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HEC Montréal, Canada. Révision : octobre 2020.

Avant de citer ce rapport technique, veuillez visiter notre site Web
(https://www.gerad.ca/fr/papers/G-2019-92) afin de mettre à
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Abstract: This paper studies disjunctive cutting planes in Mixed-Integer Conic Programming. Build-
ing on conic duality, we formulate a cut-generating conic program for separating disjunctive cuts, and
investigate the impact of the normalization condition on its resolution. In particular, we show that a
careful selection of normalization guarantees its solvability and conic strong duality. Then, we high-
light the shortcomings of separating conic-infeasible points in an outer-approximation context, and
propose conic extensions to the classical lifting and monoidal strengthening procedures. Finally, we
assess the computational behavior of various normalization conditions in terms of gap closed, comput-
ing time and cut sparsity. In the process, we show that our approach is competitive with the internal
lift-and-project cuts of a state-of-the-art solver.

Acknowledgments: The second author was supported by an FRQNT excellence doctoral scholarship,
and a Mitacs Globalink research award. We thank Pierre Bonami, Andrea Tramontani and Sven Wiese
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Les Cahiers du GERAD G–2019–92 – Revised 1

1 Introduction

Mixed-Integer Convex Optimization (MI-CONV) is a fundamental class of Mixed-Integer Non-Linear

Optimization problems with applications such as risk management, non-linear physics (e.g., power

systems and chemical engineering) and logistics, just to mention a few. Because of such a relevance,

classical algorithms for Mixed-Integer Linear Optimization (MILP) have been successfully extended to

MI-CONV, like Branch and Bound [14] or Benders decomposition [26]; others like the Outer Approx-

imation scheme [22] have been designed specifically for MI-CONV. In addition, several software tools

are available for solving general MI-CONV problems, see, e.g., the recent comparison in [35]. Finally,

some specific classes of MI-CONV problems, like Mixed-Integer (Convex) Quadratically Constrained

Quadratic Optimization (MIQCQP) problems are now supported by the major commercial solvers.

Conic optimization is viewed as a more numerically stable and tractable alternative to general

convex optimization [11]. Both classes are equivalent: conic optimization problems are convex, and

any convex optimization problem can be written as a conic optimization problem [34]. Modeling

tools such as disciplined convex optimization [27] can provide conic formulations for most –if not all–

convex optimization problems that arise in practice [44]. In particular, [39] recently showed that all

convex instances in MINLPLib can be formulated as Mixed-Integer Conic Optimization (MI-CONIC)

problems using only a handful of cones.

Nevertheless, the intrinsic difference between convex and conic optimization lies in a problem’s

algebraic description: in the former, constraints are formulated as f(x) ≤ 0, where f is a convex

function, whereas, in the latter, they are expressed using conic inequalities of the form Ax − b ∈ K,

where A is a matrix, b is a vector and K is a cone (see [11] and Section 2). In particular, conic

formulations enable the use of conic duality theory, which underlies a number of theoretical insights

and practical tools. Major commercial solvers have supported Mixed-Integer Second Order Cone

Programming (MISOCP) for some time, and more general MI-CONIC problems are now supported

by a number of solvers, e.g., Mosek and Pajarito [19, 38, 39].

This paper builds on two specific aspects that we consider fundamental for solving MI-CONV

problems. First, given that cutting planes are instrumental to solving MILP, a number of authors

have looked at various approaches to compute cuts for MI-CONV problems and, nowadays, linear

cutting planes are part of the arsenal of some MI-CONV solvers. Despite this (partial) success, some

fundamental questions in this area are left unanswered. Second, recent experience has shown that conic

formulations of MI-CONV problems display enviable properties that make them preferable, from the

solving viewpoint, to generic MI-CONV formulations [19, 39].

In that context, motivated by the success of disjunctive cuts in MILP, the paper focuses on com-

putational aspects of disjunctive cuts for MI-CONIC problems. In addition, we answer the (somehow)

natural question of what one can gain in terms of cutting planes by using a problem’s conic structure,

as well as several questions left open by previous works on the topic. In the remainder of this section,

we review the literature on the subject and outline our main contributions.

1.1 Disjunctive cuts: the MILP case

Disjunctive cuts in MILP date back to Balas’ seminal work on disjunctive programming [4] in the 70s,

and became widely popular as their integration into branch-and-cut frameworks [5, 6] proved effective.

Remarkably, disjunctive cuts, split cuts in particular, encompass several classes of cutting planes, e.g.,

Chvatal-Gomory, Gomory Mixed-Integer and Mixed-Integer Rounding cuts.

A general approach for separating disjunctive cuts in MILP is the so-called Cut-Generating Linear

Program (CGLP) proposed by Balas [4, 5]. The CGLP leverages a characterization of valid inequalities

for disjunctive sets using Farkas multipliers, see Theorem 3.1 in [4]. Thus, it is formulated in a higher-

dimensional space, whose size is proportional to the number of disjunctive terms: for split cuts, which

are two-term disjunctions, the CGLP is roughly double the size of the original problem.
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Computational aspects of the CGLP have been studied extensively, some of which we mention

here. Given a fractional point x̄ to separate, one can project the CGLP onto the support of x̄,

thereby reducing its size, and recover a valid cut by lifting [5, 6]. Split cuts obtained from solving the

CGLP can be improved upon using monoidal strengthening [6, 7]. The normalization condition in the

CGLP has been shown to have a major impact on the quality of the obtained cuts, and on overall

performance [13, 16, 20, 23, 47]. In particular, Balas and Perregard [9], and later Bonami [13], show

that, in the case of split disjunctions, the CGLP can in fact be solved in the space of orignal variables

only, yielding substantial computational gains. Recent developments include the efficient separation

of cuts from multiple disjunctions [30, 45].

1.2 Disjunctive cuts: the MI-CONV case

The work on disjunctive cutting planes for MI-CONV (re)started already in the late 90s with two

fundamental contributions [17, 48]. More precisely, Ceria and Soares [17] show that disjunctive convex

problems can be formulated as a single convex problem in a higher dimensional space, and hint that

this could serve to generate cutting planes using sub-gradient information at the optimum. Around the

same time, Stubbs and Mehrotra [48] make the separation of disjunctive cuts for MI-CONV explicit

by (i) solving one Non-Linear Programming (NLP) problem, and (ii) identifying a sub-gradient that

yields a violated cut. The latter is done by taking a gradient (under regularity assumptions), or by

solving a linear system (under the assumption that the objective function of the former problem is

polyhedral). Those assumptions and the use of perspective functions lead to differentiability issues

that made the results of the computational investigation in [48] numerically disappointing (according

to the authors themselves).

The numerical difficulties encountered in [48] have slowed down the development of the area for a

number of years –with the exception of [52]– until the renewed interest and the practical approaches of

the last decade [12, 31]. More precisely, Kilinc et al. [31] note that “A simple strategy for generating

lift-and-project cuts for a MINLP problem is to solve a CGLP [...] based on a given polyhedral outer

approximation of the relaxed feasible region [...]. The key question to be answered [...] is which points

to use to define the polyhedral relaxation.” (from [31], Sec. 3).

The distinction in how to answer the above question is the difference between [52], [12], and [31].

Namely, Zhu and Kuno [52] build an outer-approximation through the current fractional solution,

and derive a cut by solving the associated CGLP. However, this approach is not guaranteed to find a

violated cut if one exists, see Example 1 in [31]. Bonami [12] solves one auxiliary NLP, and uses the

solution to get an outer approximation that provably yields a violated cut if any exists. Instead, Kilinc

et al. [31] iteratively refine an outer approximation by solving a sequence of LPs until a violated cut,

if any, is separated by solving the associated CGLP.

In a recent paper, Kronqvist and Misener [36] present a disjunctive-based cut-strengthening tech-

nique for MI-CONV. Given an initial valid inequality, and an “exclusive” selection constraint (i.e.,

x1 + ...+ xk = 1, x ∈ {0, 1}k), the procedure solves k convex problems to tighten the cut’s right-hand

side and the coefficients of the k binary variables. This approach relates to the generalized disjunctive

programming framework [49], for which cutting-plane algorithms based on [48] have been proposed,

see, e.g., [50].

The outer approximation approaches in [12, 31] are, to the best of our knowledge, the state of

the art for the implementation of disjunctive cuts for MI-CONV and, especially, for MIQCQPs, see

e.g., their implementation in CPLEX starting from version 12.6.2. However, despite the impressive

practical improvements with respect to the early attempts [48], questions were left on the table, which

we answer in the present paper.
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1.3 Disjunctive cuts: the MI-CONIC case

Following the support of MISOCP problems by major commercial solvers in the 2000s (MISOCP

support appeared in CPLEX 9.0 and in Gurobi 5.0), the last decade has seen a flourishing literature

on cuts for MI-CONIC problems.

A large share of these works focus on cuts for MISOCP, or, equivalently, for convex MIQCQP prob-

lems. Atamturk and Narayanan [2] introduce conic Mixed-Integer Rounding (MIR) cuts for MISOCP

problems. Modaresi et al later show in [40, 41] that conic MIR cuts are in fact linear split cuts in

an extended space, and compare the strength of families of conic MIR cuts to that of non-linear split

cuts. In a related work, Andersen and Jensen [1] study intersection cuts in the MISOCP context, and

obtain a closed-form formula for the conic quadratic intersection cut. Belotti et al. [10] study the

intersection of a convex set and a two-term disjunction. They show that the convex hull is described

by a single conic inequality, for which an explicit formula is derived in the conic quadratic case. In

a similar fashion, two-term disjunctions on the second-order cone are investigated in [33], and this

approach is later extended in [51].

More general approaches, i.e., not restricted to convex quadratic constraints, include [3, 18, 21, 34,

42]. In [18], the authors study classes of cutting planes in the MI-CONIC setting, including Chvatal-

Gomory cuts and lift-and-project cuts, and report limited experiments on mixed 0-1 semi-definite

programming instances. A generic lifting procedure for conic cuts is described in [3]. Dadush et al. [21]

show that the split closure of a strictly convex body is defined by a finite number of disjunction, but

is not necessarily polyhedral. Minimal valid inequalities are introduced in [34], and are shown to

be sufficient to describe the convex hull of a disjunctive conic set. The lack of tractable algebraic

representation for minimal inequalities then leads the author to consider the broader class of sublinear

inequalities, which are further studied in [32]. Finally, intersection cuts for non-polyhedral sets and

certain classes of disjunctions are studied in [42].

Nevertheless, for the most part, these works remain theoretical contributions. Indeed, with the

exception of [2, 18, 40], no computational results were reported for any of these techniques and, to the

best of our knowledge, none has been implemented in optimization solvers. In fact, neither Mosek nor

Gurobi1 generate cuts from non-linear information.

1.4 Contribution and outline

In this paper, we study linear disjunctive cutting planes for MI-CONIC problems. Our objective is
to derive practical and numerically robust tools for the separation of those cuts, and we show that

conic formulations allow us to achieve it. Specifically, we do so by extending Balas’ CGLP into a

Cut-Generating Conic Program (CGCP) (see also [18]). Our contributions are:

1. We study the role of the normalization condition in the CGCP, and propose conic normalizations

that guarantee strong duality. In doing so, we answer some concerns that were raised in previous

works. Namely,

• With respect to [12, 18, 36], we can select the right normalization to overcome issues asso-

ciated with potential lack of constraint qualification.

• With respect to [31, 36], since we use conic formulations, we do not need (i) to pay attention

at avoiding generating linearization cuts at points outside the domain where the non-linear

functions are known to be convex, (ii) to deal with non-differentiable functions, and (iii)

boundedness assumptions on the value of the constraints and their gradients.

