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Legal deposit – Bibliothèque et Archives nationales du Québec, 2021
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3000, chemin de la Côte-Sainte-Catherine
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Abstract : Optimal stopping is the problem of deciding the right time at which to take a particular
action in a stochastic system, in order to maximize an expected reward. It has many applications in
areas such as finance, healthcare, and statistics. In this paper, we employ deep Reinforcement Learning
(RL) to learn optimal stopping policies in two financial engineering applications: namely option pricing,
and optimal option exercise. We present for the first time a comprehensive empirical evaluation of the
quality of optimal stopping policies identified by three state of the art deep RL algorithms: double
deep Q-learning (DDQN), categorical distributional RL (C51), and Implicit Quantile Networks (IQN).
In the case of option pricing, our findings indicate that in a theoretical Black-Schole environment, IQN
successfully identifies nearly optimal prices. On the other hand, it is slightly outperformed by C51
when confronted to real stock data movements in a put option exercise problem that involves assets
from the S&P500 index. More importantly, the C51 algorithm is able to identify an optimal stopping
policy that achieves 8% more out-of-sample returns than the best of four natural benchmark policies.
We conclude with a discussion of our findings which should pave the way for relevant future research.

Keywords: Optimal stopping, reinforcement learning, deep learning, financial engineering
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1 Introduction

We consider the problem of Optimal Stopping (OS) in a stochastic system, which can be described as

follows: the system evolves from one state to another in discrete time steps up to some fixed horizon T .

At each time step the decision maker has the option to stop the process or wait for a later step to do so.

If he decides to stop, then he gets a reward that depends on the current state of the system. Otherwise,

the decision maker does not receive any reward immediately, but can decide to stop at a future time

step.

In spite of its simplicity, the optimal stopping model is of use in many fields of application including

asset selling, gambling, and sequential hypothesis testing. Recently, in [1], it is used to determine when

to stop the treatment of patients receiving fractioned radiotherapy treatments. [20] proposes an OS

framework to perform feature selection in the classification of urban issue requests on civic engagement

platforms. [10] combines Bayesian optimization and OS in the design of early-stopping strategies for

the training of neural networks. Its most popular application is however in financial engineering. For

example, a Bermudan option is a financial derivative product with a predetermined maturity deadline

that will pay out at exercise time, chosen among a discrete set of time points, an amount that depends

on the value of an underlying financial asset. Based on no-arbitrage theory, these options are usually

priced according to the expected return achieved by an optimal exercise (i.e. stopping) strategy under

an assumed martingale stochastic process, such as a Geometric Brownian Motion (GBM). Alternatively,
the buyer of such an option will often seek to exercise it at the most profitable moment without exact

knowledge of the stochastic dynamics of the underlying asset.

In stochastic control, one way to solve the optimal stopping problem is by using Approximate

Dynamic Programming (ADP) [4] to approximate the value function that specifies the best expected

reward one can receive starting from a given state. Once this is achieved, a greedy policy based on the

approximate value function is expected to provide good decisions. In this paper, we apply some of the

latest advancements in reinforcement learning (RL), which had great success in controlling several Atari

2600 games [3, 9, 22, 23], to address the optimal stopping problem. The original algorithms have been

modified to adapt to time series data and a Long Short Term Memory (LSTM) [16] recurrent neural

network is implemented to model long sequences and integrate history. Following the work by [15],

we also combine three additional techniques in each of our three customized RL approaches, the first

of which is Double Q-learning, first introduced in [26] to address the problem of over-estimation of

action values, and has been subject to improvements in [14] to attain better performance. The second

is the dueling architecture [27] that uses two separate estimators: one for the state value function and

one for the state-dependent action advantage function, which leads to better policy evaluation in the

presence of many similar-valued actions. The third is multi-step bootstrapping of targets [11] which

helps accelerate the propagation of newly observed rewards to earlier visited states and balances the

bias-variance trade-off.

