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entifique.

The series Les Cahiers du GERAD consists of working papers
carried out by our members. Most of these pre-prints have been
submitted to peer-reviewed journals. When accepted and published,
if necessary, the original pdf is removed and a link to the published
article is added.

Suggested citation: M. F. Anjos, L. Brotcorne, G. Guillot (Juillet
2024). Optimal electric vehicle charging with dynamic pricing,
customer preferences and power peak reduction, Technical report,
Les Cahiers du GERAD G–2024–42, GERAD, HEC Montréal, Canada.
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Abstract : We consider a provider of electric vehicle charging that operates a network of charging
stations and uses time-varying pricing to maximize profit and reduce the impact on the electric grid. We
propose a bilevel model with a single leader and multiple disjoint followers. The customers (followers)
makes decisions independently from each the other. The provider (leader) sets the prices for each
station at each time slot, and ensures there is enough energy to charge. The charging choice of each
customer is represented by a combination of a preference list of (station, time) pairs and a reserve price.
The proposed model takes thus into accounts for the heterogeneity of customers with respect to price
sensitivity and charging preferences. We define a single level reformulation based on the reformulation
for the rank pricing problem. Computational results highlight the efficiency of the new reformulation
and the impact of the model on the grid peak.

Keywords : Electric vehicle charging, dynamic pricing, bilevel optimization, preference list, reserve
price
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1 Introduction

Due to many political and environmental incentives, the number of electric vehicles (EVs) has increased

dramatically in recent years, especially in urban areas. This rapid growth creates a large number of

operational challenges for charging service providers. In particular, it is important to manage the

location of charging stations (see e.g. [2, 10, 11, 14]), the size of the stations to avoid queues (see

e.g. [17]), as well as the impact of charging on the electricity grid (see e.g. [13, 15]). The work of [18]

highlights three issues arising from the rapid increase in the number of EVs: a worsening in the peak-

to-valley difference grid load leading to a cost increase and a deterioration in the service quality of the

networks and installations, a difficulty in meeting the demand of EV customers, and an inequitable

distribution of customers among the stations leading to congestion.

The literature devoted to the study of EV charging station management may be classified according

to three characteristics: design issues, pricing issues, and joint design & pricing issues. We refer to [12]

for a survey. In this work, we focus on the pricing issue.

Pricing is a key element in the distribution of customers: too attractive prices result in: i) queues

at charging stations; ii) failure to meet the demand; and iii) high peaks on the distribution grid; on the

other hand, too high prices deter customers from charging at this time and location and thus reduce

the revenue and create potential future grid imbalances. The authors in [12] define different criteria

to characterize dynamic pricing and describe multiple implementations.

In this paper, we address the problem of an EV charging provider that operates a network of

charging stations and wishes to apply a dynamic pricing strategy to spread the customers in time

and space in order to maximize the profit and reduce the negative grid impacts as well as queues at

charging stations. We refer to this problem as (DPEV ).

Bilevel models are well suited to represent hierarchical decision-making processes involving two

types of decision agents, such as the DPEV . Indeed, the charging station managers need to take

into account customers’ charging decisions when setting the prices. Customers’ choice rules can be

modeled in a variety of ways. Profit maximization, which takes into account customer preferences,

traditionally focuses on maximizing the utility of a consumer. This rule assumes that the customer

typically makes a decision by measuring some attributes of the product. However, customers may

be partially rational or may fail to evaluate all attributes related to an alternative. In this paper, we

consider a non-parametric ranking-based consumer choice model, assuming that each of them possesses

its own ranking of the candidate products, yielding an incomplete list of preferences for each customer.

Most papers in the literature related to EV charging pricing problems are based on the utility

maximization paradigm. More precisely, they determine the choice of the path of the customers in the

network according to travel time, prices, and potential queuing time at stations (see [3, 8, 9, 16] for

example). One main difficulty of these works is the evaluation of the attributes related to the path

choices and the definition of efficient solution methods to solve large instances due to the large number

of potential paths.

An alternative approach was proposed in [1] where the behaviour of EV customers is represented

using a preference list and a reserve price (maximum price threshold). This approach makes use of

a bilevel optimization formulation in which the upper-level models the charging service provider that

seeks to locate, size and price charging stations to maximize its profit, while the lower level models

EV customers who individually select the first available charging station from their preference list that

meets the customer’s reserve price.

