Optimal Transport
Kilian Fatras – MILA, McGill University, Canada
Hybrid seminar on Zoom and in the GERAD seminar room.
Optimal transport distances have found many applications in machine learning for their capacity to compare non-parametric probability distributions. Yet their algorithmic complexity generally prevents their direct use on large scale datasets. Among the possible strategies to alleviate this issue, practitioners can rely on computing estimates of these distances over minibatches of data. While computationally appealing, we highlight in this talk some limits of this strategy, arguing it can lead to undesirable smoothing effects. As an alternative, we suggest that the same minibatch strategy coupled with unbalanced optimal transport can yield more robust behaviours. We discuss the associated theoretical properties, such as unbiased estimators, existence of gradients and concentration bounds. Our experimental study shows that in challenging problems associated to domain adaptation, the use of unbalanced optimal transport leads to significantly better results, competing with or surpassing recent baselines.
Location
André-Aisenstadt Building
Université de Montréal Campus
Montréal QC H3T 1J4
Canada