In this work, we additionally perform the first comprehensive empirical study of the use of recent

deep reinforcement learning algorithms to solve the problem of optimal stopping with application in

option pricing and optimal exercising. We show, for the first time, that with well-designed modifications

to the original algorithms, deep RL architectures such as Double Deep Q-Network (DDQN) [23],

Categorical Distributional RL (C51) [3] and Implicit Quantile Networks (IQN) [9] are able to identify

policies that achieve near optimal performance in terms of pricing and to outperform predictive financial

models, such as the binomial tree model, in an option exercising problem with real US stock market

data. Furthermore, our experiments demonstrate that: (1) models based on deep reinforcement learning

have a high ability to learn and adapt to stochastic environments with high volatility and randomness;

(2) C51 and IQN algorithms outperform DDQN in terms of performance, at a cost of more computation

time; (3) C51 slightly outperforms IQN when confronted to real stock data movements, identifying

an option exercise policy that achieves 8% more out-of-sample returns than the best of four natural

benchmark policies.
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The rest of this paper is organized as follows: In Section 2, we discuss related work to our problem,

then define the problem in Section 3. Section 4 describes the three RL architectures that will be

evaluated. Section 5 then presents two experiments involving financial engineering applications that

compare the performance of RL to natural benchmarks. Finally, in Section 6 we conclude with a

discussion of our findings which should pave the way for relevant future research. Interested readers can

find all our data, implementations, and experiments at https://github.com/osrlpaper/os rl papercode.

2 Related work

Among the state-of-the-art ADP approaches that solve the optimal stopping problem, one finds the

simulation-regression approach of (see [6, 21, 24]) which uses regression to approximate the optimal

continuation value at each state of the system, and the martingale duality-based approach of [25]. The

latter relaxes the non-anticipativity requirement of the policy by allowing it to use future information,

but on the other hand penalizes any policy that uses such information. Several other approaches have

been derived from these two including [5], and [13]. However, such numerical methods either suffer

from the well-known curse of dimensionality, assume that the underlying stochastic model is known (or

in the very least the states that makes it Markovian), or require the fine tuning of basis functions.

On the RL side, [2] proposes an approach in which multilayer feed-forward neural networks are

used. [19] also applies the least-squares policy iteration RL method to the problem of learning exercise

policies for American options and shows their good quality. [8] on the other hand addresses the OS

problem by constructing interpretable optimal stopping policies from data using binary trees. [12]

proposes a model-free policy search method that reuses data for sample efficiency by leveraging problem

structure to simultaneously learn and plan. On the other hand, [28] introduces alternative algorithms

to Q-learning for OS, which are based on projected value iteration, linear function approximation,
and least squares. [2] propose a value-based reinforcement learning for OS learning from Monte Carlo

samples, with application to derivative pricing. It is the closest paper to our work, and the reader

is referred to it for more details of the problem setup.[17] consider the problem of ranking response

surfaces as image segmentation, using feed-forward neural networks to approximate the value function.

Reformulating the optimal stopping problem as a surface ranking problem, they apply this scheme to

pricing Bermudan options. [7] propose a Q-learning based algorithm for OS with an application to
derivative pricing. In their paper, they prove convergence of the algorithm using ODE analysis, and

also observe that it achieves optimal asymptotic variance.

To the best of our knowledge, our paper is the first to apply and compare the performance of

Deep DQN [22, 23], Categorical Distributional RL [3], and Implicit Quantile Networks [9] on optimal

stopping problems.

3 Problem definition

In this work we adopt the following notation:

• β : the discount factor ∈ [0,1]

• At : the set of possible actions at time t

• Ω ⊆ ST+1 : the set of possible trajectories

• T : the horizon of the problem.

• S ⊆ RL : the set of possible states.

• Π : the set of possible policies π : S → A.