2. We draw attention to some limitations of separating conic-infeasible points in an outer-

approximation context, and propose algorithmic strategies to alleviate them.

3. We introduce conic extensions of the lifting procedure for disjunctive cuts, and of monoidal

strengthening for split cuts.

1Personal communication with Gurobi and Mosek developers.
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4. We provide computational results on the effectiveness of the proposed approach, thereby show-

ing the benefits of the conic representation, and compare the practical effectiveness of several

normalization conditions.

5. We make our implementation available2 under an open-source license.

The remainder of the paper is structured as follows. In Section 2, we introduce some required

notation and background material on conic optimization, and state a number of theoretical results on

the characterization of valid inequalities for conic and disjunctive conic sets. Section 3 formalizes the

CGCP and its dual, and the theoretical properties of several normalization conditions for the CGCP

are discussed in Section 4. The separation of conic-infeasible points is further investigated in Section 5,

while classical lifting and strengthening techniques from MILP are extended to the conic setting in

Section 6. In Section 7, we analyze the practical behavior of different normalizations, and show that

our approach is competitive with CPLEX internal lift-and-project cuts. Some concluding remarks are

presented in Section 8.

2 Background

In this section, we introduce some notations, and recall a number of results that are needed for our

approach. We refer to [46] for a thorough overview of convex analysis, and to [11] and [4] for results

on conic optimization and disjunctive programming, respectively.

For X ⊆ Rn, we denote by int(X ), ∂(X ), cl(X ), and conv(X ) the interior, boundary, closure, and

convex hull of X , respectively. The Minkowski sum of X ,Y ⊆ Rn is defined by

X + Y = {x+ y | x ∈ X , y ∈ Y} .

If ‖ · ‖ is a norm on Rn, its dual norm ‖ · ‖∗ is defined by

∀y ∈ Rn, ‖y‖∗ = sup
{
yTx

∣∣ ‖x‖ ≤ 1
}
. (1)

In all that follows, ‖ · ‖2 denotes the Euclidean norm on Rn. Finally, we denote by e a vector of all

ones, and by ej a vector whose jth coordinate is 1 and all others are 0; the dimension of e and ej is

always obvious from context.

2.1 Cones and conic duality

The set K ⊆ Rn is a cone if ∀(x, λ) ∈ K × R+, λx ∈ K, and it is irreducible if it cannot be written as

a cartesian product of irreducible cones. The dual cone of K ⊆ Rn is

K∗ =
{
u ∈ Rn

∣∣ uTx ≥ 0,∀x ∈ K
}
, (2)

and K is self-dual if K = K∗. A cone K ⊆ Rn is pointed if K ∩ (−K) = {0}, i.e., if it does not contain

a line that passes through the origin. Proper cones are closed, convex, pointed cones with non-empty

interior. If K is a proper cone, then K∗ is also a proper cone, and any ρ ∈ intK induces a norm on

K∗, denoted by |·|ρ and defined by

|u|ρ = ρTu, ∀u ∈ K∗. (3)

Examples of proper cones include the non-negative orthant

Rn+ = {x ∈ Rn | x ≥ 0} ,
2Our code is released at https://github.com/mtanneau/CLaP

https://github.com/mtanneau/CLaP
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the second-order cone (SOC)

Ln =

{
x ∈ Rn

∣∣∣∣ x1 ≥
√
x2

2 + ...+ x2
n

}
,

the positive semi-definite (PSD) cone

Sn+ =
{
X ∈ Rn×n

∣∣ X = XT , λmin(X) ≥ 0
}
,

where λmin(X) is the smallest eigenvalue of X, and the exponential cone

E = cl
{

(x, y, z) ∈ R3
∣∣ x exp(x/y) ≤ z, y > 0

}
.

The non-negative orthant, SOC and SDP cone are also self-dual, while the exponential cone is not.

A proper cone K induces a partial (resp. strict partial) ordering on Rn, denoted �K (resp. �K)

and defined by

∀(x, y) ∈ Rn × Rn, x �K y ⇔ x− y ∈ K, (4)

∀(x, y) ∈ Rn × Rn, x �K y ⇔ x− y ∈ int(K). (5)

In all that follows, we refer to Ax �K b (resp. Ax �K b) as a conic (resp. strict conic) inequality.

Consider the system

Ax �K b, (6)

where A ∈ Rm×n and K = K1 × ... × KN with Ki ⊂ Rmi ; correspondingly, for y ∈ Rm, we write

y = (y1, ..., yN ). We follow the terminology of [25], and say that system (6) is feasible if there exists

x ∈ Rn such that Ax − b ∈ K, and strongly feasible if there exists x ∈ Rn such that Ax − b ∈ K and

(Ax− b)i ∈ int(Ki) for all non-polyhedral cones Ki, i.e., such that all non-polyhedral conic inequalities

are strictly satisfied. Similarly, system (6) is infeasible if it does not admit any feasible solution, and

strongly infeasible if, in addition, there exists y ∈ K∗ such that AT y = 0 and bT y > 0. Furthermore, we

say that system (6) is weakly feasible if it is feasible but not strongly feasible, and weakly infeasible if

it is infeasible but not strongly infeasible. Finally, a system is well-posed if it is either strongly feasible

or strongly infeasible, and ill-posed otherwise.

Let us emphasize that well-posedness is an algebraic property, i.e., it is not associated to a geometric

set but to its algebraic representation through conic inequalities. For instance, for n ≥ 3, both

0 �Rn
+
x �Rn

+
0 and 0 �Ln

x �Ln
0 describe the same set {0}, however, the former is well-posed and

the latter is not. Nevertheless, for brevity, we will refer to the well-posedness of a set X , only if there

no ambiguity in its description with conic inequalities.

A conic optimization problem writes, in standard form,

(P ) min
x

cTx (7a)

s.t. Ax = b, (7b)

x ∈ K, (7c)

where A ∈ Rm×n, b ∈ Rm, and K is a cone. The strong/weak (in)feasibility and well-posedness

of (P) refers to that of the system (Ax = b, x ∈ K). The optimal value of (P) is opt(P ) =

inf
{
cTx

∣∣ Ax = b, x ∈ K
}

, and we say that (P) is bounded if opt(P ) ∈ R and solvable if, in addi-

tion, there exists a feasible solution x∗ such that cTx∗ = opt(P ). The dual of (P) is

(D) max
y,s

bT y (8a)

s.t. AT y + s = c, (8b)

s ∈ K∗, (8c)

and opt(D) = sup
{
bT y

∣∣ AT y + s = c, s ∈ K∗
}

. In particular, (D) is also a conic optimization problem.
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Theorem 1 (Conic duality theorem)

1. [Weak duality] opt(D) ≤ opt(P ).

2. [Strong duality] If (P) (resp. (D)) is strongly feasible and bounded, then (D) (resp. (P)) is

solvable and opt(P ) = opt(D).

If both (P) and (D) are strongly feasible, then both are solvable with same optimal value.

Proof. See Theorem 1.4.4 in [11].

Conic duality extends the classical duality for linear programming, albeit with a number of edge

cases that lead to practical difficulties. For instance, there may exist a positive duality gap even though

both (P) and (D) are solvable, as illustrated in Example 1.

Example 1 (Example 8.6, [44]) Consider the primal-dual pair

(P ) min
x1,x2,x3

x3 (D) max
y1,y2

− y2

s.t. x2 ≥ x1, s.t. (y1,−y1, 1− y2) ∈ L3,

x3 ≥ −1, y1, y2 ≥ 0.

(x1, x2, x3) ∈ L3,

Primal-feasible solutions are of the form (x1, x1, 0), while dual-feasible solutions are of the form (y1, 1).

Thus, opt(P ) = 0 and opt(D) = −1 < opt(P ).

2.2 Valid inequalities

For (α, β) ∈ Rn × R, we say that αTx ≥ β is a valid inequality for X ⊆ Rn if

X ⊆
{
x ∈ Rn

∣∣ αTx ≥ β} ,
and a supporting hyperplane if, in addition, ∃ x̃ ∈ cl convX : αT x̃ = β. The set of valid inequalities for

X is denoted by X#, i.e.,

X# =
{

(α, β) ∈ Rn×R
∣∣ ∀x ∈ X , αTx ≥ β} . (9)

Note that X# is a closed, convex set, and that{
x ∈ Rn

∣∣ ∀(α, β) ∈ X#, αTx ≥ β
}

= cl conv(X ). (10)

Furthermore, for X ,Y ⊆ Rn, we have

X ⊆ Y ⇒ Y# ⊆ X#,

(X ∪ Y)# = X# ∩ Y#.

We now focus on the case where X is described by conic inequalities, and seek an algebraic de-

scription of X# using a finite number of conic inequalities. Note that, although X# is described by

an infinite number of linear inequalities, as per Equation (9), this semi-infinite representation is not

computationally tractable.

Theorem 2 (Conic theorem on alternatives) Consider the conic system

Ax �K b, (11)

where A ∈ Rm×n has full column rank and K is a proper cone.
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1. If there exists y ∈ Rm such that

AT y = 0, bT y > 0, y ∈ K∗, (12)

then (11) has no solution.

2. If (12) has no solution, then (11) is almost solvable, i.e., for any ε > 0, there exists b̃ ∈ Rm such

that ‖b− b̃‖2 < ε and the system Ax �K b̃ is solvable.

3. (12) is solvable if and only if (11) is not almost solvable.

Proof. See Proposition 1.4.2 in [11].

Theorem 3 (Valid inequalities) Let C = {x | Ax �K b} with A of full column rank, and define

F =
{

(α, β)
∣∣ ∃u ∈ K∗ : (α = ATu, β ≤ bTu)

}
.

Then, clF ⊆ C# and, in addition,

1. if C 6= ∅, then clF = C#;

2. if C is well-posed, then F = C#.

Proof. The inclusion F ⊆ C# is immediate from the definition of K∗, and it follows that cl(F) ⊆
cl(C#) = C#. Case 2 is a direct consequence of conic strong duality.

We now prove 1. Assume C 6= ∅, let (α, β) ∈ C#, and consider the systems

ATu = α, bTu ≥ β, u ∈ K∗; (13)

Ax �K tb, αTx < tβ, t ≥ 0. (14)

By Theorem 2, either (13) is almost solvable, or (14) is solvable. Let us prove that the latter does not

hold.

Let (x, t) be a solution to (14). On the one hand, if t > 0, letting x̄ = t−1x, we have Ax̄ �K b,

i.e., x̄ ∈ C, but αT x̄ < β, which contradicts (α, β) ∈ C#. On the other hand, if t = 0, then we have

Ax �K 0 and αTx < 0. Thus, for x0 ∈ C and τ ≥ 0, we have

A(x0 + τx) �K b,

i.e., (x0 + τx) ∈ C. Furthermore, we have αT (x0 + τx) < β for large enough τ , which also contradicts

(α, β) ∈ C#. Therefore, (14) is not solvable and (13) is almost solvable.

Thus, for any ε > 0, there exists αε, βε and uε ∈ K∗ such that and

‖α− αε‖2 ≤ ε, ‖β − βε‖2 ≤ ε,

and

αε = ATuε, βε ≤ bTuε,

i.e., (αε, βε) ∈ F . Taking ε→ 0, we obtain that (α, β) ∈ clF .

We will refer to the multiplier u ∈ K∗ in Theorem 3 as a (conic) Farkas multiplier, and we say that

αTx ≥ β is obtained by Farkas aggregation if α = ATu and β ≤ bTu for some u ∈ K∗.

