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HEC Montréal, Canada.

Avant de citer ce rapport technique, veuillez visiter notre site Web
(https://www.gerad.ca/fr/papers/G-2022-08) afin de mettre à
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3000, chemin de la Côte-Sainte-Catherine
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Abstract : The Generator Maintenance Scheduling Problem (GMSP) is a problem that combines
a hydropower optimization problem with a scheduling problem. Both problems are known to be
hard to solve and combining them leads to an even more challenging mathematical problem. Since
the hydropower production functions are nonlinear, hyperplane curve fitting is used to linearize each
power production function. The goal of the GMSP is to find an optimal schedule plan to decide
when to shut down generators for maintenance. Therefore, one production function needs to be
formulated per generator combinations leading to a rather large number of constraints. This paper
demonstrates that the complexity of the problems is linked to the number of hyperplanes selected to
formulate the power production functions. To accelerate the resolution of the problem, a new heuristic
based on the mean square algorithm is presented to reduce the number of hyperplanes required. This
heuristic substantially reduces the number of constraints and the solving time is almost ten times
faster. Numerical results show that the energy produced and the generated maintenance plannings
are similar for both mathematical formulations, more precisely with one hyperplane for each generator
combination versus a reduced number of hyperplanes.

Keywords: Hydropower scheduling problem, maintenance scheduling problem, hydropower produc-
tion functions, stochastic programming, mixed integer linear programming, heuristic
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1 Introduction

This paper is concerned with the Generator Maintenance Scheduling Problem (GMSP). It combines a

hydropower optimization problem with a maintenance scheduling problem, both of which are hard to

solve in large-scale models because of the large size, integer variable, and nonlinearity of the hydropower

production functions. Therefore, containing both problems in a real application setting is a challenge.

The current literature covers many hydropower problems or maintenance planning problems, but

few papers consider both problems simultaneously. We propose an approach that allows to solve

both problems at once. From an industrial point of view, it is important to link the two models

because the number of active generators in a plant correlates strongly with plant efficiency. Indeed,

the efficiency curve of a power plant is different for each combination of generators and it is possible

to produce the same power with fewer generators but the discharged water amount will be different.

Also, at times when power demand decreases, it is better to shut down a generator. Actually, if

some generators are working at their maximum efficiency the plant can produce the same amount of

power with less water than if it worked with more generators. In this case the maintenance can be

done by a free indirect costs because the generators need to be shutdown. This approach presents a

fast solving time with a good reliability regarding to nonlinear characteristics formulations. Indeed,

this problem is formulated as a Mixed-Integer Linear Problem (MILP) but the models still represents

the key elements of nonlinear hydropower production functions thanks to the linearization through

hyperplanes formulations. Moreover, a heuristic is used to estimate the final power production with

a reduced number of hyperplanes. This methods shows similar results as the method without the

heuristic, but it is faster.

1.1 Related works

The two problems contained in the GMSP are commonly solved independently. Some authors [1, 2]

proved that the two problems are linked and that maintenance planning influences hydropower pro-

duction. The short-term hydropower optimization is used to determine the water flows of each turbine

in each power plant. It usually maximizes the energy production or minimizes production cost and

uses precise formulations of the power production functions. The latter are nonlinear and non-convex,

it makes the problem hard to solve if a global optimal solution is needed. The variables are discharged

water amount, spilled water amount and number of active turbines, the latter case leading to a mixed

integer program. Certain authors model this problem as a mixed integer linear program by using some

linearizing techniques for the nonlinear power production functions [15, 20, 23, 24]. These production
functions depend on reservoir volume or net water head (which is the difference between the forehead

and tailrace elevation minus the losses caused by friction in the penstock), and total water discharged

or more precisely, water processed and spilled by each turbine and each power plant. In the literature,

the short-term hydropower optimization problem is often seen as deterministic. Indeed, the plan-

ning horizon is short and the forecasting is commonly seen as deterministic, but some authors have

shown that stochastic models lead to increased performance [3]. Many formulations of the problem

are possible. For instance, in [4] a stochastic model to fomulate uncertainty of electricity prices in

the Norwegian electricity market is presented. A multistage mixed integer linear stochastic model is

used to solve the problem. Whereas in [5] an inflow scenario tree approach is presented, also the head

variations and nonlinear/nonconvex relationship between discharge and power output are considered.