In particular, we let At := {continue, stop} for t < T , and AT := {stop}, and always assume that

the time (and remaining time T − t) can be inferred from a state of s, i.e. t = t(s) iff s is observed

at time t. The stopping time with policy π is defined as: τπ = min{t ∈ [0, . . . , T ] : π(st) = stop} .
Our goal is to find the optimal policy, that maximizes the average discounted return received over

all trajectories: π∗ = arg maxπ∈ΠE [βτπgτπ (sτπ :T )], where st:T is shorthand for the sub-trajectory

[st, . . . , sT ] and the expectation is taken based on the distribution of s0:T . Furthermore, gt(st:T ) refers

to the payout received when stopping at time t under any trajectory with a tail trajectory matching st:T .

https://github.com/osrlpaper/os_rl_papercode
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Alternatively, one can also define

π∗(st) =

{
stop if E[βtgt(st:T )|st] ≥ E[βτ

t+1
π gτt+1

π
(sτt+1

π :T )|st]
continue otherwise

where τ tπ = min{t′ ∈ [t, . . . , T ] : π(st′) = stop}.

In the case of a Bermudan option pricing or exercising problem, s includes information about

the current value of the financial asset, which can be recovered through some S(s), and gt(st:T ) :=

max(0, S(st) −K) with strike price K for a call option or gt(st:T ) := max(0, K − S(st)) for a put

option. In other words, a call option will pay the difference between the value of the asset and the

strike price if it is positive, and the opposite occurs for the put option. When K is set to be S(s0), the

option is said to be at-the-money.

We also wish to emphasize that our payout function is flexible enough to model any general payout

h(t, s0:T ) as long as the information about s0:t−1 (or some “sufficient statistics”) is included in st,

obtaining gt(st:T ) := h(t, [s0:t−1(st), st:T ]). For example, in an exercise problem involving a call option,

one might be instead interested in maximizing E[max(0, S(sτπ)−K)/ supt max(0, S(st)−K)]. This
can easily be implemented by including in the state θt =: max(θt−1,max(0, S(st)−K)), and defining

gt(st:T ) := max(0, S(st)−K)/max(θt, supt′>t max(0, S(st′)−K)) with β = 1.

Finally, one can show that the sequential decision making problem described above can be reformu-

lated in standard reinforcement learning notation as:

Q(s, a) :=

{
r(s, stop) if a = stop

r(s, continue) + βE[max(Q(s′, stop), Q(s′, continue))] otherwise.
(1)

where r(s, continue) := 0 while r(s, stop) := gt(s)(s̃t(s):T ) for a random trajectory s̃0:T with s̃t(s) = s.

In what follows, we provide for the first time customized implementations of a number of state-of-the-art

deep RL algorithms to this most general form of the OS problem. In particular, the original Double

Q-learning [23] only uses plain fully-connected layers that exhibit low performance when applied on

strategic games with long time dependencies. In our implementation, we integrated LSTM in order to

learn the representation of states, aggregate partial information from the past, and capture long-term

dependencies in our sequential data.

It is also worth mentioning that OS problems cannot be exactly cast as a regression of the optimal

stopping time, or the classification of X as either “stop” or “continue” given that the trajectories are
unlabeled, and that the consequences of continuing are delayed.

4 Architectures

We implemented three deep reinforcement learning algorithms to identify the optimal policy and

value of the OS problem: double deep Q-Learning (DDQN), categorical distributional RL (C51),

and implicit quantile networks (IQN). In short, DDQN attempts to learn an optimal action-value

Q-network (as defined in Equation 1), while C51 and IQN aim at learning the full distribution of the

total discounted reward, i.e. the optimal stopping value βτπ∗ gτπ∗ (sτπ∗ :T ), given s. For conciseness, we

push the pseudo-code description of DDQN and C51 to Appendix A. We also refer interested readers

to [23], [3], and [9] for additional details on the original implementations of these three approaches.

Since we are dealing with time series of varying lengths (they end when the agent stops the process),

the core of our model uses a dynamic LSTM layer: specifically, we used three layers with cells of size

512. Our architecture integrates two neural networks: a primary network to choose an action given the

current state, and a target network that generates the target Q-value for that action. Adam gradient

descent [18] was used to optimize our networks using Huber loss as our temporal difference error.

