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Abstract: This paper studies disjunctive cutting planes in Mixed-Integer Conic Programming. Build-
ing on conic duality, we formulate a cut-generating conic program for separating disjunctive cuts, and
investigate the impact of the normalization condition on its resolution. In particular, we show that a
careful selection of normalization guarantees its solvability and conic strong duality. Then, we high-
light the shortcomings of separating conic-infeasible points in an outer-approximation context, and
propose conic extensions to the classical lifting and monoidal strengthening procedures. Finally, we
assess the computational behavior of various normalization conditions in terms of gap closed, comput-
ing time and cut sparsity. In the process, we show that our approach is competitive with the internal
lift-and-project cuts of a state-of-the-art solver.
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and a Mitacs Globalink research award. We thank Pierre Bonami, Andrea Tramontani and Sven Wiese
for several helpful discussions on the topic.
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1 Introduction

Mixed-Integer Convex Optimization (MI-CONV) is a fundamental class of Mixed-Integer Non-Linear
Optimization problems with applications such as risk management, non-linear physics (e.g., power
systems and chemical engineering) and logistics, just to mention a few. Because of such a relevance,
classical algorithms for Mixed-Integer Linear Optimization (MILP) have been successfully extended to
MI-CONV, like Branch and Bound [14] or Benders decomposition [26]; others like the Outer Approx-
imation scheme [22] have been designed specifically for MI-CONV. In addition, several software tools
are available for solving general MI-CONV problems, see, e.g., the recent comparison in [35]. Finally,
some specific classes of MI-CONV problems, like Mixed-Integer (Convex) Quadratically Constrained
Quadratic Optimization (MIQCQP) problems are now supported by the major commercial solvers.

Conic optimization is viewed as a more numerically stable and tractable alternative to general
convex optimization [11]. Both classes are equivalent: conic optimization problems are convex, and
any convex optimization problem can be written as a conic optimization problem [34]. Modeling
tools such as disciplined convex optimization [27] can provide conic formulations for most —if not all-
convex optimization problems that arise in practice [44]. In particular, [39] recently showed that all
convex instances in MINLPLib can be formulated as Mixed-Integer Conic Optimization (MI-CONIC)
problems using only a handful of cones.

Nevertheless, the intrinsic difference between convex and conic optimization lies in a problem’s
algebraic description: in the former, constraints are formulated as f(z) < 0, where f is a convex
function, whereas, in the latter, they are expressed using conic inequalities of the form Az — b € K,
where A is a matrix, b is a vector and K is a cone (see [11] and Section 2). In particular, conic
formulations enable the use of conic duality theory, which underlies a number of theoretical insights
and practical tools. Major commercial solvers have supported Mixed-Integer Second Order Cone
Programming (MISOCP) for some time, and more general MI-CONIC problems are now supported
by a number of solvers, e.g., Mosek and Pajarito [19, 38, 39].

This paper builds on two specific aspects that we consider fundamental for solving MI-CONV
problems. First, given that cutting planes are instrumental to solving MILP, a number of authors
have looked at various approaches to compute cuts for MI-CONV problems and, nowadays, linear
cutting planes are part of the arsenal of some MI-CONYV solvers. Despite this (partial) success, some
fundamental questions in this area are left unanswered. Second, recent experience has shown that conic
formulations of MI-CONYV problems display enviable properties that make them preferable, from the
solving viewpoint, to generic MI-CONV formulations [19, 39].

In that context, motivated by the success of disjunctive cuts in MILP, the paper focuses on com-
putational aspects of disjunctive cuts for MI-CONIC problems. In addition, we answer the (somehow)
natural question of what one can gain in terms of cutting planes by using a problem’s conic structure,
as well as several questions left open by previous works on the topic. In the remainder of this section,
we review the literature on the subject and outline our main contributions.

1.1 Disjunctive cuts: the MILP case

Disjunctive cuts in MILP date back to Balas’ seminal work on disjunctive programming [4] in the 70s,
and became widely popular as their integration into branch-and-cut frameworks [5, 6] proved effective.
Remarkably, disjunctive cuts, split cuts in particular, encompass several classes of cutting planes, e.g.,
Chvatal-Gomory, Gomory Mixed-Integer and Mixed-Integer Rounding cuts.

A general approach for separating disjunctive cuts in MILP is the so-called Cut-Generating Linear
Program (CGLP) proposed by Balas [4, 5]. The CGLP leverages a characterization of valid inequalities
for disjunctive sets using Farkas multipliers, see Theorem 3.1 in [4]. Thus, it is formulated in a higher-
dimensional space, whose size is proportional to the number of disjunctive terms: for split cuts, which
are two-term disjunctions, the CGLP is roughly double the size of the original problem.
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Computational aspects of the CGLP have been studied extensively, some of which we mention
here. Given a fractional point Z to separate, one can project the CGLP onto the support of Z,
thereby reducing its size, and recover a valid cut by lifting [5, 6]. Split cuts obtained from solving the
CGLP can be improved upon using monoidal strengthening [6, 7]. The normalization condition in the
CGLP has been shown to have a major impact on the quality of the obtained cuts, and on overall
performance [13, 16, 20, 23, 47]. In particular, Balas and Perregard [9], and later Bonami [13], show
that, in the case of split disjunctions, the CGLP can in fact be solved in the space of orignal variables
only, yielding substantial computational gains. Recent developments include the efficient separation
of cuts from multiple disjunctions [30, 45].

1.2 Disjunctive cuts: the MI-CONV case

The work on disjunctive cutting planes for MI-CONV (re)started already in the late 90s with two
fundamental contributions [17, 48]. More precisely, Ceria and Soares [17] show that disjunctive convex
problems can be formulated as a single convex problem in a higher dimensional space, and hint that
this could serve to generate cutting planes using sub-gradient information at the optimum. Around the
same time, Stubbs and Mehrotra [48] make the separation of disjunctive cuts for MI-CONV explicit
by (i) solving one Non-Linear Programming (NLP) problem, and (%) identifying a sub-gradient that
yields a violated cut. The latter is done by taking a gradient (under regularity assumptions), or by
solving a linear system (under the assumption that the objective function of the former problem is
polyhedral). Those assumptions and the use of perspective functions lead to differentiability issues
that made the results of the computational investigation in [48] numerically disappointing (according
to the authors themselves).

The numerical difficulties encountered in [48] have slowed down the development of the area for a
number of years —with the exception of [52]— until the renewed interest and the practical approaches of
the last decade [12, 31]. More precisely, Kilinc et al. [31] note that “A simple strategy for generating
lift-and-project cuts for a MINLP problem is to solve a CGLP [...] based on a given polyhedral outer
approximation of the relazed feasible region [...]. The key question to be answered [...] is which points
to use to define the polyhedral relazation.” (from [31], Sec. 3).

The distinction in how to answer the above question is the difference between [52], [12], and [31].
Namely, Zhu and Kuno [52] build an outer-approximation through the current fractional solution,
and derive a cut by solving the associated CGLP. However, this approach is not guaranteed to find a
violated cut if one exists, see Example 1 in [31]. Bonami [12] solves one auxiliary NLP, and uses the
solution to get an outer approximation that provably yields a violated cut if any exists. Instead, Kilinc
et al. [31] iteratively refine an outer approximation by solving a sequence of LPs until a violated cut,
if any, is separated by solving the associated CGLP.

In a recent paper, Kronqvist and Misener [36] present a disjunctive-based cut-strengthening tech-
nique for MI-CONV. Given an initial valid inequality, and an “exclusive” selection constraint (i.e.,
x1 + ...+ 2, =1, 2 € {0,1}F), the procedure solves k convex problems to tighten the cut’s right-hand
side and the coefficients of the k binary variables. This approach relates to the generalized disjunctive
programming framework [49], for which cutting-plane algorithms based on [48] have been proposed,
see, e.g., [50].

The outer approximation approaches in [12, 31] are, to the best of our knowledge, the state of
the art for the implementation of disjunctive cuts for MI-CONV and, especially, for MIQCQPs, see
e.g., their implementation in CPLEX starting from version 12.6.2. However, despite the impressive
practical improvements with respect to the early attempts [48], questions were left on the table, which
we answer in the present paper.
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1.3 Disjunctive cuts: the MI-CONIC case

Following the support of MISOCP problems by major commercial solvers in the 2000s (MISOCP
support appeared in CPLEX 9.0 and in Gurobi 5.0), the last decade has seen a flourishing literature
on cuts for MI-CONIC problems.

