [10,
Definition 4.5] for more general problems.

Model Assumption 5.1 does not necessarily guarantee that 0vy(sy, j 1; 7 ;) = Oh(wy j + 55 j1). Thus,
for k € N where N is a subsequence introduced in Theorem 3, we cannot use Theorem 3 to measure
the (e, €4)-KKT optimality of z;. Let

Eh,k = dlSt(’u}k — Vf(fk) + Zk, Oh(fk + §k71))' (64)

As Theorem 3 indicates that wy, — f(Z) + 2 € 0¢(55,1; %)), we can obtain a measure of (e, ¢;)-KKT
optimality which depends on €, ;. When all the elements of 0v(5;, 1;Z)) are close to an element of
Oh(Zy+5y,1), we expect €, 1, to be small. In particular, if 0y (5 1;Zy) S Oh(Z) 45y 1), €1 = 0.

Theorem 4. Let the assumptions of Theorem 3 be satisfied, and ¢, ,, be defined in (64). Then,
there exists N € NV, such that for all k € N, Z), + 55,1 is (€, 1, €4,,)-KKT optimal with constants

Epk = €pk + VL + V20,64 1,12

— — —1
ok = €np + V24, (1+ 7 Ls) + Kmdb, k€p, k-

Proof. Theorem 3 guarantees that, for all k¥ in a subsequence N € N, (55) holds, i.e.

wy, — V(%) + 2 € 0P (515 7)),
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where wy, is defined in (54). As 0h(Z) + 5 1) is closed, we can choose vy, € Oh(ZTy, + 5) 1) such that, for
Y = v — wy + Vf(Zy) — Z, we have |y, | = €, 5. Then,

(v, —wy + Vf(Zy) — Z) +wy, € Vf(Ty) — 2 + OM(Ty, + 551),
which we may rewrite as
Y +wy + V(@ +8,1) — VI(Z) € V(T +551) — 2 + Oh(ZTy + 81),

and
|y +wi + V(@ + 851) — V(@) < € + wil + L5k

Lemma 6 implies that L |5, 1| < V2L ;€. We combine the latter inequality with (56) in Theorem 3
to obtain

|y +wi + Vf(Zg + 551) — V(@) < € + \/ied,k(l + v Ly) + Kr;}tib,kep,k' (65)

Now, for all i € {1,...,n},

(Zg, + 55,1)i(Zr)i < [(Xk + Sp1) %
< |1Xxz — pel + lpel + 1Sk Zl (66)
< ep i T Vs, + |5 12
< i + Vg, + V20€q ] -
We use (65), (66) and Section 5.3 to conclude. O

If 2, is bounded, €, j -~ 0 in Theorem 4. If ¢, ;, — 0, we also have €, - 0.

5.4 Convergence with a new criticality measure

Now, instead of using V,;;/chp(AkJ;ka,l/lw»)l/z (involving ¢.,(+; 2y ;)) for the criticality measure
of Algorithm 2, we would like to use a measure based upon goﬁ(';xk,j,zm-) defined in (10a). The
reason behind this choice is inspired from the criticality measure |V f(zy ;) — 2 ;| used in primal-dual
trust region algorithms in the smooth case, instead of |V f(xy ;) — ukX,;jl-eH used in primal algorithms,
see for example [9, Algorithm 13.6.2]. We may expect that this choice results in fewer iterations of
Algorithm 2 when xy ; and z; ; are close to a solution of (1), because (we express this idea with
smooth notations for now), if j, is the index for which the stopping criteria of Algorithm 2 are met,

IVf(Z) = 2l = IV f(ri1,0) = 2k41,0ll, whereas [V f(zy) — X, el # IVf(Tps1,0) — MkJrle_-&l,OeH'
However, to change the stopping criterion, we need the following convexity assumption.

Model Assumption 5.5. For a sequence {zy ;}; generated by Algorithm 2 at iteration k, 9 (-; xy ;) is
convex for all j.

If ¢¥(s;x) = h(xz + s) and h is convex, Model Assumption 5.5 holds.