During each episode of training, we first decide whether the episode will employ a random policy

or not. If it is random, then a random stopping time is chosen. Otherwise, the policy learned so far
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is used throughout the episode. The probability of employing a random policy ε is annealed from 1

to 0.01 over time, and no random action is taken during validation or test. We observed that this

approach improved learning efficiency when compared to ε-greedy policies since it avoided unnecessary

use of the neural network in trajectories where a random action eventually ends up being taken. Our

exploration strategy also quickly provided to the agent a more diversified set of experiences to learn

from, with a stopping time that is uniformly distributed over the horizon compared to ε-greedy which

had a bias towards stopping early. Given the nature of our application, it would be in theory possible

to dismiss exploration altogether if the whole trajectory (even passed the stopping time) was used in

training. However, we found that learning only from the part of the trajectory that precedes stopping

time together with some annealed exploration improved the quality of final policies. We suspect that
this is due to the fact that the neural network’s predictive power ends up focusing more on relevant

states. We also consider that the trajectory past the stopping time might be unobservable in some

applications, e.g. the secretary problem.

It is worth mentioning that, unlike in the original DDQN algorithm [23], we take into consideration

the sequential nature of data. Hence, when sampling a mini-batch of buffers B, we provide a sequence
of T time steps and a maximum of T∗ batch-size sequence transitions are used in every mini-batch,

depending on the stopping time of every episode ((T −n+1)∗ batch-size in case of n-step bootstrapping).

Furthermore, the maximum dueling architecture and multi-step bootstrapping of 7-steps [11] have been

integrated and optimised into our version of DDQN, however, they degraded the results for IQN and

C51 during tests and hence their use was omitted in all versions.

Finally, we added a dropout wrapper around the LSTM and fully connected layers, with a drop

probability of 20%, to reduce the risk of over-fitting during training. Soft-updates (τ = 0.001) of the

target network were implemented and tested, where the network is smoothly and gradually updated in

contrast to hard updates that assign the whole online network to the primary network at each update.

Overall, while hard update appeared more stable and better performing when trained with synthetic

data in Section 5.1, soft-updates were the favoured configuration for real data training (in Section 5.2)

for both C51 and IQN.

All the code was implemented in tensorflow 1.14 using, among others, CudnnCompatibleLSTMCell

on a GPU, which is 3-5x faster than normal LSTM implementations, and is platform-independent.

To further accelerate learning, We first anneal ε rapidly to allow the algorithm to learn from more

meaningful samples, then we decelerate the annealing speed through time. This has proven to be more

efficient during our experiments.

5 Empirical results

In this section, we assess the performance of three different RL algorithms on two financial engineering

problems. In the first one, RL is used to price a Bermudan put option in a context where the underlying

stock dynamics are assumed to be known. This is a case where a unique price exists and can be

computed numerically by employing approximation methods such as binomial tree models. We are

therefore able to compare the performance of RL to a ground truth which will validate the potential of

C51 and IQN at identifying truly optimal policies. The second setting involves an optimal exercise

problem where the underlying stock’s dynamics are unknown and based purely on historical data. We

will show that in this real world setting, state of the art methods like C51 can learn policies that

significantly outperform traditional benchmarks out-of-sample.

In both applications, the state s ∈ S will be defined as a sequence of L = 15 scalar values (history

of prices), concatenated with the amount of remaining time (T − t) to maturity of the option and the

relative position of the stock value compared to strike price βt max(K−S(st), 0)−max(S(st)−K, 0)), a

feature that either returns the discounted reward that will be received (if strictly positive), or otherwise

returns how far the stock is from the strike price. This makes the real size of states fed to neural

networks L+ 2. In order to warm start the LSTM, each episode is started 12 days earlier while the

policy is only implemented from day 1. Finally, we limited the number of epochs of training to 5
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to avoid overfitting and also to limit computation time. In the special case of C51, in order to have

comparable training times, C51 was trained on a subset of only 48 trajectories (instead of 160) in

Section 5.1, while in Section 5.2 it was trained for only three epochs.

Our experiments will systematically involve three steps of execution. First, we calibrate the hyper-

parameters of each algorithm using a training (Training ) and validation set (Valid HP ). Once the

optimal setting is found, we employ a second validation set (Valid Model ) in order to assess in an

unbiased way which algorithm is best performing and finally test this best performing algorithm on a

reserved set of test data. This process allows us to make claims about the statistical significance of our

results. Performance of the RL policies will be compared to three natural benchmarks: “Rand” which

chooses uniformly at random the exercise among the T alternatives, “First” and “Last” which exercise
respectively on the first τ = 0 and last τ = T days, and a binomial tree model (B.M.) that is either

calibrated on the true stock dynamics (in Section 5.1) or on the available set of L historical prices (in

Section 5.2).