In [6] the authors describe a two-stage scenario tree to solve the short-term hydropower problem. They

model electricity load and inflow uncertainty. They propose operational rules to manage the real time

dispatchers and their approach increases the value of the objective function by up to 54%. If uncer-

tainty in future prices and inflows are taken into account, it demonstrates and quantifies the benefits

of using stochastic models rather than a deterministic model with a nonlinear modelisation [7].
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The maintenance scheduling problem is a common study problem which consists in calculating a

maintenance calendar for an equipment or a plant by taking into account the profit or efficiency loss

of shutting down the system while doing the maintenance. The maintenance problem should take

into account workforce costs, materials available and tools costs; these are the direct costs of the

maintenance. On the other hand, indirect maintenance costs are usually startup and shutdown costs

and production losses [10]. Both costs illustrate that the maintenance has to be scheduled at the right

time to have a minimal financial impact. It is an essential element of all industrial sectors. It is possible

to increase the efficiency of a system with a good maintenance plan by reducing breakdown risks and

emergency maintenance [11]. Emergency maintenances are more costly than preventive maintenances

since the outage times of the equipment are longer. Also, breakdowns can occur on days when the

maintenance costs are more expensive [12]. A breakdown can also happen a day where the maintenance

cost is more expensive. Finally, maintenance for a broken piece in an industrial machinery can bring

other defects or other broken pieces that can increase the total cost of the maintenance. For all these

reasons, it is mandatory to have a good maintenance plan. Such a plan respects all constraints defined

by the producer and schedules preventive maintenance before breakdowns occur.

The literature contains a few studies that link an industrial production problem with a maintenance

scheduling problem. In the specific case of power production plants a good maintenance plan can

double the lifetime of core equipment [13]. One of the first work concerned with both problems is

presented in [14]. It presents a production planning for one machine and takes into account the outage

time and the production loss caused by the preventive maintenance. This paper proved for one of

the first times that it is possible to improve profits by implementing a great maintenance planning

in coordination with the production, but it is based on a theoretical case rather than a complex

industrial system. In the field of electrical production domain the main difficulty of the problems is

that the production functions are nonlinear, but some linearization methods for these functions can

be applied [15]. In [16] an approach using a two stages optimization model for solving the GMSP

in a nuclear plant is presented. The first stage generates a flexible planning for all the maintenance

tasks. This flexible planning is based on maintenance costs, time, emergency levels of maintenance

and machine reliability. The second stage determines the optimal place for each maintenance in the

schedule. The main difficulty of this problem is that the production functions of the nuclear turbines

are nonlinear. Thus the problem is solved using a genetic algorithm, which provides good solutions fast,

but has not proof of optimality. In [17] the impact of operations decision and maintenance planning

on a power plant are discussed. For a maintenance task there are a lot of factors to take into account

like time, costs, startup and shutdown times that are not negligible. There is also workforce costs that

can be different depending of the weekday or even the season (given summer vacations, for example).

Other technical factors can be operational costs on generators and optimal operating range. All these

factors are often too simplified or even neglected. A model including that many factors could have a

great precision and be the closest to the reality. With such a model, the maintenance schedule would

be truly optimal, but modelling so many factors increases the size of the problem and it is nearly

impossible to solve. A survey is presented in [18], with many test cases related to hydropower. The

main conclusion of this work is that it is difficult to model the problems to stick to reality while being

time efficient in the resolution. In the proposed survey, important parts of the problems neglects or

over simplify some important parts of the problem like the generator’s nonlinear production functions

or the water level of reservoirs [19, 20, 21, 22, 23, 24, 25, 26]. In [19] the authors presents a MIP

to solve the GMSP for a mixed production system (it is composed by coal, nuclear and hydropower

plants). This MIP gives a maintenance planning for the generators, a production schedule and takes

decisions about the transport and mining of raw materials for coal plants. Thus there is no production

demand to take into account and the hydropower generator’s production functions are linear. The

hydropower system is simply a variable defining the availability of power that can be generated at

each period. Consequently, the hydropower decision is not clearly impacting the next period with a