Theorem 3 highlights a fundamental difference between the linear and non-linear settings. In the

linear case, F is polyhedral, thus, it is always closed and, if C is non-empty, then all valid inequalities

for C can be obtained by Farkas aggregation. In the conic setting, however, this property may no longer

hold, i.e., there may exist valid inequalities that cannot be represented through Farkas aggregation.
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Example 2 Let C = {x | Ax �K 0} where

A =

1 0
0 1
1 0

 , K = L3,

i.e., C =
{

(x, y) ∈ R2
∣∣ (x, y, x) ∈ L3

}
. While A has full column rank and K is proper, the system

Ax �K 0 is not well-posed. It then is easy to verify that C = {(x, 0) | x ≥ 0}, and that y ≥ 0 is a valid

inequality for C.

However, for any u ∈ K∗ = L3, we have

ATu =

(
u1 + u3

u2

)
,

and u1 + u3 > 0 unless u2 = 0. Therefore, the system ATu = (0, 1), u ∈ K∗ has no solution, i.e., the

valid inequality y ≥ 0 cannot be obtained by Farkas aggregation.

Nevertheless, for t ≥ 0, let ut = (
√
t2 + 1,−t, 1), which yields the valid inequality (

√
t2 + 1− t)x+

y ≥ 0. Then, as t→ +∞, the term (
√
t2 + 1− t) becomes negligible and the inequality becomes, in the

limit, y ≥ 0.

2.3 Disjunctive inequalities

We now consider disjunctive conic sets, i.e., sets of the form

D =

{
x ∈ Rn

∣∣∣∣∣
H∨
h=1

Dhx �Qh
dh

}
(15)

=

H⋃
h=1

{x ∈ Rn | Dhx �Qh
dh} , (16)

where H ∈ Z+ and, ∀h, Dh ∈ Rmh×n and Qh is a proper cone. We refer to convD as the disjunctive

hull and, for (α, β) ∈ D#, we say that αTx ≥ β is a disjunctive inequality.

We focus on disjunctive conic sets and, again, we seek a tractable algebraic characterization of valid

inequalities for such sets. We begin by stating an extension to the conic setting of Balas’ representation

of the convex hull of a union of polyhedra [4].

Theorem 4 (Characterization of the convex hull) Let

D =

H⋃
h=1

{x ∈ Rn | Dhx �Qh
dh}︸ ︷︷ ︸

Dh

,

where, ∀h, Dh ∈ Rmh×n and Qh is a proper cone, and let

S =

x ∈ Rn

∣∣∣∣∣∣∣∣∣∣
∃(y1, ..., yH , z1, ..., zH) :

∑
h yh = x,

Dhyh �Qh
zhdh, ∀h,

zh ≥ 0, ∀h,∑
h zh = 1, ∀h,

yh ∈ Rn, ∀h

 .

Then conv(D) ⊆ S and, in addition,

1. if ∀h,Dh 6= ∅, then S ⊆ cl conv(D);

2. if ∀h,Dh = Xh + W , where X1, ...,XH are non-empty, closed, bounded, convex sets and W is a

closed convex set, then

conv(D) = S = cl conv(D).
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Proof. See Proposition 2.3.5 in [11].

Next, building on Farkas multipliers and the result of Theorem 3, we can extend Balas’ character-

ization of valid disjunctive inequalities (Theorem 3.1 in [4]) to the conic setting.

Theorem 5 (Disjunctive inequalities) Let

D =

H⋃
h=1

{x ∈ Rn | Dhx �Qh
dh}︸ ︷︷ ︸

Dh

,

where, ∀h, Dh ∈ Rmh×n and Qh is a proper cone, and

F =

H⋂
h=1

{
(α, β) ∈ Rn × R

∣∣ ∃uh ∈ Q∗h : (α = ATuh, β ≤ bTuh)
}︸ ︷︷ ︸

Fh

.

Then, F ⊂ D# and, in addition,

1. if ∀h,Dh 6= ∅, then D# =
⋂
h clFh;

2. if ∀h,Dh is well-posed and Dh has full column rank, then F = D#.

Proof. Immediate from Theorem 3 and the fact that D# =
⋂
hD

#
h .

Example 3 Let

D =
{

(x, y) ∈ R2
∣∣ (x, y, x) ∈ L3

}
∪
{

(x, y) ∈ R2
∣∣ (−x, y, x) ∈ L3

}
.

Thus, D = {(x, 0)|x ∈ R}, and valid inequalities for D are of the form ±y ≥ ±β for β ≤ 0. Building

on Example 2, it follows that F = {(0, 0)} × R−. Therefore, only the trivial inequality 0 ≥ −1 can be

represented using finite Farkas multipliers for each disjunctive term.

3 Cut separation

We consider an MI-CONIC problem of the form

(MICP ) min
x

cTx (17a)

s.t. Ax = b (17b)

x ∈ K, (17c)

x ∈ Zp × Rn−p, (17d)

where A ∈ Rm×n, p ≤ n, and K is a proper cone. The continuous relaxation of (MICP ), denoted by

(CP ), is given by (17a)–(17c). The feasible sets of (MICP ) and (CP ) are denoted by X and by C,
respectively.

Let x̄ ∈ Rn be a point to separate. Since x̄ is typically obtained from solving a relaxation of

(MICP ), we will assume that Ax̄ = b, i.e., all linear equality constraints are satisfied. In particular,

we will not assume that x̄ is conic-feasible, i.e., we may have x̄ /∈ K, for instance when an outer-

approximation algorithm is used.

Consider the disjunctive set

D =
⋃
h∈H

Dh =
⋃
h∈H

{
x

∣∣∣∣ Ax = b, x ∈ K
Dhx �Qh

dh

}
, (18)
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where each Qh is a proper cone, and D ⊇ X . Valid inequalities for D are referred to as disjunctive

inequalities or, equivalently, as disjunctive cuts. For (α, β) ∈ D#, the inequality αTx ≥ β is trivial

if (α, β) ∈ C#, and non-trivial otherwise. Following the terminology of [19], K∗ cuts are trivial

inequalities of the form uTx ≥ 0 for u ∈ K∗. Finally, a cut is violated if αT x̄ < β.

It is always possible, e.g., through the use of facial reduction techniques [25], to describe each Dh
by a well-posed system of conic inequalities. In addition, one may assume, after manual inspection,

that ∀h,Dh 6= ∅. However, in a cutting-plane context, systematically performing such reductions

and verifications can quickly become intractable. Therefore, unless stated otherwise, we make no

assumption regarding the feasibility nor well-posedness of individual disjunctive terms; we will show

in Section 4 how to address such shortcomings in a systematic way.

3.1 Separation problem

Consider the cut-generating conic problem (CGCP)

(CGCP ) min
α,β,u,λ,v

αT x̄− β (19a)

s.t. α = ATuh + λh +DT
h vh, ∀h, (19b)

β ≤ bTuh + dTh vh, ∀h, (19c)

(uh, λh, vh) ∈ Rm ×K∗ ×Q∗h, ∀h, (19d)

which naturally extends Balas’ CGLP to the conic setting, see also [18]. In particular, it is a conic

programming problem, which can be solved by, e.g., an interior-point algorithm.

First, it follows from Theorem 5 that, if (α, β, u, λ, v) is feasible for (19), then αTx ≥ β is a

disjunctive inequality. Under the stronger assumption of Case 2. in Theorem 5, every disjunctive

inequality corresponds to a feasible solution of the CGCP. In the absence of such assumptions, however,

the exact characterization of D# stated in Theorem 5 may not hold. For instance, there may exist

disjunctive inequalities that do not correspond to any feasible solution of the CGCP; as illustrated by

Example 3, it may even be that all feasible solutions of the CGCP correspond to trivial inequalities of

the form 0 ≥ β for some β ≤ 0.

Second, the feasible set of the CGCP is an unbounded cone, which contains the origin. Thus, the

CGCP is either unbounded or bounded with objective value zero. In the former case, any unbounded

ray yields a violated cut, while in the latter, no violated cut is obtained. Note that unbounded problems

can lead to numerical issues for some interior-point algorithms. Therefore, it is common practice to

add a normalization condition to the CGCP, whose role is further investigated in Section 4.

Third, the CGCP is strongly feasible. Indeed, let ūh = 0, v̄h ∈ intQ∗h,∀h. Then, since K∗ has

non-empty interior, there exists ᾱ such that

ᾱ �K∗ DT
h v̄h,∀h.

Finally, letting λ̄h = ᾱ − DT
h v̄h ∈ intK∗ and β̄ ≤ dTh v̄h,∀h, it follows that (ᾱ, β̄, ū, λ̄, x̄) is strongly

feasible for the CGCP.

Fourth, let (α, β, u, λ, v) be a feasible solution of the CGCP, and let

(α̃, β̃, ũ, λ̃, ṽ) = (α−ATu0, β − bTu0, u− u0, λ, v), (20)

where u0 ∈ Rm. It is immediate to see that (α̃, β̃, ũ, λ̃, ṽ) is also feasible for the CGCP, with identical

objective value since Ax̄ = b. Therefore, without loss of generality, one of the uh can be arbitrarily set

to zero in the formulation of the CGCP, thereby reducing its size. Furthermore, since C ⊆ {x | Ax = b},
it follows that

C ∩
{
x
∣∣ αTx ≥ β} = C ∩

{
x
∣∣∣ α̃Tx ≥ β̃} , (21)

i.e., the two inequalities are equivalent in the sense that both cut off the same portion of the continuous

relaxation.
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3.2 Membership problem

The dual problem of the CGCP is the membership conic problem (MCP)

(MCP ) max
y,z

0 (22a)

s.t.
∑
h

yh = x̄, (22b)∑
h

zh = 1, (22c)

Ayh = zhb, ∀h, (22d)

Dhyh �Qh
zhdh, ∀h, (22e)

(yh, zh) ∈ K × R+, ∀h, (22f)

which extends Bonami’s membership LP [15] to the conic setting.

A geometrical interpretation of the MCP is provided by Theorem 4. If all disjunctive terms are

non-empty and have identical recession cones, then (22) is feasible if and only if x̄ ∈ conv(D). In the

general case, however, the exact characterization of convD given by Theorem 4 may no longer hold,

and we can only state that, if x̄ ∈ convD, then the MCP is feasible.

By weak duality, if the MCP is feasible, then the objective value of the CGCP is bounded below.

If, in addition, the MCP is strongly feasible, then both the MCP and the CGCP are solvable with

identical objective values.

4 The roles of normalization

This section focuses on the roles of the normalization condition in the CGCP. On the one hand, through

the lens of conic duality for the CGCP-MCP pair, we investigate the impact of the normalization on

the solvability of CGCP. On the other hand, by characterizing optimal solutions of the normalized

CGCP, we assess the theoretical properties of the corresponding cuts.

The following normalization conditions are considered:

(i) the α normalization: ‖α‖∗ ≤ 1,

(ii) the polar normalization: γTα ≤ 1,

(iii) the standard normalization:
∑
h |λh|ρ + |vh|σh

≤ 1,

(iv) the trivial normalization:
∑
h |vh|σh

≤ 1,

(v) the uniform normalization:
∑
h |λh|ρ ≤ 1,

where γ ∈ Rn, ρ ∈ intK and σh ∈ intQh.

Throughout this section, the strengths and shortcomings of each normalization are illustrated in a

simple setting, described in Example 4 below.

Example 4 For R > 0, consider the MICP

min
x

− x1 − x2 (23)

s.t. x0 = R, (24)

x ∈ L3, (25)

x1, x2 ∈ Z, (26)

and the split disjunction (x1 ≤ 0) ∨ (x1 ≥ 1). Thus, we have

D1 =
{
x ∈ R3

∣∣ x ∈ L3, x0 = R, x1 ≤ 0
}
,

D2 =
{
x ∈ R3

∣∣ x ∈ L3, x0 = R, x1 ≥ 1
}
.
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We consider the following three cases:

(a) R > 1: D1 and D2 are both strongly feasible;

(b) R = 1: D1 is strongly feasible and D2 is weakly feasible;

(c) R < 1: D1 is strongly feasible and D2 = ∅.