5.1 Bermudan option pricing under Black-Schole setting

Our first experiment consists of a classical Black-Schole option pricing problem. When a financial asset

is assumed to behave according to a Geometric Brownian Motion (GBM) model, it is well known that,

in order to avoid giving rise to arbitrage opportunities, a financial derivative of this asset needs to be

priced according to the optimal expected revenue that can be obtained under the GBM’s so called risk

neutral martingale measure. Here, we focus on the case of pricing an at-the-money Bermudan put

option with daily exercise opportunities (often used as a proxy for pricing American options), where

the daily discretized risk neutral measure takes the form of St = St−1e
(r−σ22 )∆t+σ

√
∆tε, with r as the

risk-free continuously compounded yearly interest rate, σ as the volatility of the asset, ε as the standard

normal distribution, and ∆t as the amount of time elapsed between t− 1 and t. Specifically, in our

experiments, we let S0 = 1, σ = 20%, ∆t = 1/252, r = 5%, and the horizon T = 38. Similarly as

in [19], RL will consider a discount factor of β = e−r∆t which effectively prices an option that pays

e−rt∆t max(0, S0−St) at exercise time. Hence, in this experiment, we train the three RL algorithms on

simulated trajectories in order to use the expected reward from the best trained model as an estimation
of the arbitrage-free option price (AFOP). While such a price can be obtained with high precision much

more efficiently using binomial tree models (B.M.), our aim is to verify whether modern RL algorithms

are mature and flexible enough to reach optimality and retrieve such a price.

In this experiment, the Training set is composed of 160 sampled trajectories of 928 days each,

from which are drawn 135600 episodes used in training. The Valid HP set (for hyper-parametrization)

consists of 40 independently and identically drawn trajectories of 928 days (24000 episodes), while the

Valid Model (for algorithm selection) and Test set consist of 200 and 400 i.i.d. trajectories over 928

days respectively (159600 and 319200 episodes). We refer the reader to Appendix B, which descibes

the final choice of hyper-parameter values.

Table 1 presents the results for this experiment. Looking at the numbers, we observe that both

C51 and IQN achieve high Expected Reward (ER) in training and both steps of validation. While C51
appeared to be the best performing approach on Valid HP , we suspect that the selection of hyperpa-

rameters overfitted the Valid HP set given that 1) it outperformed the theoretically optimal policy

generated by the binomial tree model; 2) the performance degraded when validating on Valid Model

set. Given its better performance in Valid Model , IQN was selected for the final out-of-sample test

where it estimates a AFOP of 0.0284± 0.0001 compared to a ground truth of 0.0283± 0.0001. This

confirms that the resulting IQN exercise policy is statistically equivalent to the theoretical policy.

Overall, we can conclude that, despite the context of high stochasticity of GBMs, RL models such

as IQN are flexible enough to learn optimal exercise policies. This shows the high potential of RL

algorithms to replace conventional approaches in situations where the dynamics of the risk neutral

martingale require a large state space in order to become Markovian, and should be easier to adapt

to situations were the market is incomplete or stock dynamics are unknown. On the other hand,
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one needs to be aware of the heavy computational burden imposed by current state-of-the-art RL

algorithms. Beyond requiring substantial training time due to their model-free nature, the selection of

best performing hyper-parameters is still more of an art than a science. In particular, we observed

that regions of best performing hyperparameter values were sensitive to factors such as the number of

trajectories and epochs that were used.

Table 1: Performance of the 3 versions of RL vs Baselines for GBM data

Data \ Method DDQN C51 IQN Rand Last First B.M.