In this section, we define

c . r
Sk j € argminm” (s;y, j, 2 j, Vi ;) + X(5 | Ag ;BN IR:;: (2 4))s (67)
S

where mﬁ(s;xk,j,zthkJ) is defined in (11), and

gﬁﬁk(Ak,j;xk,jzzk,ﬁ Vk,j) = (f + ¢ + h)<33k,j) - (‘PL(Sf,j;l’k,j’Zk,j) - w(sf,j§xk,j))7 (68)

where gaﬁ(qumzk)j) is defined in (10a). We point out that §5£k and £° defined in (13) are almost
identical, the latter being computed by replacing x(s | A, ;B RS () ;)) by x(s | Ay ;B) + x (g ; +5 |
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RY) in (67). Model Assumption 5.5 will be useful in Theorem 5, which is crucial for our analysis of
Algorithm 3 because it establishes the convergence of the inner iterations with &i .

Algorithm 3 resembles Algorithm 1, except for the stopping criterion (33). Our ultimate goal in
this subsection is to show that replacing (33) in Algorithm 1 by (69) in Algorithm 3 maintains similar
convergence properties to those of Section 5.3, but, as illustrated in Section 6, performs better in
practice.

Algorithm 3 Nonsmooth interior-point method (outer iteration) with stopping criteria based upon §§k in (68).

: Choose € > 0, sequences {u} \ 0, {eg 1} 0, {€, 1} \. 0, and {5} — & € [0,1) with §;, € (0,1) for all k.
: Choose zg o € R” | where h is finite.

: for k=0,1,... do

Compute an approximate solution zj, := z, ; to (22) and zj, := zj, ; in the sense that

i

—1/2,.L 1/2
v 2 (B i mn g )P < eans (69)

and (34) holds, that we recall in the following inequality for conveniency
luge — Xi 525 < €pic-

5: Set xp11,0 1= Ty-
6: end for

The following result shows that the inner iteration terminates finitely.

Theorem 5. Under the assumptions of Proposition 11, Model Assumption 5.3 and Model Assump-
tion 5.5, if {x} ;},; possesses a limit point xy, then

.. Vi
1jlg}ilgof fék(Ak,ﬁ Lk jyrRk,js Vk,j) =0, (70)

and
lim nf 55, = 0, ™)
where sf,j is defined in (67).
Proof. As Ay, € [Anink Amax] and vy ; € [Vmin g, 1], there exists an infinite subsequence N such
that Ay, ; JZV) Af, 7 ;V» vy, Ty ]E—]V) x;, and with Proposition 11 2k ]Zv) 2y with X Zfe = pye.
By continuity of the min, R, (zy ;) P Rj (x). The sets A, ;B and Ry, (xy, ;) are convex (using

Lemma 3 for the latter). Since AyB and Ry (z}) are convex and cannot be separated, we use [22,
Theorem 4.33] to conclude that

Ag ;B RS () JZV) AFB N Rj, (x}).

With [22, Theorem 7.4f], we deduce

i (| Ay B RS, (0,)) = x(- | AT 0 RS, (1))
Thanks to Proposition 11 and the smoothness of ., (-;x) and goc('; x, z), we also have

. . o . Ly, Ly ok %
ej‘_él]{[n@cp(ka,j) = ejfllj{}l@ ('7$k,j7zk,j) = ('axkvzk)- (72)
The functions Qe (3 7%,)s ¢ (325 2k;) and @“(; ok, 2) are all convex because they are linear.
Model Assumption 5.3 implies that e-lim ey ¥(-; 2y ;) = (- x}). Model Assumption 5.5 and [22,
Theorem 7.46] lead to

elimi(in) + X( | Ay B 0B, () = ¥(5od) + x( | AFB A RS, (@), (73)
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and the above functions are all convex. We deduce from (72), (73) and [22, Theorem 7.46] that