Each of these settings is illustrated in Figure 1. Finally, unless specified otherwise, x̄ is the solution of

the continuous relaxation, i.e., x̄ = (R, R√
2
, R√

2
). All CGCPs are solved as conic problems using Mosek

9.2 with default parameters.

x̄

(a) R = 1.1

x̄

(b) R = 1.0

x̄

(c) R = 0.9

Figure 1: The three settings from Example 4, projected onto the x0 = 1 space. The domain of the continuous relaxation
is in gray, the split hull in orange, and the split disjunction is indicated in black.

4.1 α normalization

A straightforward way of bounding the CGCP is to restrict the magnitude of α. This approach was

considered in previous work on MI-CONV [17, 31, 48], wherein authors considered restricting the `1,

`∞ or `2 norm of α.

For a given norm ‖·‖, the CGCP then writes

min
α,β,λ,u,v

αT x̄− β (27a)

s.t. α = ATuh + λh +DT
h vh, ∀h, (27b)

β ≤ bTuh + dTh vh, ∀h, (27c)

(uh, λh, vh) ∈ Rm ×K∗ ×Q∗h, ∀h, (27d)

‖α‖∗ ≤ 1, (27e)

and the corresponding MCP, up to a change of sign in the objective value, is

min
x,y,z

‖x̄− x‖ (28a)

s.t.
∑
h

yh = x, (28b)∑
h

zh = 1, (28c)

Ayh = zhb, ∀h, (28d)

Dhyh �Qh
zhdh, ∀h, (28e)

(yh, zh) ∈ K × R+, ∀h. (28f)

Geometrically, the CGCP (27) looks for a deepest cut, i.e., one that maximizes the distance from x̄

to the hyperplane αTx = β, as measured by ‖·‖. Correspondingly, the MCP (28) computes a projection

of x̄ onto the set defined by (28b)–(28f), with respect to ‖·‖. It is trivially feasible if at least one of the

disjunctive terms is non-empty, which is always the case if X 6= ∅. This ensures that the CGCP (27)
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is never unbounded. If, in addition, each disjunctive term is strongly feasible, then the MCP (28) is

strongly feasible and both the MCP and the CGCP are solvable.

Split cuts obtained with the α normalization in the context of Example 4 are illustrated in Figure 2;

these results are obtained with the (self-dual) `2 norm in (27e). Furthermore, some statistics regarding

the resolution of the CGCP are reported in Table 1, namely: the number of interior-point iterations

(Iter), and the magnitude of α, u, λ, v in the obtained CGCP solution.

x̄

(a)

x̄

(b)

x̄

(c)

Figure 2: Split cuts (in red) obtained with the α normalization.

Table 1: CGCP statistics for Example 4 and α normalization.

Iter ‖α‖ ‖u1‖ ‖u2‖ ‖λ1‖ ‖λ2‖ ‖v1‖ ‖v2‖

(a) 8 1.0 0.8 2.0 1.2 2.9 0.5 1.3
(b) 67∗ 1.0 0.7 10958.8 1.0 15498.0 0.7 10958.1
(c) 8 1.0 0.0 13.7 0.0 19.3 1.0 12.6

∗: slow progress

In Example 4(a), the MCP is strongly feasible, no numerical trouble is encountered, and the

obtained cut is a supporting hyperplane of the split hull. On the other hand, numerical issues are

encountered in Example 4(b). Indeed, as reported in Table 1, Mosek terminates due to slow progress

after 67 iterations, albeit with a feasible solution, for which the magnitude of u2, λ2, v2 is very large.

The corresponding cut is displayed in Figure b. Finally, in Example 4(c), although D2 = ∅, the CGCP

is solved without issue, thereby showing that it is not necessary for the MCP to be strongly feasible

for the CGCP to be solvable.

Example 4(b) illustrates the numerical challenges that may arise when the MCP is not strongly

feasible. Indeed, in that case, the deepest cut writes x1 + x2 ≤ 1, up to a positive scaling factor.

However, although x1 +x2 ≤ 1 is a valid inequality for D2, it is straightforward to see that it cannot be

represented using finite Farkas multipliers: this corresponds to case 1 in Theorem 3. Thus, the CGCP

has no optimal solution, and there exists a (diverging) sequence of feasible solutions whose objective

value becomes arbitrary close to opt(CGCP ), corresponding to a sequence of valid inequalities that,

in the limit, become equivalent to x1 + x2 ≤ 1. Hence, the solver eventually runs into slow progress

while the magnitude of u2, λ2, v2 becomes large, as observed in Table 1.

Interestingly, all cuts displayed in Figure 2 are supporting hyperplanes of the split hull. A slightly

more general result is stated in Theorem 6.

Theorem 6 Assume that the CGCP (27) and the MCP (28) are solvable, and let (α, β, u, λ, v) and

(x, y, z) be corresponding optimal solutions. Then,

αTx = β.

Proof. Let δ be the optimal value of the CGCP, i.e., δ = αT x̄−β. Since the CGCP is strongly feasible

and bounded, by Theorem 1, strong duality holds. Thus, we have δ = −‖x̄ − x‖. The case δ = 0 is

trivial, so we assume δ < 0 and, thus, x 6= x̄.
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Let w = |δ|−1(x − x̄), i.e., x = x̄ + |δ|w and ‖w‖ = 1; in particular, we have 1 ≥ ‖α‖∗ ≥ αTw. It

follows that

αTx− β = αT x̄+ |δ|αTw − β
= δ + |δ|αTw
= δ(1− αTw)

≤ 0.

Thus, αTx ≤ β.

Next, we have

αTx =
∑
h

αT yh

=
∑
h

uThAyh + λTh yh + vThDhyh

≥
∑
h

uTh (zhb) + vTh (zhdh)

≥
∑
h

zhβ

= β,

which concludes the proof.

Therefore, if all disjunctive terms are non-empty, then, by Theorem 4, x ∈ cl convD, and the

obtained inequality αTx ≥ β is indeed a supporting hyperplane of the disjunctive hull.

4.2 Polar normalization

In the MILP setting, Balas and Perregard [8, 45] first suggest normalizing the CGLP with a single

hyperplane of the form αT γ = 1. Doing so ensures that, if the CGLP is feasible and bounded, then

there exists an optimal solution for which (α, β) is an extreme ray of (cl convD)
#

. This approach was

then followed in [16, 47], and more recently in [20].

For γ ∈ Rn, the CGCP writes

min
α,β,u,v,λ

αT x̄− β (29a)

s.t. α = ATuh + λh +DT
h vh, ∀h, (29b)

β ≤ bTuh + dTh vh, ∀h, (29c)

(uh, λh, vh) ∈ Rm ×K∗ ×Q∗h, ∀h, (29d)

αT γ ≤ 1, (29e)

and the MCP is given by

min
y,z,η

η (30a)

s.t.
∑
h

yh = x̄+ ηγ, (30b)∑
h

zh = 1, (30c)

Ayh = zhb, ∀h, (30d)
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Dhyh �Qh
zhdh, ∀h, (30e)

(yh, zh) ∈ K × R+, ∀h, (30f)

η ≥ 0. (30g)

It follows from Theorem 4 that, if there exists η ≥ 0 such that (x̄+ηγ) ∈ convD, then the MCP (30)

is feasible. This is always the case if γ = x∗− x̄, for some x∗ ∈ convD. If, in addition, each individual

disjunction is strongly feasible and x∗ is obtained as a convex combination of strongly feasible points,

then the MCP (30) is strongly feasible.

Split cuts obtained for Example 4 with the polar normalization are illustrated in Figure 3, and

the corresponding CGCP statistics are reported in Table 2. In each case, we set γ = x∗ − x̄, where

x∗ = (R, 0, 0).

In all three cases, the obtained cut is identical to the one obtained with the α normalization,

although this is not the case in general. Furthermore, as reported in Table 2, numerical issues are

also encountered for Example 4(b), for the same reasons as for the α normalization: the CGCP is not

solvable, and Mosek terminates with slow progress while the magnitude of u2, λ2, v2 diverges.

x̄

(a)

x̄

(b)

x̄

(c)

Figure 3: Split cuts (in red) obtained with the polar normalization.

Table 2: CGCP statistics for Example 4 and polar normalization.

Iter ‖α‖ ‖u1‖ ‖u2‖ ‖λ1‖ ‖λ2‖ ‖v1‖ ‖v2‖

(a) 8 1.2 0.0 1.1 1.1 2.7 0.5 1.2
(b) 66∗ 1.2 0.0 9912.6 1.0 14019.5 0.7 9912.6
(c) 8 1.6 0.0 20.5 0.0 28.9 1.6 18.8

∗: slow progress

Similar to the α-normalization, if all disjunctive terms are non-empty, then cuts obtained with the

polar normalization are also supporting hyperplanes of the disjunctive hull, as expressed by Theorem 7.

Theorem 7 Assume that the CGCP (29) and the MCP (30) are solvable, and let (α, β, u, λ, v) and

(η, y, z) be corresponding optimal solutions. Then,

αT (x̄+ ηγ) = β.

Proof. By conic strong duality, we have αT x̄− β = −η. If the optimal value of the CGCP is 0, then

the result is trivial. Similarly, if αT γ ≤ 0, then the optimal value of the CGCP must be 0 and the

result is trivial.

We now assume that αT γ > 0 and opt(CGCP ) < 0. Since (α, β, u, λ, v) is optimal for the CGCP,

we must have αT γ = 1. Then,

αT x̄− β = −η
= −(αT γ)η,

i.e., αT (x̄+ ηγ) = β.
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4.3 Standard normalization

One of the most common normalizations in the MILP setting is the so-called standard normalization [4,

9, 23]. Here, we introduce its conic generalization∑
h

|λh|ρ + |vh|σh
≤ 1, (31)

where ρ ∈ intK and σh ∈ intQh. When all cones K,Q1, ...,QH are non-negative orthants, (31) indeed

generalizes both the standard normalization for MILP and its Euclidean normalization variant [23],

by setting ρ and σ appropriately.

The separation problem then writes

min
α,β,u,v,λ

αT x̄− β (32a)

s.t. α = ATuh + λh +DT
h vh, ∀h, (32b)

β ≤ bTuh + dTh vh, ∀h, (32c)

(uh, λh, vh) ∈ Rm ×K∗ ×Q∗h, ∀h, (32d)∑
h

|λh|ρ + |vh|σh
≤ 1. (32e)

Note that (32e) consists of a single linear inequality in the λ, v space, and that it explicitly bounds

their magnitude.

Up to a change of sign in the objective value, the MCP is

min
y,z,η

η (33a)

s.t.
∑
h

yh = x̄, (33b)∑
h

zh = 1, (33c)

Ayh = zhb, ∀h, (33d)

Dhyh + ησh �Qh
zhdh, ∀h, (33e)

(yh + ηρ, zh) ∈ K × R+, ∀h, (33f)

η ≥ 0. (33g)

The dual counterpart of the standard normalization corresponds to penalizing the violation of the

original conic constraints (22f) and (22e), through the artificial slack variable η in (33f) and (33e). As

shown in Theorem 8, this ensures that the MCP is strongly feasible.

Theorem 8 The CGCP (32) and the MCP (33) are strongly feasible.

Proof. It was shown in Section 3.1 that the un-normalized CGCP (19) admits a strongly feasible

solution. Scaling this point appropriately yields a strongly feasible solution for the CGCP (32).