water conservation constraint, for example. In [20] an approach to compute the optimal load of water

during an outage of one or more generators is discussed. The hydropower problem is formulated as
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a linear model. This linearization of production functions simplifies the problem. After solving the

hydropower linear problem, a simulation in which each maintenance tasks combinations is processed

and the best one is selected to be the optimal schedule. This kind of model is hard to scale to a bigger

installation. An approach based on fuzzy logic is presented in [21], but it does not take into account

some important hydropower characteristics such as the water level in reservoir. In [22] an ant colony

algorithm is defined to solve the GMSP for a system composed with five plants, but this study is not

interested by the nonlinear characteristic of the problem and it is a long-term deterministic approach.

Another study [23] presents an oversimplified approach that is suppose that the power produced by a

generator is constant, therefore the water head is neglected. In [24] authors use Bender’s decomposition

to find an optimal schedule. This approach does not take individually the power production of the

plants, and only the reservoir level is considered. The Bender’s decomposition master problem objective

function only minimize the water usage. In [25] the modelisation of GMSP is modified by adding a

time window for each outage. This modification improves the maintenance reality challenges. Also,

some constraints are modelled to optimize the number of workers for each scheduled maintenance.

Again the nonlinearity of the power functions is not considered. This is proving that adding a time

window for outages duration is improving the results and that it generates a schedule that is closest

to the reality. In [26] a short-term model for maintenance in a wind turbine installation is shown.

Wind turbines are really close to hydropower plants because of the nonlinearity of the generator’s

production function and direct link of forecasts with future production. A metaheuristic solve their

problem and showed that making a short-term schedule for maintenance improves the production of

a wind turbine installation. The production functions are too simplified by just using the forecast

to define the production. According to [1], simplifying the GMSP by neglecting the nonlinear aspect

of the production function can lead to an over estimation of the power production. This can lead to

suboptimal maintenance schedules. Thus, the hydropower production problem is already hard to solve,

even more if it is a problem composed with many plants on the same water stream. It is not trivial

to consider hydrologic inflows and all the difficulties of a full maintenance scheduling problem. In this

context, it can be interesting to make some mathematical simplifications if this can lead virtually to

find a good solution in a suitable time.

Another part of the literature represents more precisely the key elements of the hydropower problem.

In [27] a genetic algorithm is presented to solve the GMSP using continuous variables to represent the

starting time and time windows of the maintenance. The power function is modeled with an analytical

function. Therefore, this paper neglects the nonlinear effect of the generator numbers change over the

final power production. A chance constraint model that takes into account the stochastic inflows is

presented in [28]. The power demand and the nonlinear variable of hydropower optimization are taken

into account. For simplification, the deterministic equivalent of the problem is solved and nonlinear

effect of the generator numbers change over the final power production is neglected. In [29] a multistage

stochastic model is described where maintenance scheduling decision are taken at the first stage and

hydropower operational decision are taken over the next stages. Also, a Bender’s decomposition

algorithm solve their model. The stochastic natural inflows are considered with a scenario tree and a

stochastic selling price of power is emulated using Markov chains in a liberal electricity market state.

All the cited papers are interesting but most of them present simplifications that lead to unrealistic

models in practice. Also the papers presenting models that are not oversimplified are using a single

power production function for each power plants. Thus, the model presented in this paper uses power

production functions for a certain number of active generators, instead of individual power production

functions. For example, if the power plant has 5 generators and engineers decide that 2 maintenances

can be performed at the same time, the model has too chose from 3 power production functions, one

for 3 active generators, one for 4 active generators and one for 5 active generators. There is a slight

difference in the power production when turning off one or another generator but it is not significative

for the purpose of maintenance planification. In this case, a precise short-term optimization plan is

already used for daily operation and only the small power loss of planning outages has to be modelled

for planification purposes. This paper is based on previous works that can be found in [1, 2]. The
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first paper is about a very precise model proposition to solve the GMSP but it is not fast enough

for daily operation planning. The second paper is an implementation of Bender’s decomposition to

accelerate the solving time and consider uncertain inflows in the model but it proves that Bender’s

decomposition has a better solving time with a lot of inflows scenarios, but it has almost no benefits to

plan a lot of maintenance’s tasks. With today’s scenario trees technology, problems can be solved with

a decent amount of scenarios and a precise liability so it should be better to have an algorithm that

scales better with maintenances number than scenario number. These two models provide suitable

maintenance plans, but the solving time is high. In this paper a reformulation of the problem is

proposed by adding a innovative way to evaluate only one power function per power plant. By doing

this, it is possible to dramatically reduce the number of constraints and to step up the solving time.