A large share of these works focus on cuts for MISOCP, or, equivalently, for convex MIQCQP prob-
lems. Atamturk and Narayanan [2] introduce conic Mixed-Integer Rounding (MIR) cuts for MISOCP
problems. Modaresi et al later show in [40, 41] that conic MIR cuts are in fact linear split cuts in
an extended space, and compare the strength of families of conic MIR cuts to that of non-linear split
cuts. In a related work, Andersen and Jensen [1] study intersection cuts in the MISOCP context, and
obtain a closed-form formula for the conic quadratic intersection cut. Belotti et al. [10] study the
intersection of a convex set and a two-term disjunction. They show that the convex hull is described
by a single conic inequality, for which an explicit formula is derived in the conic quadratic case. In
a similar fashion, two-term disjunctions on the second-order cone are investigated in [33], and this
approach is later extended in [51].

More general approaches, i.e., not restricted to convex quadratic constraints, include [3, 18, 21, 34,
42]. In [18], the authors study classes of cutting planes in the MI-CONIC setting, including Chvatal-
Gomory cuts and lift-and-project cuts, and report limited experiments on mixed 0-1 semi-definite
programming instances. A generic lifting procedure for conic cuts is described in [3]. Dadush et al. [21]
show that the split closure of a strictly convex body is defined by a finite number of disjunction, but
is not necessarily polyhedral. Minimal valid inequalities are introduced in [34], and are shown to
be sufficient to describe the convex hull of a disjunctive conic set. The lack of tractable algebraic
representation for minimal inequalities then leads the author to consider the broader class of sublinear
inequalities, which are further studied in [32]. Finally, intersection cuts for non-polyhedral sets and
certain classes of disjunctions are studied in [42].

Nevertheless, for the most part, these works remain theoretical contributions. Indeed, with the
exception of [2, 18, 40], no computational results were reported for any of these techniques and, to the
best of our knowledge, none has been implemented in optimization solvers. In fact, neither Mosek nor
Gurobi! generate cuts from non-linear information.

1.4 Contribution and outline

In this paper, we study linear disjunctive cutting planes for MI-CONIC problems. Our objective is
to derive practical and numerically robust tools for the separation of those cuts, and we show that
conic formulations allow us to achieve it. Specifically, we do so by extending Balas’ CGLP into a
Cut-Generating Conic Program (CGCP) (see also [18]). Our contributions are:

1. We study the role of the normalization condition in the CGCP, and propose conic normalizations
that guarantee strong duality. In doing so, we answer some concerns that were raised in previous
works. Namely,

e With respect to [12, 18, 36], we can select the right normalization to overcome issues asso-
ciated with potential lack of constraint qualification.

e With respect to [31, 36], since we use conic formulations, we do not need (i) to pay attention
at avoiding generating linearization cuts at points outside the domain where the non-linear
functions are known to be convex, (ii) to deal with non-differentiable functions, and (i)
boundedness assumptions on the value of the constraints and their gradients.

2. We draw attention to some limitations of separating conic-infeasible points in an outer-
approximation context, and propose algorithmic strategies to alleviate them.

3. We introduce conic extensions of the lifting procedure for disjunctive cuts, and of monoidal
strengthening for split cuts.

1Personal communication with Gurobi and Mosek developers.
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4. We provide computational results on the effectiveness of the proposed approach, thereby show-
ing the benefits of the conic representation, and compare the practical effectiveness of several
normalization conditions.

5. We make our implementation available? under an open-source license.

The remainder of the paper is structured as follows. In Section 2, we introduce some required
notation and background material on conic optimization, and state a number of theoretical results on
the characterization of valid inequalities for conic and disjunctive conic sets. Section 3 formalizes the
CGCP and its dual, and the theoretical properties of several normalization conditions for the CGCP
are discussed in Section 4. The separation of conic-infeasible points is further investigated in Section 5,
while classical lifting and strengthening techniques from MILP are extended to the conic setting in
Section 6. In Section 7, we analyze the practical behavior of different normalizations, and show that
our approach is competitive with CPLEX internal lift-and-project cuts. Some concluding remarks are
presented in Section 8.

2 Background

In this section, we introduce some notations, and recall a number of results that are needed for our
approach. We refer to [46] for a thorough overview of convex analysis, and to [11] and [4] for results
on conic optimization and disjunctive programming, respectively.

For X C R™, we denote by int(X), (X), cl(X), and conv(X) the interior, boundary, closure, and
convez hull of X, respectively. The Minkowski sum of X', ) C R"™ is defined by

X+Y={z+y|lzeX yecl}.

If || - || is @ norm on R™, its dual norm || - ||« is defined by
¥y €R", Jlyll. =sup {y"= | [l <1}. (1)
In all that follows, || - ||2 denotes the Euclidean norm on R™. Finally, we denote by e a vector of all

ones, and by e; a vector whose j*" coordinate is 1 and all others are 0; the dimension of e and e; is
always obvious from context.

2.1 Cones and conic duality

The set K CR” is a cone if V(z,\) € K x Ry, Az € K, and it is irreducible if it cannot be written as
a cartesian product of irreducible cones. The dual cone of K C R™ is

lC*z{ueR"’uTxEO,Va:EIC}, (2)

and K is self-dual if K =K*. A cone K CR" is pointed if KN (=K) = {0}, i.e., if it does not contain
a line that passes through the origin. Proper cones are closed, convex, pointed cones with non-empty
interior. If KC is a proper cone, then K* is also a proper cone, and any p € int K induces a norm on
K*, denoted by ||, and defined by

lul, = plu, Yue€ K" (3)

Examples of proper cones include the non-negative orthant

R} ={z e R" | 2 > 0},

20ur code is released at https://github.com/mtanneau/CLaP
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the second-order cone (SOC)

En:{xeR"

x> \/:153—1-...—1—952}7

the positive semi-definite (PSD) cone
St ={X eR”™ | X = X" Apin(X) >0},
where Apin (X) is the smallest eigenvalue of X, and the exponential cone
E=c{(z,y,2) ER® | wexp(z/y) < z,y > 0}.
The non-negative orthant, SOC and SDP cone are also self-dual, while the exponential cone is not.

A proper cone K induces a partial (resp. strict partial) ordering on R™, denoted =, (resp. >x)
and defined by

V(z,y) eR" X R", s =y sz —y ek, (4)
Y(z,y) €ER" xR", z =y &z —y € int(K). (5)

In all that follows, we refer to Az > b (resp. Ax =k b) as a conic (resp. strict conic) inequality.
Consider the system

Az > b, (6)

where A € R™*" and K = K1 X ... x Ky with K; € R™:; correspondingly, for y € R™, we write
y = (y1,-..,yn). We follow the terminology of [25], and say that system (6) is feasible if there exists
x € R™ such that Az — b € K, and strongly feasible if there exists x € R™ such that Az — b € K and
(Axz —b); € int(K;) for all non-polyhedral cones K;, i.e., such that all non-polyhedral conic inequalities
are strictly satisfied. Similarly, system (6) is infeasible if it does not admit any feasible solution, and
strongly infeasible if, in addition, there exists y € K* such that ATy = 0 and b”y > 0. Furthermore, we
say that system (6) is weakly feasible if it is feasible but not strongly feasible, and weakly infeasible if
it is infeasible but not strongly infeasible. Finally, a system is well-posed if it is either strongly feasible
or strongly infeasible, and ill-posed otherwise.

Let us emphasize that well-posedness is an algebraic property, i.e., it is not associated to a geometric
set but to its algebraic representation through conic inequalities. For instance, for n > 3, both
0 iRi T tRi 0 and 0 =, « >, 0 describe the same set {0}, however, the former is well-posed and
the latter is not. Nevertheless, for brevity, we will refer to the well-posedness of a set X', only if there
no ambiguity in its description with conic inequalities.

A conic optimization problem writes, in standard form,

(P) min 'z (7a)
sit. Az =b, (7b)
r €K, (7c)

where A € R™*" b € R™, and K is a cone. The strong/weak (in)feasibility and well-posedness
of (P) refers to that of the system (Az = b,z € K). The optimal value of (P) is opt(P) =
inf {c"x | Az = b,z € K}, and we say that (P) is bounded if opt(P) € R and solvable if, in addi-
tion, there exists a feasible solution z* such that ¢”2* = opt(P). The dual of (P) is

(D) max by (8a)
Y,s

st. Aly4+s=c, (8b)

s e K, (8¢c)

and opt(D) = sup {bTy | ATy4+s=c¢,s€ IC*}. In particular, (D) is also a conic optimization problem.
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Theorem 1 (Conic duality theorem)

1. [Weak duality] opt(D) < opt(P).