We now show that the MCP (36d) is strongly feasible. Let yh = 1
H x̄ and zh = 1

H , ∀h. Then, since

K,Q1, ...,QH are proper cones, there exists ηh ≥ 0 and τh ≥ 0 such that

∀h, yh + ηhρ �K 0,

∀h, Dhyh + τhσh �Qh
dh.

Letting η = max(η1, ..., ηH , τ1, ..., τH) then yields a strongly feasible point (y, z, η), which concludes

the proof.



Les Cahiers du GERAD G–2019–92 – Revised 17

A direct consequence of Theorem 8 is that both the CGCP (32) and the MCP (33) are solvable,

and that conic strong duality holds. Importantly, aside from the assumption Ax̄ = b, this result does

not depend on x̄, nor on the well-posedness of individual disjunctions.

Split cuts obtained with the standard normalization are illustrated in Figure 4, and the correspond-

ing CGCP statistics are reported in Table 3. On the one hand, Table 3 illustrate the good numerical

behavior of the CGCP (32), a direct consequence of having enforced strong feasibility of the MCP.

On the other hand, the obtained cuts are not as strong as the ones obtained with the α or polar

normalizations. Indeed, in general, the cut obtained with the standard normalization may not be a

supported hyperplane of the disjunctive hull.

x̄

(a)

x̄

(b)

x̄

(c)

Figure 4: Split cuts (in red) obtained with the standard normalization.

Table 3: CGCP statistics for Example 4 and standard normalization.

Iter ‖α‖ ‖u1‖ ‖u2‖ ‖λ1‖ ‖λ2‖ ‖v1‖ ‖v2‖

(a) 8 0.4 0.0 0.2 0.3 0.6 0.1 0.2
(b) 8 0.3 0.0 0.2 0.3 0.6 0.1 0.2
(c) 7 0.3 0.0 0.3 0.3 0.6 0.1 0.2

4.4 Trivial normalization

The trivial normalization is obtained by setting ρ = 0 in the standard normalization. The separation

problem then writes

min
α,β,u,v,λ

αT x̄− β (34a)

s.t. α = ATuh + λh +DT
h vh, ∀h, (34b)

β ≤ bTuh + dTh vh, ∀h, (34c)

(uh, λh, vh) ∈ Rm ×K∗ ×Q∗h, ∀h, (34d)∑
h

|vh|σh
≤ 1. (34e)

Note that, for a split disjunction (−πTx ≥ −π0) ∨ (πTx ≥ π0 + 1) and σh = 1, (34e) reduces to

v1 + v2 ≤ 1, (35)

which is the so-called trivial normalization [23] in the MILP setting. In particular, Gomory Mixed-

Integer cuts correspond to optimal solutions of the CGLP with trivial normalization.

Up to a change of sign in the objective value, the MCP writes

min
y,z,η

η (36a)

s.t.
∑
h

yh = x̄, (36b)
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∑
h

zh = 1, (36c)

Ayh = zhb, ∀h, (36d)

(yh, zh) ∈ K × R+, ∀h, (36e)

Dhyh + ησh �Qh
zhdh, ∀h, (36f)

η ≥ 0. (36g)

Theorem 9 The MCP (36) is

1. strongly infeasible if and only if x̄ is infeasible for (CP );

2. strongly feasible if and only if x̄ is strongly feasible for (CP );

3. weakly feasible if and only if x̄ is weakly feasible for (CP ).

Proof. Since x̄ is either infeasible, strongly feasible or weakly feasible for (CP ), and that these are

mutually exclusive alternatives, it suffices to prove that the above conditions are sufficient; necessity fol-

lows immediately by contraposition. For simplicity, we assume that K is an irreducible, non-polyhedral

cone. The general case is treated similarly.

1. Assume x̄ /∈ C, i.e., x̄ /∈ K since we assumed that Ax̄ = b. Consequently, there exists s ∈ K∗ such

that sT x̄ < 0 and, since K is a proper cone, we can assume without loss of generality that s ∈ intK∗.
Thus, setting

(α, β) = (s, 0)

(uh, λh, vh) = (0, s, 0), ∀h,

yields a strongly feasible solution of the CGCP (34), which is also an unbounded ray. Therefore, the

MCP is strongly infeasible.

2, 3. We first show that, if x̄ is feasible for (CP ), then the MCP is feasible. Let

ỹh = H−1x̄, ∀h,
z̃h = H−1, ∀h.

It is then immediate that Aỹh = z̃hb, ỹh ∈ K, and
∑
h z̃h = 1. Then, since σh ∈ intQh, there exists

ηh ≥ 0 such that

Dhyh + ηhσh �Qh
zhdh.

Letting η̃ = maxh{ηh}, it follows that (ỹ, z̃, η̃) is feasible for the MCP.

If x̄ ∈ intK, then we also have ỹh ∈ intK, and thus (ỹ, z̃, η̃) is strongly feasible for the MCP,

which proves 2. Reciprocally, let (y, z, η) be a strongly feasible solution of MCP. In particular, we

have yh ∈ intK. Then,

x̄ =
∑
h

yh ∈ intK,

i.e., x̄ is strongly feasible for (CP ), thereby proving 3. by contraposition.

Theorem 9 motivates the following remarks. First, case 1. typically arises in the context of outer-

approximation algorithms, wherein fractional points generally violate non-linear conic constraints.

Then, the CGCP (34) is unbounded, and the normalization (34e) imposes |vh|σh
= 0,∀h in any
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unbounded ray, i.e., vh = 0 and the obtained cut is always a trivial inequality. Thus, the trivial

normalization is not suited for use within outer approximation-based algorithms.

Second, conic-infeasible points are not encountered in non-linear branch-and-bound algorithms.

However, solving (CP ) yields a fractional point x̄ ∈ ∂C that is weakly feasible, unless all non-linear

conic constraints are inactive at the optimum. Although the current fractional point x̄ may become

strongly feasible after several rounds of cuts, or deeper in the branch-and-bound tree, our experience

is that case 2. rarely occurs in practice.

Third, case 3. corresponds to the setting of Example 4. Split cuts obtained with the trivial

normalization are displayed in Figure 5, and the corresponding CGCP statistics are reported in Table 4.

Remarkably, all three cuts appear to be K∗ cuts, while numerical issues, namely, slow convergence,

are systematically encountered. Here, the MCP (36) is weakly feasible and the CGCP (34) is bounded

but not solvable. Thus, there exists a diverging sequence of close-to-optimal solution, thereby causing

slow convergence. In addition, since (34e) bounds the value of v1, v2, the iterates become equivalent

to a K∗ cut as the magnitude of λ increases, which explains the cuts obtained in Figure 5.

x̄

(a)

x̄

(b)

x̄

(c)

Figure 5: Split cuts (in red) obtained with the trivial normalization.

Table 4: CGCP statistics for Example 4 and trivial normalization.

Iter ‖α‖ ‖u1‖ ‖u2‖ ‖λ1‖ ‖λ2‖ ‖v1‖ ‖v2‖

(a) 37∗ 6189.7 0.0 0.7 6189.6 6190.6 0.2 0.8
(b) 49∗ 6814.2 0.0 0.7 6814.0 6815.0 0.3 0.7
(c) 72∗ 6364.4 0.0 0.7 6364.2 6365.2 0.4 0.6

∗: slow progress

Note that the CGCP (34) may be solvable even though x̄ is weakly feasible. However, our experience

suggests that this rarely happens, and that most cases are similar to Example 4, leading to numerical

issues and weak cuts.

4.5 Uniform normalization

The uniform normalization is obtained by setting σh = 0 in the standard normalization.

The CGCP then writes

min
α,β,u,v,λ

αT x̄− β (37a)

s.t. α = ATuh + λh +DT
h vh, ∀h, (37b)

β ≤ bTuh + dTh vh, ∀h, (37c)

(uh, λh, vh) ∈ Rm ×K∗ ×Q∗h, ∀h, (37d)∑
h

|λh|ρ ≤ 1, (37e)

and, up to a change of sign in the objective, the MCP is

min
y,z,η

η (38a)
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s.t.
∑
h

yh = x̄, (38b)∑
h

zh = 1, (38c)

Ayh = zhb, ∀h, (38d)

(yh + ηρ, zh) ∈ K × R+, ∀h, (38e)

Dhyh �Qh
zhdh, ∀h, (38f)

η ≥ 0. (38g)

As illustrated by Example 5, in general, the MCP (38) may not be feasible.

Example 5 Let

C =
{

(x1, x2) ∈ R2
+ | x1 + x2 = 1

}
,

and consider the disjunction

{x1 ≥ 0,−x1 ≥ 0} ∨ {x1 ≥ 1,−x1 ≥ −1} .

Constraints (38d) and (38f) first yield

y1 =

(
0
z1

)
, y2 =

(
z2

1− z2

)
,

which, combined with (38c) and (38b), yields x̄ = (1−z1, z1) for 0 ≤ z1 ≤ 1. Therefore, if x̄ = (−1, 2),

then the MCP (38) is infeasible.

Nevertheless, the following results demonstrate that, for certain classes of disjunctions, namely split

disjunctions, strong feasibility in the MCP is guaranteed.

Lemma 1 If

x̄ ∈ conv

(⋃
h

{x | Ax = b,Dhx �Qh
dh}

)
,

then the MCP (38) is feasible.

Proof. Immediate from Theorem 4.

Lemma 2 Assume that ∀h, Qh is polyhedral. Then, the MCP (38) is strongly feasible if and only if it

is feasible.

Proof. Strong feasibility implies feasibility. Reciprocally, if (x, y, z, η) is feasible for the MCP (38),

then (x, y, z, η + ε) is strongly feasible for any ε > 0.

Theorem 10 If X 6= ∅ and D is a split disjunction, i.e.,

D =

{
x

∣∣∣∣ Ax = b, x ∈ K
πTx ≤ π0

}
∪
{
x

∣∣∣∣ Ax = b, x ∈ K
πTx ≥ π0 + 1

}
,

then the MCP (38) is strongly feasible.
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Proof. Let

S = conv
({
x
∣∣ Ax = b, πTx ≤ π0

}
∪
{
x
∣∣ Ax = b, πTx ≥ π0 + 1

})
.

First, assume there exists ξ ∈ Rn such that Aξ = 0 and πT ξ 6= 0; without loss of generality, we can

assume that πT ξ = 1. Then, let t ≥ 0 such that

πT (x̄− tξ) ≤ π0,

πT (x̄+ tξ) ≥ π0 + 1.

In particular, A(x̄± tξ) = b and x̄ = 1
2 (x̄+ tξ) + 1

2 (x̄− tξ). Thus, x̄ ∈ S, and it follows from Lemma 1

that the MCP (38) is feasible.

Now assume that ∀ξ ∈ ker(A), πT ξ = 0. On the one hand, if π0 < πT x̄ < π0 + 1, then S = ∅
and thus X is empty, which would contradict the X 6= ∅ assumption. Thus, either πT x̄ ≤ π0 or

πT x̄ ≥ π0 + 1, i.e., x̄ ∈ S and the MCP is feasible by Lemma 1. Note that this latter case would never

occur in practice, since one would always consider a split such that π0 < πT x̄ < π0 + 1.

The result then follows from Lemma 2.

Similar to the standard normalization, a consequence of Theorem 10 is that, when considering split

disjunctions, the CGCP (37) and the MCP (38) are solvable with identical objective value. This is

confirmed by the results of Table 2, which reports statistics for the CGCP in Example 4: no numerical

issue is encountered. The corresponding split cuts are displayed in Figure 6, and are similar to the cuts

obtained with the standard normalization. Likewise, cuts obtained with the uniform normalization are

not, in general, supporting hyperplanes of the disjunctive hull.

x̄

(a)

x̄

(b)

x̄

(c)

Figure 6: Split cuts obtained with the uniform normalization. The continuous relaxation is in gray, the split hull in orange,
and the obtained cut is in red.