With a reduced solving time, it is possible to increase the amount of maintenances to schedule or even

solve the model more often to take better decisions over a rolling horizon. The paper is organized as

follows. Section 2 presents the mathematical model. Numerical results are presented in Section 3 and

final remarks are raised in Section 4.

2 The generator maintenance scheduling problem

The problem that is being modeled in this section is the GMSP. It is known to contain a lot of

constraints and integer variables. It is complicated to solve a nonlinear integer program of this size.

That’s why it is formulated as a Mixed Integer Linear Program (MILP). To do so, the original nonlinear

hydropower production function are reformulated as a set of hyperplanes.

2.1 Approximation of the hydropower production functions using hyperplanes

The unit production function of each plant is a polynomial function of the form :

f(x, y) = p00 + p10x+ p01y + p20x
2 + p11xy + p02y

2 + p30x
3 + p21x

2y

+p12xy
2 + p40x

4 + p31x
3y + p22x

2y2 (1)

with x the discharged water in m2/s and y the reservoir volume in m. Each Pij ,i ∈ {0, 1, ..., 4},
j ∈ {0, 1, 2} is a coefficient. This polynomial function can be used to model one generator production

function or a complete plant with a combination of active generators. In the case of maintenance

scheduling, it is mandatory to model the difference between the production function of a plant with

n active generators. The most reliable mathematical model to do this is to use a nonlinear fitting of

the unit production function per generator and the production function of the plant is the sum of all
generator’s unit production functions. Therefore, in practice, depending of the plant type, it is difficult

to decide the amount of discharged water per generator because the valve have no reliable fine tuning

settings due to high water pressure. Taking this into account, in the hydropower optimization models,

a production function per plant is used. In the model that use a more precise formulation, a production

function per plant and per generator combination is used. While using this formulation it is possible to

note the production difference if a generator or more is turned off. It is possible to solve this nonlinear

unit load balancing problem, but adding a maintenance schedule to it for many interconnected plants

would be very hard to solve. Thus to make this problem feasible for a large-scale installation of multiple

plants, even with a single production function instead of one production function per generator, the

presented problem is linearized because solving a MILP with today’s mathematical tools, is faster than

solving a nonlinear integer problem, even if the linear problem is larger. To linearize the problem each

production function is represented with a set of hyperplanes. Figure 1 shows how the hyperplanes

represent the nonlinear function. An algorithm presented by [31] is used to find a set of hyperplanes

that fit the production function of the power plant. This algorithm chooses a point on the production

function’s definition domain and calculate a tangent plane. Then it searches for the point where there is

the greatest difference between the production function and the plane created and it generates another

plane. The algorithm stops when all points of the function have a difference with the hyperplane set

lower than ε.
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(a) Nonlinear production function of P1

(b) 30 hyperplanes for P1

Figure 1: Comparison between the 2 production function models

Once the hyperplanes set are defined for all powerplants, the model can be formulated as a MILP.

This formulation comes with the advantage to be linear but trading one production function with a

set of hyperplanes increases the number of constraints. However, nonlinear mixed integer problem

are really hard to solve and transforming this nonlinear problem in a linear problem increases the

performances even if the problem is larger. The number of hyperplanes required to approximate the

hydropower production function is directly linked to the ε selected in the algorithm. The smaller ε is,

the larger the number of hyperplanes will be. For instance, if a single function is substituted by 30

hyperplanes, the model has 30 more constraints to take into account. This is not a big difference for

a single operation, but in a case where there are 30 periods to evaluate for 5 different power plants

for many different combinations of generators it is a huge increase of the problem size. Moreover,

the presented model is a stochastic MILP so all of these production functions constraints are again

multiplied by the number of scenarios. With all these hyperplanes to evaluate, the complexity of the

problem is undeniably linked to the number of hyperplanes selected for each generator combinations.