2. [Strong duality] If (P) (resp. (D)) is strongly feasible and bounded, then (D) (resp. (P)) is
solvable and opt(P) = opt(D).
If both (P) and (D) are strongly feasible, then both are solvable with same optimal value.

Proof. See Theorem 1.4.4 in [11]. O

Conic duality extends the classical duality for linear programming, albeit with a number of edge
cases that lead to practical difficulties. For instance, there may exist a positive duality gap even though
both (P) and (D) are solvable, as illustrated in Example 1.

Example 1 (Example 8.6, [44]) Consider the primal-dual pair

(P) min w3 (D) max —yo
T1,T2,T3 Y1,Y2
st. my > 1y, st (y1, —y1, 1 —y2) € L3,
T3 > —1, y1,y2 = 0.

(.’E1,$27ZL’3) S 'CS)

Primal-feasible solutions are of the form (x1,x1,0), while dual-feasible solutions are of the form (y1,1).
Thus, opt(P) =0 and opt(D) = —1 < opt(P).

2.2 Valid inequalities
For (o, 3) € R™ x R, we say that o’z > 3 is a valid inequality for X C R™ if
XQ{J;G]R" | ozTacZB},

and a supporting hyperplane if, in addition, 3% € clconv X : aT# = 5. The set of valid inequalities for
X is denoted by X# i.e.,

X# ={(a,8) ER"XR |Vz € X, o'z > B}. (9)
Note that X# is a closed, convex set, and that
{z eR" | ¥(a, B) € x# o'z > B} = cleonv(X). (10)
Furthermore, for X', C R™, we have
XCY=Y¥cat

(XUY)* =x#ny#,

We now focus on the case where &’ is described by conic inequalities, and seek an algebraic de-
scription of X# using a finite number of conic inequalities. Note that, although X# is described by
an infinite number of linear inequalities, as per Equation (9), this semi-infinite representation is not
computationally tractable.

Theorem 2 (Conic theorem on alternatives) Consider the conic system
Az = b, (11)

where A € R™*™ has full column rank and K is a proper cone.
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1. If there exists y € R™ such that
ATy =0,bTy >0,y € K*, (12)

then (11) has no solution.

2. If (12) has no solution, then (11) is almost solvable, i.e., for any € > 0, there exists beR™ such
that ||b —b||2 < € and the system Az >k b is solvable.

3. (12) is solvable if and only if (11) is not almost solvable.

Proof. See Proposition 1.4.2 in [11].

Theorem 3 (Valid inequalities) Let C = {x | Az =, b} with A of full column rank, and define
F={(a,B) | uek*: (a=ATu,B<b"u)}.
Then, cl F C C# and, in addition,

1. if C# 0, then cl F = C#;
2. if C is well-posed, then F = C*#.

Proof. The inclusion F C C# is immediate from the definition of K*, and it follows that cl(F) C
cl(C#) = C#. Case 2 is a direct consequence of conic strong duality.
We now prove 1. Assume C # 0, let (o, 3) € C*#, and consider the systems
ATw =, bTu> B, ue Kk (13)
Az = th, oTx < tB3, t > 0. (14)

By Theorem 2, either (13) is almost solvable, or (14) is solvable. Let us prove that the latter does not
hold.

Let (z,t) be a solution to (14). On the one hand, if t > 0, letting z = ¢!z, we have AZ = b,
i.e., T € C, but a¥# < 8, which contradicts (a, 3) € C*. On the other hand, if ¢ = 0, then we have
Az >, 0 and a2 < 0. Thus, for 2y € C and 7 > 0, we have

A(xo + 7)) = b,

i.e., (zg + 72) € C. Furthermore, we have ol (zg + 72) < 8 for large enough 7, which also contradicts
(o, B) € C#. Therefore, (14) is not solvable and (13) is almost solvable.

Thus, for any € > 0, there exists a., B and u. € K* such that and
o —aclla <€ [[B— B2 <e
and
ac=ATu,, B <blu,
ie., (ac,B:) € F. Taking e — 0, we obtain that (a, 8) € cl F.
O

We will refer to the multiplier © € K£* in Theorem 3 as a (conic) Farkas multiplier, and we say that
aTz > B is obtained by Farkas aggregation if « = ATu and 8 < b u for some u € K*.

Theorem 3 highlights a fundamental difference between the linear and non-linear settings. In the
linear case, F is polyhedral, thus, it is always closed and, if C is non-empty, then all valid inequalities
for C can be obtained by Farkas aggregation. In the conic setting, however, this property may no longer
hold, i.e., there may exist valid inequalities that cannot be represented through Farkas aggregation.
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Example 2 Let C = {z | Az >k 0} where
1 0
A=(0 1], K=~Ls,
1 0

ice., C = {(z,y) € R? ’ (z,y,2) € L3}. While A has full column rank and K is proper, the system
Az = 0 is not well-posed. It then is easy to verify that C = {(x,0) | x > 0}, and that y > 0 is a valid
inequality for C.

However, for any u € K* = L3, we have

ATy — Uy + us
U ’
and w1 + uz > 0 unless uy = 0. Therefore, the system ATu = (0,1),u € K* has no solution, i.e., the

valid inequality y > 0 cannot be obtained by Farkas aggregation.

Nevertheless, for t > 0, let uy = (V12 + 1, —t, 1), which yields the valid inequality (Vt*> + 1 —t)x +
y > 0. Then, as t — +oo, the term (V1?2 + 1 —t) becomes negligible and the inequality becomes, in the
limit, y > 0.

2.3 Disjunctive inequalities

We now consider disjunctive conic sets, i.e., sets of the form

H
D= {JJ e R" \/ Dyx =q, dh} (15)
h=1
H
= J {z eR" | Dy =q, dn}, (16)
h=1

where H € Z, and, Yh, Dy € R™»*" and Q) is a proper cone. We refer to conv D as the disjunctive
hull and, for (o, 8) € D#, we say that a2 > B is a disjunctive inequality.

We focus on disjunctive conic sets and, again, we seek a tractable algebraic characterization of valid
inequalities for such sets. We begin by stating an extension to the conic setting of Balas’ representation
of the convex hull of a union of polyhedra [4].

Theorem 4 (Characterization of the convex hull) Let

H
D= U {x € R" | Dypx =g, dp},
h=1

Dp,

where, Yh, Dy € R™*"™ and Q;, is a proper cone, and let

Zh yh =z,
Dnyn =0, #ndn, Vh,

S=qxeR" | Iy1,..s Y, 21, s 2H) : 2n >0, Vh,
Zh Zh = 1, Vh,
yn € R™, Vh

Then conv(D) C S and, in addition,

1. if Vh, Dy, # 0, then S C clconv(D);
2. if Vh,Dp = Xp + W, where Xy, ..., Xy are non-empty, closed, bounded, convex sets and W is a
closed convex set, then

conv(D) = S = clconv(D).
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Proof. See Proposition 2.3.5 in [11].
O

Next, building on Farkas multipliers and the result of Theorem 3, we can extend Balas’ character-
ization of valid disjunctive inequalities (Theorem 3.1 in [4]) to the conic setting.

Theorem 5 (Disjunctive inequalities) Let

H
D= U {z € R" | Dypx =g, dn},
h=1

Dp,

where, Yh, Dy, € R™*™ and Qy, is a proper cone, and

H
F=[){(a.8) eR" xR | Jup € Q}, : (o= ATy, B < b up)} .
h=1

Fh

Then, F C D¥# and, in addition,
1. if Vh, Dy, # 0, then D# =, cl Fy;
2. if Vh, Dy, is well-posed and Dy, has full column rank, then F = D¥.

Proof. Immediate from Theorem 3 and the fact that D# =, D,’f&.

Example 3 Let
D= {(x,y) € R2 ‘ (.’E,y7l') € ‘C3} U {((E,y) € Rz ’ (_l'vyax) € 'CB} .

