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• Peuvent télécharger et imprimer une copie de toute publication du
portail public aux fins d’étude ou de recherche privée;

• Ne peuvent pas distribuer le matériel ou l’utiliser pour une activité
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Abstract : Efficiently solving a vehicle routing problem (VRP) in a practical runtime is a critical challenge for
delivery management companies. This paper explores both a theoretical and experimental connection between
the Capacitated Vehicle Routing Problem (CVRP) and the Constrained Centroid-Based Clustering (CCBC).
Reducing a CVRP to a CCBC is a synonym for a transition from an exponential to a polynomial complexity
using commonly known algorithms for clustering, i.e K-means. At the beginning, we conduct an exploratory
analysis to highlight the existence of such a relationship between the two problems through illustrative small-size
examples and simultaneously deduce some mathematically-related formulations and properties. On a second
level, the paper proposes a CCBC based approach endowed with some enhancements. The proposed framework
consists of three stages. At the first step, a constrained centroid-based clustering algorithm generates feasible
clusters of customers. This methodology incorporates three enhancement tools to achieve near-optimal clusters,
namely: a multi-start procedure for initial centroids, a customer assignment metric, and a self-adjustment
mechanism for choosing the number of clusters. At the second step, a traveling salesman problem (TSP)
solver is used to optimize the order of customers within each cluster. Finally, we introduce a process relying
on routes cutting and relinking procedure, which calls upon solving a linear and integer programming model to
further improve the obtained routes. This step is inspired by the ruin & recreate algorithm. This approach is an
extension of the classical cluster-first, route-second method and provides near-optimal solutions on well-known
benchmark instances in terms of solution quality and computational runtime, offering a milestone in solving
VRP.

Keywords : Capacitated vehicle routing problem, Constrained centroid-based clustering
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1 Introduction
The vehicle routing problem (VRP) is defined as the exercise of finding the best vehicle routes to deliver
products to a set of customers [10]. In practice, it often comes with different constraints reflecting the business
nature. Recognizing its critical importance in various domains, it has been extensively studied by the operations
research community over the past few decades. In particular, several approaches were designed to solve this
problem, known as NP-hard. Hence, it is always worthwhile to design new methodologies to achieve more
efficient solutions within a practical timeframe. From this standpoint, the machine learning community has
recently been more involved in tackling this problem. Consequently, many techniques have been tested while
buildingVRP solvers: clustering [16], reinforcement learning [33], and learning over graphs [28].

In this paper, we focus on leveraging the clustering techniques to highlight the connection that could
be established between the capacitated vehicle routing problem (CVRP) and the constrained centroid-based
clustering (CCBC). Establishing this connection can be highly advantageous for the operations research
community, because there exists a valuable body of knowledge within the clustering community that can be
harnessed to enrichVRP solution methodologies. The objective of this paper is to design a CVRP solver using
a CCBC technique to reach good quality solution within reasonable runtime. This choice can be rationalized
by the fact that the clustering reduces the huge combinatorial space through dealing with sub-instances instead
of tackling the raw problem. This can be seen as a direct application of the divide-and-conquer paradigm to
solve the CVRP. Nevertheless, a straightforward implementation of this approach has some limitations and
does not always guarantee good quality solutions. It inherits the same shortcomings from the classical clustering
algorithms, specifically [23, 25]: choice of initial centroids, local optima, unbalanced clusters, and border points.

In this work, we address four contributions. Particularly, we target defining the nature of the connection that
can be set up between CVRP and CCBC and the related limitations. Additionally, the focus will be centered
on the strategy to mitigate the impact of these limitations. This will result in providing CVRP solutions in
a reasonable runtime while ensuring good quality. To the best of our knowledge, it is the first time such an
approach has been applied to tackle the CVRP. To sum up, we list below the main contributions of this paper:

1. Highlight through experiments the connection between the CVRP and CCBC and prove some theoreti-
cally related properties.

2. Design a CCBC based approach to address the CVRP and relieve the shortcomings impact mentioned
above.

3. Provide a computational study on baseline instances from the literature showing near-optimal solution,
resulting in an average gap of 1.07 % to the optimal solution.

4. Carry out an analysis study to shed light on the impact of added enhancements against the aforementioned
shortcomings.

The remainder of this paper is organized as follows. Section 2 is dedicated to the literature review. Section 3
is devoted to the problem formulation while Section 4 introduces a warm-up study to highlight the connection
between CVRP and CCBC. Section 5 presents the methodology while the experimentation and the post-
computational analysis is given in Section 6. The last section provides conclusion and perspectives.

2 Literature review
This section presents a literature review aboutVRP characteristics and the common methodologies to solve it.
The focus will especially be given to the use of the clustering-driven approaches to tackle this problem.

2.1 VRP variants

The Vehicle Routing Problem (VRP) and its numerous variants, estimated to be over 10 in number [20], are
universally known to be NP-hard problems [31]. The capacitated vehicle routing problem (CVRP) [17]
considered as the foundational variant and consists in serving all clients through a set of vehicles. Each vehicle
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starts from and ends at the depot, such that every route’s total demand must not exceed the vehicle capacity. We
outline a few notable variants such as :

Vehicle routing problem with time windows VRPTW [36]: This is an extension of CVRP, requiring a
soft or hard time windows to serve each client.

Vehicle routing problem with pickup and delivery VRPPD [18]: This variant adds the complexity of
handling both deliveries and pickups at customer locations.

Dynamic Vehicle Routing ProblemDVRP [35]: This version adapts to real-time changes, such as customer
requests or traffic conditions, during the operation.

Our paper will primarily focus on the CVRP variant. This choice is due to the fact that the complexity of
the other variants largely originates from the intrinsic complexity of CVRP, which serves as the cornerstone
for all variants [2]. In the following sections, we present an overview of the classical approaches for solving
VRP variants : Metaheuristics, heuristics, and exact methods. Then, the main concern will be centered on
using the clustering techniques to solveVRP variants.

2.2 Operations research techniques for solvingVRP

Within the operations research community, one can categorize the commonly-used techniques for solvingVRP
into many classes, namely: exact approaches, heuristics, meta-heuristics, etc.. Exact methods tend to find
optimal solutions but can be computationally expensive for large-scale VRP. The work [30] introduced a
taxonomic overview of the foundations of exact methods for solvingVRP variants. Furthermore, the paper [6]
reviewed recent advancements within the exact solution approaches, focusing on mathematical formulations and
relaxations used to address popularVRP variants, including capacity and time windows constraints. Using an
exact approach, [34] was capable of solving the majority of benchmark instances from the literature up to a size
of 275 customers using a Branch-cut-and-price method.

Many heuristics were presented to approximate near-optimal solutions for VRP variants. One can cite
route-building heuristics, which are iteratively performed to combine customers in a route relying on specific
criteria. The algorithm designed in [5] used branch exchange procedures (2-opt, 3-opt ) to gradually design
routes with the maximum saving starting from singleton sets. In this context, the survey [11] shed light on route
construction heuristics and local search algorithm to solveVRPWT .

The family of meta-heuristics has been tremendously successful in practice for solving difficult combinatorial
optimization problems. Unlike heuristics which are problem-dependent, meta-heuristics do not require any prior
knowledge. Therefore, they are applied to a broad range of problems. One can mention the well-known ones
such as simulated annealing, genetic algorithm, tabu search ...In this regard, the paper [20] presented a taxonomic
review of the existing meta-heuristics approaches in the literature to solve VRP variants. Additionally, [12]
introduced a survey on the meta-heuristics forVRPTW.

2.3 Clustering-based approaches for solvingVRP

Given on the one hand that exact methods often fail to solve instances with more than 300 customers due to
the problem complexity [37], and on the other hand, heuristics are less adaptable when it comes to changes
within the problem, e.g., customer demand or position [33], several studies have consequently shifted their focus
towards solving the VRP using other techniques, e.g., by leveraging machine learning techniques. Clustering
techniques have first been used for analysis purposes within the supply chain sector for many tasks, such as item
partitioning in inventory [4], production [21], E-business [14]. When it comes toVRP, the clustering approach
was first called upon to assist heuristics and meta-heuristics while solving VRP. In this context, many works
made use of straightforward clustering methods such as : local search, random geographical partition of the
area [7, 24]. These techniques were applied in conjunction with heuristics and meta-heuristics such as simulated
annealing, the sweep algorithm to reduce VRP complexity before designing the final solution [24, 27, 29].
Over the past few decades, the operations research community has leveraged the growth of machine learning
to design clustering-based approaches to tackle the VRP using algorithms, namely: Kmeans, Fuzzy Cmean,
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Dbscan, and neural networks. Depending on the specific objectives of using clustering when solving VRP,
one can classify the existing clustering-based approaches for solving VRP into three categories, more details
and references are introduced in Table 1:

Cluster-first, route-second [29] : The initial step of this framework involves the clustering of customers,
where each resulting cluster represents a feasible and unordered route. Subsequently, it proceeds to
address each cluster independently by solving a TSP. In the same context, the papers [22, 23] made
use of the well known fuzzy c-means combined with a learning approach to define the relevant fuzziness
parameter. Once this parameter is determined, the customers are assigned to clusters. Therefore, each
cluster is handed to a TSP solver to design the final routes.

ClusteredVRP [7] ( CluVRP): This is a transformation of the originalVRP into a compact variant in which
customers are partitioned into small clusters. A distinctive characteristic of the CluVRP is that when a
vehicle visits a customer, it must subsequently visit all the remaining customers in the cluster. After
that, it approaches the problem using exact or non-exact methods to generate routes. As illustration, [19]
capitalized on a customized clustering heuristic to aggregate clients into macro-nodes as an initial step
to reduce the problem size. Then, an MILP is used to design routes through sequencing macro-nodes
with respect to known constraints and considering a heterogeneous fleet of vehicles and multiple depots.
Similarly, [41] proposed a geometric shape-based genetic clustering algorithm to deal with a multi-depot
vehicle routing problem. More works are presented in Table 1.