In this paper, we define a bilevel optimization model for the DPEV representing the heterogeneous

customer decision process as the choice of a location and time to charge in a predefined preference list

related to a reserve price [6]. We consider a single EV charging station manager and do not take into

account the reaction of the competition. Unlike in [6], the locations and sizes of the charging stations

are fixed in advance, and the focus in this paper is on determining the optimal prices and quantities
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of energy (recharges) to maximize profit, where the profit is the difference between the revenue from

providing recharges to customers and the cost of the required energy. We provide an efficient solution

approach based on the structure of the problem and the work of [5] for the rank pricing problem.

This single level reformulation leads to the solution of a mixed-integer linear optimization problem.

We report computational results highlighting the quality of the proposed reformulation with respect

to the classical one-level reformulation based on KKT conditions, or to available bilevel optimization

software. We also discuss sensitivity analysis results related to the tradeoff between revenue and

electrical grid peak reductions.

The remainder of the paper is organized as follows. Section 2 is devoted to a bilevel formulation for

the DPEV . Section 3 is devoted to single level formulations of the bilevel model. Section 4 includes

two illustrative examples. Section 5 is devoted to testing the performance of the models by means of

a computational study and Section 6 constitutes a conclusion of the paper.

2 Bilevel model for DPEV

ProblemDPEV involves two decision-makers interacting sequentially and hierarchically. An electricity

provider (the leader) needs to define time-varying prices associated with EV charging stations as well

as the quantity of energy allocated to each station, taking into account the preferences of the customers

(the followers) with respect to the place and time period to charge.

More precisely, the provider is in charge of a set S of charging stations; each one has a capacity δs
representing the number of charging spots at the station. The electricity cost for the service provider

is denoted by ct,∀t ∈ T , where t ∈ T is a time period. The service provider needs to select the price to

charge customers for each pair (station, time). The possible prices belong to a discrete set Π common

to all pairs (station, time). We define a charging unit as the complete charge of a vehicle, and the

charging time is not taken into account.

The set of customers is denoted by U . Each customer needs exactly to charge one unit during his

trip. We introduce a fictitious station sA that represents the competition to avoid upward pricing due

to this constraint. For feasibility reasons, we do not consider capacity constraints for the competition.

Each customer has a budget βu, and we consider that a customer charges in a competing station if the

leader’s prices exceed his budget. This budget can be seen as a reserve price for the customer.

For fixed price schedules determined by the leader, the customers will select the place and time to

charge according to a predefined preference list.

O D

s1, t1 s2, t2 s3, t3

Figure 1: Representation of a customer’s route using (station, time) pairs.

The preference list corresponds to an ordered set of station/time pairs where a customer agrees to

charge if the leader’s price does not exceed his budget. Let Ru be the ordered list of pairs (station,

time) for customer u. Customer u prefers to load at pair Rℓ
u rather than Rℓ′

u if ℓ < ℓ′ (ordered in

decreasing order of preferences).

For a given pair (s, t), the set Ls,t is defined by all pairs (u, ℓ) such that

(u, ℓ) ∈ Ls,t iif R
ℓ
u = (s, t) (1a)
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The set Ls,t corresponds to all pairs (u,ℓ) such that the ℓth choice in the preference list for u is

(s, t). For each customer u ∈ U , αu defines the monetary inconvenience of each pair in his preference

list. More precisely, a customer of u undergoes a penalty ℓαu if he charges at the ℓth choice of his

preference list.

The parameters of the model are summarized in Table 1.

Table 1: Model parameters.

S set of charging stations
T time periods
U set of customers
δs number of charging spots for station s ∈ S
sA fictitious station
Π discrete set of prices
ct cost of one unit of energy available at time period t ∈ T for the leader
Ru preference list of customer u ∈ U
βu budget of customer u ∈ U
αu monetary inconvenience for customer u ∈ U
Ls,t set of pairs (customer, choice) corresponding to (s, t)

We next introduce three sets of leader’s and followers’ decision variables. Let xt
s be the number of

charging units available (at cost ct) for station s at time t. The variables yℓ,pu ,∀u ∈ U, ℓ ∈ {0, ..., |Ru|−
1}, p ∈ {1, ..., |Π|} are binary and yℓ,pu = 1 if customer u charges at station and time corresponding
to his ℓth choice at the pth price. Finally, variables θs,tp ,∀p ∈ {1, ..., |Π|}, s ∈ S, t ∈ T are binary and

θs,tp = 1 if the price of station s at time t is fixed to Πp. DPEV can be formulated as:

DPEV : max
x,y,θ

∑
u∈u

|Ru|−1∑
ℓ=0

|Π|∑
p=1

Πpy
ℓ,p
u −

∑
t∈T

∑
s∈S

xt
sct (2a)

s.t.

|Π|∑
p=1

θs,tp = 1 ∀(s, t) ∈ S × T (2b)

∑
(u,ℓ)∈Ls,t

|Π|∑
p=1

yℓ,pu ≤ xt
s ∀(s, t) ∈ S × T (2c)

∑
(u,ℓ)∈Ls,t

|Π|∑
p=1

yℓ,pu ≤ δts ∀(s, t) ∈ S × T (2d)

xt
s ∈ N, ∀(s, t) ∈ S × T (2e)

θs,tp ∈ {0, 1}, ∀(s, t) ∈ S × T, p ∈ {1, ..., |Π|} (2f)

For each ũ ∈ U :

min
yũ

|Π|∑
p=1

|Rũ|−1∑
ℓ=0

yℓ,pũ (Πp + ℓ ∗ αũ) + ys
A

ũ βũ (2g)

|Rũ|−1∑
ℓ=0

|Π|∑
p=1

yℓ,pũ + ys
A

ũ = 1 (2h)

yℓ,pũ ≤ θ
s(ℓ),t(ℓ)
p , ∀ℓ ∈ {0, ..., |Rũ| − 1}, p ∈ {1, ..., |Π|} (2i)

yℓ,pũ (Πp + ℓ ∗ αũ) ≤ βũ, ∀ℓ ∈ {0, ..., |Rũ| − 1}, p ∈ {1, ..., |Π|} (2j)

yℓ,pũ ∈ {0, 1}, ∀ℓ ∈ {0, ..., |Rũ| − 1}, p ∈ {1, ..., |Π|} (2k)

At the upper level, the leader maximizes his profit by determining the prices θs,tp and the quantities

of energy xt
s for each time t ∈ T and each station s ∈ S. The Profit is the difference between revenue

from energy sales to customers and the cost of energy purchases.

Constraints (2b) define a single price for each pair (station, time). The last constraints are capacity

constraints, with respect to the demand (2c) and the number of available spots (2d) in the charging
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stations. At the lower level, each customer selects the pair in his preference list, minimizing the total

cost of charging, including the penalty for the inconvenience due to the order of the choices in the list.

Constraint (2h) defines a customer’s choice for charging at a station from the leader or to the

competition. Constraints (2i) ensure that customers’ choices are consistent with the prices set by the

leader. Note that the budget constraints (2j) are redundant with respect to the objective function.

Nevertheless, they will be useful for the next reformulations.

DPEV is a linear bilevel optimization problem. One of the particularities DPEV is the definition

of constraints (2c) and (2d) at the upper level. The leader sets prices, ensuring the followers’ capacity

is satisfied. Note that in the case of the non unicity of the solution of the followers for fixed leader’s

decisions, we assume that the followers select the solution leading to the highest objective function

value of the leader. Thus, we consider the optimistic version of a bilevel optimization problem.

To take into account the impact of the grid peak consumption on the pricing decisions, we introduce

a new term in the leader’s objective function. We first define X0 as the maximum peak consumption

value obtained in the optimal solution of the model DPEV.

The new leader’s objective function is then given by:

max
x,y,θ,X

∑
u∈u

|Ru|−1∑
ℓ=0

|Π|∑
p=1

Πpy
ℓ,p
u −

∑
t∈T

∑
s∈S

xt
sct + k(X0 −X)

where X is defined as the maximum peak consumption and defined by the next constraint:

X ≥
∑
s∈S

∑
(u,ℓ)∈Ls,t

|Π|∑
p=1

yℓ,pu ∀t ∈ T

The leader is rewarded for lowering the maximum peak X, but has only indirect control over this peak

because it arises from the customers’ choices. We call this model DPEVk. The parameter k expresses

all terms in the same unit. It can also be used as a weighting parameter in the objective function.

DPEVk : max
x,y,θ,X

∑
u∈u

|Ru|−1∑
ℓ=0

|Π|∑
p=1

Πpy
ℓ,p
u −

∑
t∈T

∑
s∈S

xt
sct + k(X0 −X) (3a)

s.t. X ≥
∑
s∈S

∑
(u,ℓ)∈Ls,t

|Π|∑
p=1

yℓ,pu ∀t ∈ T (3b)

(2b), ..., (2k)

X ∈ R (3c)

3 Single-level reformulations of DPEV

In this section, we first present a new single-level MIP formulation of DPEV based on the work of [5]

for the rank pricing problem (RPP). Next, we remind classical single-level reformulations of bilevel

models to be used in the numerical results section.