Thus, D = {(z,0)|x € R}, and valid inequalities for D are of the form ty > £ for § < 0. Building
on Example 2, it follows that F = {(0,0)} x R_. Therefore, only the trivial inequality 0 > —1 can be
represented using finite Farkas multipliers for each disjunctive term.

3 Cut separation

We consider an MI-CONIC problem of the form

(MICP) min 'z (17a)
st. Ax=b (17b)

z €k, (17¢)

(17d)

z € ZP x R"P, 17d

where A € R™*" p < n, and K is a proper cone. The continuous relaxation of (MICP), denoted by
(CP), is given by (17a)—(17c). The feasible sets of (MICP) and (CP) are denoted by X and by C,
respectively.

Let £ € R™ be a point to separate. Since T is typically obtained from solving a relaxation of
(MICP), we will assume that Az = b, i.e., all linear equality constraints are satisfied. In particular,
we will not assume that Z is conic-feasible, i.e., we may have & ¢ K, for instance when an outer-
approximation algorithm is used.

Consider the disjunctive set

Az =bx e K
Dypx =g, dn |’
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where each Qj, is a proper cone, and D O X. Valid inequalities for D are referred to as disjunctive
inequalities or, equivalently, as disjunctive cuts. For (a, ) € D#, the inequality o’z > B is trivial
if (o, 8) € C#, and non-trivial otherwise. Following the terminology of [19], K* cuts are trivial
inequalities of the form u”z > 0 for w € K*. Finally, a cut is violated if a”Z < .

It is always possible, e.g., through the use of facial reduction techniques [25], to describe each Dy,
by a well-posed system of conic inequalities. In addition, one may assume, after manual inspection,
that Vh, Dy, # (). However, in a cutting-plane context, systematically performing such reductions
and verifications can quickly become intractable. Therefore, unless stated otherwise, we make no
assumption regarding the feasibility nor well-posedness of individual disjunctive terms; we will show
in Section 4 how to address such shortcomings in a systematic way.

3.1 Separation problem

Consider the cut-generating conic problem (CGCP)

(CGCP) g’nlnk Tz —p (19a)
sit. a=ATuy + A\, + Diwp, Vh, (19b)

B < bTuy + divp, Vh, (19¢)

)

('U/ha)\h;vh) eER™ x K* x QZ, Vh, (19(‘1

which naturally extends Balas’ CGLP to the conic setting, see also [18]. In particular, it is a conic
programming problem, which can be solved by, e.g., an interior-point algorithm.

First, it follows from Theorem 5 that, if (a, 3,u,\,v) is feasible for (19), then o’z > B is a
disjunctive inequality. Under the stronger assumption of Case 2. in Theorem 5, every disjunctive
inequality corresponds to a feasible solution of the CGCP. In the absence of such assumptions, however,
the exact characterization of D# stated in Theorem 5 may not hold. For instance, there may exist
disjunctive inequalities that do not correspond to any feasible solution of the CGCP; as illustrated by
Example 3, it may even be that all feasible solutions of the CGCP correspond to trivial inequalities of
the form 0 > 3 for some § < 0.

Second, the feasible set of the CGCP is an unbounded cone, which contains the origin. Thus, the
CGCP is either unbounded or bounded with objective value zero. In the former case, any unbounded
ray yields a violated cut, while in the latter, no violated cut is obtained. Note that unbounded problems
can lead to numerical issues for some interior-point algorithms. Therefore, it is common practice to
add a normalization condition to the CGCP, whose role is further investigated in Section 4.

Third, the CGCP is strongly feasible. Indeed, let u; = 0,7, € int Q;,Vh. Then, since K* has
non-empty interior, there exists & such that

a =i~ D} oy, Vh.

Finally, letting A, = @ — DIvy, € int K* and 8 < d} vy, Vh, it follows that (@, 3,a, A, %) is strongly
feasible for the CGCP.

Fourth, let (a, 8, u, A\, v) be a feasible solution of the CGCP, and let

(d,B,ﬂ7~71~)):(afATanﬁ7bTu07U7u07>"v)a (20)
where ug € R™. It is immediate to see that (&, B, i, \, ) is also feasible for the CGCP, with identical
objective value since AT = b. Therefore, without loss of generality, one of the uj; can be arbitrarily set

to zero in the formulation of the CGCP, thereby reducing its size. Furthermore, since C C {z | Az = b},
it follows that

Cﬂ{a:|aTxZB}=Cﬂ{x‘&Tx2ﬂ~}, (21)

i.e., the two inequalities are equivalent in the sense that both cut off the same portion of the continuous
relaxation.
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3.2 Membership problem

The dual problem of the CGCP is the membership conic problem (MCP)

(MCP) max 0 (22a)

Y,z

s.t. Z Yyn = T, (22b)
h

> =1, (22¢)
h

Ayn = znb, Vh, (22d)
Dhyh iQh Zhdh7 Vh, (226)
(Yn, 2n) € K x Ry, Vh, (22f)

which extends Bonami’s membership LP [15] to the conic setting.

A geometrical interpretation of the MCP is provided by Theorem 4. If all disjunctive terms are
non-empty and have identical recession cones, then (22) is feasible if and only if Z € conv(D). In the
general case, however, the exact characterization of conv D given by Theorem 4 may no longer hold,
and we can only state that, if T € conv D, then the MCP is feasible.

By weak duality, if the MCP is feasible, then the objective value of the CGCP is bounded below.
If, in addition, the MCP is strongly feasible, then both the MCP and the CGCP are solvable with
identical objective values.

4 The roles of normalization

This section focuses on the roles of the normalization condition in the CGCP. On the one hand, through
the lens of conic duality for the CGCP-MCP pair, we investigate the impact of the normalization on
the solvability of CGCP. On the other hand, by characterizing optimal solutions of the normalized
CGCP, we assess the theoretical properties of the corresponding cuts.

The following normalization conditions are considered:

(i) the a normalization: |||, <1,
(ii) the polar normalization: y"a < 1,
op S 17

(iv) the trivial normalization: ), |vs|,, <1,

Op —

)
)
(ili) the standard normalization: ), |)\h\p + |up|
)
)

(v) the uniform normalization: 3, [An|, <1,
where v € R™, p € int K and o}, € int Qp,.

Throughout this section, the strengths and shortcomings of each normalization are illustrated in a
simple setting, described in Example 4 below.

Example 4 For R > 0, consider the MICP

min  — 27 — 29 (23)
st. o= R, (24)
xr e [:3, (25)
1, X2 € Z, (26)

and the split disjunction (x1 < 0)V (x1 > 1). Thus, we have

Dlz{x€R3|x€£3,x0:R,x1§O},
Dy={zeR®|z€Ly,z=Ra >1}.
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We consider the following three cases:

(a) R > 1: Dy and Do are both strongly feasible;
(b) R=1: Dy is strongly feasible and Dy is weakly feasible;
(¢) R < 1: Dy is strongly feasible and Dy = (.
Each of these settings is illustrated in Figure 1. Finally, unless specified otherwise, T is the solution of

the continuous relazation, i.e., T = (R, %, ). All CGCPs are solved as conic problems using Mosek
9.2 with default parameters.

S

2

— —

1
l
1
l

(@) R=1.1 (b) R=1.0 () R=0.9

Figure 1: The three settings from Example 4, projected onto the o = 1 space. The domain of the continuous relaxation
is in gray, the split hull in orange, and the split disjunction is indicated in black.

4.1 o normalization

A straightforward way of bounding the CGCP is to restrict the magnitude of o. This approach was
considered in previous work on MI-CONV [17, 31, 48], wherein authors considered restricting the {1,
f+ or 5 norm of a.

For a given norm ||-||, the CGCP then writes

. T~
N B (27a)
sit. a=ATu, + M\, + ngh, Vh, (27b)
B < b up, + di oy, Vh, (27¢)
(Up, An,vp) € R™ X K* x QF Vh, (27d)
lall <1, (27e)

and the corresponding MCP, up to a change of sign in the objective value, is
min ||z — z|| (28a)

z,Y,%

s.t. th =z, (28b)
h

> =1, (28c¢)
h

Ayh = Zhb, Vh, (28d)
Dryn =g, zndn, Vh, (28e)
(yn,zn) € K x Ry, Vh. (28f)

Geometrically, the CGCP (27) looks for a deepest cut, i.e., one that maximizes the distance from z
to the hyperplane o’z = 3, as measured by ||-||. Correspondingly, the MCP (28) computes a projection
of Z onto the set defined by (28b)—(28f), with respect to ||-||. It is trivially feasible if at least one of the
disjunctive terms is non-empty, which is always the case if X # (. This ensures that the CGCP (27)
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is never unbounded. If, in addition, each disjunctive term is strongly feasible, then the MCP (28) is
strongly feasible and both the MCP and the CGCP are solvable.