Large-scaleVRP decomposition : This technique is mainly designed for addressing large-scale VRP. It
stands as an effective approach, gaining recognition for its real-world applicability. The core idea involves
clustering customers into groups to reduce the problem’s complexity. Notably, this approach has shown
its efficiency in enhancing the performance in terms of the runtime [24, 27, 29]. Numerous papers have
recently used the known existing clustering algorithms to decompose theVRP. The paper [25] designed
a modified Kmeans version with a border adjustment feature to get balanced clusters. In the same context,
the paper [13] relied on a recursive Dbscan to partition large-scaleVRP.

Table 1: Summary of clustering-based approaches for solving VRP variants.

Class Authors Clustering algorithm

Cluster first, route second (CFRS) Ewbank et al.[22] Fuzzy c-means + Neural network
Ewbank et al. [23] Fuzzy c-means + Neural network

Clustered VRP( CluVRP )

Bektas et al.[9], Hintsch et al. [26] Clustering
Barthelemy et al. [7], Vidal et al. [38] Iterated local search
Dondo et al. [19] Customized clustering procedure
Alesiani et al. [1] Self-adapted K-means

Large-scale VRP decomposition
He et al. [25] Balanced K-means
Bujel et al. [13] Recursive Dbscan
Gillett et al. [24] Random geographical partition

Through this literature review, we can notice that the existing clustering-based approaches put significant
emphasis on the post-clustering phase when solving the VRP. Concretely, the main contributions of the
majority of these papers are not predominantly related to the clustering aspect itself but rather revolve around the
development of exact or non-exact methods for generating final routes from the designed clusters. Additionally,
the cited papers rely on the clustering as preprocessing scheme to reduce theVRP complexity, thereby improving
the runtime performance. In contrast to that, the current paper focuses on improving the clustering step in order
to obtain better performance in terms of both runtime and quality solution. This is accomplished through an
in-depth analysis of the connection we can establish between the clustering and the CVRP as elaborated in
Section 4.
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3 Problem statement
Given our intention in this paper to establish theoretical and experimental connections, between CVRP and
CCBC, we divide this section into three parts. The first part introduces the used notation throughout the paper.
Then, the second one sheds light on CVRP related concepts and the third one presents the centroid-based
clustering approach.

3.1 Mathematical notation

We first provide a detailed overview of the mathematical notation used throughout this paper. The sets, indices,
parameters and decision variables are introduced in Table 2.

3.2 Capacitated vehicle routing problem

TheVRP can be defined with respect to many constraints. We limit our current study to the capacity constraint.
From a practical perspective, we can describe the CVRP problem as follows: a set of customers are located in
different places and should be served through a fleet of vehicles. Each vehicle has a well-known capacity and has
the same starting and ending point called depot as illustrated in Figure 1. The goal is to determine a dispatching
plan that minimizes the total traveled distance. Each customer must be visited only once, and the total demand
of a complete route must not exceed the vehicle capacity. Furthermore, it should be noted that the current study
is limited to a homogeneous fleet. This problem is formulated using a mixed integer linear program (1)–(7).

min
𝑀∑︁
𝑣=1

𝑁∑︁
𝑖=0

𝑁∑︁
𝑗=0, 𝑖≠ 𝑗

𝑑𝑖 𝑗𝑥
𝑣
𝑖 𝑗 (1)

s.t.
𝑀∑︁
𝑣=1

𝑁∑︁
𝑖=0,𝑖≠ 𝑗

𝑥𝑣𝑖 𝑗 = 1 ∀ 𝑗 ∈ C (2)

𝑁∑︁
𝑖=1

𝑥𝑣0𝑖 ≤ 1 ∀𝑣 ∈ V (3)

𝑁∑︁
𝑖=0, 𝑖≠ 𝑗

𝑥𝑣𝑖 𝑗 −
𝑁∑︁

𝑖=0, 𝑖≠ 𝑗
𝑥𝑣𝑗𝑖 = 0 ∀𝑣 ∈ V,∀ 𝑗 ∈ C (4)

𝑁∑︁
𝑗=0

𝑁∑︁
𝑖=0, 𝑖≠ 𝑗

𝑞 𝑗𝑥
𝑣
𝑖 𝑗 ≤ 𝑄 ∀𝑣 ∈ V (5)

𝑀∑︁
𝑣=1

∑︁
𝑖∈𝑆

∑︁
𝑗∈𝑆,𝑖≠ 𝑗

𝑥𝑣𝑖 𝑗 ≤ |𝑆 | − 1 ∀𝑆 ⊆ C, 2 ≤ |𝑆 | ≤ 𝑁 (6)

𝑥𝑣𝑖 𝑗 ∈ {0, 1} ∀𝑣 ∈ V,∀𝑖, 𝑗 ∈ C (7)

The objective function (1) minimizes the total traveled distance of the vehicles. Constraint (2) ensures that each
customer is visited by exactly one vehicle. Constraint (3) makes sure that every vehicle is selected once at most.
Constraint (4) guarantees the continuity of the route. Constraint (5) ensures that the total demand transported
by a vehicle does not exceed its capacity. Constraint (6) prevents the formation of sub-tours and (7) assures the
binary nature of the decision variables.

There exists another common formulation where the CVRP is introduced as a set partitioning problem
(SPP). This formulation is based on the concept of a route. We define a route as a sequence of customers
𝜌𝑟 = {𝒸0,𝒸𝑖 , ...,𝒸 𝑗 ,𝒸0} for 𝑖, 𝑗 ∈ C such that |𝜌𝑟 | > 2, and

∑
𝒸𝑖∈𝜌𝑟 𝑞𝑖 ≤ 𝑄. For each route 𝜌𝑟 and customer 𝒸𝑖

such that 𝑟 ∈ R and 𝑖 ∈ C, we define the parameters 𝑎𝑖𝑟 and 𝜃𝑣𝑟 as follows :

𝑎𝑖𝑟 =

{
1 if customer 𝒸𝑖 ∈ 𝜌𝑟
0 else , and 𝜃𝑣𝑟 =

{
1 if route 𝜌𝑟 is used by a vehicle 𝑣 ∈ V
0 else
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Table 2: Mathematical notation.

Notation Definition

Sets V set of vehicles
C set of customers
R set of routes
S set of clusters
Q set of demands
Ω set of centroids
PR𝑙 set of pieces of routes starting at the depot
PR𝑟 set of pieces of routes ending at the depot
X euclidean space
𝜌𝑟 set of customers served by route 𝑟
𝑝𝑟𝑙𝑜 piece of route 𝑜 starting at the depot
𝑝𝑟𝑟𝑡 piece of route 𝑡 ending at the depot

Indices 𝑖, 𝑗 customer 𝑖, 𝑗 such that 𝑖, 𝑗 = 0 corresponds to the depot
𝑣 vehicle 𝑣
𝑟 route 𝑟
𝑘 cluster 𝑘
𝑜 piece of route 𝑜 starting at the depot
𝑡 piece of route 𝑡 ending at the depot

Parameters 𝑁 = | C | number of customers
𝑀 = |V | number of vehicles
𝐾 = |K | number of clusters
𝑑𝑖 𝑗 distance between customer 𝑖 and 𝑗
𝛿𝑜𝑡 total distance of joining piece of route 𝑜 and piece of route 𝑡
𝑄 capacity of a vehicle
𝑞𝑖 demand of customer 𝑖, 𝑞0 = 0
𝜏𝑜𝑡 total demand of joining piece of route 𝑜 and piece of route 𝑡
𝑎𝑖𝑟 equal to 1 if customer 𝑖 is served by route 𝑟
𝛾𝑖𝑜𝑡 equal to 1 if customer 𝑖 exists either in the piece of route 𝑜 or in piece of route 𝑡
𝑐𝑟 cost of route 𝑟
𝜇𝑘 = (𝓍𝜇𝑘 , 𝓎𝜇𝑘 ) euclidean coordinates of centroids 𝜇𝑘 of cluster 𝑘
𝜇𝑣
𝑘
= (𝓍𝜇𝑣

𝑘
, 𝓎𝜇𝑣

𝑘
) euclidean coordinates of centroids 𝜇𝑣

𝑘
of cluster 𝑘 yielded by CVRP

𝜇𝑐
𝑘
= (𝓍𝜇𝑐

𝑘
, 𝓎𝜇𝑐

𝑘
) euclidean coordinates of centroids 𝜇𝑐

𝑘
of cluster 𝑘 yielded by CCBC

𝒸𝑖 = (𝓍𝑖 , 𝓎𝑖 ) euclidean coordinates of customers 𝒸𝑖
𝑃 = (𝓍𝑃 , 𝓎𝑃 ) point from the euclidean space X

Decision variables 𝑥𝑣
𝑖 𝑗

binary variable equal to 1 if vehicle 𝑣 visits 𝑗 after 𝑖, 0 otherwise
𝜃𝑣𝑟 binary variable equal to 1 if route 𝑟 is used by vehicle 𝑣, 0 otherwise
𝑦𝑘 binary variable equal to 1 if cluster 𝑘 is selected, 0 otherwise
𝑢𝑜 binary variable equal to 1 if piece of route 𝑜 is selected, 0 otherwise
𝑤𝑡 binary variable equal to 1 if piece of route 𝑡 is selected, 0 otherwise
𝑧𝑜𝑡 binary variable equal to 1 if piece of route 𝑜 is joined with piece of route 𝑡

We define 𝑐𝑟 as the travel cost of the route 𝜌𝑟 . Therefore, one can formulate the set partitioning formulation of
the CVRP as follows:

min
∑︁
𝑣∈V

∑︁
𝑟∈R

𝑐𝑟𝜃
𝑣
𝑟 (8)

s.t.
∑︁
𝑣∈V

∑︁
𝑟∈R

𝑎𝑖𝑟𝜃
𝑣
𝑟 = 1 ∀𝑖 ∈ C (9)∑︁

𝑣∈V

∑︁
𝑟∈R

𝜃𝑣𝑟 ≤ |V| (10)

𝜃𝑣𝑟 ∈ {0, 1} ∀𝑟 ∈ R, 𝑣 ∈ V (11)

The objective function (8) minimizes the total traveled distance of the vehicles. Constraint (9) guarantees
that each customer is visited by exactly one vehicle. Constraint (10) ensures that the targeted number of vehicles
is not exceeded. Finally, Constraint (11) makes sure that the decision variables are binary.
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Figure 1: CVRP problem.