: . : L. IV SV T S
e;g{,nmcp('vxk,jv’/k,j) = ejfgfnm (5T g Zh,jo Viyj) = M0 (528, 25, V),

where m” is defined in (11). The sequences Mep (55 2h 5, Vi i )X (| Ay BARS, (24, ;) and mE (s ak, 2f vf)
+X(- | Ay ;B N R, (x,;)) are level-bounded because of the indicators. As in (31), we have

prox (Vi Voo (0s 2, v ) =
v (52 ) +xCIAEBORS, (27))

argminm® (ssaf, 2, v7) + (s | ATB A RS, (1)),
and the above problem is single valued because of [22, Theorem 2.26a]. Let s* denote its only solution.
Theorem 1, and specifically (5), implies that the sequences

Sk.j1 € arg msinmcp(s;:v,w7 Vi) +x(s ] A ;B ng (7g,5))s

and
c .z
Sk,j € argmimnm (83 %k j» 2k 4y Vi) + X(5 | A ;B RS (24,5))

have the same limit s*. We have shown in Lemma 4 that s, j1 — 0. Thus, s* = 0. Finally, we have
T jotoo

—1 2
Eep(Ap i T iy Vi) = (f +h 4 b)) (Tg ;) — Mep(Sk 15 Thjs Vi j) + %Vk,szk,j,IH .

As §p (A ji g 4, Vg, ;) — 0 by Proposition 10, and [sy ; 1|| — 0, we deduce that
P ) B +oo o Jj—+0

j~>
Mep (8,515 Thoj Vi j) je—N’ (f +h+ ¢p)(zk).

Using (4) in Theorem 1, we have
. : L£/.L
}}g%mcp(sk,j,l;xk,ﬁyk,j) = Jherznvm (Sk.3 Thj» ks Vieg) = (F + I+ o) (). (74)
The expression of £§k in (68) can also be written as
c Lo.L —1y L 2
&5 (Dg i Th js 21,y Vi) = (F B+ O (@) — M7 (8K 53 Zh s 20> Vi) + 5V 155517
By injecting the limit of sﬁj and (74) in the above equation, we obtain (70). O

From this point on, j,, denotes the number of iterations performed by Algorithm 2 at iteration k
with the inner stopping criteria from Algorithm 3, and we use again the notation z,, = @, ; , 2 = 2 5, ,

Sk = Skl A, = Ay s Vi = Vg j,, With the addition of Ef = sfjk The following three lemmas are
analogous to Lemma 5, Lemma 6 and Lemma 7.

Lemma 8. Assume that sf’j is not on the boundary of Ay ;B n R§ (z) ;) and that Model
Assumption 5.1 holds. Then,

—y,;;sf’j € Vf(xy,;) — 2k, + é’w(sf’j;xk’j). (75)
Proof. The first-order stationarity condition of (67) is
—’/1;}85,3‘ e Vf(ry ) — 2, + 5¢(3ﬁ,j;fk) + 5X(8£,j | Ay ;B RS (2 5))-
The same analysis as in the proof of Lemma 5 establishes that
Ox(st7 | A B RS, (a47)) = {0},
so that (75) holds. O
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Lemma 9. Let Parameter Assumption 5.1 be satisfied. Then, for all k € IN,

r _
I5% | < V204

Proof. The bound
c “1y L 2

&5 (D i Thgs 20> Vi) = 5V 155 (76)

holds because
mL(OWk,j,Zk,jﬂ/k,j) =(f+o¢+ h)(mk,j)
L, L

= m” (k3 Tk js 2k js Vij)

= ([ + ¢p + h)(xy ;) + (Vf(wg;) + Zk,j)Tsé,j + %Vk_; Hsﬁsz
The stopping criterion (69) and (76) lead to

1Ly 120L R = = \1)2
\%Vk 1551 < 7, / &5, (A T, 21, ) P < e

which completes the proof. O

Lemma 10. Let Model Assumption 5.1, Parameter Assumption 5.1 and Parameter Assumption 5.2
be satisfied, and for all j, (f + h)(2y ;) = (f + h)iow,k- Then, there exists N € N, such that for

all k € N, 55 is not on the boundary of A,B n R}, (7).