3.1 Linear single level reformulation

We define for each customer u ∈ U an order relation ⪯u which for two pairs (ℓ, p), (ℓ′, p′), ℓ, ℓ′ ∈
{0, ..., |Ru| − 1} and p, p′ ∈ {1, ..., |Π|} defines the most beneficial one for the customer. The order

relation is given by

(ℓ, p) ⪯u (ℓ′, p′) if Πp + ℓαu ≥ Πp′ + ℓ′αu.
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The set of pairs (ℓ′, p′) preferred to (ℓ, p) for a customer u is defined by:

Bu,ℓ,p = {(ℓ′, p′), ℓ′ ∈ Ru|(ℓ, p) ⪯u (ℓ′, p′)}. (4)

Finally, we define an indicator of whether the competition is more beneficial than the pair (ℓ,p) or

not.

∀u ∈ U, ℓ ∈ Ru, p ∈ {1, ..., |Π|}, Cu,l,p =

{
1, if(ℓ ∗ αu) + Πp ≥ βu

0, otherwise.
(5)

Proposition 1. For each customer u, a feasible vector yu is optimal for the lower-level problem if the

following constraints are satisfied:∑
(ℓ′,p′)∈Bu,ℓ,p

yℓ
′,p′

u + Cu,ℓ,py
sA

u ≥ θs(ℓ),t(ℓ)p , ∀ℓ ∈ {0, ..., |Rũ| − 1}, p ∈ {1, ..., |Π|}. (6)

Proof. Let yu be a feasible vector satisfying the constraints. Since yu is a feasible solution for customer

u, we know that ∃!(ℓ, p) such as yℓ,pu = 1 (constraint 2h). To obtain a contradiction, suppose that yu
is not optimal for customer u, then ∃(ℓ∗, p∗) such as (Πp∗ + ℓ∗ × αu) < (Πp + ℓ × αu) (given by the

objective function) and θ
s(ℓ∗),t(ℓ∗)
p∗ = 1 (given by 2i). By 4, (ℓ, p) /∈ Bu,ℓ∗,p∗ . As a consequence the

constraint corresponding to (ℓ∗, p∗) is not respected:∑
(ℓ′,p′)∈Bu,ℓ∗,p∗

yℓ
′,p′

u + Cu,ℓ∗,p∗ys
A

u = 0 and θ
s(ℓ∗),t(ℓ∗)
p∗ = 1

Using Proposition 1, the single-level reformulation is:

DPEVSL : max
x,y,θ

∑
u∈u

|Ru|−1∑
ℓ=0

|Π|∑
p=1

Πpy
ℓ,p
u −

∑
t∈T

∑
s∈S

xt
sct (7a)

s.t. (2b), (2c),(2d), (2h), (2j)∑
(u,ℓ)∈Ls,t

yℓ,pu ≤ θs,tp |U | ∀(s, t) ∈ S × T, p ∈ {1, ...., |Π|} (7b)

∑
(ℓ′,p′)∈Bu,ℓ,p

yℓ
′,p′

u + Cu,l,py
sA

u ≥ θ
s(ℓ),t(ℓ)
p , ∀u ∈ U, ℓ ∈ Ru, p ∈ {1, ..., |Π|} (7c)

xt
s ∈ N (7d)

θs,tp ∈ {0, 1}, ∀(s, t) ∈ S × T, p ∈ {1, ..., |Π|} (7e)

yℓ,pu ∈ {0, 1} ∀u ∈ U, ℓ ∈ {0, ..., |Ru| − 1}, p ∈ {1, ..., |Π|} (7f)

Optimality conditions for the lower level are given by (7c). Constraint (7b) ensures consistency be-

tween the prices set by the leader and the prices chosen by the customers. Constraint (7b) corresponds

to the aggregation of constraints 2i.

Problem DPEVSL can be solved with a mixed integer linear solvers. As we have not added a

constraint in the follower problem, we can use the same reformulation for the problem (DPEVk).

