Retour

Séance TA3 - Méthodes Monte-Carlo / Monte-Carlo Methods

Jour mardi, le 05 mai 2009
Salle Gérard Parizeau
Président Pierre L'Écuyer

Présentations

10h30-
10h55
Approximate Solutions to Dynamic Hedging with Transaction Costs by Least-Squares Monte Carlo
  Pierre-Alexandre Tremblay, Université de Montréal, Informatique et Recherche Opérationelle, Montréal, Québec, Canada

The Least-Squares Monte Carlo (LSM) algorithm of Longstaff and Schwarz approximates the value of american-style options using a combination of dynamic programming and linear regression. We extend the LSM algorithm to find approximate solutions for the problem of optimal dynamic hedging with transaction costs and present some examples.


10h55-
11h20
Quasi-Monte Carlo for Markov Chains: Application to Option Pricing
  Adam L'Archevêque Gaudet, Université de Montréal, Informatique et recherche opérationnelle/CIRRELT/GERAD, Montréal, Québec, Canada
Pierre L'Écuyer, GERAD, Université de Montréal, Informatique et recherche opérationnelle/CIRRELT/GERAD, C.P. 6128, Succ. Centre-ville, Montréal, Québec, Canada, H3C 3J7

We present a randomized quasi-Monte Carlo method specially designed for the simulation of Markov chains, called array-RQMC. We give examples showing that this method can reduce the variance considerably in option pricing. In an Asian option example, we observe an O(1/n^2) convergence rate for the variance, whereas standard Monte Carlo gives O(1/n).


11h20-
11h45
American Option Pricing with Randomized Quasi-Monte Carlo
  Maxime Dion, Université de Montréal, DIRO
Pierre L'Écuyer, GERAD, Université de Montréal, Informatique et recherche opérationnelle/CIRRELT/GERAD, C.P. 6128, Succ. Centre-ville, Montréal, Québec, Canada, H3C 3J7

We combine least-squares Monte Carlo with randomized Quasi-Monte Carlo methods (including array-RQMC) for the pricing of American options, where exercise policies must be optimized. We obtain significant variance reductions in comparison with standard Monte Carlo.


Retour