Proof. Since for any s € R", |s|,, < [s], Lemma 9 leads to |55, < |5F] < V2uyeq ). Thus, if
\/ied’kf/k < A ks Ef is not on the boundary of A;B. As A > 0 in Parameter Assumption 5.1 and
€4, — 0, this is true if k is sufficiently large. The rest of the proof is identical to that of Lemma 7. [

Now, we can establish results similar to Theorem 3, Corollary 2, and Theorem 4 for Algorithm 3.

Theorem 6. Let Model Assumption 5.1, Parameter Assumption 5.1 and Parameter Assumption 5.2
be satisfied, and for all j, (f + h)(zy ;) = (f + h)jow,k- Then, there exists a subsequence N € N,
such that for all k € IV,

7y 5% € VI(Tg) — 2 + 0 (k3 T), (77)

with
Vi sl5E 1 < V2eq 5 — 0. (78)

Proof. Lemma 8 and Lemma 10 lead to (77). Lemma 9 shows that 1/,;]1 ||sf]H < V2e4y,, and, as
€ar — 0, (78) is satisfied. O

Corollary 3. Under the assumptions of Theorem 6 and Model Assumption 5.4, let Z and Z be limit
points of {Z,} and {Z,}, respectively. Then,

0eVf(x)—z+0h(Z) and XZe=0. (79)
In this case, when the CQ is satisfied, Z is first-order stationary for (1).
Proof. In Theorem 6, N can be chosen such that z, oy Z and Zz, .y Z. We apply Model Assump-
€ €
tion 5.4 to (77) and (78) to obtain
-~V f(z) + z € 0v(0;T) = oh(Z),

and we conclude as in the proof of Corollary 2. O
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Finally, we show a result similar to Theorem 4 for the (e,, ¢;)-KKT optimality. We use again a
subsequence N as in theorem 6, vy, € Oh(Z; + 55 ), and we define

eh k= dist(=75, '55 — V(&) + 2k, OR(Ty, + 5p1))- (80)

Theorem 7. Let the assumptions of Theorem 6 be satisfied, and €€,k be defined in (80). Then,

there exists a subsequence N € A, such that for all k € N, z;, + Ef is (éﬁk, Ed[:,k,)—KKT optimal
with constants

L _ _
Epk = €pk + VT + \/il/kGd,k“Zk”
Ed[',k: = G}f,k, I \/iﬁd’k(l I Lfﬁk).

Proof. Theorem 6 guarantees that there exists an infinite subsequence N such that for all k € NV,
——1_L - - L, -
—3, 5 — VI(Zy) + 2 € 09(55; 2,

Since 0h(Zy, + 55) is closed and nonempty, we can choose vy, € Oh(Z), + 5¢) such that, for yr :=

~7;, "85 — Vf(Z) + %, we have ||lyr | = i . Now,

(vn = (=7 '8 = VI (@) + 20)) = 735 € V(@) = 2 + Oh(zy + ),
which can also be written as
Ui = U 8k + V(@ + 55) = V(@) € V(@ + 55) — 2+ 0h(Ty + 5.
The triangle inequality combined and the Lipschitz constant L, of V f leads to
lyk — 73 "5k + V(@ + 58) = V@) | < e+ 7 156+ Lylsi ]
Lemma 9 then implies that
Hyf - Dk_lgf + V(@ + 55) = V@) < Gﬁ,k + \/ied,k(l + Lyvy,).

Finally, the inequalities of (66) still hold when replacing 5 ; by Ef: forallie{1,...,n}, (Zy);(Z); <
€p i T VL + V2060 1] 2] N

When Z, e R’} and z, e RY, {z.}n is bounded, thus Ef,ik -~ 0 in Theorem 7. If
€ €

efk — 0, we also have Ede — 0.
; kTN

6 Implementation and numerical experiments
All solvers tested are available from RegularizedOptimization.jl. We define
€dk ‘= € + fr,iV;;(l)/2§(s£k(Ak,o; Tk,05 Zk,0 Vk,0)1/2 and €, 1= €,
where €, ; > 0 is a predefined relative tolerance for the inner iterations. Algorithm 2 terminates when