DPEVSL
k : max

x,y,θ,X

∑
u∈u

|Ru|−1∑
ℓ=0

|Π|∑
p=1

Πpy
ℓ,p
u −

∑
t∈T

∑
s∈S

xt
sct + k(X0 −X) (8a)

s.t. X ≥
∑
s∈S

∑
(u,ℓ)∈Ls,t

|Π|∑
p=1

yℓ,pu ∀t ∈ T (8b)

(2b), (2c), (2d), (2h), (2j), (7b), (7c), (7d), (7e), (7f)

X ∈ R (8c)
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3.2 Classical single level reformulation based on KKT optimality conditions

In this section, we present a classical reformulation of a bilevel optimization problem as a single level

one based on the Karush-Kuhn-Tucker optimality conditions. We first prove that the linear relaxation

of the lower-level problem is equivalent to the initial one.

Proposition 2. For each follower problem SPu, the linear relaxation is equivalent to the initial problem.

Proof. Each sub-problem can be formulated as a min-cost flow problem in a graph. The first level

variables θℓ,p represent the arc capacity. The cost of an arc is given by its contribution to the objective

function. A final arc, of capacity 1, represents the competition. Since the constraint matrix of this type

of problem is totally unimodular, the optimal solution of the linear relaxation is always integer.

U0

+1 −1

T

θℓ,p

Πp + ℓαu0

1

βu0

Figure 2: Representation of the follower problem as a min-cost flow problem.

The KKT optimal conditions can replace each follower sub-problem. In this approach, the lower

level’s optimality conditions (stationarity, primal feasibility, dual feasibility, complementary slackness)

are added to the upper level to yield an equivalent single-level formulation. Linearization techniques

need to be applied to obtain a mixed integer linear program.

The second-level variable integrality constraints are next reintroduced into the leader’s problem.

Since the lower-level problem is totally unimodular, there are always optimal lower-level solutions that

meet the integrality requirements, and these, according to the ’optimistic’ assumption, can be selected

by the leader. In the following, we describe the conditions obtained for one customer. Recall that the

sub-problem for customer ũ is given by:

min
yũ

|Π|∑
p=1

|Rũ|−1∑
ℓ=0

yℓ,pũ (Πp + ℓ ∗ αũ) + ys
A

ũ βũ (9a)

|Rũ|−1∑
ℓ=0

|Π|∑
p=1

yℓ,pũ + ys
A

ũ = 1 (9b)

yℓ,pũ ≤ θs(ℓ),t(ℓ)p , ∀ℓ ∈ {0, ..., |Rũ| − 1}, p ∈ {1, ..., |Π|} (9c)

yℓ,pũ (Πp + ℓ ∗ αũ) ≤ βũ, ∀ℓ ∈ {0, ..., |Rũ| − 1}, p ∈ {1, ..., |Π|} (9d)

yℓ,pũ ≥ 0, ∀ℓ ∈ {0, ..., |Rũ| − 1}, p ∈ {1, ..., |Π|} (9e)

ys
A

ũ ≥ 0 (9f)

Remark 1. Integrality constraints are replaced by (9e). The condition yℓ,pũ ≤ 1 is induced by (9b)

and (9e).
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The dual feasibility, complementary slackness, and stationarity are given by:

Complementary slackness:

(yℓ,pũ − θs(ℓ),t(ℓ)p )µℓ,p
ũ = 0 ∀ℓ ∈ {0, ..., |Rũ| − 1}, p ∈ {1, ..., |Π|} (10a)

(yℓ,pũ (Πp + ℓ ∗ αũ)− βũ)ϕ
ℓ,p
ũ = 0 ∀ℓ ∈ {0, ..., |Rũ| − 1}, p ∈ {1, ..., |Π|} (10b)

yℓ,pũ ∆ℓ,p
ũ = 0 ∀ℓ ∈ {0, ..., |Rũ| − 1}, p ∈ {1, ..., |Π|} (10c)

ys
A

ũ ∆sA

ũ = 0 (10d)

Stationarity:

Πp + ℓ ∗ αũ + λũ + µℓ,p
ũ + ϕℓ,p

ũ (Πp + ℓ ∗ αũ)−∆ℓ,p
ũ = 0 ∀ℓ ∈ {0, ..., |Rũ| − 1}, p ∈ {1, ..., |Π|} (11a)

λũ −∆sA

ũ + βũ = 0 (11b)

λũ ∈ R (11c)

µℓ,p
ũ , ϕℓ,p

ũ , δℓ,pũ ≥ 0 ∀ℓ, p (11d)

∆sA

ũ ≥ 0 (11e)

The resulting problem is not linear because of the complementarity slackness. These constraints

can be linearized using the big-M approach or solved directly using SOS1 constraints [4].

4 Illustrative examples

To give insight into the solution structure, we illustrate the impact of the model on small instances.