Solutions to reduce the size of the problem with a minimal loss of viability are discussed in this paper.

Table 1 shows the different number of constraints linked with the number of hyperplanes per functions.

Table 1: Comparison between number of hyperplane versus total number of constraints

Number of
hyperplane

Number of
constraint

5 110,864
10 182,864
20 326,864
30 470,864
40 614,864

Now that the formulation techniques used to linearize the problem are presented, it is possible to

discuss how the number of constraints have been reduced.

2.2 Heuristic proposed to reduce the number of hyperplanes

Given the size of this problem is directly linked to the precision of the hyperplanes modelling, a

methodology is proposed to reduce the number of hyperplanes for many periods of the problem. In

some periods it is impossible to schedule maintenances because of industrial constraints or simply

because there are no maintenances to do during a specific period. In those periods, it is mandatory to

choose the maximum number of generators and the production function of the plant is always the one

with the highest number of active generators. Then, for the periods when generator maintenances can

be planned, a heuristic is used to evaluate only one production function.

Instead of using one set of n hyperplanes per generator combination fore each time step and power

plant, a heuristic is a proposed. The heuristic is made to use aR value to reduce or raise the production
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function to estimate the production with more or less active generators. For instance, if a powerplant

has 5 generators and the maximum outages is set to 3, this powerplant has 3 production functions

(3, 4 or 5 active generators). In this case the production function with 4 active generators is always

used and R value is added to raise or lower the final power of this function if there is one more or less

generator. This R value is found by using a mean square algorithm to find the best match between

the production function and all the other production functions of the power plant. In this context,

for all the power plants and for all the generator combinations, a unique R is found to estimate the

power output of the plant. This method is less accurate than the one with a set of hyperplanes for all

combinations but it models the difference of power output if a generator is stopped or restarted. In the

GMSP, the main goal is to formulate the loss of power due to the outages and with this technique, this

loss of power is represented without increasing the size of the problem. Figure 2 presents the difference

between the production function estimated by the hyperplane modelisation versus the heuristic. This

Figure shows only the comparison with all active generators and 2 turned off generators because they

are both estimated with the production function of the plant with one turned off generator. This data

comes from P3 (Figure 3 presents the system used to retrieve the data.). It is possible to remark that

in both cases the estimation is accurate. There is a small loss of precision but the curve tendency is

preserved. It shows that it is possible to estimate efficiency loss by using only one function.

(a) Comparison with all active generators (b) comparison with 2 turned of generators

Figure 2: Comparison between the heuristic vs hyperplanes of the estimated production function

2.3 Problem formulation

This problem has random inflows, thus, a stochastic problem has to be solved and a two-stage stochastic

program is modelled to account for the uncertain inflows. The hydropower decisions are made at the

first stage, then the maintenance planning is defined over the next stage. This problem uses a 30-day

horizon where decision has to be made for each day for the hydropower problem. A maintenance

planning has to be scheduled over the whole horizon. This maintenance planing is composed of

maintenance task for generators that need one. Each maintenance task has a time window to be

processed and a duration. The model has to choose the best place for the maintenance in the time

window. Time windows are set by engineers with the help of monitoring tools and experience. This

stochastic model uses a scenario fan of 40 inflows scenarios coming from historical data. A scenario

fan is a set of individuals scenarios. The mathematical model is presented below.
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Sets and parameters

I = {1, 2, 3, 4, 5} The set of power plants;
T = {1, 2, ..., 30} The set of periods;
M = {1, 2, ...,m} The set of maintenance tasks;

K(i, t) = {1, 2, ..., n}, i ∈ I, t ∈ T The set of active generators at the period t and the powerplant i;
Ω = {1, 2, ..., 40} The set of inflows scenarios;

Hi∀i ∈ I The set of hyperplanes representing the estimated production function of the
power plant i;

Ri,k∀i ∈ I, k ∈ K The set of constants numbers for correcting the estimated power at the power
plant i while k turbines are actives;

B+
t ∀t ∈ T The price of electricity sold on the electricity market at the period t;

B−
t ∀t ∈ T The price of electricity purchase on the electricity market at the period t.