~1/2,.L ) 1/2
Vii 650 (Brji Thgs 2o Vi g, ) < €a

HXk,jZk,j — pgef < €p.k-

We use the constant fy,, = 10° for Oy, in (48) and ¢, ; = 1071, We set ¢g = pg = 1, Pry1 = pr/10,
€ = u,le‘m, and Ay o = 10004, similarly as Conn et al. [8] did in the smooth case for their interior-point


https://github.com/JuliaSmoothOptimizers/RegularizedOptimization.jl
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trust-region algorithm. In addition, we go to iteration k + 1 and set x4, = wy; if Algorithm 2
performs more than j = 200 iterations. Any iteration k& where xy,  is not first-order stationary for (1)
has €, > €, = €, thus the remarks below Parameter Assumption 5.2 are not sufficient to prove that
this assumption is always satisfied, however, we observe satisfying performance with these parameters.
Although it is possible to use €, = €, it would require more inner iterations.

To declare convergence of Algorithm 3, we use the following criteria

< € (81a)
| Xz — pwel| < e (81D)
Dk_l/thi (Ak;‘%kazkv Dk)l/z <€, (81C)

—1/2 L 1/2 .
where € = ¢, + €rV1,1/ & (Ay 1321 0,v10) /2 for some €, > 0. In our experiments, we chose €, =
—4 o C. .
€, = 107". We could not base our criteria upon £~ in (13) because we do not know the v associated

to this measure (which is different from the v, ; generated by Algorithm 2 associated to the barrier
subproblem).

Once Algorithm 3 terminates, we use a crossover technique to set x; = 0 or/and z; = 0, to respect
the complementarity condition. To do so, we check the final value of z; (resp. z;), and if it is smaller

/4

than /u we set it to zero. If both x; and z; are smaller than ul , we set them to zero.

The subproblems in Algorithm 3 are solved with the algorithm R2 [2], and we compare Algorithm 1
to TR [2] with R2 used as a subsolver, and R2 used by itself. Algorithm 3 will be denoted RIPM. Finally,
we introduce a variant of RIPM named RIPMDH (Regularized Interior Proxzimal Method with Diagonal
Hessian approzimations), that uses the same idea as our algorithm TRDH [17]: instead of using LBFGS
or LSR1 quasi-Newton approximations for By, ;, we use diagonal quasi-Newton approximations so
that (25) with ¢ defined in (48) can be solved analytically for specific seperable regularizers h. TRDH
and RIPMDH use the Spectral Gradient update in all our results. We choose either h(z) = A|z|, or
h(xz) = A|z|l;, where A > 0. When h(z) = A z|o, RIPM and RIPMDH denote Algorithm 1 instead of
Algorithm 3 because h is not convex.

For simplicity, we described how to solve (1) with the constraint z > 0, but RIPM and RIPMDH
are actually able to handle box constraints £ < x < u. These more general constraints can be handled
with minor modifications using the barrier function

‘;)k(x) = T HE Z log(w; — {;) — g 2 log(u; — ;) (82)
i=1 i=1
instead of ¢, [9, Section 13.8]. When ¢; = —o0 (resp. u; = +o0) for some i € {1,...,n}, we remove the

term log(z; — ¢;) (resp. log(u; — x;)) from the first (resp. second) sum in (82).
Our results report

e the final f(z);

e the final h(z)/\, where ) is a parameter relative to our regularization function h;
e the final stationarity measure \/5/7;

o |z — 2|, where x, is the exact solution, if it is available;

e the number of smooth objective evaluations #f;

e the number of gradient evaluation #V f;

e the number of proximal operator evaluations #prox;

e the elapsed time ¢ in seconds.