Table 5: CGCP statistics for Example 4 and uniform normalization.

Iter ‖α‖ ‖u1‖ ‖u2‖ ‖λ1‖ ‖λ2‖ ‖v1‖ ‖v2‖

(a) 8 0.5 0.0 0.3 0.5 0.9 0.2 0.3
(b) 8 0.5 0.0 0.4 0.4 1.0 0.2 0.4
(c) 8 0.4 0.0 0.5 0.3 1.1 0.3 0.5

5 Separating conic-infeasible points

When (MICP ) (17) is solved by outer-approximation, the fractional point x̄ may not satisfy all conic

constraints. In preliminary experiments, wherein lift-and-project cuts were separated by rounds in a

callback, a large proportion –often higher than 90%– of the cuts yielded by the CGCP turned out to

be K∗ cuts, which is obviously detrimental to performance. To the best of our knowledge, despite the
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popularity and performance of outer-approximation algorithms, this behavior has not been studied in

the literature. Therefore, in this section, we will assume that Ax̄ = b, but x̄ /∈ K.

Let (α, β, u, λ, v) be a solution of the CGCP, and assume that vh = 0 for some h ∈ {1, ...,H}.
Thus, we have

α = ATuh + λh, (39)

β ≤ bTuh, (40)

and αTx ≥ β is a trivial inequality. In addition, as noted in Section 3.1, the inequality λThx ≥ 0

has the same violation, and cuts off the same portion of the continuous relaxation as αTx ≥ β. This

observation, which does not depend on the normalization condition, allows the a posteriori detection

of K∗ cuts, by checking the value of the v multipliers.

Once a K∗ cut is identified, it can be disaggregated. Assume that K = K1×...×KN ; correspondingly,

for λ ∈ K∗, we write λ = (λ1, ..., λN ) where each λi ∈ K∗i . Then, the K∗ cut λTx ≥ 0 is disaggregated as

λTi xi ≥ 0, i = 1, ..., N. (41)

This yields more numerous, but sparser, K∗ cuts, and results in tighter polyhedral approximations

which, in turn, improves the performance of outer-approximation algorithms [19].

We now derive sufficient conditions that provide an a priori indication that a K∗ cut will be

generated. Unless stated otherwise, we only consider the CGCP with standard normalization. Define

η̄ = min
η≥0
{η | x̄+ ηρ ∈ K} , (42)

τ̄h = min
τ≥0
{τ | Dhx̄+ τσh �Qh

dh} , ∀h, (43)

and let ξ = x̄+ η̄ρ.

Lemma 3 Assume there exists an optimal solution of the CGCP for which vh = 0,∀h. Then, the opti-

mal value of the CGCP is −H−1η̄, and there exist a CGCP-optimal solution of the form (λ0, 0, 0, λ0, 0),

with λT0 ξ = 0.

Proof. Let (α, β, u, λ, 0) be such an optimal solution, and denote by δ its objective value. In particular,
we have

α = ATuh + λh, ∀h,
β ≤ bTuh, ∀h.

Let ū = 1
H

∑
h uh and λ̄ = 1

H

∑
h λh. It follows that (α, β, ū, λ̄, 0) is feasible with objective value δ,

i.e., it is an optimal solution of the CGCP.

Next, (α, β, ū, λ̄, 0) is also an optimal solution of

min
u,λ

αT x̄− β

s.t. α = ATuh + λh, ∀h,
β ≤ bTuh, ∀h,∑
h

|λh|ρ ≤ 1,

λh ∈ K∗.

Eliminating α, β yields
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min
λ

λT x̄

s.t. ρTλ ≤ 1

H
,

λ ∈ K∗,

whose dual, up to a change of sign in the objective value, writes

min
η

1

H
η

s.t. ηρ �K x̄,
η ≥ 0,

and has optimal value H−1η̄. Thus, δ = −H−1η̄ = λ̄T x̄, which concludes the proof.

Theorem 11 If ∀h, η̄ ≥ H−1τ̄h, then (λ̄, 0, 0, λ̄, 0) is optimal for CGCP.

Proof. Let yh = 1
H x̄, zh = 1

H , and η = η̄
H .

We have Ayh = zhb,∀h. Then, yh + ηρ = 1
H (x̄+ η̄ρ) ∈ K. Finally,

Dhyh + ησh = H−1 (Dhx̄+ η̄σh)

�Qh
H−1dh

= zhdh.

Thus, (y, z, η) is feasible for the MCP and its objective value is H−1η̄, which concludes the proof.

Theorem 11 shows that, if x̄ is “sufficiently” conic-infeasible, as measured by the magnitude of η̄,

then there exists a K∗ cut that is an optimal solution of the CGCP. Note that there is no guarantee

that this optimal solution is unique –in general, it is not– nor that all CGCP-optimal solutions are

K∗ cuts. Nevertheless, we have observed that, whenever the condition of Theorem 11 was met, the

obtained solution was indeed a K∗ cut.

This suggests several strategies to avoid generating K∗ cuts when solving the CGCP. First, one

can check the value of η̄ and, if large enough as per Theorem 11, avoid solving the CGCP and add

an optimal K∗ cut directly. Nevertheless, our initial experiments suggest that only a small number

of cases are captured by Theorem 11. Second, one can increase the magnitude of ρ, thus reducing

the value of η̄, to the point where the assumptions of Theorem 11 no longer hold. Note that, as

the magnitude of ρ becomes arbitrarily large, the standard normalization becomes equivalent to the

uniform normalization of Section 4.5. Third, instead of imposing a normalization condition, one could

fix the cut violation to a positive value, e.g., 1, and optimize a different objective; the feasibility of the

CGCP is then guaranteed by the fact that x̄ is conic-infeasible. This approach directly relates to the

reverse-polar CGLP introduced in [47]. Finally, one can simply try to avoid conic-infeasible points in

the first place, for instance by refining the outer-approximation before cuts are separated.

6 Cut lifting and strenghtening

In this section, we present conic extensions of the classical lifting and strengthening procedures in

MILP. For simplicity, we will assume that K = K1×K2 where Ki ⊆ Rni , i = 1, 2 and, correspondingly,

we write

A =
[
A1 A2

]
, Dh =

[
D1,h D2,h

]
, λh =

[
λ1,h

λ2,h

]
, α =

[
α1

α2

]
, x̄ =

[
x̄1

x̄2

]
.

Finally, we assume that x̄2 = 0.
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6.1 Cut lifting

In MILP, one can formulate the CGLP in a reduced space, by projecting out the null components of

x̄, then recover a valid cut in the original space by a lifting procedure. Here, we show that a similar

technique can be used in the conic setting.

Recall that x̄2 = 0, and consider the reduced CGCP

min αT1 x̄1 − β (44a)

s.t. α1 = AT1 uh + λ1,h +DT
1,hvh, ∀h, (44b)

β ≤ bTuh − vTh dh, ∀h, (44c)

(uh, λ1,h, vh) ∈ Rm ×K∗1 ×Q∗h, ∀h. (44d)

All the normalization conditions considered in Section 4 can be adapted to the reduced CGCP, namely

by normalizing only the α1, λ1, v components as appropriate. For instance, the α normalization would

write ‖α1‖∗ ≤ 1, and the uniform normalization
∑
h |λ1,h|ρ1 ≤ 1, for ρ1 ∈ intK1.

Any solution (α, β, u, λ, v) that is feasible for the CGCP yields a feasible solution (α1, β, u, λ1,., v)

for the reduced CGCP. In addition, since x̄2 = 0, the corresponding objective values are the same.

Reciprocally, a feasible solution for the CGCP can be obtained from a feasible solution of the reduced

CGCP as shown in Lemma 4.

Lemma 4 Let (α1, β, u, λ1,., v) be feasible for the reduced CGCP (44). Let

α2 �K∗
2
AT2 uh +DT

h,2vh, ∀h,

and, ∀h, let λ2,h = α2 − AT2 uh − DT
2,hv2. Then, (α, β, u, λ, v) is feasible for the CGCP (19) and

αT x̄− β = αT1 x̄1 − β.

The proof of Lemma 4 is immediate. Note that the choice of α2 is not unique, especially if K∗2
possesses high-dimensional faces. Nevertheless, a reasonable requirement is to impose that α2 be

minimal with respect to �K∗ , i.e., that there does not exist a valid α̃2 �K∗ α2. Indeed, if α2 is not

�K∗ -minimal, then αTx ≥ β is trivially dominated by α̃Tx ≥ β.

A �K∗ -minimal α2 is obtained by solving the lifting conic problem (LCP)

(LCP ) min
α2

ρT2 α2 (45a)

s.t. α2 �K∗
2
AT2 uh +DT

h,2vh, ∀h, (45b)

where ρ2 ∈ intK2, and denote by λ2,h ∈ K∗2 the (conic) slack associated to (45b). First, since K2 is a

proper cone, the LCP is strongly feasible. Second, we have

ρT2 α2 = ρT2 λ2,h + ρT2
(
AT2 uh +DT

h,2vh
)
, ∀h, (46)

thereby showing that the objective value of the LCP is bounded below. In addition, let (α2, λ2,.) be a

feasible solution for the LCP with objective value Z. It then follows that

∀h,
∣∣∣λ̃2,h

∣∣∣
ρ2
≤ Z − ρT2

(
AT2 uh +DT

h,2vh
)

(47)

in any feasible solution (α̃2, λ̃2,.) with objective value Z̃ ≤ Z. Equation (47) implicitly bounds the

magnitude of λ2,., thereby ensuring that the LCP is solvable. Finally, if α2 and α̃2 are feasible and

α̃2 �K∗ α2, then ρT2 α̃2 < ρT2 α2 and α2 cannot be an optimal solution. Thus, any optimal solution of

the LCP is �K∗ -minimal.

Whenever K2 is not irreducible, the LCP can be decomposed per conic component, yielding smaller

problems. In the linear case, taking K2 = R+, the LCP reduces to

α2 = max
h

{
AT2 uh +DT

2,hvh
}
,

which is the classical lifting procedure for disjunctive cuts in MILP [23].
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Lemma 4 does not account for the normalization constraint in the CGCP. Although the lifting

procedure does not modify the objective value, in general, the lifted solution (α, β, u, λ, v) is not an

optimal solution of the normalized original CGCP. Thus, the reduction in the size of the CGCP, and

the associated computational gains, come at the expense of potentially weaker cuts.

6.2 Cut strengthening

Balas and Jeroslow’s original derivation of monoidal strengthening for disjunctive cuts [7] exploited the

non-negativity and integrality of individual variables to strengthen the corresponding cut coefficients.

Since, in general, a conic constraint may involve several variables, it is not clear whether and how

one can extend this approach to the conic setting. Thus, we restrict our attention to split cuts, and

propose a conic extension of monoidal strengthening that builds on the geometric idea of Wolsey’s

proof of Theorem 2.2 in [6].

For simplicity, we consider the pure integer case. Given a split disjunction (πTx ≤ π0) ∨ (πTx ≥
π0 + 1), the CGCP writes

min αT x̄− β
s.t. α = ATu1 + λ1 − v1π

α = ATu2 + λ2 + v2π

β ≤ bTu1 − v1π0

β ≤ bTu2 + v2(π0 + 1)

λ1, λ2 ∈ K∗, v1, v2 ≥ 0.

