Accueil
Affiche (PDF)
 
Participants
Programme
Inscription
Site
Hébergement
Liens
 
 
Éditions précédentes
2004
2003
2002


    

Séance TB8 - Problèmes de chargement / Loading problems

Jour mardi, le 10 mai 2005
Salle Ordre des CGA
Président Fabien Chauny

Présentations

13h30 An Exact Algorithm for the Petrol Station Replenishment Problem
  Fayez Boctor, Université Laval, CENTOR - Opérations et systèmes de décision, Québec, Québec, Canada, G1K 7P4
Fabien Cornillier, Université Laval, CENTOR - Opérations et systèmes de décision, Québec, QC, Canada, G1k 7P4
Gilbert Laporte, HEC Montréal, GERAD, CRT et Chaire de recherche du Canada en distributique, 3000, ch. de la Côte-Sainte-Catherine, Montréal, Québec, Canada, H3T 2A7
Jacques Renaud, Université Laval, CENTOR - Opérations et systèmes de décision, Pavillon Palasis Prince, bureau 2648, Cité universitaire, Québec, Québec, Canada, G1K 7P4

In the Petrol Station Replenishment Problem (PSRP) the aim is to jointly determine an allocation of petroleum products to tank truck compartments and to design delivery routes to stations. We describe an integrated exact algorithm for the PSRP. This algorithm was extensively tested on randomly generated data and on a real-life case arising in Eastern Quebec.


13h55 The Petrol Truck Loading Problem
  Fabien Cornillier, Université Laval, CENTOR - Opérations et systèmes de décision, Québec, QC, Canada, G1k 7P4
Fayez Boctor, Université Laval, CENTOR - Opérations et systèmes de décision, Québec, Québec, Canada, G1K 7P4
Gilbert Laporte, HEC Montréal, GERAD, CRT et Chaire de recherche du Canada en distributique, 3000, ch. de la Côte-Sainte-Catherine, Montréal, Québec, Canada, H3T 2A7
Jacques Renaud, Université Laval, CENTOR - Opérations et systèmes de décision, Pavillon Palasis Prince, bureau 2648, Cité universitaire, Québec, Québec, Canada, G1K 7P4

The Petrol Truck Loading Problem consists of assigning T different demands to C different truck compartments. Each compartment can deliver only one demand but a demand can be delivered by more than one compartment. Each demand is characterized by a minimum and a maximum quantity to deliver and the objective is to minimize the unused truck capacity. We provide a method to solve this NP-hard problem in a much faster way than solving the corresponding binary programming problem.


14h20 A Bloc Heuristic for the Container Loading Problem
  Fabien Chauny, HEC Montréal, GERAD, 3000 Chemin de la Cote Ste Catherine, Montréal, Québec, Canada, H3T2A7

This paper presents a new bloc heuristic for the container loading problem. A container must be loaded with rectangular boxes. The boxes are first combined to form blocs which are stacked. Piles of boxes are next loaded side by side in sections. A series of sections corresponds to the final loading pattern. Different optimization procedures are used at four stages of the algorithm: Form the blocs, stack the blocs, loading a section with blocs, select the sections. The performance of the algorithm is demonstrated by comparative tests on well known reference instances.