4.1 Impact of reserve price and competition

Let us consider a first example involving three customers where only one customer will be able to

charge during each time slot.

U0

U1

U2

SA

S0 δ = 1

t0

t1

S1 δ = 1

t0

t1

Ru0
= {(S0, t0); (S0, t1)}

βu0
= 110;αu0

= 30

Ru1
= {(S0, t0); (S1, t0)}

βu1
= 150;αu1

= 10

Ru2
= {(S0, t0); (S1, t0)}

βu2 = 90;αu2 = 15

Π = {80; 100; 130}

Figure 3: Illustration of an example with 3 customers with a preference list of 2 choices.



Les Cahiers du GERAD G–2024–42 8

To capture customer u2 (with a low budget), the price needs to be smaller than 80, which corre-

sponds to the pair (S0, t0). This pair is also the preferred choice of the other two customers. As the

number of chargers δ = 1, it is impossible to set a price equal to 80 otherwise all customers will charge

at (S0, t0). Customer u2 needs thus to go to the competing station in order to allow larger prices

and higher revenue for the other customers. Customers u0 and u1 have the same first choice in their

preference list but a different second choice. The prices need to be defined in such a way that at least

one of them charges at his second choice. The optimal solution is given by :

• θ0,02 = θ0,10 = θ1,02 = θ1,10 = 1

• y1,00 = y1,21 = ys
A

2 = 1

and depicted in Figure 4. Note that this solution corresponds to an optimistic solution to the prob-

lem: the customer U0 can charge at a competing station for the same price, but this solution is less

advantageous for the leader.

U0

U1

U2

SA

S0 δ = 1

t0, price = 130

t1, price = 80

S1 δ = 1

t0, price = 130

t1, price = 80

130 + 0

13
0
+
0

13
0
+
0

130
+ 15

80 + 30

130 + 10

Ru0
= {(S0, t0); (S0, t1)}

βu0 = 110;αu0 = 30

Ru1
= {(S0, t0); (S1, t0)}

βu1 = 150;αu1 = 10

Ru2
= {(S0, t0); (S1, t0)}

βu2
= 90;αu2

= 15

Π = {80; 100; 130}

90

150

11
0

Figure 4: Optimal solution of each customer with optimal prices.

4.2 Impact of capacity constraints at the first level

In some cases, bilevel feasibility is not guaranteed when pricing strategies do not lead to a distribution

of customers in accordance with the charging stations’ capacity constraints. More precisely, as the

capacity limits are leader’s constraints, customers are not concerned with available spots at charging

stations when they select their time and location charging pair. We illustrate how to remedy this

drawback in the following example involving identical preference lists for all customers.
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U0

U1

S0, t0

S1, t0

δ = 1

δ = 1

RU0
= {(S0, t0); (S1, t0)}

RU1
= {(S0, t0); (S1, t0)}

Figure 5: Bilevel infeasible example with two customers.

One way to guarantee bilevel feasibility is to add a very high price that makes a station/time pair

unattractive to all customers. All the customers will then charge at the competition leading to a

feasible solution.

Proposition 3. If ∃p ∈ {0, ..., |Π|},Πp > maxu∈U βu then problem DPEV is bilevel feasible.

Proof. If all prices are set at maxu∈U βu, all customers will charge at the competition, and capacity

constraints will be satisfied. This solution is always bilevel feasible.

This price can be interpreted as the closure of a charging station.

5 Computational experiments

In this section, we compare the performance of 4 solution approaches forDPEV on randomly generated

instances and provide an extensive sensitivity analysis with respect to the parameter k associated with

the maximum consumption peak in the leader’s objective function.

5.1 Instances and methods definition

We first describe the instance generation process. The number of stations and times are defined in

such a way that the number of available units of energy is greater than the number of customers, i.e.,

S × T × δ > |U |. Even if it is realistic to assume that the provider can satisfy all the demand, this

condition is not necessary, since feasibility is guaranteed in the worst case by Proposition 3.

We have generated instances ranging from 10 to over 5,000 customers.

The customer parameters are chosen randomly such that each customer possesses at least one

charging option, satisfying the budget constraint (each customer’s budget is greater than the lowest

price from the set of possible prices).

We define probabilities to the (station, time) pairs selection process to avoid homogeneous distri-

bution. In other words, some (station, time) pairs are more attractive for several customers and have

a greater chance of being selected.