Lemma 5 Let (α, β, u, λ, v) be feasible for the CGCP, and let α̃2 and δπ ∈ Zn2 such that

α̃2 �K∗
2
AT2 u1 − v1(π2 + δπ),

α̃2 �K∗
2
AT2 u2 + v2(π2 + δπ).

Then, α̃Tx ≥ β is a valid inequality for the disjunctive set

D̃ =

{
x

∣∣∣∣ Ax = b, x ∈ K
π̃Tx ≤ π0

}
∪
{
x

∣∣∣∣ Ax = b, x ∈ K
π̃Tx ≥ π0 + 1

}
,

where α̃ = (α1, α̃2) and π̃ = (π1, π2 + δπ).

In the mixed-integer case, one simply needs to set to zero, in Lemma 5, the components of δπ that

correspond to continuous variables. Since δπ ∈ Zn2 , π̃ ∈ Zn and (π̃Tx ≤ π0) ∨ (π̃Tx ≥ π0 + 1) is a

valid disjunction for X . Thus, the strengthened inequality is valid for X .

Similar to the lifting case, a reasonable requirement is for α̃2 to be minimal with respect to �K∗
2
.

Following the same approach as in Section 6.1, we obtain the Cut-Strengthening Problem

(CSP ) min
α̃2

ρT2 α̃2 (48a)

s.t. α̃2 �K∗
2
AT2 u1 − v1(π2 + δπ), (48b)

α̃2 �K∗
2
AT2 u2 + v2(π2 + δπ), (48c)

δπ ∈ Zn2 . (48d)

Similar to the LCP, the CSP can be decomposed per conic component, so that its resolution remains

tractable. Furthermore, in the linear case with K2 = R+, the CSP reduces to

α̃2 = max
δ∈Z

{
min

(
AT2 u1 − v1δ, A

T
2 u2 + v2δ

)}
,

which is the classical monoidal strengthening of Balas and Jeroslow [7].
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7 Computational results

In this section, we investigate the practical behavior of the normalization conditions of Section 4 along

two lines: the progression of the gap closed, and the characteristics of the obtained cuts. Indeed, the

choice of normalization impacts the numerical stability and computational efficiency of solving the

CGCP, thereby affecting the rate at which gap is closed, in terms of both time and number of rounds.

Several solvers, e.g., CPLEX, Gurobi and Mosek, support classes of MI-CONIC problems. Never-

theless, to the best of our knowledge, CPLEX is the only one that exploits non-linear information when

generating lift-and-project cuts. Thus, we use CPLEX as a baseline, and restrict our comparison to

MISOCP instances, which is the only class of non-linear MI-CONIC problems supported by CPLEX.

7.1 Instances

We select an initial testset of 114 MISOCP instances from the CBLIB [24] collection. Each instance

is first reformulated in the standard form (17) and, since the MathOptInterface wrapper of CPLEX

does not directly support constraints of the form x ∈ K where K is a rotated second-order cone, all

such constraints are reformulated as second-order cone constraints.

Each instance is solved using the CPLEX outer-approximation algorithm on a single thread, and

all other parameters are left to their default value. Instances with a root gap smaller than 1% are

removed from the testset, as well as those for which no integer-feasible solution was found by CPLEX

after one hour of computing time. This yields a testset of 101 instances, divided into 7 groups. Table 6
reports, for each group, the number of instances (#Inst) in that group, and the average number of:

variables, integer variables, constraints, non-polyhedral cones, and non-zero coefficients.

Table 6: Instance statistics.

Group #Inst Variables Integers Constraints Cones Nz coeff.

clay 12 829 35 659 80 1711
flay 10 535 28 408 4 1121
fmo 39 620 48 479 15 1843
slay 14 1217 92 936 14 2653
sssd 16 694 153 547 18 1414
tls 2 295 61 227 10 817
uflquad 8 37569 23 30203 3750 71341

7.2 Implementation details

Our implementation3 is coded in Julia. All solvers, namely, CPLEX 12.10 [29], Gurobi 9.0 [28] and

Mosek 9.2 [43], are accessed through the solver-agnostic interface MathOptInterface [37]. Experiments

are carried out on an Intel Xeon E5-2637@3.50GHz CPU, 128GB RAM machine running Linux.

Baseline. We use CPLEX internal lift-and-project cut generation at the root node as a baseline.

For each instance, we run CPLEX outer-approximation algorithm on a single thread, no presolve,

no heuristics, and all cuts de-activated with the exception of lift-and-project cuts which are set to

the most aggressive setting. The CutsFactor parameter is set to 1030, thereby removing any limit on

the number of cuts that can be added to the formulation, and the maximum number of cutting plane

passes is set to 200. Finally, the node limit is set to zero, i.e., only the root node is explored, and we

set a time limit of 1 hour.

Each CPLEX “cut pass” consists4 of one round of cuts, plus additional components such as heuris-

tics and reduced cost fixing. Cut generation stops as soon as no violated cuts are found, or all violated

cuts are rejected. Since we deactivate heuristics and presolve, it is fair to assume that, in the present

3Code available at https://github.com/mtanneau/CLaP
4Personal communication with CPLEX developers.

https://github.com/mtanneau/CLaP
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setting, one CPLEX pass corresponds to one round of cuts. Nevertheless, due to CPLEX internal

work limits, e.g., numerical tolerances on a cut’s coefficients, early termination may occur even though

violated cuts were identified. Whether or not this is the case cannot be inferred from the CPLEX log.

Cut separation. Cuts are separated by rounds in a callback, and submitted to CPLEX as user cuts.

Each round proceeds as follows.

First, x̄ is cleaned, i.e, we set x̄j = 0 for all j such that |x̄j | ≤ 10−7, and η̄ is computed as per

Equations (42). If η̄ > εK, the current outer-approximation is refined by adding violated K∗ cuts. This

refinement step is cheap, and it is repeated until x̄ ≤ εK, up to a maximum of 50 times. Large values

for εK increase the likelihood of generating K∗ cuts from the CGCP, while small values can lead to an

adverse tailing-off effect within the refinement process; following initial tests, we set εK = 0.05.

Second, for each fractional coordinate of x̄, the CGCP is formed and solved to generate a lift-and-

project cut. We do not project the CGCP onto the support of x̄, i.e., no lifting is performed. For the

standard normalization, the sufficient conditions of Theorem 11 are checked first and, if met, K∗ cuts

are added and no CGCP is solved. If no CGCP solution is available, or if the objective value of the

CGCP is greater than −10−4, no cut is generated and we proceed to the next fractional coordinate.

Third, the values of v1 and v2 are checked to identify K∗ cuts, which are disaggregated and added

to the formulation. Otherwise, the cut is strengthened following the procedure of Section 6.2. For

stability, strengthening is performed only if |v1| + |v2| ≥ 10−4. Then, also for numerical stability, we

set αj to zero for every j such that |αj | ≤ 10−7. Similarly, if |β| ≤ 10−8, the cut’s right-hand side is

set to zero. Finally, the cut is passed to the solver.

Compact CGCP. Lift-and-project cuts are obtained from elementary split disjunctions, i.e., disjunc-

tions of the form (
−πTx ≥ π0

)
∨
(
πTx ≥ π0 + 1

)
,

where π0 ∈ Z and π = ej for given j ∈ {1, ..., p}. When formulating the CGCP, we set u1 to zero, and

substitute out α and β. This yields the compact CGCP

min
u,λ,v

x̄Tλ1 − (πT x̄− π0)v1 + t1

s.t. ATu2 + (λ2 − λ1) + (v1 + v2)π = 0

bTu2 + (t1 − t2) + (v1 + v2)π0 + v2 = 0

λ1, λ2 ∈ K∗,
v1, v2 ≥ 0

t1, t2 ≥ 0,

where t1, t2 are non-negative slacks associated with constraints (19c). The relation α = λ1−v1π allows

to formulate the normalization condition in the λ, v space.

In practice, the equality constraints Ax̄ = b are satisfied only up to numerical tolerances. This can

cause the CGCP to be unbounded whenever the u multipliers are not bounded. We have observed

that setting u1 to zero, and writing the objective as in the compact CGCP above, greatly improve the

numerical stability of the CGCP, especially when x̄ is obtained from an interior-point method.

Other details. Cuts that are generated are never added to the CGCP formulation, i.e., we only separate

rank-1 lift-and-project cuts. All CGCPs are solved with Gurobi, which we found to be more robust

here. We use the barrier algorithm with a single thread, no presolve, and we disable the computation

of dual variables by setting the QCPDual parameter to 0.

We implement a simple procedure to identify implied-integer variables. If a variable y appears in

a constraint of the form aTx ± y = b, where b ∈ Z, all coefficients of a are integers, and x is a vector

of integer or implied-integer variables, then y is an implied-integer variable. This step is repeated
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until no additional implied-integer variable is detected. Then, when generating cuts, the coefficients

of implied-integer variables can be strengthened using the technique of Section 6.2.

Since we use an outer-approximation algorithm, we do not include the trivial normalization in our

experiments. The α normalization is formulated using the `2 norm. For the polar normalization, we

take γ = x∗−x̄, where x∗ is the analytic center of C, obtained from solving (CP ) with zero objective by

an interior-point method. Finally, for the standard and uniform normalization, and the computation

of η̄ in Equation (42), we set ρ = (ρ1, ..., ρN ), where

ρi =

 1 if Ki = R+

−1 if Ki = R−
(1, 0, 0) if Ki = L3

,

and, since we only consider split cuts, we take σ1 = σ2 = 1.

7.3 Gap closed

Tables 7 and 8 report the performance of each approach after 10 and 200 rounds of cuts, respectively.

For each normalization (Alpha, Polar, Standard, Uniform) and the baseline (CPLEX), we report the

geometric mean of the percent gap closed (Gap), and of the computing time (CPU), in seconds. The

percent gap closed is measured as

Gap = 100× Z∗ − ZCP
ZMICP − ZCP

,

where ZCP , ZMICP , Z
∗ are the optimal value of the continuous relaxation, the objective value of the

best known integer solution, and the current lower bound after adding cuts, respectively. All geometric

means are computed with a shift of 1.

Recall that, in our approach, each round may include the separation of K∗ cuts to refine the current

outer approximation while, to the best of our knowledge, a CPLEX pass does not. In addition, total

computing times include the time of building the CGCP, which typically represent 30 to 40% of total

time, and up to 90% for uflquad instances. These large building times are in part due to limitations

of the Gurobi Julia wrapper, and could be significantly reduced by using a lower-level interface. Thus,

direct comparisons between CGCP-based approaches and the baseline should be cautious.

Table 7: Gap closed and computing time – 10 rounds.

CPLEX Alpha Polar Standard Uniform

Group Gap CPU Gap CPU Gap CPU Gap CPU Gap CPU

clay 2.13 1.0 0.00 12.0 0.00 4.4 5.69 6.0 2.92 5.7
flay 0.32 0.3 0.45 3.7 1.50 2.1 0.88 2.1 2.40 1.7
slay 3.67 2.4 0.65 23.2 0.15 8.8 15.81 11.2 10.57 8.7
fmo 6.42 0.7 0.00 11.7 0.00 5.2 25.31 5.6 25.59 4.6
sssd 45.07 0.9 36.49 12.3 0.00 6.6 93.44 5.3 96.47 7.9
tls 8.13 0.5 2.56 2.6 20.57 1.9 8.47 1.4 13.36 1.5
uflquad 0.46 56.8 0.00 1307.9 12.50 1568.7 18.61 1769.8 18.98 1721.5

All 5.24 1.5 1.02 16.9 0.46 8.5 17.97 9.2 17.27 8.6

First, overall, with the exception of the tls and uflquad instances, the polar normalization per-

forms the worst, with 0.46% and 0.71% gap closed after up to 10 and 200 rounds, respectively. This

poor performance is primarily caused by premature termination of the cut generation procedure: in

numerous cases, the CGCP is unbounded, no solution is available, and no cut is generated.