Decision variables

ymt =

{
1 if the outage m ∈ M starts at the period t ∈ T ,

0 otherwise;

zitk =

{
1 if k ∈ K(i, t) generators i ∈ I are actives during the period t ∈ T ,

0 otherwise ;

vitω∀i ∈ I, t ∈ T , ω ∈ Ω The spillway flow at the plant i at the period t for the scenario ω;
uitω∀i ∈ I, t ∈ T , ω ∈ Ω The discharge flow at the plant i at the period t for the scenario ω;
sitω∀i ∈ I, t ∈ T , ω ∈ Ω The upstream elevation at the plant i at the period t for the scenario ω this

variable is used to calculate the reservoir volume;

q+tω∀t ∈ T , ω ∈ Ω The electricity sold a the period t for the scenario ω;

q−tω∀t ∈ T , ω ∈ Ω The electricity bought a the period t for the scenario ω;
nit∀i ∈ I, t ∈ T The number of maintenance for the plant i at the period t.

The problem is written :

maximize
q+,q−,u,v,s,y,z

∑
ω∈Ω

(
1

|Ω|

(∑
t∈T

B+
t q

+
tω −

∑
t∈T

B−t q
−
tω

))
(2)

Subject to : ∑
t∈T

ymt = 1, ∀m ∈M, (3)∑
m∈M(i)

t′∈T (m)
⋂

[t−Dm+1,t]

ymt′ = nit, ∀i ∈ I∀t ∈ T , (4)

nit +
∑

k∈K(i,t)

kzitk = Git, ∀i ∈ I,∀t ∈ T , (5)

∑
k∈K(i,t)

kzitk = 1, ∀i ∈ I,∀t ∈ T , (6)

nit ≥ 0, ∀i ∈ I,∀t ∈ T , (7)

vitω ≥ 0, ∀i ∈ I,∀t ∈ T ,∀ω ∈ Ω, (8)

0 ≤ uitω ≤ U+
it , ∀i ∈ I,∀t ∈ T ,∀ω ∈ Ω, (9)

0 ≤ sitω ≤ S+
it , ∀i ∈ I,∀t ∈ T ,∀ω ∈ Ω, (10)

0 ≤ q+
tω ≤W+

t , ∀i ∈ I,∀t ∈ T ,∀ω ∈ Ω, (11)

0 ≤ q−tω ≤W+
t , ∀t ∈ T ,∀ω ∈ Ω, (12)

pitω =
∑

k∈K(i,t)

pitkω, ∀i ∈ I,∀t ∈ T ,∀ω ∈ Ω, (13)

∑
i∈I

pitω + q−tω = A+ q+
tω, ∀t ∈ T ,∀ω ∈ Ω, (14)

sitω − si(t−1)ω = (σitω+

∑
g∈U(i)

(ugtω + vgtω)− uitω− vitω ×F ), ∀i ∈ I,∀t ∈ T ,∀ω ∈ Ω, (15)
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pitkω ≤ β0
h + βu

huitω + βs
hsitω ∀i ∈ I,∀t ∈ T ,∀ω ∈ Ω,

+
∑

k∈K(i,t)

kzitk ∗ Rik ∀k ∈ K(i, t),∀h ∈ H(i). (16)

The objective function Equation (2) maximizes the profit by subtracting electricity bought to elec-

tricity sales. In this case, all the maintenance have the same hourly rate every day. Thus, there is no

incidence to add it or not in the objective function. Constraints (3)–(7) are the constraints relative to

the maintenance problem. Equation (3) verifies if all the outages are scheduled for the optimization

horizon. Constraints (4) compute the amount of maintenance nit per plant and per period. Con-

straints (5) is link the number of outages nit to the number of active generators. Constraints (6)

checks if only one combination of generators is active for each period. Constraints (7) ensure the

variables nit are non-negative. Constraints (8)–(14) are the constraints relative to the hydropower

problem. Constraints (8)–(12) are the hydropower bounds. Constraint (15) are the water conservation

constraint. Set U(i) is the set of power plants that are upstream of the plant i ∈ I, the parameter F is

a multiplication factor to change m3/s inflows into a daily reservoir volume in hm3/j. Constraints (16)

estimate the power produced by the plant using the number of active generators defined by the vari-

able zitk. The coefficients βh are the coefficients of the hyperplane h. Constraints (13) sums the

production of each plant for the scenario ω. The constraints (14) verify that the production and

purchases of electricity are enough to power the aluminum production (At) and sell the surplus.