We next compare the performance of 4 solution approaches for DPEV (without the penalty on

the grid peaks). The first one consists in applying the generic bilevel solver (GBS) proposed by [7]

on the bilevel optimization formulation. The second and third methods consist in solving the MIP

reformulation based on the Karush-Kuhn-Tucker presented in Section 4 using two types of lineariza-

tion techniques: the linearization based on big M (KKT BIGM), and the linearization using SOS1
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constraints (KKT SOS). Finally the last one consists in solving the single level reformulation defined

in Section 3. Tests were performed on Intel Core i5-8350U 1.70 GHz 8GB for results on Table 2 and

on a Mac Book Pro M1 with 16 Gb and CPLEX 20.1 as a MIP solver for the other.

5.2 Efficiency on solution methods on model DPEV

This section is focused on the study of the solution methods to solve model DPEV. For simplicity

reasons we do not consider the term related to the peak in the leader’s objective function. We first

compare in Table 2 the results obtained by solving the single level formulation DPEVSL defined in

Section 3 by the MIP with the results obtained with a generic bilevel solver GBS.

Table 2: Comparison of the results obtained with our reformulation DPEVSL and a generic bilevel solver GBS. The
number of instances solved to the optimum in 1 hour and the average solving time for 5 instances solved to the optimum
are given for instances with each of 10, 20, and 30 customers.

Instances DPEVSL GBS

#customers #OPT (1h) Mean Time (solved) #OPT (1h) Mean Time (solved)

10 5 / 5 0.04 5 / 5 6.22
20 5 / 5 0.03 4 / 5 628.91
30 5 / 5 0.03 2 / 5 1989.58

The bi-level solver is only able to solve instances with up to 30 customers in less than 1 hour.

These experiments do not question the quality of the GBS but show the complexity to solve DPEV.

Solving the reformulation DPEVSL leads to better performance and underlines the importance of

taking the structure of the problem into account when designing solution methods. Note that both

methods determine optimal solutions.

Table 3 shows the results obtained with the reformulation based on KKT conditions.

Table 3: Comparison of the results obtained with our reformulation DPEVSL, KKT reformulation using BigM, and KKT
reformulation using SOS1 constraints. All instances are solved to the optimum in 1 hour. The average solving time and
the standard deviation are given for instances with 10, 20, and 30 customers (10 instances for each category) and 50
customers (30 instances).

DPEVSL KKT BigM KKT SOS1

Mean Time (sec) SD Mean Time (sec) SD Mean Time (sec) SD

10 0.02 0.01 0.05 0.02 0.18 0.18
20 0.03 0.02 0.09 0.02 0.96 1.92
30 0.04 0.02 0.22 0.11 2.29 1.90
50 0.06 0.02 0.39 0.15 1285.55 927.57

The computation time of solution of DPEV with KKT reformulations using SOS1 constraint are

drastically more significant than those of KKT reformulation with BigM. However, they ensure the

accuracy of the method. Indeed, the results obtained using BigM may be unfeasible if the value of

BigM is too large (or non-optimal if it is too small). Bounds on BigM are difficult to compute due to

their link with the dual variables. In all cases, the reformulation defined in Section 3 leads to better

results than the KKT reformulations. Table 4 reports the results of tests carried out on the largest

instances and supports this observation.

Finally, we present in Table 5 the results obtained on very large instances with up to 5000 cus-

tomers. These results show that instances involving thousands of customers can be solved using the

reformulation presented in Section 3. This highlights the strong potential for this approach, going

beyond the performances obtained using classic reformulation approaches from the literature.
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Table 4: Comparison of the results obtained with our reformulation DPEVSL and KKT reformulation (using BigM).
The number of instances solved to the optimum in 30 minutes and the average solving time for instances solved to the
optimum is given for instances with 100, 200, and 500 customers (20 instances for each category).

DPEVSL KKT BigM

#OPT Mean Time (sec) #OPT Mean Time (sec)

100 20/20 0.16 20/20 4.79
200 20/20 0.44 20/20 11.70
500 20/20 2.28 20/20 242.04

Table 5: Number of instances solved to the optimum with a time limit of one hour, average time for instances solved to
the optimum, and average number of clients served in the optimal solution for instances with 2000, 3000, 4000, and 5000
customers using our reformulation DPEVSL.