Split cuts obtained with the o normalization in the context of Example 4 are illustrated in Figure 2;
these results are obtained with the (self-dual) ¢ norm in (27¢). Furthermore, some statistics regarding
the resolution of the CGCP are reported in Table 1, namely: the number of interior-point iterations
(Tter), and the magnitude of a, u, A\, v in the obtained CGCP solution.

LS|
I
3

(a) (b) (c)

Figure 2: Split cuts (in red) obtained with the o normalization.

Table 1: CGCP statistics for Example 4 and o normalization.

Iter  [lafl  fludll fluall MMl X2l loall flozl
(a) 8 10 08 20 1.2 29 05 1.3
(b) 67 1.0 0.7 10958.8 1.0 15498.0 0.7 10958.1
(c) 8 1.0 00 13.7 00 193 1.0 12.6

*

: slow progress

In Example 4(a), the MCP is strongly feasible, no numerical trouble is encountered, and the
obtained cut is a supporting hyperplane of the split hull. On the other hand, numerical issues are
encountered in Example 4(b). Indeed, as reported in Table 1, Mosek terminates due to slow progress
after 67 iterations, albeit with a feasible solution, for which the magnitude of us, Ag, v is very large.
The corresponding cut is displayed in Figure b. Finally, in Example 4(c), although Dy = @), the CGCP
is solved without issue, thereby showing that it is not necessary for the MCP to be strongly feasible
for the CGCP to be solvable.

Example 4(b) illustrates the numerical challenges that may arise when the MCP is not strongly
feasible. Indeed, in that case, the deepest cut writes 1 + x2 < 1, up to a positive scaling factor.
However, although x; + x5 < 1 is a valid inequality for Ds, it is straightforward to see that it cannot be
represented using finite Farkas multipliers: this corresponds to case 1 in Theorem 3. Thus, the CGCP
has no optimal solution, and there exists a (diverging) sequence of feasible solutions whose objective
value becomes arbitrary close to opt(CGCP), corresponding to a sequence of valid inequalities that,
in the limit, become equivalent to x1 + x5 < 1. Hence, the solver eventually runs into slow progress
while the magnitude of us, Ao, v becomes large, as observed in Table 1.

Interestingly, all cuts displayed in Figure 2 are supporting hyperplanes of the split hull. A slightly
more general result is stated in Theorem 6.

Theorem 6 Assume that the CGCP (27) and the MCP (28) are solvable, and let (o, 8, u, A\, v) and
(z,y, 2) be corresponding optimal solutions. Then,

alz =p.
Proof. Let § be the optimal value of the CGCP, i.e., § = a”Z — 3. Since the CGCP is strongly feasible

and bounded, by Theorem 1, strong duality holds. Thus, we have 6 = —||Z — z||. The case § = 0 is
trivial, so we assume ¢ < 0 and, thus, x # T.
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Let w = |§| Y(z — Z), i.e., # = T + |0]w and |Jw|| = 1; in particular, we have 1 > ||al, > oTw. Tt

follows that

oz —B=a"z +|6aTw -

=0+ [0laTw
=61 —aTw)
<0.

Thus, o7z < B.

Next, we have

alz = Z ozTyh
h
= uj Ayn + M yn + vf Dryn
h
> Z uf(zhb) + ’U}?(Zhdh)

I

Zzzhﬂ
3

:/3,

which concludes the proof.

O

Therefore, if all disjunctive terms are non-empty, then, by Theorem 4, x € clconvD, and the

obtained inequality o’z > 3 is indeed a supporting hyperplane of the disjunctive hull.

4.2 Polar normalization

In the MILP setting, Balas and Perregard [8, 45] first suggest normalizing the CGLP with a single
hyperplane of the form a’~y = 1. Doing so ensures that, if the CGLP is feasible and bounded, then
there exists an optimal solution for which (¢, 8) is an extreme ray of (clconv D)#. This approach was

then followed in [16, 47], and more recently in [20].
For v € R™, the CGCP writes

. T_
min a T —
a,B,u,0,A p
st. a=ATu, + M\ + ngh,
B < bTupy + di v,
(’U,h,Ah,’Uh) ER™ x K* x Q;,

afy <1,
and the MCP is given by
min 7
Y.2,1)

st > yn=T+n7,
h

ZthL
h

Ayh = Zhba

vh,
vh,
vh,

Vh,

(30D)
(30¢)

(30d)
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Dyyn =g, zndn, Vh, (30e)
(yn,2n) € K x Ry, vh, (30f)
n > 0. (30g)

It follows from Theorem 4 that, if there exists > 0 such that (Z+ny) € conv D, then the MCP (30)
is feasible. This is always the case if v = x* — Z, for some x* € conv D. If, in addition, each individual
disjunction is strongly feasible and x* is obtained as a convex combination of strongly feasible points,
then the MCP (30) is strongly feasible.

Split cuts obtained for Example 4 with the polar normalization are illustrated in Figure 3, and

the corresponding CGCP statistics are reported in Table 2. In each case, we set v = z* — Z, where
z* = (R,0,0).

In all three cases, the obtained cut is identical to the one obtained with the a normalization,
although this is not the case in general. Furthermore, as reported in Table 2, numerical issues are
also encountered for Example 4(b), for the same reasons as for the o normalization: the CGCP is not
solvable, and Mosek terminates with slow progress while the magnitude of usg, Ao, vy diverges.

T _
J’; —
([ ] X
e °
(a) (b) (c)
Figure 3: Split cuts (in red) obtained with the polar normalization.
Table 2: CGCP statistics for Example 4 and polar normalization.
Iter  flaf|  [Jul luall [ Al X2l floall [lvz]]
(a) 8 1.2 0.0 1.1 1.1 2.7 0.5 1.2
(b) 66* 1.2 0.0 9912.6 1.0 14019.5 0.7 9912.6
(c) 8 1.6 0.0 20.5 0.0 28.9 1.6 18.8

*

: slow progress

Similar to the a-normalization, if all disjunctive terms are non-empty, then cuts obtained with the
polar normalization are also supporting hyperplanes of the disjunctive hull, as expressed by Theorem 7.

Theorem 7 Assume that the CGCP (29) and the MCP (30) are solvable, and let (o, 8, u, A\,v) and
(n,y, z) be corresponding optimal solutions. Then,

ol (z +17) = B.

Proof. By conic strong duality, we have o’z — 8 = —. If the optimal value of the CGCP is 0, then

the result is trivial. Similarly, if o’y < 0, then the optimal value of the CGCP must be 0 and the
result is trivial.

We now assume that a’~y > 0 and opt(CGCP) < 0. Since (a, 3,u, A, v) is optimal for the CGCP,
we must have o’ = 1. Then,

ie., aT(z +ny) = 8.
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4.3 Standard normalization

One of the most common normalizations in the MILP setting is the so-called standard normalization [4,
9, 23]. Here, we introduce its conic generalization

>l + lonl,, <1, (31)
h

where p € int £ and oy, € int Qp,. When all cones K, Qy, ..., Qp are non-negative orthants, (31) indeed
generalizes both the standard normalization for MILP and its Fuclidean normalization variant [23],
by setting p and o appropriately.

The separation problem then writes

. T~
agl&r&))\ a'T—pf (32a)
st a=ATu, + M\, + ngh, Vh, (32b)
B < bl up, + di oy, Vh, (32¢)
(wn, An,vn) € R™ x K* x O, Vh, (32d)
> Al + lonl,, <1 (32¢)
h

Note that (32e) consists of a single linear inequality in the A, v space, and that it explicitly bounds
their magnitude.

Up to a change of sign in the objective value, the MCP is

min 7 (33a)
¥,2m
st Y yn =17, (33b)
h
Zzh = 1, (33C)
h
Ayh = Zhb, Vh, (33(1)
Dyyn +non =g, zndn, Yh, (33e)
(yh +np, zh) €K x R+7 Vh, (33f)
n=0. (33g)

The dual counterpart of the standard normalization corresponds to penalizing the violation of the
original conic constraints (22f) and (22e), through the artificial slack variable 5 in (33f) and (33e). As
shown in Theorem 8, this ensures that the MCP is strongly feasible.