Second, the α normalization is the slowest on average, with computing times that are typically 2

to 3 times higher than other approaches. This behavior results from the CGCP (27) being more

computationally intensive than for alternative normalizations. Indeed, the normalization (27e) is non-

linear and, as highlighted in Section 4.1, the CGCP (27) may not be solvable, then causing slow
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Table 8: Gap closed and computing time – 200 rounds

CPLEX Alpha Polar Standard Uniform

Group Gap CPU Gap CPU Gap CPU Gap CPU Gap CPU

clay 24.48 32.3 0.00 251.4 0.00 6.2 22.67 184.9 22.72 165.7
flay 6.42 1.0 2.62 50.1 8.59 8.6 6.65 23.0 41.25 19.1
slay 24.70 9.7 16.75 490.2 0.20 19.6 83.44 196.2 84.85 87.7
fmo 25.89 10.5 0.00 243.0 0.00 21.7 26.00 68.1 26.01 46.7
sssd 95.88 4.1 95.65 284.4 0.00 8.3 99.43 14.9 99.46 17.8
tls 41.47 12.8 3.07 19.9 20.96 7.1 31.90 13.0 34.76 14.5
uflquad 5.39 475.0 0.00 1307.9 16.22 3940.6 23.15 4178.0 23.81 4140.0

All 24.79 11.9 2.59 256.9 0.71 21.9 32.67 85.0 39.13 65.5

convergence and more interior-point iterations. The α normalization also performs second-worst with

respect to gap closed, with 1.02% and 2.59% gap closed after 10 and 200 rounds, respectively.

Third, the standard and uniform normalizations display similar performance, with the exception

of flay instances, for which the uniform normalization closes significantly more gap than all other

approaches. While both normalizations close similar gaps, namely, 17.97% and 17.27% after 10 rounds,

and 32.67% and 39.13% after 200 rounds, the uniform normalization is slightly faster overall, taking an

average 65.5s to complete up to 200 rounds, against 85.0s for the standard normalization. Furthermore,

no numerical issues were recorded for either normalization, thereby demonstrating the benefits of

ensuring strong feasibility of both the CGCP and the MCP.

Fourth and last, the standard and uniform normalizations are competitive with CPLEX in terms

of gap closed. Both normalizations close more gap than CPLEX after 200 rounds, mainly on slay

and uflquad instances, as well as flay instances for the uniform normalization. In particular, they

close over three times more gap than CPLEX in the first 10 rounds. Despite the limited validity of

the comparison, this behavior is encouraging, since closing more gap early is a desirable feature in

practice.

Next, Figures 7, 8 and 9 illustrate the progression of the gap closed for instances flay02m,

sssd-weak-15-4 and tls4, respectively. Each figure displays, for each normalization and the baseline,

the percent gap closed as a function of the number of rounds, and of computing time. Again, recall

that a direct comparison between our approach and CPLEX is not meaningful on a per-round basis,

thus, we focus on overall trends.

Overall, Figures 7, 8 and 9 corroborate the previous observations from Tables 7 and 8: the α

normalization is the slowest, while the standard and uniform normalizations display similar progressions

and allow to close more gap than CPLEX in the first few rounds. We also observe in Figure 7 and

Figure 9 that, when the polar normalization does not run into numerical issues, it can outperform

other approaches for the most gap closed in the first few rounds of cuts.

Furthermore, when comparing the gap closed with respect to time, we observe that the CGCP-

based separation procedure is competitive with CPLEX. This is most striking for instance flay02m,

where all four normalizations outperform CPLEX. Note that CPLEX terminates after applying only

15 rounds of cuts, most likely due to internal work limits. For instances sssd-weak-15-4 and tls4,

the standard and uniform normalizations are initially on-par with CPLEX, while the α normalization

is the slowest.

7.4 Cut sparsity

We now study, for each normalization, the characteristics of the cuts obtained from solving the CGCP.

Relevant statistics are reported after 10 and 200 rounds, in Table 9 and Table 10, respectively. For

each normalization, we report the geometric mean of the total number of disaggregated K∗ cuts (K∗)
and of lift-and-project cuts (L&P). We also report the geometric mean of the density of lift-and-project

cuts (%nz), measured as the percentage of non-zero coefficients per cut; the density of K∗ cuts is not

reported because they are always disaggregated. Here, K∗ cuts refer specifically to cuts obtained from
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the CGCP that were identified as K∗ cuts, i.e., we do not consider those added in the refinement

steps. For example, the first row of Table 9 indicates that, for clay instances and after 10 rounds,

the CGCP with standard normalization yielded an average of 348.8 disaggregated K∗ cuts, and 67.8

lift-and-project cuts with an average density of 2.5%.

Table 9: Cut statistics – 10 rounds.

Alpha Polar Standard Uniform

Group K∗ L&P %nz K∗ L&P %nz K∗ L&P %nz K∗ L&P %nz

clay 0.0 134.8 44.9 0.0 0.6 4.7 348.8 67.8 2.5 39.9 92.2 1.4
flay 0.0 118.7 27.6 0.0 15.2 4.3 11.9 106.9 3.6 6.9 115.1 2.3
slay 0.0 267.0 27.1 0.0 21.9 6.4 39.1 183.3 1.9 8.6 205.7 1.3
fmo 31.0 244.6 35.5 5.9 12.9 8.8 96.6 235.7 1.7 63.1 229.8 1.3
sssd 0.0 282.1 16.5 0.0 45.2 8.0 164.5 127.8 7.4 131.2 147.3 8.0
tls 362.1 123.7 13.3 93.1 112.5 5.8 90.9 84.1 7.2 36.1 104.2 7.0
uflquad 0.0 41.3 34.0 0.0 121.8 1.3 210.6 51.4 0.5 150.1 63.3 0.5

All 3.3 188.4 29.7 1.3 16.6 6.2 93.9 143.2 2.5 44.1 157.1 1.9

Figure 7: Instance flay02m: gap closed per round (top) and time (bottom)
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Figure 8: Instance sssd-weak-15-4: gap closed per round (top) and time (bottom). The polar normalization was
terminated after two rounds.

Table 10: Cut statistics – 200 rounds.

Alpha Polar Standard Uniform

Group K∗ L&P %nz K∗ L&P %nz K∗ L&P %nz K∗ L&P %nz

clay 0.0 2568.8 44.9 0.0 0.8 4.6 6366.4 1237.9 3.8 3003.0 2880.2 2.1
flay 0.0 1950.7 24.4 0.0 77.1 5.0 382.7 1511.9 4.1 193.4 1479.9 3.2
slay 0.4 5486.4 21.6 0.0 43.9 6.5 2939.0 2309.1 5.6 470.8 1760.1 4.6
fmo 1158.0 5059.3 33.9 39.6 59.9 9.1 458.2 2491.2 4.1 296.4 2062.4 3.3
sssd 0.0 5821.0 10.4 0.0 57.1 8.2 342.2 429.0 14.2 222.4 362.3 12.6
tls 2006.4 742.2 13.7 300.2 359.4 6.3 550.3 576.3 8.1 415.7 796.2 8.1
uflquad 0.0 41.3 34.0 0.0 285.3 1.2 410.3 129.4 0.4 344.2 153.1 0.3

All 17.6 2894.3 26.1 3.7 44.7 6.4 756.7 1256.5 4.7 388.5 1232.3 3.7

First, very few cuts are obtained with the polar normalization, with the exception of tls and

uflquad instances. As mentioned earlier, this is the result of premature termination of the cut gener-

ation due to numerical issues in the CGCP. Nevertheless, the obtained cuts are relatively sparse, with

only 6.2% and 6.4% non-zeros after 10 and 200 rounds, respectively.

Second, with the exception of sssd instances, the α normalization always yields denser cuts than

other normalizations, with an average of 29.7% and 26.1% non-zeros coefficients after 10 and 200

rounds, respectively. Denser cuts have an adverse effect on performance, as they slow down the
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Figure 9: Instance tls4: gap closed per round (top) and time (bottom)

resolution of the current linear relaxation, and are more prone to numerical errors. Overall, few K∗
cuts are obtained, except for fmo and tls instances.

Third, fewer K∗ cuts are obtained with the uniform normalization than with the standard normal-

ization, which is not surprising given the remarks in Section 5. Furthermore, cuts obtained with the

uniform normalization are slightly sparser, with 1.9% and 3.7% non-zero coefficients after 10 and 200

rounds for the uniform normalization, compared to 2.5% and 4.7% for the standard normalization.

Interestingly, the average cut density after 200 rounds is almost twice as large as after 10 rounds,

indicating that cuts become denser in the later rounds.

8 Conclusion

Motivated by the impact of the disjunctive framework in MILP and the recent success of conic formula-

tions for MI-CONV, we have investigated the computational aspects of disjunctive cuts in MI-CONIC.

Building on conic duality, we have extended Balas’ cut-generating linear program into a cut-generating

conic program, and studied the fundamental role of the normalization condition in its resolution. In

doing so, we have answered several relevant questions, especially from the numerical standpoint, left

open by previous developments in the area, and have raised new ones.
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8.1 What we have learned...

From a theoretical standpoint, we have shown that the normalization condition in the CGCP impacts

not only the theoretical properties of the obtained cuts, but also whether the CGCP is solvable in the

first place. The latter has direct consequences for the numerical robustness of the CGCP resolution. In

particular, we have introduced conic normalizations that guarantee conic strong duality, without any

assumptions on the well-posedness of the considered disjunctions. Furthermore, we have identified the

risk of generating K∗ cuts when separating conic-infeasible points, and suggested several strategies to

alleviate it. Finally, we have proposed extensions of lifting and cut strengthening to the conic setting,

which may provide further computational benefits.

From a computational standpoint, we have investigated the practical behavior of several normal-

ization conditions, on a diverse set of instances. These experiments indicate that our CGCP-based cut

separation is competitive with a state-of-the-art MI-CONIC solver, being able to close more gap in the

early stages. In particular, the numerical robustness of the standard and uniform normalization trans-

lates in faster separation and more gap closed. Finally, carefully managing the outer approximation,

so as to avoid large violations of conic constraints, appears critical to the cut generation performance.

8.2 ... and what lies ahead

Several theoretical questions are left open. First, while we only consider linear cutting planes, whether

conic cuts can be separated efficiently in the general case, and how to best integrate them within

existing MI-CONIC algorithms, remains an open question. Second, dominance relations between valid

inequalities were introduced in, e.g, [32, 34]. Characterizing optimal solutions of the normalized CGCP

in that perspective may offer further insight on the importance of normalization. Third, a unifying

framework that generalizes monoidal strengthening to the MI-CONIC setting could further improve the

practical effectiveness of disjunctive cuts. Recent developments in duality theory and cut-generating

functions for MI-CONIC could offer the tools for doing so.

Computational experience with cuts in MI-CONIC remains scarce, and further research in that

direction is needed. Decades of experience in MILP indicate that classes of disjunctive cuts with

fast separation rules, e.g., Gomory Mixed-Integer cuts and Mixed-Integer Rounding cuts, yield the

greatest computational benefits. Similar strategies for MI-CONIC would undoubtedly be beneficial.

In a similar fashion, Fischetti et al. [23] have shown that scaling impacts the cuts yielded by the

CGLP with standard normalization: there is no indication that MI-CONIC should be any different.

Finally, the CGCP form allows to experiment with a number of algorithmic techniques for separating

disjunctive cuts, whose practical effectiveness will most likely be problem-specific.
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