3 Computational experiments

This section presents the numerical results conducted to validate the proposed approach. The results

obtained by this study use data from a real case located in Québec (Canada). It is the Saguenay-Lac

Saint-Jean’s hydropower system. This system is composed of 4 power plants connected in series. Two

power plants are located of the Lac Saint-Jean’s reservoir, and the 2 others are downstream. The Lac

St Jean’s reservoir elevation is managed by strict rules because of recreative purposes during summer,

and constraints are added to cover these seasonal rules. All the power plants have different numbers of

generators (between 5 and 17). With this number of generators, it is obviously difficult to solve (in a

reasonable space and time complexity) a model using the unit production functions of all generators.

It is also hard to solve a model which represents all the generator’s combinations. Two power plants

are run-of-the-river power plants (P2 and P4) and the 2 other plants have reservoirs. The Figure 3

present a global view of the Saguenay lac Saint-Jean’s hydropower system.

To make a fair comparison, the two models were tested with same input parameters and then all

the operational decision given by both models are tested with the real case power functions. This way

all the operational decisions are tested with the same function to have a comparable power output

and verify the difference between the production of the two different solutions. The comparison of the

evolution of production is made with real nonlinear functions. To do so, we used all the decisions taken

by both models and we simulated it with the original nonlinear modelisation of power function of all

plants. The first model (Model A) tested is the model presented in [1]. This model proposes a solution

to the GMSP using a stochastic MILP with a precise definition of all combinations of production

functions. This model is used to make a comparison of the classical method used to solve this problem

and the formulation presentend in this paper. The second model (Model B) is the model proposed in

this paper which is reducing the number of constraint by using an heuristic to estimate the power loss

or gain by using more or less generator during a maintenance. In summary, the Model B uses only

one function to represent the nonlinear variation due to the outage of one or more generators while

the Model A uses one function for each combination of generators. The Model B performs better in

computation time with a minimal loss in power production estimation. Model B obtains result in a

faster computing time so it can be run often if it is decided to run it in rolling horizon for future

works. The estimated power production loss from the Model B versus the Model A is not considered
significant for this work because the purpose of this algorithm is to find a good maintenance plan and
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Figure 3: Saguenay lac Saint-Jean’s hydropower system, where NI are Natural Inflows, P represent a power plant and R
a reservoir

not to estimate the power function to be the closest to reality. To test the Model B, we solved the

two stages stochastic program with GLPK [30]. In this paper, one detailed instance is presented. This

instance of 16 outages over the 30-day horizon. Table 2 shows all the maintenance tasks to schedule.

The location column is the power plant index. For this use case, there are 16 maintenance tasks to

schedule. The inflow uncertainty is represented by a 40 historical inflows scenario fan. The instance

that is presented more precisely is the instance number 15 in the Figure 9 and Figure 10. This instance

is chosen because both models presented a different maintenance scheme and the power gap between

both models is average versus all the other cases. Another instance could have been chosen, but it is

more reliable to present an average case rather than an extreme one.

Table 2: Example of a maintenance plan to schedule

Maintenance
number

Duration
(in periods)

Minimal
starting period

Maximal
starting period

Location

1 4 1 3 0
2 5 2 4 0
3 7 6 8 0
4 5 8 10 0
5 6 0 2 1
6 4 1 3 1
7 6 7 9 1
8 4 7 9 1
9 3 0 2 2
10 6 7 9 2
11 3 2 4 2
12 4 6 8 2
13 2 11 13 3
14 4 9 11 3
15 5 3 5 3
16 5 0 2 3

All the tested cases are performed on a laptop computer with an Intel Core i7 Processor and 16

GB of RAM.
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The results for 2 of the 4 power plants are presented in details, more precisely “P1” and “P3”. The