3.3 Centroid-based clustering in euclidean space

Centroid-based clustering is an unsupervised machine learning approach to partition data into groups known
as clusters with the objective to maximize the similarity within clusters and concurrently minimize similarity
between clusters as shown in Figure 2. In other words, in the case of the euclidean distance, it aims at defining
each cluster centroid in order to minimize the within-clusters sum of squared distances denoted by withinss [39].
Among the widely-used algorithms of centroid-based clustering, one can mention K-means.

Given a set of customers C = {𝒸1,𝒸2, ...,𝒸𝑛} in the euclidean space denoted by X where each one is
represented by a 2-dimensional vector of euclidean coordinates. We denote 𝜇𝑘 the centroid of a cluster 𝑆𝑘 ∈ S,
such that: 𝜇𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥′ ∈X

∑
𝒸𝑖∈𝑆𝑘

𝑑 (𝒸𝑖 , 𝑥
′ ), and S = {𝑆1, 𝑆2.., 𝑆𝐾 } is the set of 𝐾 clusters. One can introduce

the optimization formulation for centroid-based clustering as follows:

min
𝐾∑︁
𝑘=1

∑︁
𝒸𝑖∈𝑆𝑘

𝑑 (𝒸𝑖 , 𝜇𝑘) (12)

s.t. ∪𝐾𝑘=1 𝑆𝑘 = C (13)
𝑆𝑘1 ∩ 𝑆𝑘2 = ∅ ∀𝑆𝑘1 , 𝑆𝑘2 ∈ S, 𝑘1 ≠ 𝑘2 (14)

This mathematical model involves the assignment of the set of customers C to 𝐾 clusters while minimizing
the withinss value which refers to the sum of the euclidean distance 𝑑 (𝒸𝑖 , 𝜇𝑘) between each 𝒸𝑖 ∈ 𝑆𝑘 and its
corresponding centroid 𝜇𝑘 . This euclidean distance is calculated as follows:

𝑑 (𝒸𝑖 , 𝜇𝑘) =
√︃
(𝓍𝑖 −𝓍𝜇𝑘 )2 + (𝓎𝑖 − 𝓎𝜇𝑘 )2 (15)

Each centroid coordinates are computed as follows:

𝜇𝑘 = (

∑
𝒸 𝑗 ∈𝑆𝑘

𝓍 𝑗

|𝑆𝑘 |
,

∑
𝒸 𝑗 ∈𝑆𝑘

𝓎 𝑗

|𝑆𝑘 |
)

4 Connection between CCBC and CVRP
TheSPP main objective is to partition elements of a set 𝑆 into smaller subsets. All items in 𝑆 must be contained
in one and only one subset. The CCBC problem (12)–(14) can be formulated differently as an SPP with 𝐾
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𝑥1

𝑥2
𝑥3

𝑥4
𝑥5

𝑥1

𝑥2
𝑥3

𝑥4

C

Cluster 1

Cluster 2

𝜇1

𝜇2

𝑥

𝑦

Figure 2: Centroid-based clustering.

subsets, such that 𝑦𝑘 = 1 indicates that 𝑆𝑘 ∈ S is selected, 0 otherwise. A formal proof can be found in [40] :

min
∑︁
𝑆𝑘 ∈C

∑︁
𝒸𝑖∈𝑆𝑘

𝑑 (𝒸𝑖 , 𝜇𝑘)𝑦𝑘 (16)

s.t.
∑︁

𝑆𝑘 :𝒸𝑖∈𝑆𝑘
𝑦𝑘 = 1 ∀𝑖 ∈ C (17)∑︁

𝑆𝑘 ∈C
𝑦𝑘 = 𝐾 (18)

𝑦𝑘 ∈ {0, 1} ∀𝑘 ∈ K (19)

One can first observe that the problems CVRP and CCBC can both be reduced to a set partitioning problem.
Given a set of customers, for fixed centroids the two formulations (12)–(14) and (16)–(19) share the same
constraints and differ in terms of objective function. Based on this fact, one can expect defining a formal way
to reduce a CVRP problem to a CCBC. In other words, under some conditions, the exercise of solving a
CCBC provides an optimal or near-optimal solution to CVRP. Subsequently, our objective in what follows is
to experimentally elucidate the existence of a connection between CVRP and CCBC and deduce some related
properties.

4.1 Exploratory analysis through small-sized examples

In light of the previous analysis about the connection between CVRP and CCBC, we aim to assess the extent
to which a CVRP can be reduced to a CCBC. This entails determining whether identifying clusters effectively
translates into establishing routes, achieved by implementing a TSP within each cluster. The following analysis
serves as a warm-up study to :

(i) Highlight through experiments the existence of a connection between these two problems
(ii) Deduce and prove some theoretical properties related to this connection between CVRP and CCBC.

We particularly focus on elucidating how closely an optimal solution derived from CCBC problem aligns with
an optimal solution of the CVRP. We evaluate this claim through conducting the following experiment on
small-sized instances :

• Randomly generate small-sized instances. Each one encompasses, at most, 10 customers that are spatially
distributed within the euclidean space. Concretely, for each instance 𝐼, a set of 𝑛 customers is randomly
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generated from the spatial domain [0, 10] × [0, 10]. The demand associated with each of these customers
is randomly selected from the interval [0, 10]. For this problem, the vehicle capacity is 10.

• For every instance, we designate a specific customer to be the depot.
• We optimally solve CCBC problem. Every cluster must contain the depot.
• Evaluate the derived CVRP solution through applying a TSP algorithm within each cluster.
• Compare the previous solution with the CVRP optimal solution.

The justification of the use of small-sized instances is grounded in the easiness of achieving optimal solutions
for both CVRP and for CCBC using exact approaches. Table 3 illustrates the obtained results. For every size
𝑛, we conduct the exploratory study described above on 500 instances generated following the aforementioned
process. By doing this, we check if CCBC solution can align with CVRP solution under some conditions.
We denote the set of instances for which the CCBC optimal solution 𝑆𝑜𝑙CCBC (𝐼) leads to the CVRP optimal
solution 𝑆𝑜𝑙CVRP (𝐼) by I1 = {𝐼 : 𝑆𝑜𝑙CCBC (𝐼) =⇒ 𝑆𝑜𝑙CVRP (𝐼)}. Similarly, we refer to the set for which
this implication is not verified with I2 = {𝐼 : 𝑆𝑜𝑙CCBC (𝐼) ≠⇒ 𝑆𝑜𝑙CVRP (𝐼)}. In details, Table 3 reports the
obtained results in terms of sets size, i.e. |I1 |, |I2 |.

We can clearly notice that for small-size instances the CCBC optimal clusters coincide with the CVRP
optimal routes in most cases. However, for many other instances they differ in terms of the optimal solution,
especially for 𝑛 = 9. In light of this outcome, for set I2, we endeavor to assess the relative gap GAP𝑤𝑖𝑡ℎ𝑖𝑛𝑠𝑠𝑟

between the value of the optimal CCBC denoted by 𝑤𝑖𝑡ℎ𝑖𝑛𝑠𝑠𝑐 (𝐼) and the value of the clustering that yields the
CVRP optimal solution indicated by 𝑤𝑖𝑡ℎ𝑖𝑛𝑠𝑠𝑣 (𝐼). This relative gap is calculated as follows:

GAP𝑤𝑖𝑡ℎ𝑖𝑛𝑠𝑠𝑟 (𝐼) = 𝑤𝑖𝑡ℎ𝑖𝑛𝑠𝑠𝑣 (𝐼) − 𝑤𝑖𝑡ℎ𝑖𝑛𝑠𝑠𝑐 (𝐼)
𝑤𝑖𝑡ℎ𝑖𝑛𝑠𝑠𝑐 (𝐼) × 100 (20)

Table 4 above confirms that there exists a small relative gap between the optimal CCBC and the clustering
that provides an optimal CVRP solution in terms of objective function on average GAP𝑤𝑖𝑡ℎ𝑖𝑛𝑠𝑠𝑟 . Furthermore,
these results grant more legitimacy to the hypothesis claiming that the centroids of the clusters that yield an
optimal CVRP solution are closely located nearby the centroids of clusters derived from the optimal CCBC.

Table 3: | I1 |, | I2 | per instance size.

Instance size | I1 | | I2 |

𝑛 = 5 406 94
𝑛 = 7 248 252
𝑛 = 9 161 339

Table 4: GAP𝑤𝑖𝑡ℎ𝑖𝑛𝑠𝑠𝑟 results per instance size.

Instance size GAP𝑤𝑖𝑡ℎ𝑖𝑛𝑠𝑠𝑟 (%)

𝑛 = 5 1.37
𝑛 = 7 0.95
𝑛 = 9 1.70

Delving into a specific example : Through the subsequent example, we aim to visually elucidate the previously
stated hypothesis and thereby exemplify the connection between CVRP and CCBC. Concretely, we select one
instance 𝐼∗ ∈ I2 with features introduced in Table 5. We first represent both CCBC and CVRP solutions for
this instance in Figures 3 and 4 respectively. We observe that the clusters shapes clearly do not coincide. In
particular, customers 2 and 1 belong to cluster 1 within CCBC optimal solution while customer 2 forms with
customers 3 and 4 a single cluster when it comes the CVRP optimal solution. Consequently, the CCBC solution
does not imply the CVRP solution because customer 2 is nearer to centroid 𝜇𝑐1 rather than 𝜇𝑐2 . Nevertheless,
one can visually notice according to Figure 5 that CCBC centroids are near to CVRP centroids.