ER 0.0263 0.0267 0.0268 0.0229 0.0263 0.0160 0.0267
Training

Time (sec) 0.4666 1.3029 0.6668

Valid HP ER 0.0279 0.0280 0.0275 0.0234 0.0279 0.0167 0.0276

ER 0.0270 0.0273 0.0275 0.0236 0.0271 0.0163 0.0275
Valid Model

CI 0.0002 0.0002 0.0001 0.0001 0.0002 0.0001 0.0001

ER/AFOP 0.0282 0.0283 0.0284 0.0243 0.0282 0.0168 0.0283
Test

CI 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Best values are marked in bold. Training time is per episode (on a Titan X GPU). CI refers to a 90% confidence
interval. Out-of-sample performance of RL model selected with Valid Model is underlined.

5.2 S&P 500 stock data

In this section, we consider the optimal exercise problem of a Bermudan option. In particular, we
consider the distribution of T days stock trajectories in which one first draws the stock randomly from

111 stocks that compose the S&P 500 index, and a random date on the period 2014-03-27 to 2019-12-10.

The Training set considers trajectories from a subset of 60 different stocks and dates from the period

2014-03-27 to 2016-03-29 (733 trading days), Valid HP considers the same set of stocks with period

2016-03-29 to 2017-11-10 (183 days). The Valid Model set considers 51 other stocks over the period

2014-03-27 to 2017-11-10. Finally, the test set is composed of all 111 stocks over a “future” period 2017-

11-11 to 2019-12-10 (522 working days). In order for the policies to treat similarly stocks with different

starting price, we focus on the task of maximizing the Expected Relative Option Payout (EROP) for an

at-the-money put option with horizon T = 38: i.e. gt(st:T ) := (1/S(s0)) max(0, S(s0)− S(Xt)). Once

again, the performance is compared to Rand, First, and Last policies, while B.M. captures the optimal

policy for a GBM calibrated on the last L days. The same discount rate of β = e−0.05/252 was used.

Finally, we let the reader refer to Table 3 to find the best hyperparameters found using Valid HP for

each algorithm.

Table 2 shows the performance of the 3 RL algorithms against the four benchmarks. We can see

that both C51 and IQN outperform DDQN in the Valid HP set, this is confirmed in the Valid Model

set which points to C51 as the best model to recommend for out-of-sample tests, although IQN holds a

tight second place. The Test set demonstrates that the best IQN outperforms significantly the four

benchmarks in terms of Expected Reward (and EROP). Indeed, it achieves on average a 2.91% relative

option payout compared to exercising on the last day which achieves 2.17%, and the binomial tree

model approach that achieves 2.53%. The table also presents Expected Option Return (EOR) which

accounts approximately for the return on investment when implementing each policy assuming that the

option is priced based on a GBM risk neutral measure calibrated on the recent history. Specifically,

we see that C51 achieves a 22.0% return on average which is 8% higher than any of the competing

classical benchmark.

We wish to emphasize that, throughout our extensive set of experiments, including unreported

experiments with stocks which dynamics followed a more sophisticated Generalized AutoRegressive

Conditionally Heteroscedastic (GARCH) stock model, we observed that IQN has the ability to rapidly

fit the training data, although this can in some cases lead to overfitting. Also, during our experiments,

we noted that DDQN was 1.2-1.5x faster than IQN and around 2-4x faster than C51 depending on

machine configuration, the type of GPU and available memory. Finally, IQN consumes considerably
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more memory than DDQN. These are all characteristics that are worth taking into account when

choosing the right RL approach.

Table 2: Performance of the 3 versions of deep RL vs Baselines for S&P 500 data

Data \ Method DDQN C51 IQN Rand Last First B.M.

Training (60 stocks) ER/EROP 0.0290 0.0326 0.0336 0.0249 0.0281 0.0174 0.0270

Valid HP (60 stocks) ER/EROP 0.0156 0.0126 0.0147 0.0130 0.0118 0.0082 0.0123

ER/EROP 0.0274 0.0289 0.0285 0.0245 0.0272 0.0166 0.0256
Valid Model

(51 other stocks) CI 0.0003 0.0004 0.0003 0.0003 0.0004 0.0003 0.0004

ER/EROP 0.0285 0.0291 0.0281 0.0265 0.0271 0.0175 0.0258

CI 0.0003 0.0004 0.0003 0.0004 0.0004 0.0003 0.0004

EOR 17.1% 22.0% 17.6% 8.8% 13.9% -32.6% 5.3%

Test
(all stocks combined
on a future period)

CI 1.2% 1.6% 1.3% 1.4% 1.6% 1.2% 1.5%

Best values are marked in bold. CI refers to a 90% confidence interval. Out-of-sample performance of RL model selected with
Valid Model is underlined.