Theorem 8 The CGCP (32) and the MCP (33) are strongly feasible.

Proof. It was shown in Section 3.1 that the un-normalized CGCP (19) admits a strongly feasible
solution. Scaling this point appropriately yields a strongly feasible solution for the CGCP (32).

We now show that the MCP (36d) is strongly feasible. Let y;, = %i and zp = %, Vh. Then, since
K, Q1,..., Qpn are proper cones, there exists 1, > 0 and 7, > 0 such that

Vh, yn +nup =x 0,
Vh, Dyyn + Thon =9, dn.

Letting n = max(n,...,0x, 71, ..., 7)) then yields a strongly feasible point (y, z,7), which concludes
the proof.

O
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A direct consequence of Theorem 8 is that both the CGCP (32) and the MCP (33) are solvable,
and that conic strong duality holds. Importantly, aside from the assumption AZ = b, this result does
not depend on Z, nor on the well-posedness of individual disjunctions.

Split cuts obtained with the standard normalization are illustrated in Figure 4, and the correspond-
ing CGCP statistics are reported in Table 3. On the one hand, Table 3 illustrate the good numerical
behavior of the CGCP (32), a direct consequence of having enforced strong feasibility of the MCP.
On the other hand, the obtained cuts are not as strong as the ones obtained with the « or polar
normalizations. Indeed, in general, the cut obtained with the standard normalization may not be a
supported hyperplane of the disjunctive hull.

0

(a) (b) (<)

Figure 4: Split cuts (in red) obtained with the standard normalization.

Table 3: CGCP statistics for Example 4 and standard normalization.

Trer el fuall a2l Al (X2l ol ozl
(

a) 8 0.4 0.0 0.2 0.3 0.6 0.1 0.2
(b) 8 0.3 0.0 0.2 0.3 0.6 0.1 0.2
(c) 7 0.3 0.0 0.3 0.3 0.6 0.1 0.2

4.4 Trivial normalization

The trivial normalization is obtained by setting p = 0 in the standard normalization. The separation
problem then writes

T

aén;rt)\ a'z—p (34a)
st. o= ATu, + A, + Dl vy, Vh, (34b)

B < bTuy, + dl oy, Vh, (34c)

(Uh, Ap,vp) € R™ X K* x QF, Vh, (34d)

> fonl,, < 1. (34e)

h

Note that, for a split disjunction (—77z > —mg) V (77x > 19 + 1) and oy, = 1, (34e) reduces to

v+ v <1, (35)

which is the so-called trivial normalization [23] in the MILP setting. In particular, Gomory Mixed-
Integer cuts correspond to optimal solutions of the CGLP with trivial normalization.

Up to a change of sign in the objective value, the MCP writes

min 7 (36a)
Y,2,1

st Y yn =71, (36b)
h
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Zzh = ]., (366)
h

Ayn = znb, Vh, (36d)
(Yn,2n) € K xRy, Vh, (36¢)
Dpyn +non =9, zndn, Vh, (36f)
n > 0. (36g)

Theorem 9 The MCP (36) is

1. strongly infeasible if and only if T is infeasible for (CP);
2. strongly feasible if and only if T is strongly feasible for (C'P);
3. weakly feasible if and only if T is weakly feasible for (C'P).

Proof. Since Z is either infeasible, strongly feasible or weakly feasible for (CP), and that these are
mutually exclusive alternatives, it suffices to prove that the above conditions are sufficient; necessity fol-
lows immediately by contraposition. For simplicity, we assume that X is an irreducible, non-polyhedral
cone. The general case is treated similarly.

1. Assume T ¢ C, i.e., T ¢ K since we assumed that AZ = b. Consequently, there exists s € K£* such
that s7Z < 0 and, since K is a proper cone, we can assume without loss of generality that s € int K*.
Thus, setting

(o, 8) = (5,0)
(up, An,vr) = (0,8,0), Vh,

yields a strongly feasible solution of the CGCP (34), which is also an unbounded ray. Therefore, the
MCP is strongly infeasible.

2, 3. We first show that, if Z is feasible for (C'P), then the MCP is feasible. Let
gn=H 'z, vh,
zZ, =H 1, Vh.

It is then immediate that Ay, = Zpb, gn € K, and >, Z, = 1. Then, since o}, € int Q, there exists
np, > 0 such that

Dnyn + nnon =o,, zndp.

Letting 77 = maxp{ns }, it follows that (g, Z,7) is feasible for the MCP.

If Z € int K, then we also have ¢ € int K, and thus (g, z,7) is strongly feasible for the MCP,
which proves 2. Reciprocally, let (y,z,7n) be a strongly feasible solution of MCP. In particular, we
have y;, € int KC. Then,

E:th € int IC,
h

i.e., T is strongly feasible for (C'P), thereby proving 3. by contraposition.
O

Theorem 9 motivates the following remarks. First, case 1. typically arises in the context of outer-
approximation algorithms, wherein fractional points generally violate non-linear conic constraints.
Then, the CGCP (34) is unbounded, and the normalization (34e) imposes |vs|,, = 0,Vh in any
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unbounded ray, i.e., vy = 0 and the obtained cut is always a trivial inequality. Thus, the trivial
normalization is not suited for use within outer approximation-based algorithms.

Second, conic-infeasible points are not encountered in non-linear branch-and-bound algorithms.
However, solving (C'P) yields a fractional point Z € 9C that is weakly feasible, unless all non-linear
conic constraints are inactive at the optimum. Although the current fractional point & may become
strongly feasible after several rounds of cuts, or deeper in the branch-and-bound tree, our experience
is that case 2. rarely occurs in practice.

Third, case 3. corresponds to the setting of Example 4. Split cuts obtained with the trivial
normalization are displayed in Figure 5, and the corresponding CGCP statistics are reported in Table 4.
Remarkably, all three cuts appear to be K* cuts, while numerical issues, namely, slow convergence,
are systematically encountered. Here, the MCP (36) is weakly feasible and the CGCP (34) is bounded
but not solvable. Thus, there exists a diverging sequence of close-to-optimal solution, thereby causing
slow convergence. In addition, since (34e) bounds the value of vy, vq, the iterates become equivalent
to a K* cut as the magnitude of A increases, which explains the cuts obtained in Figure 5.

(a) (b) (c)

Figure 5: Split cuts (in red) obtained with the trivial normalization.

Table 4: CGCP statistics for Example 4 and trivial normalization.

Tter ol Muall M2l A W2l loall 2]l

(a) 37 6189.7 0.0 0.7 6189.6 6190.6 0.2 0.8
(b) 49* 6814.2 0.0 0.7 6814.0 6815.0 0.3 0.7
(¢) 72 63644 0.0 0.7 6364.2 6365.2 0.4 0.6

* .,

: slow progress

Note that the CGCP (34) may be solvable even though Z is weakly feasible. However, our experience
suggests that this rarely happens, and that most cases are similar to Example 4, leading to numerical
issues and weak cuts.

4.5 Uniform normalization

The uniform normalization is obtained by setting o; = 0 in the standard normalization.

The CGCP then writes

aén;r;)\ afz—p (37a)
st. a=ATup + Xy + D} vy, Vh, (37b)
B < b up + dfop, vh, (37¢)
(un, An,vp) € R™ x K* x O, vh, (37d)
>, <1, (37¢)
h

and, up to a change of sign in the objective, the MCP is

min 7 (38a)

Y,z,m
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s.t. th = I, (38b)
h

S =1, (38c¢)
h

Ayh = Zhb7 Vh, (38d)

(yh + np, Zh) €K x R+’ Vh, (386)

Dyyn =g, zndn, Vh, (38f)

n > 0. (38g)

As illustrated by Example 5, in general, the MCP (38) may not be feasible.
Example 5 Let
C={(z1,22) €RE | z1 + 22 =1},
and consider the disjunction
{1 >20,—2; >0}V {x; >1,—2; > -1}.

Constraints (38d) and (38f) first yield

_ 0 _ z9
Y1 = 2 )7 Yz = 1—29)7

which, combined with (38¢c) and (38b), yields T = (1—2z1,21) for 0 < zy < 1. Therefore, if T = (—1,2),
then the MCP (38) is infeasible.