Table 5: Instance 𝐼∗ features.

𝑃 𝓍𝑃 𝓎𝑃 𝑞𝑃

0 1 1 0
1 2 3 6
2 3 3 1
3 2 5 1
4 1 7 8
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To expand the experimental and the theoretical frame behind the hypothesis, we will conduct an experiment
aiming at exploring the neighborhood around the clusters centroids {𝜇𝑐0 , 𝜇

𝑐
1 }. In detail, for the instance 𝐼∗ in

Table 5, we explore around each CCBC centroid, specifically inside the rectangles defined by: RC0 = {𝑃 =

(𝓍𝑃 ,𝓎𝑃) ∈ X : 𝑚𝑖𝑛(𝓍𝜇𝑣0 ,𝓍𝜇𝑐0 )} ≤ 𝓍𝑃 ≤ 𝑚𝑎𝑥(𝓍𝜇𝑣0 ,𝓍𝜇𝑐0 ) , 𝑚𝑖𝑛(𝓎𝜇𝑣0 ,𝓎𝜇𝑐0 )} ≤ 𝓎𝑃 ≤ 𝑚𝑎𝑥(𝓎𝜇𝑣0 ,𝓎𝜇𝑐0 )}

RC1 = {𝑃 = (𝓍𝑃 ,𝓎𝑃) ∈ X : 𝑚𝑖𝑛(𝓍𝜇𝑣1 ,𝓍𝜇𝑐1 )} ≤ 𝓍𝑃 ≤ 𝑚𝑎𝑥(𝓍𝜇𝑣1 ,𝓍𝜇𝑐1 ) , 𝑚𝑖𝑛(𝓎𝜇𝑣1 ,𝓎𝜇𝑐1 )} ≤ 𝓎𝑃 ≤
𝑚𝑎𝑥(𝓎𝜇𝑣1 ,𝓎𝜇𝑐1 )}

We search for centroids candidates that provide the optimal solution for CVRP. The exploration findings
are presented in Figure 6. It is clear that around each centroid within the explored neighborhood, we can define a
region of multiple points that gives an optimal solution of the CVRP. These findings provide more credibility
to the conjecture which states that it is sufficient to solve a CCBC when solving a CVRP. Explicitly, one can
first solve the CCBC and simultaneously evaluate the corresponding CVRP solution, then search for a better
centroids combination within the neighborhood that improves the CVRP solution. From a practical point of
view, one can target the nearest points to the CCBC centroids that guarantee an optimal solution of the CVRP.

In the context of the example we are examining, we can formulate the task of finding the nearest points
combination to the CCBC centroids that provides a CVRP optimal solution as a quadratic multivariate
mathematical model (21)–(25):

min
𝜇1 ,𝜇2∈X

(𝓍𝜇1 −𝓍𝜇𝑐1 )
2 + (𝓎𝜇1 −𝓍𝜇𝑐1 )

2 + (𝓍𝜇2 −𝓍𝜇𝑐2 )
2 + (𝓎𝜇2 −𝓍𝜇𝑐2 )

2 (21)

𝑠.𝑡 (𝓍𝜇1 −𝓍1)2 + (𝓎𝜇1 − 𝓎1)2 ≤ (𝓍𝜇2 −𝓍1)2 + (𝓎𝜇2 − 𝓎1)2 (22)

(𝓍𝜇2 −𝓍2)2 + (𝓎𝜇2 − 𝓎2)2 ≤ (𝓍𝜇1 −𝓍2)2 + (𝓎𝜇1 − 𝓎2)2 (23)

(𝓍𝜇2 −𝓍3)2 + (𝓎𝜇2 − 𝓎3)2 ≤ (𝓍𝜇1 −𝓍3)2 + (𝓎𝜇1 − 𝓎3)2 (24)

(𝓍𝜇2 −𝓍4)2 + (𝓎𝜇2 − 𝓎4)2 ≤ (𝓍𝜇1 −𝓍4)2 + (𝓎𝜇1 − 𝓎4)2 (25)

The objective function, as defined in Equation (22), aims to identify centroids (𝜇1, 𝜇2) that are closer to the
CCBC centroids (𝜇𝑐1 , 𝜇

𝑐
2 ). Constraints (23)–(26) are designed to ensure that the identified centroids match the

customers assignment to clusters as given by the CCBC outcome. Specifically, customer 1 is assigned to the
cluster centered around 𝜇1, while customers 2, 3, and 4 are grouped in the cluster around 𝜇2. It should be noted
that Constraints (23)–(26) aim to minimize the distance between each cluster and its corresponding centroid,
thereby reducing the overall 𝑤𝑖𝑡ℎ𝑖𝑛𝑠𝑠 as introduced in Equation (12).

We use a sequential least square programming solver SLSP to get a solution of the model above (21)–(25).
We plot the corresponding centroids in Figure 7. An observation reveals that there exist centroids closer to the
CCBC ones, which enables obtaining the optimal solution for the CVRP.

Figure 3: Optimal CCBC. Figure 4: Optimal CVRP.
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Figure 5: Supperposition of CCBC and CVRP centroids. Figure 6: Exploring nearest CCBC centroids.

Figure 7: Nearest CCBC centroids.

4.2 Generalization of the connection between CCBC and CVRP

The idea behind carrying out this experimental study is to show that the CVRP solution is reachable when
selecting the centroids from a specific region in the space. In general, knowing the optimal routes shape, we
can formulate the task of finding the nearest centroids combination from CCBC ones that lead to this optimal
CVRP solution (26)–(28). It should be noted that each 𝑆𝑘 ∈ S encompasses customers from the route 𝜌𝑘
within the CVRP optimal solution, i.e., 𝑆𝑘 = {𝒸𝑖 : 𝒸𝑖 ∈ 𝜌𝑘}.

min
𝓍𝜇𝑘

,𝓎𝜇𝑘 ∈X

𝐾∑︁
𝑘=1
(𝓍𝜇𝑘 −𝓍𝜇𝑐𝑘 )

2 + (𝓎𝜇𝑘 − 𝓎𝜇𝑐𝑘 )
2 (26)

s.t. (𝓍𝜇𝑘 −𝓍 𝑗 )2 + (𝓎𝜇𝑘 − 𝓎 𝑗 )2 ≤ min
𝑘′∈K−{𝑘}

(𝓍𝜇𝑘′ −𝓍 𝑗 )2 + (𝓎𝜇𝑘′ − 𝓎 𝑗 )
2 ∀𝒸 𝑗 ∈ S𝑘 ,∀𝑘 ∈ K (27)

𝓍𝜇𝑘 ,𝓎𝜇𝑘 ≥ 0 ∀𝑘 ∈ K (28)

In what follows, we introduce a theoretical characterization of the centroids regions that yield an optimal
solution for the CVRP.
Definition 1. In the context of a CCBC problem, a strict centroid refers to a centroid 𝜇𝑘∗ of cluster 𝑆𝑘∗ ∈ S =

{𝑆1, 𝑆2, . . . , 𝑆𝐾 }, such that:{
𝑑 (𝜇𝑘∗ ,𝒸𝑖) < 𝑑 (𝜇𝑘 ,𝒸𝑖) ∀𝒸𝑖 ∈ 𝑆𝑘∗ ,∀𝑘 ∈ K − {𝑘∗}
𝑑 (𝜇𝑘∗ ,𝒸 𝑗 ) > 𝑑 (𝜇𝑘 ,𝒸 𝑗 ) ∀𝒸 𝑗 ∈ 𝑆𝑘 ,∀𝑘 ∈ K − {𝑘∗}

(29)

This implies that there are no customers located at an identical euclidean distance from this centroid and any
other centroid.
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Remark 1. As the incoming theoretical results rely on this particular definition, we aimed to assess the occurrence
of strict centroids within CVRP instances. To achieve this, we conduct a straightforward experiment using
benchmark instances from groups A, B, P, E presented in Section 6.1. Concretely, the developped procedure
involves the following steps:

• For each instance from the aforementioned groups, where the optimal solution is known we determine
centroids combination that yields this solution. In other words, centroids combination that satisfies
Equations (26)–(28).

• We check for every centroid within the combination if Equation (29) is verified.

As a result of this study, we can confirm that for every instance, all the found centroids can be denoted as strict.
Theorem 1. In the context of the CVRP, if there exists a set of centroids combination Ω = {𝜇1, 𝜇2, . . . ,

𝜇𝐾 } that yields an optimal CVRP solution and includes a strict centroid 𝜇𝑘∗ , then there exists an infinite
number of centroids combinations that also provide an optimal solution for the CVRP.

Proof. Let’s denote a centroids combination Ω = {𝜇1, . . . , 𝜇𝑘∗ , . . . , 𝜇𝐾 } that gives an optimal CVRP solution
for the customers set C and includes a strict centroid 𝜇𝑘∗ . Let’s prove that: ∃ 𝜇𝛼

𝑘∗ = (𝓍𝜇𝛼
𝑘∗
,𝓎𝜇𝛼

𝑘∗
) near to

𝜇𝑘∗ = (𝓍𝜇𝑘∗ ,𝓎𝜇𝑘∗ ) such that Ω = {𝜇1, . . . , 𝜇
𝛼
𝑘∗ , . . . , 𝜇𝐾 } guarantees an optimal solution as well for the CVRP.