Our main goal is to reduce the number of objective and gradient evaluation, as they are typically
costly to evaluate. Since we did not fully optimize the allocations in our algorithms, we do not pay
attention to the elapsed time, and we only report it in the tables for information.
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Once a problem has been solved by all solvers, we compare their final objective values and we
save the smallest, that we denote (f + h)*. Then, for all solvers, we plot (f + h)(z}) — (f + h)* for
every iteration k where the gradient V f is evaluated. This allows us to represent the evolution of the
objective per gradient evaluation. For the last gradient evaluation of RIPM and RIPMDH, we display
their final objective value after applying the crossover technique.

6.1 Box-constrained quadratic problem

For our first numerical experiment, we solve

minimize ¢’ z + %J;THQC + h(xz) subject to ¢ < x < u, (83)
x

which is similar to [23, Section 7.1], where h = A - |;, H = A+ A", A€ R"*™ has nonzero components
with probability p = 1074 following a normal law of mean 0 and standard deviation 1, ¢ € R™ has
components generated using a normal distribution of mean 0 and standard deviation 1, £ = —e — ¢,
and v = e + t,,, with £, € R", ¢, € R" are vectors sampled from a uniform distribution between 0 and
1. We chose n = 1057 and use a LSR1 quasi-Newton approximation for TR and RIPM. For A > 1.0, the
components x; of the solutions returned by TR, TRDH, R2, RIPM and RIPMDH satisfy x; € {¢;, u;, 0}
for almost all 4 € {1,...,n}. In this case, we observe that TR, TRDH and R2 are more efficient than
RIPM. However, as we decrease A, we get more components z; ¢ {¢;, u;,0}. We show results with
A=10""in Figure 1 and Table 1. TRDH performs the least amount of objective, gradient and proximal
operators evaluations. RIPMDH finds the smallest final objective value, and performs fewer objective,
gradient and proximal operator evaluations than TR-R2. RIPM terminates with a criticality measure
higher than the other solvers, but we observe that its final objective is smaller than those of TR,
TRDH and R2. For RIPM and RIPMDH, we can clearly see plateaus that delimit the outer iterations.
RIPM-R2 performs many more proximal operator evaluations than RIPMDH, because it uses up to
200 R2 iterations to solve (25). The number of proximal operator evaluations with RIPM-R2 is also
much higher than that of TR-R2, because the subproblems solved with R2 in RIPM-R2 have their
objective based upon (48), which is not well conditioned when some components of x ; approach 0,
whereas the subproblems in TR-R2 are based upon (26).

Table 1: Statistics of (83). TR and RIPM use an LSR1 Hessian approximation. The maximum number of objective
evaluations is set to 800.

solver f(z) h(z)/\ Ev #f #Vf  #Hprox t (s)
R2 —2.29e+04 1.5e+04 8.5e—03 679 520 679 6.8e—01
TRDH —2.28e4+04 1.5e+04 5.9e—05 57 47 113 3.6e—01

TR-R2  —2.28e4+04 1.5e+04 9.9e—03 801 596 12639  8.5e+00
RIPM-R2  —2.30e+04 1.4e+04 3.4e4+00 801 628 101019  5.0e+01
RIPMDH  —2.32e+04 1.5e+04 8.7e—03 313 241 628  2.7e+00

6.2 Sparse nonnegative matrix factorization (NNMF)

The second experiment considered is the sparse nonnegative matrix factorization (NNMF) problem
from Kim and Park [15]. Let A € R™*" have nonnegative entries. Each column of A represents an
observation, and is generated using a mixture of Gaussians where negative entries are set to zero. We
factorize A ~ WH by separating A into k < min(m, n) clusters, where W € R™**, H € R¥*" both
have nonnegative entries and H is sparse. This problem can be written as

minimize | A — WH |2 + h(H) subject to W, H >0, (84)

where h(H) = A|vec(H)|; and vec(H) stacks the columns of H to form a vector.