Nevertheless, the following results demonstrate that, for certain classes of disjunctions, namely split
disjunctions, strong feasibility in the MCP is guaranteed.

Lemma 1 If

Z € conv (U {z | Az =b,Dpzx =g, dh}> )

h

then the MCP (38) is feasible.

Proof. Immediate from Theorem 4.

O

Lemma 2 Assume that Vh, Qy is polyhedral. Then, the MCP (38) is strongly feasible if and only if it
1s feasible.

Proof. Strong feasibility implies feasibility. Reciprocally, if (x,y, z,7) is feasible for the MCP (38),
then (z,y, z,n + €) is strongly feasible for any ¢ > 0.

O

Theorem 10 If X # 0 and D is a split disjunction, i.e.,
D—{x Ax:b,xelC}U{x‘ Aavzb,xelC}7

mTe < 7le>m+1
then the MCP (38) is strongly feasible.
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Proof. Let

S:conv({z | Al’:b,ﬂ'T.Z‘Sﬂ'o}U{I | Ax:b,wT:EZﬂ'ngl}).

First, assume there exists & € R™ such that A¢ = 0 and 77¢ # 0; without loss of generality, we can
assume that 77¢ = 1. Then, let ¢ > 0 such that

WT(‘,E - tf) < o,
7 (Z + &) > mo + 1.

In particular, A(Z+t£) =band Z = 3(Z +t£) + 5(z — t£). Thus, Z € S, and it follows from Lemma 1
that the MCP (38) is feasible.

Now assume that V¢ € ker(A),77¢ = 0. On the one hand, if my < 772 < 7o + 1, then S =
and thus X is empty, which would contradict the X # @ assumption. Thus, either 77Z < my or
7Tz > g+ 1, ie., T € S and the MCP is feasible by Lemma 1. Note that this latter case would never
occur in practice, since one would always consider a split such that 7o < 77% < mo + 1.

The result then follows from Lemma 2.

O

Similar to the standard normalization, a consequence of Theorem 10 is that, when considering split
disjunctions, the CGCP (37) and the MCP (38) are solvable with identical objective value. This is
confirmed by the results of Table 2, which reports statistics for the CGCP in Example 4: no numerical
issue is encountered. The corresponding split cuts are displayed in Figure 6, and are similar to the cuts
obtained with the standard normalization. Likewise, cuts obtained with the uniform normalization are
not, in general, supporting hyperplanes of the disjunctive hull.

LS

(a) (b) (c)

Figure 6: Split cuts obtained with the uniform normalization. The continuous relaxation is in gray, the split hull in orange,
and the obtained cut is in red.

Table 5: CGCP statistics for Example 4 and uniform normalization.

Trer lall fuall a2l Al (X2l ol ozl

) 8 0.5 0.0 0.3 0.5 0.9 0.2 0.3
) 8 0.5 0.0 0.4 0.4 1.0 0.2 0.4
) 8 0.4 0.0 0.5 0.3 1.1 0.3 0.5

(a
(b
(c

5 Separating conic-infeasible points

When (MICP) (17) is solved by outer-approximation, the fractional point Z may not satisfy all conic
constraints. In preliminary experiments, wherein lift-and-project cuts were separated by rounds in a
callback, a large proportion —often higher than 90%— of the cuts yielded by the CGCP turned out to
be KC* cuts, which is obviously detrimental to performance. To the best of our knowledge, despite the



22 G-2019-92 - Revised Les Cahiers du GERAD

popularity and performance of outer-approximation algorithms, this behavior has not been studied in
the literature. Therefore, in this section, we will assume that AZ = b, but z ¢ K.

Let (o, 8,u, A\, v) be a solution of the CGCP, and assume that v, = 0 for some h € {1,...,H}.
Thus, we have

o= ATy, + My, (39)
B < b up, (40)
and o’z > B is a trivial inequality. In addition, as noted in Section 3.1, the inequality )\;{x >0
has the same violation, and cuts off the same portion of the continuous relaxation as a2 > 3. This

observation, which does not depend on the normalization condition, allows the a posteriori detection
of IC* cuts, by checking the value of the v multipliers.

Once a K* cut is identified, it can be disaggregated. Assume that L = K1 X...x Ky ; correspondingly,
for A € K*, we write A = (A1, ..., \y) where each \; € K. Then, the £* cut ATz > 0 is disaggregated as

Mag; >0, i=1,..,N. (41)

This yields more numerous, but sparser, * cuts, and results in tighter polyhedral approximations
which, in turn, improves the performance of outer-approximation algorithms [19].

We now derive sufficient conditions that provide an a priori indication that a K* cut will be
generated. Unless stated otherwise, we only consider the CGCP with standard normalization. Define

n=min{n | z+np €K}, (42)
n=>0
Th = m>113 {T | Dyz + 1op, =9, dh}, Vh, (43)

and let £ =T + 7p.

Lemma 3 Assume there exists an optimal solution of the CGCP for which vy, = 0,Vh. Then, the opti-
mal value of the CGCP is —H '), and there exist a CGCP-optimal solution of the form (Ao, 0,0, Xg,0),
with \T'¢é = 0.

Proof. Let (o, 8,u, A, 0) be such an optimal solution, and denote by d its objective value. In particular,
we have

a=ATuy + A, Vh,
B < b uy, Vh.

Let @ = % >, up and A = % > An. It follows that (o, 8,1, A, 0) is feasible with objective value 4,
i.e., it is an optimal solution of the CGCP.

Next, (o, 3,1, A, 0) is also an optimal solution of

min oz —p

Uy A
sit. a=ATup + \p, Vh,
ﬁ < bTU/h7 Vha
Z |)\h|p S ]-7
h
Ap € K*.

Eliminating «, 8 yields
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min Az
by
1
bt i< =
st. pAS g
AEKT,

whose dual, up to a change of sign in the objective value, writes

) 1
S
st. np 2k T,
n=0,
and has optimal value H~ 5. Thus, 6 = —H ' = ATZ, which concludes the proof. O

Theorem 11 [fVh,77 > H™'7,, then (),0,0,),0) is optimal for CGCP.

‘3\

Proof. Let y, = £Z, 2z, = 7, and n = 4.

We have Ay, = zb, Vh. Then, y, +np = #(Z + 7p) € K. Finally,

Dyyn + noyp, = H™' (Dp + ijo)
o, H'd),
= Zhdh.

Thus, (y, 2,n) is feasible for the MCP and its objective value is H !4, which concludes the proof.
O

Theorem 11 shows that, if z is “sufficiently” conic-infeasible, as measured by the magnitude of 7,
then there exists a K* cut that is an optimal solution of the CGCP. Note that there is no guarantee
that this optimal solution is unique —in general, it is not— nor that all CGCP-optimal solutions are
K* cuts. Nevertheless, we have observed that, whenever the condition of Theorem 11 was met, the
obtained solution was indeed a K* cut.

This suggests several strategies to avoid generating K* cuts when solving the CGCP. First, one
can check the value of 7 and, if large enough as per Theorem 11, avoid solving the CGCP and add
an optimal K* cut directly. Nevertheless, our initial experiments suggest that only a small number
of cases are captured by Theorem 11. Second, one can increase the magnitude of p, thus reducing
the value of 7, to the point where the assumptions of Theorem 11 no longer hold. Note that, as
the magnitude of p becomes arbitrarily large, the standard normalization becomes equivalent to the
uniform normalization of Section 4.5. Third, instead of imposing a normalization condition, one could
fix the cut violation to a positive value, e.g., 1, and optimize a different objective; the feasibility of the
CGCP is then guaranteed by the fact that T is conic-infeasible. This approach directly relates to the
reverse-polar CGLP introduced in [47]. Finally, one can simply try to avoid conic-infeasible points in
the first place, for instance by refining the outer-approximation before cuts are separated.

6 Cut lifting and strenghtening

In this section, we present conic extensions of the classical lifting and strengthening procedures in
MILP. For simplicity, we will assume that K = K1 x Ky where K; C R™ i = 1,2 and, correspondingly,
we write

\ ]
A=[A1 A5], Dy=[Diy Dap], M= [A;Z] o= Bj 3= Bj

Finally, we assume that 2, = 0.
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6.1 Cut lifting

In MILP, one can formulate the CGLP in a reduced space, by projecting out the null components of
Z, then recover a valid cut in the original space by a lifting procedure. Here, we show that a similar
technique can be used in the conic setting.