To demonstrate this, we need to prove that:

(𝓍𝜇𝛼
𝑘∗
−𝓍𝑖)2 + (𝓎𝜇𝛼

𝑘∗
− 𝓎𝑖)2 ≤ min

𝑘∈K−{𝑘∗ }
(𝓍𝜇𝑘 −𝓍𝑖)2 + (𝓎𝜇𝑘 − 𝓎𝑖)2 ∀𝒸𝑖 ∈ S𝑘∗ (30)

And

(𝓍𝜇𝑘 −𝓍 𝑗 )2 + (𝓎𝜇𝑘 − 𝓎 𝑗 )2 ≤ (𝓍𝜇𝛼𝑘∗ −𝓍 𝑗 )2 + (𝓎𝜇𝛼
𝑘∗
− 𝓎 𝑗 )2 ∀𝒸 𝑗 ∈ S𝑘 ,∀𝑘 ∈ K − {𝑘∗} (31)

We define for 𝒸𝑖 = (𝓍𝑖 ,𝓎𝑖), 𝑖 ∈ C and for 𝑘 ∈ 𝐾:

𝐹𝑖 (𝓍𝜇𝑘 ,𝓎𝜇𝑘 ) = (𝓍𝜇𝑘 −𝓍𝑖)2 + (𝓎𝜇𝑘 − 𝓎𝑖)2

Let’s put :

𝛽 = min
𝒸 𝑗 ∈S𝑘 ,𝑘∈K−{𝑘∗ }

{𝐹𝑗 (𝓍𝜇𝑘∗ ,𝓎𝜇𝑘∗ ) − 𝐹𝑗 (𝓍𝜇𝑘 ,𝓎𝜇𝑘 )} > 0 (strict centroids)

Let’s put as well :

𝑓 , 𝑒 = 𝑎𝑟𝑔𝑚𝑖𝑛𝒸 𝑗 ∈S𝑘 ,𝑘∈K−{𝑘∗ }{𝐹𝑗 (𝓍𝜇𝑘∗ ,𝓎𝜇𝑘∗ ) − 𝐹𝑗 (𝓍𝜇𝑘 ,𝓎𝜇𝑘 )}

Let’s choose point 𝜇𝛼
𝑘∗ = (𝓍𝜇𝛼𝑘∗ ,𝓎𝜇𝛼𝑘∗ ) between 𝜇𝑘∗ = (𝓍𝜇𝑘∗ ,𝓎𝜇𝑘∗ ) and 𝜇𝑒 = (𝓍𝜇𝑒 ,𝓎𝜇𝑒 ) such that the distance

between 𝜇𝛼
𝑘∗ and 𝜇𝑘∗ lower than 𝛽 as illustrated in Figure 8, for the point 𝒸 𝑓 ∈ S𝑒:

𝛽 𝑏̃

𝜇𝑘∗

𝒸 𝑓

𝜇𝑒

𝑐

𝑎̃
𝜇𝛼
𝑘∗

Figure 8: Choosing point 𝜇𝛼
𝑘∗ = (𝓍𝜇𝛼𝑘∗ , 𝓎𝜇𝛼𝑘∗ ) .
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Consequently, we define :

𝓍𝜇𝛼
𝑘∗

= 𝛼𝓍𝜇𝑘∗ + (1 − 𝛼)𝓍𝜇𝑒 and 𝓎𝜇𝛼
𝑘∗

= 𝛼𝓎𝜇𝑘∗ + (1 − 𝛼)𝓎𝜇𝑒 such that 𝛼 ∈ ]0, 1[

We can choose any 𝜇𝛼
𝑘∗ = (𝓍𝜇𝛼𝑘∗ ,𝓎𝜇𝛼𝑘∗ ) inside the circle varying 𝛼 ∈ ]0, 1[. For 𝒸𝑖 ∈ S𝑘∗ , we define:

𝜂𝑖 = 𝐹𝑖 (𝓍𝜇𝑒 ,𝓎𝜇𝑒 ) − 𝐹𝑖 (𝓍𝜇𝑘∗ ,𝓎𝜇𝑘∗ ) > 0et 𝜁𝑖 = min
𝑘∈K−{𝑘∗ }

[
(𝓍𝜇𝑘 −𝓍𝑖)2 + (𝓎𝜇𝑘 − 𝓎𝑖)2

]
− 𝐹𝑖 (𝓍𝜇𝑘∗ ,𝓎𝜇𝑘∗ ) > 0

We choose 𝜇𝛼
𝑘∗ = (𝓍𝜇𝛼𝑘∗ ,𝓍𝜇𝛼𝑘∗ ) such that:

𝑙𝑖 = (1 − 𝛼)𝜂𝑖 − 𝜁𝑖 ≤ 0 ∀𝒸𝑖 ∈ S𝑘∗ (32)

Remark 2. The value of 𝑙𝑖 can be always negative by increasing 𝛼 ∈ ]0, 1[, because lim
𝛼→1−

𝑙𝑖 = −𝜁𝑖 < 0. Then,
the point 𝜇𝛼

𝑘∗ = (𝓍𝜇𝛼
𝑘∗
,𝓎𝜇𝛼

𝑘∗
) becomes nearer to 𝜇𝑘∗ = (𝓍𝜇𝑘∗ ,𝓎𝜇𝑘∗ ), but it always remains inside the circle

(𝜇𝑘∗ , 𝛽) in Figure 8.

It is clear according to Figure 8 and triangle inequality that :

𝑏̃ ≤ 𝑎̃ + 𝑐 =⇒ 𝑏̃ − 𝑎̃ ≤ 𝑐 =⇒ 𝑏̃ − 𝛽 ≤ 𝑐 =⇒ (𝓍𝜇𝑒 −𝓍 𝑓 )2 + (𝓍𝜇𝑒 − 𝓎 𝑓 )2 ≤ (𝓍𝜇𝛼𝑘∗ −𝓍 𝑓 )2 + (𝓎𝜇𝛼
𝑘∗
− 𝓎 𝑓 )2

Using the same process we can deduce that :

(𝓍𝜇𝑘 −𝓍 𝑗 )2 + (𝓍𝜇𝑘 − 𝓎 𝑗 )2 ≤ (𝓍𝜇𝛼𝑘∗ −𝓍 𝑗 )2 + (𝓎𝜇𝛼
𝑘∗
− 𝓎 𝑗 )2 ∀𝒸 𝑗 ∈ 𝑆𝑘 ,∀𝑘 ∈ K − {𝑘∗}

Hence Equation (31) is verified, and let’s prove Equation (30).
For 𝒸𝑖 ∈ 𝑆𝑘∗ , we know that 𝐹𝑖 is a convex bi-variate function, because its hessian is :

∇2𝐹𝑖 (𝓍𝜇𝑘 ,𝓎𝜇𝑘 ) =
(
2 0
0 2

)
∀𝑖 ∈ C

Hence,

𝐹𝑖 (𝛼𝓍𝜇𝑘∗ + (1 − 𝛼)𝓍𝜇𝑒 , 𝛼𝓎𝜇𝑘∗ + (1 − 𝛼)𝓎𝜇𝑒 ) ≤ 𝛼𝐹𝑖 (𝓍𝜇𝑘∗ ,𝓎𝜇𝑘∗ ) + (1 − 𝛼)𝐹𝑖 (𝓍𝜇𝑒 ,𝓍𝜇𝑒 )
=⇒ 𝐹𝑖 (𝓍𝜇𝛼

𝑘∗
,𝓎𝜇𝛼

𝑘∗
) ≤ 𝛼𝐹𝑖 (𝓍𝜇𝑘∗ ,𝓎𝜇𝑘∗ ) + (1 − 𝛼)𝐹𝑖 (𝓍𝜇𝑘∗ ,𝓎𝜇𝑘∗ ) + (1 − 𝛼)𝜂𝑖

=⇒ 𝐹𝑖 (𝓍𝜇𝛼
𝑘∗
,𝓎𝜇𝛼

𝑘∗
) ≤ 𝐹𝑖 (𝓍𝜇𝑘∗ ,𝓎𝜇𝑘∗ ) + (1 − 𝛼)𝜂𝑖

=⇒ 𝐹𝑖 (𝓍𝜇𝛼
𝑘∗
,𝓎𝜇𝛼

𝑘∗
) ≤ min

𝑘∈K−{𝑘∗ }
(𝓍𝜇𝑘 −𝓍𝑖)2 + (𝓎𝜇𝑘 − 𝓎𝑖)2 − 𝜁𝑖 + (1 − 𝛼)𝜂𝑖

=⇒ 𝐹𝑖 (𝓍𝜇𝛼
𝑘∗
,𝓎𝜇𝛼

𝑘∗
) ≤ min

𝑘∈K−{𝑘∗ }
(𝓍𝜇𝑘 −𝓍𝑖)2 + (𝓎𝜇𝑘 − 𝓎𝑖)2 ((1 − 𝛼)𝜂𝑖 − 𝜁𝑖 ≤ 0 according to (32))

Hence, Equation (30) is verified as well. Finally, one can deduce that Ω = {𝜇1, . . . , 𝜇
𝛼
𝑘∗ , . . . , 𝜇𝐾 } guarantees an

optimal solution as well. Then there exists an infinite number of centroids combinations that also provide an
optimal solution for the CVRP. □

Graphical representaion : Let’s plot graphically this sub-region, we define 𝛼0 such that:

𝑙 𝑗 = (1 − 𝛼0)𝜂 𝑗 − 𝜁 𝑗 = 0 (33)

Let’s consider 𝜇𝛼0
𝑘∗ = (𝓍𝜇𝛼0

𝑘∗
,𝓍

𝜇
𝛼0
𝑘∗
), such that :

𝓍
𝜇
𝛼0
𝑘∗

= 𝛼0𝓍𝜇𝑘∗ + (1 − 𝛼0)𝓍𝜇𝑒 and 𝓎
𝜇
𝛼0
𝑘∗

= 𝛼0𝓎𝜇𝑘∗ + (1 − 𝛼0)𝓎𝜇𝑒 such that 𝛼0 ∈ [0, 1]

Let’s denote the distance between points 𝜇𝑘∗ and 𝜇𝛼0
𝑘∗ as 𝜓𝛼0 . So we have two cases to choose point 𝜇𝛼

𝑘∗ :{
𝜇𝛼
𝑘∗ ∈ C(𝜇𝑘∗ , 𝜓𝛼0 ) if 𝜓𝛼0 ≤ 𝛽
𝜇𝛼
𝑘∗ ∈ C(𝜇𝑘∗ , 𝛽) otherwise



Les Cahiers du GERAD G–2024–24 13

Such that C(𝑂, 𝓇) is the circle of center 𝑂 and radius 𝓇. Here is below the graphical representation if
𝜓𝛼0 ≤ 𝛽 in Figure 9. The point 𝜇𝛼

𝑘∗ can be selected within the gray region.