We set m =100, n =50, k =5, A = 1071, and report the statistics in Table 2. For this particular
problem, we use €, = 1076, which allows for more accurate solves and for a better visualization of the
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(f +h)(@e) = (F + W)*
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Figure 1: Plots of the objective of (83) per gradient evaluation with different solvers.

evolution of the objective values, shown in Figure 2. We observe that RIPM-R2 and RIPMDH are
the only solvers to terminate. They outperform R2 and TR-R2 in terms of number of objective and
gradient evaluations, and their final objective value is also smaller. R2 and TR-R2 reach the maximum
number of iterations. The objective of RIPM-R2 and RIPMDH is higher than that of R2 and TR-R2
only in the early iterations, because the barrier function has more effect when p;, is larger. RIPM-R2
performs less objective and gradient evaluations than RIPMDH, but much more proximal operator
evaluations because of the reasons evoked in Section 6.1.

Table 2: Statistics of (84). TR and RIPM use an LSR1 Hessian approximation. The maximum number of objective
evaluations is set to 8000.

solver f(x) h(z)/\ &v #f  #Vf  Ftprox t (s)

TRDH 1.25e4+02 3.1e+01 1.6e—01 8001 6156 16000  2.0e+00
TR-R2  1.25e+02 2.8e+01 1.2e—01 8001 5122 150563  6.4e+00
RIPM-R2  1.25e4+02 1.9e+01 2.5e—02 4501 3210 470975 1.1e401
RIPMDH  1.25e4+02  2.0e+01 1.4e—02 4602 3759 9205  1.3e+00

6.3 FitzHugh-Nagumo problem (FH)

We sample the functions V (¢; z) and W (¢; z) satisfying the FitzHugh [13] and Nagumo et al. [20] model
for neuron activation, where z € R’ as v(x) = (v1(2),..., vy (2)) and w(z) = (wy (), ..., wy41(x)).

dv AW
— = (V=V3B—-W +a)x;", T

dt = 5C2($3V—.T4W+5U5). (85)
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Figure 2: Plots of the objective of (84) per gradient evaluation with different solvers.

The time interval ¢ € [0, 20] is discretized, with the initial conditions (V' (0), W (0)) = (2,0). We solve
minixmize 2 (w(z) — v(z), w(z) — w(z))|3 + h(z), subject to zo = 0.5, (86)

where h(z) = A|z|o with A = 10, n = 100, and report the statistics in Table 3. Since h is not convex,
we use Algorithm 1 instead of Algorithm 3. We do not show results with R2 because it encounters a
numerical error during the solve of a differential equation to compute the objective. The evolution
of the objective per gradient evaluation is shown in Figure 3. To improve readability, we choose to
show the number of gradient evaluations on a logarithmic scale, and not to plot results with TRDH.
All solvers converge to the value (0.00,0.50,0.54,0.00,0.00) except for TRDH that has a higher final
objective value than the other solvers. TR-R2 is the fastest, and seems the most suited to solve smaller
problems such as (86). RIPM and RIPMDH still converge, but the latter is much slower. However,
RIPMDH performs the least amount of proximal operator evaluations.

Table 3: Statistics of (86). TR and RIPM use an LBFGS Hessian approximation.

solver f(z) h(z)/A &v #f  #Vf  #prox t (s)
TRDH  6.05e4-00 2.9e+01 1001 697 2000  4.5e+00
TR-R2  4.40e+00 4.8e—03 53 45 4627  3.3e—01

RIPM-R2  4.40e+00
RIPMDH  4.40e+00

1.3e—02 261 112 10139  1.0e+00
1.5e—02 798 523 1600  3.8e+00

NN N W
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Figure 3: Plots of the objective of (86) per gradient evaluation with different solvers.

6.4 Constrained basis pursuit denoise (BPDN)

We solve the basis pursuit denoise problem (BPDN) [12, 24] with additional bound constraints. Let
m = 200, n = 512, b = Az, + ¢, where € ~ N'(0,0.01), A € R™*" has orthonormal rows, and z, is a
vector of zeros, except for 5 of its components that are set to 1. The constrained BPDN problems is
written as

minimmize 1Az — b3 + h(z) subject to z = 0, (87)

where h(z) = M|z];. We use A = | A”b|,/10.

