Back to activities
GERAD seminar

The maximum clique interdiction problem

iCalendar

Aug 27, 2019   10:45 AM — 12:00 PM

Fabio Furini LAMSADE, Université Paris Dauphine, France

Résumé: Given a graph G and an interdiction budget k, the Maximum Clique Interdiction Problem asks to find a subset of at most k vertices to remove from G so that the size of the maximum clique in the remaining graph is minimized. This problem has applications in many areas, such as crime detection, prevention of outbreaks of infectious diseases and surveillance of communication networks. We propose an integer linear programming formulation of the problem based on an exponential family of Clique-Interdiction Cuts and we give necessary and sufficient conditions under which these cuts are facet-defining. Our new approach provides a useful tool for analyzing the resilience of (social) networks with respect to clique-interdiction attacks, i.e., the decrease of the size of the maximum clique as a function of an incremental interdiction budget level. On a benchmark set of publicly available instances, including large-scale social networks with up to one hundred thousand vertices and three million edges, we show that most of them can be analyzed and solved to proven optimality within short computing time.


Free entrance.
Welcome to everyone!

Location

Room 4488
André-Aisenstadt Building
Université de Montréal Campus
2920, chemin de la Tour
Montréal QC H3T 1J4
Canada

Associated organizations

Canada Research Chair in Distribution Management

Research Axis