𝛽
𝑏̃

𝜇𝑘∗

𝒸 𝑓

𝜇𝑒

𝑐

𝑎̃
𝜇
𝛼0
𝑘∗

𝜓𝛼0

Figure 9: The region of 𝜇𝛼
𝑘∗ if 𝜓𝛼0 ≤ 𝛽.

We can proceed similarly to define a region around each strict centroid within the combination Ω. It is
noteworthy that this proof characterizes only a subset of the region that yields an optimal CVRP solution.
However, there may exist other, closer sub-regions that lead to equivalent outcomes.

5 Solution methodology
Given the highlighted connection between CVRP and CCBC, our goal is to design a CCBC based framework
for addressing CVRP. In this section we first present a general overview of the proposed approach in
Subsection 5.1. Subsequently, we shed light on the methodological aspects of each component within the
advocated framework, including the constrained centroid-based clustering, optimization, and re-optimization in
Subsections 5.2 and 5.3

5.1 Methodology overview

The proposed methodology is an extension of the cluster-first, route-second heuristic for tackling the CVRP.
More specifically, we endow the original framework with improvements to ensure better quality and runtime
results by leveraging the aforementioned connection between CVRP and CCBC. In contrast to the well-known
cluster-first, route-second, the proposed approach includes three steps as highlighted in Flowchart 10. Moreover,
we label the proposed approach as Cluster & Tune First, Route Second, Ruin & Recreate Third and abbreviate
it as CTR3.

Clustering & tuning step : The CCBC algorithm takes the customers raw data, including euclidean coordi-
nates and demands as an input. Then it proceeds to partitioning customers into 𝐾 clusters. This step is carried
out N𝑖𝑡 times varying the initial centroids combination through a random multi-start procedure. This iterative
approach serves a dual purpose: first, it alleviates the local optimum impact, thereby ensuring better clustering
results, and second, it aims at leveraging the connection between CVRP and CCBC by reaching centroids
regions that can provide a CVRP near-optimal solution. Furthermore, the customers are assigned to clusters
subject to the capacity constraint and based on a customized metric that prioritizes customers who are nearby
and have a high demand first. Besides, the proposed clustering algorithm starts with a lower bound for the
number 𝐾 of clusters and it is self-adjusted if no solution is found taking into account the capacity constraint.
More details will be provided in Section 5.2.

Routing step : This second phase involves designing routes by ordering customers within each cluster,
considering that each vehicle must begin and end at the depot. This task is handled using a TSP algorithm.
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Figure 10: Flow chart of the CTR3 framework.

Ruining & recreating step : This third step aims at re-optimizing the routes using a cutting and relinking
approach to design the final routes by means of an integer linear program. In brief, this phase is primarily focused
on defining two sets of routes pieces using a route cutting process and subsequently combining elements from
these sets using a relinking procedure to establish final routes. The nomenclature for this step draws inspiration
from the Ruin and Recreate algorithm. Further elaboration will be given in Section 5.3.

5.2 CCBC: Clustering and tuning step

We opt for a constrained centroid-based clustering, primarily due to the reason we outlined previously through
the connection between CCBC and CVRP. This latter highlights the feasibility of attaining an optimal or
near-optimal solution by appropriately selecting centroids combination within specific regions. Furthermore, an
additional justification arises from the intrinsic characteristics of the CVRP where the predefined lower bound
for the number of clusters 𝐾 simplifies the clustering process. The proposed clustering approach keeps the core
structure of the well-known k-means alongside incorporating the needed adjustments to take into account:

• Self-adjustment of the total number of clusters 𝐾 .
• Centroids multi-start initialization procedure.
• Assignment metric.
• Capacity constraint.

In the context of a constrained clustering, the designed clusters must meet a set of constraints. These are
commonly known in the literature as two sets, namely: Must-link constraints and Cannot-link constraints [8].
To elaborate, a must-link constraint involving the tuple (𝑚, 𝑝) requires that 𝑚 is in cluster 𝑆𝑖 if and only if 𝑝 is
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in cluster 𝑆𝑖 . In contrast, a cannot-link constraint for the tuple (𝑚, 𝑝) stipulates that 𝑚 is in 𝑆𝑖 if and only if 𝑝
is not in 𝑆𝑖 . In our particular case, a Cannot-link constraint is implemented within the CCBC algorithm 1. It
explicitly addresses the impracticality of associating a set of customers within the same cluster such that the total
demand exceeds the vehicle capacity. More accurately, the algorithm looks over the capacity constraint violation
during each assignment operation and then acts accordingly. It should be emphasized that in the context of the
CCBC algorithm the clusters are shaped with the objective of minimizing the withinss. This latter is defined in
our context as follows:

min
𝐾∑︁
𝑘=1

∑︁
𝒸𝑖∈𝑆𝑘

𝑑 (𝒸𝑖 , 𝜇𝑐𝑘)
2 such that 𝜇𝑐𝑘 = (

∑
𝒸𝑖∈𝑆𝑘 𝓍𝑖

|𝑆𝑘 |
,

∑
𝒸𝑖∈𝑆𝑘 𝑦𝑖

|𝑆𝑘 |
) and

∑︁
𝒸𝑖∈𝑆𝑘

𝑞𝑖 ≤ 𝑄 ∀𝑆𝑘 ⊆ C

In the case of a homogenous fleet, the number of targeted clusters is lower bounded by the following value:

𝐾0 = ⌈
∑𝑁
𝑖=1 𝑞𝑖

𝑄
⌉

Furthermore, Algorithm 1 starts the clustering with the predetermined lower bound. If it fails while designing
the clusters, the number of required clusters is increased iteratively as indicated in the chart flow 10. On the top
of that, we rely on a customized assignment metric to cluster different customers. This latter is calculated for
every customer with respect to each cluster by means of the following formula:

AM(𝒸𝑖 , 𝑆𝑘) =
𝑞𝑖

𝑑 (𝒸𝑖 , 𝜇𝑐𝑘)
(34)

This coefficient prioritizes assigning near customers with high demand to the clusters. To be more specific,
the clusters are primarily populated with customers whose assignment metric is greater. Whenever the vehicle
capacity is reached, the remaining customers are subsequently assigned to the second nearest cluster in order.
As marked out in Algorithm 1, the clustering methodology is enriched with a multi-start process to start up
the algorithm through randomly selecting centroids combination at each iteration. This procedure improves
the clustering solution by mitigating the local optima impact and exploring the solution space with the goal
of reaching centroids regions that can provide CVRP near-optimal solution as discussed in Section 4. The
clustering step yields feasible and unordered routes with respect to the capacity constraint. The designed
algorithm generatesN𝑖𝑡 solutions as presented in Algorithm 1. Each of these solutions corresponds to a specific
starting centroids combination. Following that, the routing stage in flow chart 10 consists of applying a TSP
solver within every cluster to provide valid routes starting from and ending at the depot. The TSP solver is
obviously applied on every cluster within each generated solution among theN𝑖𝑡 solutions. One can choose the
best one that provides the minimum traveled distance. However, in our case, the proposed approach makes use
of all CCBC solutions in the re-optimization step, as described in Section 5.3.

5.3 Ruining & recreating step

As previousely stated, it is intractably hard to find the optimal solution for the CCBC taking into account
the capacity constraint, particularly as the number of customers increases. Therefore the clustering approach
explores various combinations of centroids to approach a near-optimal clustering result. Due to the heuristic
nature of this process, it probably generates some inaccurately clustered customers. This fact paves the way to
further improvements for the CVRP global solution. This latter depends directly on the customers assignment
to clusters. A single misplaced customer can completely change the final solution.