Recall that To = 0, and consider the reduced CGCP

min o & — f (44a)
st. ay=Alup+ A+ DY jon, Vh, (44b)
B < b uy, —vidp, Vh, (44c)
(U, 1w, vn) € R™ x KF x QF, Vh. (44d)

All the normalization conditions considered in Section 4 can be adapted to the reduced CGCP, namely
by normalizing only the oy, A1, v components as appropriate. For instance, the a normalization would
write |||« < 1, and the uniform normalization ), |A\1,n|, <1, for p; € int ;.

P1

Any solution (a, 8,u, A\, v) that is feasible for the CGCP yields a feasible solution (a1, 8,u, A1,.,v)
for the reduced CGCP. In addition, since To = 0, the corresponding objective values are the same.
Reciprocally, a feasible solution for the CGCP can be obtained from a feasible solution of the reduced
CGCP as shown in Lemma 4.

Lemma 4 Let (a1, B,u,A1,.,v) be feasible for the reduced CGCP (44). Let
(e%} i;c; AQTuh + Dggvh, Vh,
and, Yh, let o), = as — Afuy — D2T’hv2. Then, (a,B,u, A, v) is feasible for the CGCP (19) and

alz — g =afz —p.

The proof of Lemma 4 is immediate. Note that the choice of ay is not unique, especially if K3
possesses high-dimensional faces. Nevertheless, a reasonable requirement is to impose that as be
minimal with respect to >, i.e., that there does not exist a valid as <y« as. Indeed, if as is not
>i+-minimal, then a2 > f is trivially dominated by &Tz > f.

A > i+-minimal ay is obtained by solving the lifting conic problem (LCP)
(LCP) min play (45a)
o
st o mx AL up + Dg’th, Vh, (45b)

where py € int Kg, and denote by A2 € K5 the (conic) slack associated to (45b). First, since Ky is a
proper cone, the LCP is strongly feasible. Second, we have

p3 2 = py Ao+ py (Agup + Diﬂ)h) ) Vh, (46)

thereby showing that the objective value of the LCP is bounded below. In addition, let (a2, A2,.) be a
feasible solution for the LCP with objective value Z. It then follows that

Vh, ‘Xg,h

< Z —p5 (AZun + Dj o) (47)
P2

in any feasible solution (aao, 5\2) with objective value Z < Z. Equation (47) implicitly bounds the
magnitude of Ay , thereby ensuring that the LCP is solvable. Finally, if oo and &» are feasible and
G =+ o, then pd'ay < plas and ap cannot be an optimal solution. Thus, any optimal solution of
the LCP is > j+-minimal.

Whenever K5 is not irreducible, the LCP can be decomposed per conic component, yielding smaller
problems. In the linear case, taking o = Ry, the LCP reduces to

T T
0 = max {ASun + Dy jon},

which is the classical lifting procedure for disjunctive cuts in MILP [23].
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Lemma 4 does not account for the normalization constraint in the CGCP. Although the lifting
procedure does not modify the objective value, in general, the lifted solution («, 3, u, A, v) is not an
optimal solution of the normalized original CGCP. Thus, the reduction in the size of the CGCP, and
the associated computational gains, come at the expense of potentially weaker cuts.

6.2 Cut strengthening

Balas and Jeroslow’s original derivation of monoidal strengthening for disjunctive cuts [7] exploited the
non-negativity and integrality of individual variables to strengthen the corresponding cut coefficients.
Since, in general, a conic constraint may involve several variables, it is not clear whether and how
one can extend this approach to the conic setting. Thus, we restrict our attention to split cuts, and
propose a conic extension of monoidal strengthening that builds on the geometric idea of Wolsey’s
proof of Theorem 2.2 in [6].

For simplicity, we consider the pure integer case. Given a split disjunction (772 < mo) V (7l >
7o + 1), the CGCP writes

min o’z -

st. a=ATu; + )\ — oy
a=ATuy + Ay + vomr
B < bTuy — vy
B < b ug + va(mp + 1)
A1, A2 € K* vg,09 > 0.

Lemma 5 Let (o, 8, u, A\, v) be feasible for the CGCP, and let &z and o € Z"* such that

g =iy Agug — vy (ma + 0),

Qg =3 AT ug 4 vy (9 + 7).

Then, &Tx > B is a valid inequality for the disjunctive set

ﬁz{x‘ Axr=bx e K }U{x’ Ax =bz e K }7

#Tr < 7 7#Te > m+1
where & = (aq, &) and T = (w1, m9 + 07).

In the mixed-integer case, one simply needs to set to zero, in Lemma 5, the components of é7 that
correspond to continuous variables. Since ém € Z"2, 7 € Z" and (7Tx < my) V (7lx > my + 1) is a
valid disjunction for X. Thus, the strengthened inequality is valid for X.

Similar to the lifting case, a reasonable requirement is for & to be minimal with respect to =x;.
Following the same approach as in Section 6.1, we obtain the Cut-Strengthening Problem

Gio

(CSP) min play (48a
(

s.t. Qg = ATuy — vy (my + m),
C~¥2 i}c; AgUQ + ’Ug(’/TQ + (S’/T), (48(3
5w ez, (48d

Similar to the LCP, the CSP can be decomposed per conic component, so that its resolution remains
tractable. Furthermore, in the linear case with Ko = R4, the CSP reduces to

Qg = r(rslgzx {min (Agul — 116, AQTuz + vgé)} ,

which is the classical monoidal strengthening of Balas and Jeroslow [7].
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7 Computational results

In this section, we investigate the practical behavior of the normalization conditions of Section 4 along
two lines: the progression of the gap closed, and the characteristics of the obtained cuts. Indeed, the
choice of normalization impacts the numerical stability and computational efficiency of solving the
CGCP, thereby affecting the rate at which gap is closed, in terms of both time and number of rounds.

Several solvers, e.g., CPLEX, Gurobi and Mosek, support classes of MI-CONIC problems. Never-
theless, to the best of our knowledge, CPLEX is the only one that exploits non-linear information when
generating lift-and-project cuts. Thus, we use CPLEX as a baseline, and restrict our comparison to
MISOCP instances, which is the only class of non-linear MI-CONIC problems supported by CPLEX.

7.1 Instances

We select an initial testset of 114 MISOCP instances from the CBLIB [24] collection. Each instance
is first reformulated in the standard form (17) and, since the MathOptInterface wrapper of CPLEX
does not directly support constraints of the form x € I where I is a rotated second-order cone, all
such constraints are reformulated as second-order cone constraints.

Each instance is solved using the CPLEX outer-approximation algorithm on a single thread, and
all other parameters are left to their default value. Instances with a root gap smaller than 1% are
removed from the testset, as well as those for which no integer-feasible solution was found by CPLEX
after one hour of computing time. This yields a testset of 101 instances, divided into 7 groups. Table 6
reports, for each group, the number of instances (#Inst) in that group, and the average number of:
variables, integer variables, constraints, non-polyhedral cones, and non-zero coefficients.

Table 6: Instance statistics.

Group #Inst  Variables Integers Constraints Cones Nz coeff.
clay 12 829 35 659 80 1711
flay 10 535 28 408 4 1121
fmo 39 620 48 479 15 1843
slay 14 1217 92 936 14 2653
sssd 16 694 153 547 18 1414
tls 2 295 61 227 10 817
uflquad 8 37569 23 30203 3750 71341

7.2 Implementation details

Our implementation® is coded in Julia. All solvers, namely, CPLEX 12.10 [29], Gurobi 9.0 [28] and
Mosek 9.2 [43], are accessed through the solver-agnostic interface MathOptInterface [37]. Experiments
are carried out on an Intel Xeon E5-2637@3.50GHz CPU, 128GB RAM machine running Linux.

Baseline. We use CPLEX internal lift-and-project cut generation at the root node as a baseline.

For each instance, we run CPLEX outer-approximation algorithm on a single thread, no presolve,
no heuristics, and all cuts de-activated with the exception of lift-and-project cuts which are set to
the most aggressive setting. The CutsFactor parameter is set to 103°, thereby removing any limit on
the number of cuts that can be added to the formulation, and the maximum number of cutting plane
passes is set to 200. Finally, the node limit is set to zero, i.e., only the root node is explored, and we
set a time limit of 1 hour.

Each CPLEX “cut pass” consists* of one round of cuts, plus additional components such as heuris-
tics and reduced cost fi