The statistics are shown in Table 4. R2, TRDH and TR-R2 are much more efficient than RIPM
on this problem. This could come from the fact that there are many active bounds in the solution.
However, this was also the case for the NNMF problem of Section 6.2, for which RIPM seems more
efficient. Further investigations should seek to understand such behaviours on different problems.
RIPM-R2-p and RIPMDH-p use the modifications p, = 10~ and €; = 1.0, which make RIPMDH
on (87) surpass TR-R2 and close to TRDH. Figure 4 shows the evolution of the objective values. RIPM
and RIPMDH are not included to improve readability.
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Table 4: Statistics of (87). TR and RIPM use an LSR1 Hessian approximation.

solver fl@)  h(@)/A v lw—a"lo  #f #VF  #Hprow t (s)
R2 3.91e—02 8.7e+00 1.8e—04 4.1e—01 11 11 11 4.0e—03
TRDH 3.91e—02 8.7e+00 6.8e—05 4.1e—01 9 9 17  8.0e—03
TR-R2 3.91e—02 8.7e4+00 1.6e—04 4.1e—01 17 17 35 1.1e—02
RIPM-R2 4.12e—02 8.7¢e+00 7.1e—03 4.2e—01 915 915 12143  3.3e+00
RIPMDH 3.92e—02 8.7e4+00 9.9e—04 4.1e—01 361 225 724 2.1e—01
RIPM-R2-p  4.22e—02 8.7e+00 1.0e—02 4.3e—01 56 56 8331 1.5e—01
RIPMDH-p 3.91e—02 8.7e+00 5.6e—04 4.1e—01 15 15 32 9.0e—03

7 Discussion and future work

We have presented RIPM, a trust-region interior-point method to solve nonsmooth regularized problems
with box constraints, and RIPMDH, a variant based upon techniques of Leconte and Orban [17]. These
algorithms solve a sequence of unconstrained barrier subproblems to obtain a sequence of approximate
solutions of (1). We have shown the convergence of the inner barrier subproblems, and we have
characterized the degree of (e, ;)-KKT optimality for every outer iteration past a certain rank. Under
the assumption that the iterates remain bounded, we have shown that RIPM converges to a first-order
stationary point for (1). We compared RIPM and RIPMDH to projected-direction methods with a
separable regularization function.

RIPM and RIPMDH perform well on the box-constrained quadratic problem of Section 6.1 and on
the NNMF problem of Section 6.2. They are not as efficient on the FH problem of Section 6.3 and the
constrained BPDN problem of Section 6.4, which may suggest that projected-direction methods may
be more efficient to solve problems with fewer variables and constraints. However, as observed with
RIPM-R2-p and RIPMDH-p, the modification of two parameters of RIPM and RIPMDH improves
their efficiency significantly on the constrained BPDN problem. This suggests that our implementation
could benefit from parameter tuning.

Future work may include generalizing the algorithm to constraints of the form ¢;(z) < 0 with
i € {1,...,m} for some m > 0, where the ¢; are continuously differentiable and Lipschitz-gradient
continuous, as in [9, Section 13.9] in the smooth case, or [11] for nonsmooth problems.

Another improvement would be to scale the trust region to allow greater search directions along the
boundary of the feasible domain. This is explained more in detail in [9, Section 13.7] for trust-regions
based upon the /5-norm. However, we could not find an alternative for trust-regions based upon the
{,-norm that led to satisfying numerical results.

In Section 5.4, Model Assumption 5.5 does not allow the use of h = | - ||g with Algorithm 3. It
would be interesting to see whether it is possible to establish convergence properties similar to those
of Algorithm 1 without this assumption. One way to do this might be to replace &, by @;Lk_ in (35Db)
when j is large enough, but we did not manage to justify that this change results in a reasonable Step
Assumption 5.1.

The extension of the convergence results to locally Lipschitz-gradient continuous functions f could
also be studied, based upon the work of [10, 11, 14].

Finally, when {B), ;}; grows unbounded, we may still be able to prove the convergence of RIPM
using the analysis of Leconte and Orban [18], provided that the norm of the Hessian approximations do
not grow too fast.
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Figure 4: Plots of the objective of (87) per gradient evaluation with different solvers.
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