To minimize the effect of this issue, our methodology incorporates a ruining and recreating step. This
approach phase makes use of the routes obtained directly after applying the TSP solver. Concretely, this step
consists, on the one hand, in cutting every route into a pair of pieces and on the other hand, designing new
routes by relinking the pieces of the routes in an optimal way. The ruining operation can be handled using a
function that iterates each route and returns all the possible pieces through cutting in the different route edges.
Consequently, there are many cutting configurations for a given route depending on the cutting position. Finally,
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recreating optimized routes can be crafted by relinking pieces of routes using an integer linear program to select
the tuples to match. This task can be modeled visually as an assignment problem with constraints in Figure 11.
Following the problem description, we can formulate it using an MILP (35)–(40).

min
∑︁
𝑜∈PR𝑙

∑︁
𝑡∈PR𝑟

𝛿𝑜𝑡 𝑧𝑜𝑡 (35)

s.t
∑︁
𝑜∈PR𝑙

∑︁
𝑡∈PR𝑟

𝛾𝑖𝑜𝑡 𝑧𝑜𝑡 = 1 ∀𝑖 ∈ C (36)∑︁
𝑜∈PR𝑙

𝑧𝑜𝑡 = 𝑤𝑡 ∀𝑡 ∈ PR𝑟 (37)∑︁
𝑡∈PR𝑟

𝑧𝑜𝑡 = 𝑢𝑜 ∀𝑜 ∈ PR𝑙 (38)

𝜏𝑜𝑡 𝑧𝑜𝑡 ≤ 𝑄 ∀𝑜 ∈ PR𝑙 ,∀𝑡 ∈ PR𝑟 (39)
𝑧𝑜𝑡 ≥ 0; 𝑢𝑜, 𝑤𝑡 ∈ {0, 1} ∀𝑜 ∈ PR𝑙 ,∀𝑡 ∈ PR𝑟 (40)

Algorithm 1: CCBC Algorithm.
Data: C, 𝑄, N𝑖𝑡 , 𝐺 such that 𝐺 is a gap limit
Result: Ω = (𝜇1, ...𝜇𝐾 ) with 𝑆𝑘 = {𝒸1, .., 𝒸𝑛𝑘 }

1 begin

2 𝐾0 ←−
∑𝑁
𝑖=1 𝑞𝑖
𝐶

, 𝑖 = 1.
3 for 𝑖 ≤ 𝑁𝑖𝑡 do
4 Ω𝜇 = {𝜇1, 𝜇2, ..., 𝜇𝐾 } ←− 𝑅𝑎𝑛𝑑𝑜𝑚(C, 𝐾 ) // 𝑅𝑎𝑛𝑑𝑜𝑚 is function randomly selects 𝐾

elements from customers set C.
5

6 𝑔𝑎𝑝 ←− + inf
88 while 𝑔𝑎𝑝 ≥ 𝐺 do
9 DM ←− 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑀𝑎𝑡𝑟𝑖𝑥 (C,Ω𝜇 , 𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛) // 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑀𝑎𝑡𝑟𝑖𝑥 is a function

returning an array of dimension 𝑁 × 𝐾 such that the element (𝑖, 𝑘 ) is the
euclidean distance between 𝒸𝑖 and centroid 𝜇𝑘.

10

11 for 𝑆𝑘 ∈ S do
12 Decreasingly ordering 𝐼𝑘 = {𝒸1, ..𝒸𝑘′ }, set of points nearest to 𝑆𝑘 according to the priority

AM(𝒸 𝑗 , 𝑆𝑘 ) ←−
𝑞 𝑗

DM ( 𝑗,𝑘)

13
★

𝐶 ←− 0 //
★

𝐶 is the consumed capacity
14

15 for 𝒸𝑖 ∈ 𝐼𝑘 do

16
★

𝐶 ←−
★

𝐶 + 𝑞𝑖
17 if

★

𝐶 < 𝑄 then
18 Assign 𝒸𝑖 to 𝑆𝑘
19 else
20 Assign 𝒸𝑖 to 𝐼𝑘′ , such that 𝑆𝑘′ is the nearest cluster to 𝒸𝑖 after 𝑆𝑘
21 end
22 end
23 end
24 Update centroids Ω: 𝜇𝑘 ←− 1

|𝑆𝑘 |
∑

𝒸 𝑗 ∈𝑆𝑘 𝒸 𝑗

25 𝑔𝑎𝑝 ←− 𝑈𝑝𝑑𝑎𝑡𝑒𝐺𝑎𝑝 (Ω, 𝑆) // 𝑈𝑝𝑑𝑎𝑡𝑒𝐺𝑎𝑝 is a function that calculates 𝑤𝑖𝑡ℎ𝑛𝑒𝑠𝑠

for current solution and than 𝑔𝑎𝑝

26 end
27 Return Ω

28 𝑖 ←− 𝑖 + 1
29 end
30 end

The objective function (35) minimizes the total traveled distance. Constraint (36) guarantees that each cus-
tomer is visited exactly once. Constraints (37), (38) are the flow conservation constraints. Finally, Constraint (40)
establishes the variables nature.
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𝑢1

𝑢2

𝑢3

𝑢4

. . .

. . .

. . .

𝑢𝑛

𝑤1

𝑤2

𝑤3

𝑤4

. . .

. . .

𝑤𝑚

Figure 11: Pieces of routes assignment problem.

For the ruin & recreate step, we apply some specific preprocessing strategies to reduce the runtime required
by the MILP above to get an optimal solution. Explicitly, it mainly aims at network reduction by removing the
infeasible edges. In our case, an infeasible edge is triggered in the following cases:

• Common client: this constraint consists in eliminating arcs if it matches two pieces of routes that share
a common client:

𝑝𝑟𝑙𝑜 ∩ 𝑝𝑟𝑟𝑡 ≠ ∅ =⇒ 𝑧𝑜𝑡 = 0 (41)

• Exceeding the vehicle capacity: eliminate an arc if the total demand of two matched pieces of routes
exceed the truck capacity.

𝜏𝑜 + 𝜏𝑡 > 𝑄 =⇒ 𝑧𝑜𝑡 = 0 (42)

• Exceeding the global capacity gap : we define here two notions, namely: the global capacity gap
CG𝑔𝑙𝑜𝑏, and the arc capacity gap CG𝑜𝑡 for the pieces of routes (𝑝𝑟𝑙𝑜, 𝑝𝑟𝑟𝑡 ).

1. CG𝑔𝑙𝑜𝑏 : this means the gap between the total demand and the total capacity of all used vehicles.
2. CG𝑜𝑡 : this refers to the gap between the two linked pieces of routes total demand (𝑜, 𝑡) and vehicle

capacity.

Consequently, this remark eliminates arcs according to the following equation:

CG𝑜𝑡 > CG𝑔𝑙𝑜𝑏 =⇒ 𝑧𝑜𝑡 = 0 (43)

such that,

CG𝑔𝑙𝑜𝑏 = 𝐾 ×𝑄 −
𝑁∑︁
𝑖=1

𝑞𝑖 and CG𝑜𝑡 = 𝑄 − (𝜏𝑜 + 𝜏𝑡 ) (44)

As mentioned above 𝐾 is the number of clusters, 𝐷 refers to the customer’s total demand, 𝑄 is the vehicle
capacity.

6 Experimentation
In this section, we present the computational experiments conducted on CVRP known instances in the literature.
Explicitly, in Subsection 6.1, we introduce the test plan and report the computational results that arise from this
experimentation. These experiments are compared to the best-known solutions in the literature [32]. More than
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that, we extend the benchmark to include the results from[22] and [23] since they rely on a similar methodology.
The subsequent Subsections 6.2, 6.3, and 6.4 are dedicated to a post-computational analysis with a primary
focus on elucidating the effectiveness of different components within the proposed framework.

6.1 Computational results

As stated before, the targeted experiments involve existing CVRP instances in the literature, namely: groups
𝐴, 𝐵 and 𝑃 from [3], and group 𝐸 from [15]. It is noteworthy that these instances are small and medium-sized
and each one is uniquely identified by a nomenclature convention denoted as 𝐺 − 𝑛𝑥1 − 𝑘𝑥2, which means a
CVRP instance from group 𝐺 with 𝑥1 customers and the optimal solution corresponds to 𝑥2 vehicles.

The proposed framework is implemented using Python. All experiments are carried out on a 3.20GHz
Intel(R) Core(TM) i7-8700 processor, with 64GiB System memory, using a Linux operating system. The
Integer Linear Program is solved using the IBM CPLEX Commercial Solver (version 12.9.0.0). We use the Pulp
library (version 2.7.0) to communicate with CPLEX solver from Python.

We compare the proposed approach results to the baselines approaches from the literature, namely [22, 32],
and [23] using the following metrics : relative gap denoted by GAP𝑟 , runtime, and number of optimal solutions
obtained per approachN𝑜𝑝𝑡 . The relative gap for instance 𝐼 is calculated with regard to the best-known solution,
following the formula introduced below :

GAP𝑟 (𝐼) =
SOL(𝐼) − BN(𝐼)

BN (𝐼) × 100 (45)

Such that, SOL(𝐼) is the value of the CVRP solution for instance 𝐼 using the proposed approach and BN(𝐼)
is the value of the best-known solution for the same instance. Table 7 thoroughly reports the results obtained for
groups 𝐴, 𝐵, 𝑃, 𝐸 using the proposed approach alongside with the ones provided by the work of [22, 23]. For
all these three approaches, we calculate GAP𝑟 (𝐼) with regard to the best known solution BN(𝐼) [32]. Table 6
sums up these results average for each approach. Notably, the proposed methodology significantly outperforms
other baselines, achieving an average relative gap GAP𝑟 of 1.07% with respect to the best-known solution.

We can derive alternative comparison insights concerning the three approaches based on the number of
optimal solutionsN𝑜𝑝𝑡 reached by each one as introduced in Table 6. Considering this new metric, the proposed
approach considerably outperforms the other ones as the optimum is attained for 9 instances. This fact confirms
the relevance of the additional techniques we incorporate to improve CCBC framework, namely : multi-start
initial centroids, assignment metric, re-optimization procedure. The impact of this improvements strategies will
be elaborated in Subsections 6.2, 6.3, and 6.4.

Table 6: GAP𝑟 and N𝑜𝑝𝑡 reached by each approach.

Method GAP𝑟 (%) N𝑜𝑝𝑡

CTR3 1.07 9
Ewbank and al. [22] 1.58 1
Ewbank and al. [23] 3.45 2

For better analysis, we convert this numerical comparison to visual plots. Observing Figure 12, one can
get an idea about the relative gap distribution among the three approaches. The one related to the proposed
approach is approximately similar to a Gaussian curve. More than that, it looks more symmetric and concentrated
around the mean, unlike other approaches. The box plot in Figure 13 provides an additional perspective on
the performance of these three approaches. In detail, our approach outperforms the other ones in terms of
the upper quartile. In contrast to the proposed approach, one can notice that the remaining approaches can
lead to some isolated GAP𝑟 values according to their box plot. According to this analysis, one can conclude
that our methodology presents less variability in terms of GAP𝑟 . This characteristic holds an advantageous
practical value in real-world applications. Furthermore, we can point out according to Table 8 that the proposed
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approach provides CVRP solutions within reasonable timeframe, specifically, a maximum of 240 seconds to
solve E-n76-k7. These runtime values using CTR3 are competitive with those of [22, 23].