6 Concluding discussion

Solving the problem of optimal stopping in finance where data is known to have a high degree of

randomness (unpredictable) is both a notoriously challenging and intriguing task. In this paper, we

demonstrated the ability of three variants of deep reinforcement learning algorithms (DDQN, C51, and

IQN) to learn simply from real historical stock price observations complex stopping time policies in
the presence of uncertainty, volatility, and non-stationarities. Despite being more difficult to employ

and requiring a more significant computional investment than traditional off-the-shelf methods, our

experiments present empirical evidence that these deep RL algorithms are flexible enough to retrieve

optimal policies in context where these can be computed exactly (option pricing under GBM dynamics),

and to significantly out-perform off-the-shelf methods when the dynamics of the underlying stochastic

system are both unknown and likely to violate simplifying Markovian assumptions. In particular,

distributional IQN and C51 are able to learn the value distribution of option returns and rise up as the

favoured algorithms to employ in practice, with a strong preference for C51 when computation time is

less of an issue.

In closing, it is worth mentioning that our experience of hyper-parameters tuning taught us that

it is demanding and fragile, often requiring us to re-align the search grid the moment that problems

are slightly modified. We also observed in our experiments with real stock data, that it could be

beneficial to avoid shuffling the episodes during training with the effect of improving the out-of-sample

performance in periods that are chronologically close to the last episodes that were trained on. This

idea could potentially be useful in online learning, when the underlying process is non-stationary, since

it implicitly fine-tunes the algorithm according to the most recent data. We believe these constitute

two important directions of future investigation.
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A Pseudo-code for DDQN and C51 algorithms

A.1 Customized double deep Q-Learning algorithm

Algorithm 1 Customized double deep Q-Learning algorithm, a.k.a. DDQN

1: Inputs: A set of M episodes {si0:T }
M
i=1

2: Initialize: replay memory D to capacity C of episodes
3: Initialize: action-value function Q with random weights θ
4: Initialize: target action-value function Q̂ with weights φ = θ
5: for episode i = 1 to M do
6: Initialize: episode buffer B to capacity T
7: With probability ε episode is random and a uniformly random day to stop tstop is selected
8: for t = 0 to T do
9: if episode is random then

10: Set at =

{
continue if t < tstop

stop otherwise.
11: else
12: Set at = arg maxaQ(sit, a; θ)
13: end if
14: Execute action at and observe reward rt, store transition (sit, at, rt, s

i
t+1) in B

15: if (at = stop or t = tstop) then
16: Exit for loop
17: end if
18: end for
19: Store episode buffer B in replay memory D. If D full, drop the oldest episode
20: Sample a random mini-batch of buffers B of sequence transitions (sj , aj , rj , sj+1) from D

21: Set yj =

{
rj if aj = stop

rj + γmaxa′ Q̂(sj+1, a
′;φ) otherwise.

22: Perform gradient descent on (yj −Q(sj , aj ; θ))2 with respect to network parameters θ

23: Every U episodes reset target network Q̂ = Q
24: end for

A.2 Customized categorical distributional RL algorithm

Algorithm 2 Customized categorical distributional RL algorithm, a.k.a. C51 when N = 51

1: Inputs: A set of M episodes {si0:T }
M
i=1, Vmax and Vmin are the maximum and minimum values of possible returns,

N is the number of atom probabilities
2: Initialize: replay memory D to capacity C of episodes
3: Initialize: discrete support zk = Vmin + k∆z for k = 0 to N − 1, with ∆z = Vmax−Vmin