# customers # Optimal Mean Time (sec) # customers served

2000 15/15 33.16 796.33
3000 15/15 71.65 1242.13
4000 10/10 141.09 2116.3
5000 10/10 216.08 2624.1

5.3 Impact of k

We next study the impact of the factor k on the leader’s and follower’s objective function values as well

as on the structure of the solutions. We compare the solution obtained with DPEVSL
k to the basic

case where the prices are the same for each station, and the customers charge at the (station, time)

pair in the first position in their preference list. This case called static in the following, generates the

maximum consumption peak. Note that in the static case, the number of customers recharging at a

station/time pair can be higher than the maximum possible number of customers allowed to charge,

ie. charging station capacity is not considered in the greedy solution. The impact of the factor k on

the leader’s profit is illustrated in Figure 6, and the impact on the maximum consumption peak in

Figure 7, on a set of 30 instances of 500 customers.

In Figure 6, we report the optimal net profit (without penalty cost) on a set of instances with 500

customers. We solve model DPEVSL and model DPEVSL
k using 3 values of k. We also report values

of the maximum peak in Figure 7 for the same configuration.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

1

2

3

·104 DPEVSL k =50 k =100 k =250

Figure 6: Net profit obtained for 30 instances of 1000 customers, with different values of parameter k.
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1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

10

15

20

25

30

35

DPEVSL k =50 k 100 k =250

Figure 7: Maximum peak obtained for 30 instances of 1000 customers, with different values of parameter k.

The parameter k has a relatively light impact on the decrease of the leader’s profit with an average

decrease of 3.32% between the profit obtained with DPEVSL and DPEVSL
k using k = 250.

On the other hand, we observe a significant reduction of the maximum peak, with an average

reduction of 31.30% when the parameter k increases . For some instances, the optimal solutions given

by DPEVSL and by DPEVSL
k with k = 50 are identical. It may either be due to the fact that the

solution obtained for DPEVSL corresponds to a solution that is well distributed between time slots

or due to too small the penalty impact on the solution. These results highlight that it is possible to

significantly reduce the maximum peak, which is a key element in grid operations, without excessively

degrading the benefit. Figure 8 depicts the maximum peaks of the optimal solutions of DPEVSL and

DPEVSL
k with different k compared with the static case.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

0

20

40

60

80

100

120

DPEVSL k =50 k 100 k =250 Static

Figure 8: Maximum peak obtained for 30 instances of 1000 customers, with different values of parameter k.

The static case does not represent a bilevel feasible solution but put into highlight the dynamic

pricing approach. Indeed, we observe that the first choice of customers generates significant consump-

tion peaks. Dynamic pricing makes it possible to distribute customers across the different (station,

time) pairs and thus smooth out the demand over time and space.
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6 Conclusion and future resarch

In this paper, we present an original model for an electric vehicle charging station pricing problem that

takes customer preferences into account. Several single level reformulations are provided. The linear

reformulation based on [5] lead to a solution approach able to solve large instances and shows better

results than the classical methods. The results put also into highlight that the maximum consumption

peaks can be reduced by slightly degrading the profit of the provider.

In future work, we plan to add energy storage (such as batteries) to the charging stations together

with renewable energy generation, either locally at the stations or as an investment by the charging

provider in the grid. More generally, EV charging has potential to provide grid services to mitigate

the stochasticity of renewable generation and of demand.

Data availability statement The data that support the findings of this study are available from the

corresponding author, MFA, upon reasonable request.

Conflict of interest statement The authors confirm that there are no relevant financial or non-financial

competing interests to report.

References
[1] Miguel F Anjos, Ikram Bouras, Luce Brotcorne, Alemseged G Weldeyesus, Clémence Alasseur, and Riadh

Zorgati. Integrated location, sizing and pricing for ev charging stations. In Teodor Gabriel Crainic,
Michel Gendreau, and Antonio Frangioni, editors, Contributions to Combinatorial Optimization and
Applications, International Series in Operations Research & Management Science. Springer Nature, 2024.

[2] Miguel F Anjos, Bernard Gendron, and Martim Joyce-Moniz. Increasing electric vehicle adoption through
the optimal deployment of fast-charging stations for local and long-distance travel. European Journal of
Operational Research, 285(1):263–278, 2020.

[3] Elliot Anshelevich, Koushik Kar, Shreyas Sekar, and Zaid Tariq. Balancing social utility with aggregator
profit in electric vehicle charging. In 2017 IEEE International Conference on Smart Grid Communications
(SmartGridComm), pages 369–374. IEEE, 2017.

[4] Evelyn Martin Lansdowne Beale and John A Tomlin. Special facilities in a general mathematical pro-
gramming system for non-convex problems using ordered sets of variables. OR, 69(447-454):99, 1970.
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