Figure 12: Distribution plot of GAP𝑟 for the three approaches

CTR3 Ewbank et al. 2019 Ewbank et al. 2016
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Figure 13: Boxplot of GAP𝑟 for the three approaches.
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Table 8: Comparison between CTR3 results and baselines from the literature in terms of the runtime.

Instance CTR3 Ewbank et
al. 2019 [22]

Ewbank et
al. 2016 [23]

Lysgaard et
al. [32]

Instance CTR3 Ewbank et
al. 2019 [22]

Ewbank et
al. 2016 [23]

Lysgaard et
al. [32]

A-n32-k5 2.90 3.57 16.19 14.44 B-n41-k6 9.24 4.72 17.35 31.31
A-n33-k5 2.62 4.51 14.95 18.77 B-n43-k6 4.90 5.25 16.90 77.84
A-n33-k6 3.16 5.52 16.55 27.56 B-n44-k7 3.39 5.52 17.69 8.15
A-n34-k5 2.25 4.70 14.62 19.07 B-n50-k7 7.70 6.01 22.12 9.86
A-n36-k5 2.25 3.92 17.89 34.13 B-n52-k7 13.23 5.87 21.42 24.25
A-n37-k5 3.65 4.31 14.17 20.72 B-n63-k10 33.29 9.70 36.16 1783.43
A-n37-k6 3.65 5.88 16.86 316.46 E-n22-k4 1.06 3.13 7.49 1.70
A-n38-k5 2.56 4.89 14.66 65.73 E-n23-k3 1.37 1.37 2.41 6.18
A-n39-k5 5.83 4.91 14.83 91.31 E-n30-k3 1.77 2.49 7.13 14.8
A-n39-k6 6.71 6.79 17.11 69.55 E-n33-k4 2.04 3.35 9.39 15.82
A-n44-k6 13.06 6.71 18.7 243.22 E-n51-k5 14.04 7.32 16.55 41.69
A-n48-k7 17.66 9.11 18.08 148.40 E-n76-k7 240.13 16 31.26 8703.55
A-n53-k7 25.15 11.6 21.51 131.11 P-n20-k2 1.04 2.12 3.31 13.69
A-n54-k7 26.57 8.47 20.67 1672.44 P-n21-k2 1.09 2.05 3.30 2.62
A-n63-k10 51.60 13.94 34.67 3976.79 P-n22-k2 1.19 1.87 3.81 15.31
A-n64-k9 53.42 16.53 31.55 3643.50 P-n40-k5 10.81 9.10 13.83 17.79
A-n69-k9 112.11 12.41 32.31 3268.00 P-n45-k5 14.24 7.68 13.96 45.73
A-n80-k10 196.61 17.81 42.73 1973.50 P-n50-k7 20.55 13.69 21.29 290.17
B-n34-k5 2.42 3.75 11.25 30.78 P-n55-k10 28.96 10.79 21.32 2534.21
B-n35-k5 2.27 3.95 12.64 3.97 P-n76-k4 90.56 6.05 19.36 195.53
B-n38-k6 5.25 4.98 12.84 30.27 P-n76-k5 126.62 7.43 23.96 1622.78
B-n39-k5 3.57 3.97 12.43 8.37 P-n101-k4 222.45 6.83 25.9 155.92

After assessing the global performance of the proposed approach, in what follows, we will emphasize the
appropriateness of the components used within the main proposed approach, specifically: centroids multi-start
initialization, customized assignment metric, re-optimization process.

6.2 Impact of centroids multi-start initialization

To assess the impact of the multi-start process for the centroids initialization within CCBC, we first select
a representative instance from each group 𝐴, 𝐵, 𝑃, namely : A-n53-k7, B-n68-k9, P-n76-k5. Then, we run
the proposed approach on each instance while systematically varying the number of explored initial centroids
combinationsN𝑖𝑡 in theCCBC step. Figure 14 reports the corresponding relative gapGAP𝑟 as we incrementally
explore a range of combinations. We observe that GAP𝑟 decreases for all studied instances as long as N𝑖𝑡
increases.

Furthermore, we provide a comparative study between the used initialization methodology and the well-
known ones in machine learning, namely: Kmeans ++ and Naive sharding. Specifically, we analyze the
performance in terms of the relative gap GAP𝑟 for each initialization method per group. It should be noted that
the comparison is carried out on instances from three groups 𝐴, 𝐵, 𝑃. Figure 15 gives an overview on the GAP𝑟
results on average for each group using the three methodologies. We can notice that the multi-start initialization
methodology consistently outperforms other ones in overage.

In more detail, the average gap is above 7.5 % for all groups when it comes to kmeans ++ or Naive sharding
initialization. Conversely, the same metric does not exceed 1.3 % for any of the groups using a random multi-start
initialization. This discrepancy with regard to the performance between the three approaches could be justified
by the fact that kmeans ++ and Naive sharding tend to select centroids in the same region, leading to convergence
at a local optimum. In contrast, the multi-start approach ensures exploring diverse centroids combinations in
the search space, therefore reaching a near-optimal solution for both the clustering step and then for CVRP.
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Figure 14: Values of GAP𝑟 varying the number of explored initial centroids combinations N𝑖𝑡 .
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Figure 15: Comparison in terms of GAP𝑟 depending on the initialization methodology.
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6.3 Impact of assignment metric

This section aims at highlighting the impact of the used metric to assign customers to clusters when compared
to the classical assignment metric. This latter refers to the euclidean distance to assign nearest customers to
clusters, i.e, K-means. As illustrated, through Figure 16, choosing the assignment metric affects directly CVRP
results. In detail, relying on a customized assignment metric provides better results than using the classical
assignment metric. This performance concerns all groups as shown in this figure. The customized assignment
metric is calculated using this formula AM(𝒸𝑖 , 𝑆𝑘) = 𝑞𝑖

𝑑 (𝒸𝑖 ,𝜇𝑐𝑘 )
. It is designed in order to prioritize assigning

nearest customers with high demands to the clusters.
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Figure 16: Comparison in terms of GAP𝑟 depending on the used assignment metric.

To gain deeper insights about the role of this customized assignment metric in enhancing the CVRP quality
solutions, we propose to conduct an experiment to compare the vehicle fulfillment rate achieved VF(%) through
using the classical assignment metric against the proposed customized metric. The results obtained from this
experiment are highlighted in Figure 17 in the right. It presents the average of unfilled capacity inside the vehicles
GAP𝑉𝐹𝑟 for groups A, B, P and for every assignment metrics. It is computed for a specific instance using the
following formula: GAP𝑉𝐹𝑟 =

𝐾×𝑄−∑𝑁
𝑖=1 𝑞𝑖

𝐾×𝑄 ×100. As one can clearly notice that relying on a customized metric
consistently guarantees a higher fulfillment rate for the vehicles in the CVRP context. These findings confirm
that the enhanced vehicles capacity utilization can be achieved by adopting the previous metric when compared
to the traditional one.

Vehicles fulfillment rate has a direct impact on the number of used vehicles when addressing CVRP
instances. Thoroughly a higher fulfillment rate inherently leads to a reduced number of vehicles required to
efficiently serve all customers. To illustrate this fact and how it variates depending on the used assignment metric,
we perform another experiment to evaluate the number of vehicles depending on the assignment metric. Figure
17 in the left gives the number of instances 𝑁𝐾−𝐾𝑜𝑝𝑡 that are solved using a number of 𝐾 vehicles knowing that
the number of vehicles used by the optimal solution is 𝐾𝑜𝑝𝑡 . In our case, we represent the number of instances
with respect to 𝐾 − 𝐾𝑜𝑝𝑡 ∈ {0, 1, 2, 3, 4}. This right Figure 17 shows that using the customized assignment
metric guarantees a number of used vehicles near to the optimal number.
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Figure 17: Comparison in terms of GAP𝑉𝐹𝑟 and 𝑁𝐾−𝐾𝑜𝑝𝑡 depending on the initialization methodology.

6.4 Impact of the third step of CTR3

To better understand the relevance of adding the ruin & recreate step, we report in Figure 18 the comparison
results obtained using the proposed approach with the ruin & recreate step(3-steps approach) and without (2-
steps approach). One can clearly notice that using this last step through incorporating a ruining and recreating
process significantly improves the solution quality in terms of the relative gap GAP𝑟 with the optimal solution.
This remarkable performance holds the same across various instances from all groups A, B, P .

The clustering step is carried out through a heuristic method. Consequently, the existence of misclustered
customers cannot be completely ruled out. It should be noted that even a solitary misplaced customer can
substantially change the CVRP solution. To address this concern, the ruining and recreating mechanism was
implemented to reassign these misclustered customers to the appropriate clusters, thereby enhancing the overall
CVRP solution quality.
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Figure 18: Comparison in terms of GAP𝑟 using the proposed approach with and without the third step.
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7 Conclusion
In conclusion, the goal of this study is to narrow the gap in understanding the connection between CVRP
and CCBC. Our findings demonstrate that optimal solutions to CCBC can offer valuable insights into solving
CVRP. The experimental results, corroborated by theoretical analysis, indicate a strong correlation between the
optimal solutions of these two problems. This research paves the way for more efficient and practical approaches
to solving the vehicle routing problems, leveraging the principles of centroid-based clustering. Future endeavors
will involve delving deeper into the theoretical aspects of the clustering centroids regions leading to optimal
or near-optimal solutions for CVRP. This includes a rigorous mathematical characterization of these regions,
investigating properties such as their openness, convexity, connectedness. Additionally, we plan to explore the
feasibility of reaching these regions while clustering through a reinforcement learning approach. This work will
entail a dynamic evaluation of CVRP solutions in conjunction with the clustering process to effectively guide
the clustering centroids selection.
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