2 other plants are omitted from the results since they are run-of-the-river plants. Figure 4 and Figure 5

shows the evolution of estimated productions versus the discharged water of both models over the time

horizon. To respect data confidentiality of the company, all values are replaced by percentages and

the 100% value is the maximum bound of each dataset. For example, if the reservoir level is 0%, it

is at its minimal bound and it is impossible to discharge more for the period. It is possible to notice

in the Figure 6 and Figure 7 that there is a slight difference between both reservoir levels but the

curve tendency is still the same between the two models. This proves that the Model B has the same

behavior than the most precise model. Also the new model uses less water in the first periods than

the previously presented model. In practice, this can be usefull for engineers and with this tendency

they can easily avoid to run out of water too fast in case of low natural inflows.

Figure 4: “P1” power and discharge comparison between both models for one instance

Figure 5: “P3” power and discharge comparison between both models for one instance

Next, Figure 8 presents both models generated planning. As we can see, they have very small

differences. The only 2 differences between both models are on that Mt3 and Mt11 are scheduled with

a difference of 1 period. both models propose almost the same scheduling but with a great computation

time difference.

Finally, the solving time of this model is significantly better (approximately 5 times better) than

the previously developed model. Indeed, for the 16 instances, the mean solving time is approximately

30 seconds for this model, for the previous model, the solving time mean is approximately 130 seconds.

This solving time gain can be used to use more scenarios to try a better stochastic approach, for running

the model often on a rolling horizon planning or even planning more maintenance tasks. These time

changes are more significant than the small power loss due to our simplified model. Also, the original
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Figure 6: P1’s reservoir level comparison between both models

Figure 7: P3 plant’s reservoir level comparison between both models

(a) Heuristic based hyperplane formulation (Model B) (b) Precise hyperplane formualtion (Model A)

Figure 8: Comparison between the 2 models’ generated plannings

model is running more than 30 minutes in some cases where there is no solution (over constrained).

The Model B stops quickly if there is no feasible solution. Figure 9 shows the difference of solving

time for all tested instances.

The Figure 10 shows the total energy produced estimated by both models in comparison. Again,

real numbers are not shown but percentages are used to show the difference between both models. The

100% on the energy scale is the maximal energy that can be produced if all plants are at their best

yield and all reservoirs are always full. As we can see, the new estimation of the production function

has a small energy loss overall but it is at least five times faster than the first version of the model.

Again this last Figure shows that the production tendency is similar between the two models and infers

that the Model B presented in this paper finds good results in a significant lower time.
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Figure 9: comparison of the two models solving time

Figure 10: Comparison of the two models’ productions for all 16 tested instances

4 Conclusion and future works

With this new model, the generator maintenance scheduling problem was simplified to generate a fast

solution with less precision about operational decision but with a significant gain of solving time. This

little loss of energy is not considered critical for this problem because the role of the GMSP is to

find a maintenance schedule in coordination with operational decisions but it has to be used, in real

cases, in coordination with a short-term optimization model for the operational decisions. Indeed, this

GMSP will schedule the outages of generators, and then a short-term, very fine-tuned algorithm is

used to define the operational decisions with the number of generators given by the GMSP. Moreover,

this model computes good maintenance decisions and the operators can use it directly. This model

is running fast and gives acceptable decisions but it is still improvable. In our future works, we will

focus on using a decomposition algorithm to accelerate the solving time and to add some operational

constraints like splitting some maintenances if there is a big inflow forecasted or adding workforce

availability in the modelisation. Also it is planned to work on re-optimization of the given solutions

to run this model in a rolling horizon fashion. If there is a big change in forecasts or a new emergency

maintenance to schedule, the algorithm will be able to take a good decision. Finally, to improve the

model reliability the maintenance definition can be improved. For instance, we can refine the direct

maintenance costs with material costs, different workforce hourly rates for week and weekend or moving

costs between the plants for example.

References
[1] J. A. Rodŕıguez, M. F. Anjos, P. Coté, and G. Desaulniers, MILP Formulations for Generator Main-

tenance Scheduling in Hydropower Systems, IEEE Trans. Power Syst., 33(6):6171–6180, Nov. 2018,



Les Cahiers du GERAD G–2022–08 13

doi: 10.1109/TPWRS.2018.2833061.
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