Accueil
Affiche (PDF)
 
Participants
Programme
Inscription
Site
Hébergement
Liens
 
 
Éditions précédentes
2004
2003
2002


    

Séance MB6 - Programmation biniveau / Bilevel Programming

Jour lundi, le 09 mai 2005
Salle Marie-Husny
Président Charles Audet

Présentations

15h30 Solving Bilevel Linear Programming Problems Using Multiple Objective Linear Programming
  James A. Glackin, Rensselaer Polytechnic Institute, Mathematical Sciences, 110 8th Street, Troy, NY, USA, 12180
Joseph Ecker, Rensselaer Polytechnic Institute, Mathematical Sciences, 110 8th Street, Troy, NY, USA, 12180
Michael Kupferschmid, Rensselaer Polytechnic Institute, Academic and Research Computing, 110 8th Street, Voorhees Computing Center, Troy, NY, USA, 12180

We explore the possibility of solving bilevel linear programming problems using multiple objective linear programming. New multiple objective algorithms are developed and their performance, in pivots and pivot volume, is compared to the Bard and Moore branch and bound algorithm using performance ratios and performance profiles.


15h55 Primal-Dual Cuts for Linear Bilevel Programming Problem
  Walid Zghal, École Polytechnique de Montréal, GERAD et Mathématiques et génie industriel, C.P. 6079, Succ. Centre-ville, Montréal, Québec, Canada, H3C 3A7
Charles Audet, École Polytechnique de Montréal, GERAD et Mathématiques et génie industriel, C.P. 6079, Succ. Centre-ville, Montréal, Québec, Canada, H3C 3A7
Gilles Savard, École Polytechnique de Montréal, GERAD et Mathématiques et génie industriel, C.P. 6079, Succ. Centre-ville, Montréal, Québec, Canada, H3C 3A7

We introduce new valid cuts for the continuous bilevel linear programming (BLP) problems. Then we propose a new Branch-and-Cut algorithm for BLP. The first phase of our algorithm generates the new cuts to reduce the size of the feasible region without eliminating the optimal solution. The second phase consists of a Branch-and-Bound procedure to ensure finite termination with a global optimal solution. Different features of the algorithm, in particular, the cut selection criterion and the branching criterion are studied in details. We also propose a set of algorithmic tests and procedures to improve the method. Finally, we illustrate the performance through numerical experiments. Our algorithm outperforms pure Branch-and-Bound when tested on a series of randomly generated problems.


16h20 Disjunctive cuts in bilevel programming -- Coupes disjonctives pour la programmation biniveau
  Jean Haddad, GERAD / Polytechnique, Mathématiques et génie industriel

La présentation a pour but d'illustrer comment des coupes disjonctives peuvent être générées pour un programme biniveau linéaire. Les résultats fondamentaux en programmation disjonctive seront présentés, et une application à la programmation 0-1 sera illustrée à l'aide d'un exemple. On introduit alors le programme biniveau linéaire, pour ensuite le reformuler sous forme de programme de complémentarité linéaire. Avec cette formulation, on peut voir le programme biniveau comme un programme disjonctif. Nous montrons ensuite comment il est possible de produire des coupes disjonctives pour le programme biniveau linéaire.


16h45 An Exact Algorithm for a Pricing Problem on a Network
  Fabien Cirinei, LAMIH/ROI, UMR CNRS 8530, Université de Valenciennes et de Hainaut-Cambrésis, Le Mont Houy, VALENCIENNES, FRANCE, 59313
Luce Brotcorne, LAMIH/ROI, UMR CNRS 8530, Université de Valenciennes et de Hainaut-Cambrésis, Le Mont Houy, VALENCIENNES, FRANCE, 59313
Patrice Marcotte, Université de Montréal, CRT et Informatique et recherche opérationnelle, C.P. 6128, Succ. Centre-ville, Montréal, Québec, Canada, H3C 3J7
Gilles Savard, École Polytechnique de Montréal, GERAD et Mathématiques et génie industriel, C.P. 6079, Succ. Centre-ville, Montréal, Québec, Canada, H3C 3A7

We consider a pricing problem where a company (a leader) strives to maximize its revenue raised from tariffs imposed on a set of network connections in its control while taking into account the cost minimizing behaviour of the customers. This problem, involving two decision makers acting non cooperatively and in a sequential way, is modeled through a bilevel program. We propose an exact method based on the characterization of feasible follower solutions as sets of paths. A comparison on instances solved to optimality through a mixed integer formulation is made to assess the efficiency of the method.