Retour

Séance WA11 - Optimisation multi-niveaux / Multilevel Optimization

Jour mercredi, le 06 mai 2009
Salle Demers Beaulne
Président Melodie Mouffe

Présentations

10h30-
10h55
Multilevel Trust-Region Method in Infinity-Norm for Bound-Constrained Optimization
  Serge Gratton, CERFACS, Parallel Algorithms Team, 42, Avenue G. Coriolis, Toulouse Cedex, France, 31057
Melodie Mouffe, CERFACS, Parallel Algorithms Team, 42, Avenue G. Coriolis, Toulouse Cedex, France, 31057
Philippe L. Toint, Université de Namur, Département de Mathématique, Rempart de la Vierge 8, Namur, Belgique, 5000

Recently, people have tried to apply the ideas of multigrid methods in the optimization framework, in the case where the objective function arises from the discretization of an underlying continuous function. Coarser discretizations are used either to compute good starting points or to solve subproblems. We present a globally convergent multilevel trust-region algorithm for bound-constrained nonlinear optimization.


10h55-
11h20
A Multigrid Method for Calibration of Local Volatility
  Zaiwen Wen, Columbia University, IEOR, USA
Rama Cont, Columbia University, IEOR, USA
Donald Goldfarb, Columbia University, IEOR, USA

The aim of this paper is to calibrate the volatility function in Dupire's equation from given option prices. This inverse problem can be formulated as a PDE-constrained optimization problem. A multigrid method is presented to explore the hierarchical structures of discretized problems on different levels. Computational examples are presented to demonstrate the efficiency of the proposed method.


11h20-
11h45
Using Approximate Secant Equations in Multilevel Unconstrained Optimization
  Serge Gratton, CERFACS, Parallel Algorithms Team, 42, Avenue G. Coriolis, Toulouse Cedex, France, 31057
Vincent Malmedy, Université de Namur, Département de Mathématique , Rempart de la Vierge, Namur, Belgique, 5000
Philippe L. Toint, Université de Namur, Département de Mathématique, Rempart de la Vierge 8, Namur, Belgique, 5000

The properties of multilevel optimization problems can be used to define approximate secant equations, which describe the second-order behaviour of the objective function. We introduce a quasi-Newton method (with a line search) and a nonlinear conjugate gradient method that both take advantage of this new second-order information, and present numerical experiments.


Retour