N−1

4: Initialize: value distribution P with random weights θ, and target distribution P̂ ’s with weights φ = θ
5: for episode i = 1 to M do
6: Perform lines 6–19 from Algorithm 1 where line 12 uses Q(sit, a) =

∑
k zkPk(sit, a; θ)

7: Sample a random mini-batch of buffers B of sequence transitions (sj , aj , rj , sj+1) from D
8: Set mk = 0, for all k ∈ 1, . . . , N − 1
9: for k = 1 to N − 1 do

10: Set vk = max(Vmin,min(Vmax, rj + γzk)) #Project distributional Bellman update onto the support {zk}N−1
k=0

11: Set bk = (vk − Vmin)/∆z # Identify support index of projection
12: Set l = bbkc, u = dbke, a′ = arg maxa

∑
k zkPk(sj+1, a;φ)

13: Set ml = ml + P̂k(sj+1, a
′;φ)(u− bk), set mu = mu + P̂k(sj+1, a

′;φ)(bk − l) #Distribute probability of sample
14: end for
15: Perform a gradient step on cross-entropy loss −

∑
kmk logPk(sj , aj ; θ) with respect to θ

16: Every U episodes update target distribution P̂ = P , i.e. φ = θ
17: end for
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A.3 Implicit quantile networks distributional RL algorithm

Algorithm 3 Customized implicit quantile networks RL Algorithm, a.k.a. IQN

1: Inputs: A set of M episodes {si0:T }Mi=1. N,N ′ are the number of samples of τ, τ ′ ∼ U([0, 1])
respectively, with N = N ′ = 8. K = 32 is the number of samples τ̃ ∼ U([0, 1]).

2: Initialize: replay memory D to capacity C of episodes
3: Initialize: β is a distorsion risk measure, and κ = 1 is the threshold for the Huber quantile

regression loss
4: Initialize: state-action quantile function Z with random weights θ, and target quantile function
Ẑ’s with weights φ = θ

5: for episode i = 1 to M do
6: Perform lines 6–19 from Algorithm 1 where line 12 uses Q(sit, a) =

∑K
k=1 Zβ(τ̃k)(s

i
t, a; θ), τ̃ ∼

U([0, 1])
7: Sample a random mini-batch of buffers B of sequence transitions (sj , aj , rj , sj+1) from D
8: Set a′ = arg maxaQ(sij , a; θ)
9: # Sample quantile thresholds

10: τl, τ
′
u ∼ U([0, 1]), 1 ≤ l ≤ N, 1 ≤ u ≤ N ′

11: # Compute distributional temporal differences

12: δ
τl,τ
′
u

j = rj + γZτ ′u(sij+1, a
′;φ)− Zτl(sij , aj ; θ), ∀l, u

13: Perform a gradient step on Huber quantile loss 1
N ′

∑N
l=1

∑N ′

u=1 ρ
κ
τl

(δ
τl,τ
′
u

j ) with respect to θ, where

ρκτl(δ
τl,τ
′
u

j ) =
∣∣∣τ − 1{δτl,τ ′uj < 0}

∣∣∣Lκ(δ
τl,τ
′
u

j )

κ with Lκ(δ
τl,τ
′
u

j ) =

 1
2δ
τl,τ
′
u

j

2

if
∣∣∣δτl,τ ′uj

∣∣∣ ≤ κ
κ(
∣∣∣δτl,τ ′uj

∣∣∣− 1
2κ) otherwise.

14: Every U episodes update target quantile function Ẑ = Z, i.e. φ = θ
15: end for

B Final choice of hyper-parameters

Table 3: Hyperparameters of the different RL versions

Task Algorithm Hyperparameters

GBM
DDQN learning-rate=0.0001 + batch-size=128 + C=10000 + U=300

C51 learning-rate=0.0025 + batch-size=64 + C=3000 + U=30

IQN learning-rate=0.00005 + batch-size=128 + C=3000 + U=1000

S&P500
DDQN learning-rate=0.005 + batch-size=64 + C=10000 + U=300

C51 learning-rate=0.0025 + batch-size=64 + C=3000 + U=30

IQN learning-rate=0.0025 + batch-size=64 + C=3000 + U=100
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