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a GERAD, Montréal (Qc), Canada, H3T 1J4

b Canada Excellence Research Chair in “Data Sci-
ence for Real-time Decision-making”, Montréal
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Les textes publiés dans la série des rapports de recherche Les Cahiers
du GERAD n’engagent que la responsabilité de leurs auteurs. Les
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Abstract : We consider the problem of training a deep neural network with nonsmooth regularization to
retrieve a sparse and efficient sub-structure. Our regularizer is only assumed to be lower semi-continuous
and prox-bounded. We combine an adaptive quadratic regularization approach with proximal stochastic
gradient principles to derive a new solver, called SR2, whose convergence and worst-case complexity
are established without knowledge or approximation of the gradient’s Lipschitz constant. We formulate
a stopping criteria that ensures an appropriate first-order stationarity measure converges to zero under
certain conditions. We establish a worst-case iteration complexity of O(ε−2) that matches those of
related methods like ProxGEN, where the learning rate is assumed to be related to the Lipschitz
constant. Our experiments on network instances trained on CIFAR-10 and CIFAR-100 with `1 and `0
regularizations show that SR2 consistently achieves higher sparsity and accuracy than related methods
such as ProxGEN and ProxSGD.

Keywords : Pruning neural networks, regularization, proximal stochastic methods, nonsmooth
nonconvex optimization, finite sum optimization
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1 Introduction

We focus on the problem of training neural networks with regularization expressed as

min
x
F (x) := f(x) +R(x), f(x) :=

1

N

N∑
i=1

fi(x), (1)

where x ∈ Rn are the parameters, f is the loss function, and R may be nonsmooth, nonconvex, and

take infinite values. Instances of (1) are often used as approximations of

min
x

Eω∼P [f(x, ω)] +R(x),

where ω follows a distribution P. In (1), R helps select a solution with desirable features among all

potential minimizers of f . Examples include the weight decay technique, which uses R(x) := ‖x‖2 to

avoid over-fitting the training data (Krogh and Hertz, 1992; Zhou et al., 2021). Other applications

employ a specific regularizer, whether convex, such as ‖ · ‖1, or nonconvex, such as ‖ · ‖0, to retrieve a

sparse sub-network for network pruning (Hoefler et al., 2021; Wang et al., 2019; Yang et al., 2019a)
or quantization (Bai et al., 2018; Wess et al., 2018). For the rest of this work, we focus on sparsity-

promoting R.

We introduce SR2,1 a stochastic variant of the quadratic regularization method that solves (1) for

nonsmooth, nonconvex regularizers. Our main contributions are

1. to the best of our knowledge, the first stochastic adaptive quadratic regularization method for (1)

with weak assumptions on R;

2. the formulation of a stopping criterion and a first order stationarity measure adapted to nonsmooth,

non-convex stochastic optimization problems;

3. the convergence of a first-order stationarity measure to zero without assuming knowledge of the

Lipschitz constant of ∇f , and worst-case O(ε−2) iteration complexity;

4. numerical experiments on multiple instances of deep neural networks (DNNs) to retrieve a
sparse sub-network. In most cases, SR2 achieves high sparsity levels without post-treatment. A

comparison against two related proximal solvers, ProxSGD and ProxGEN, in terms of accuracy

and sparsity of the solution is favorable for SR2.

1.1 Background and related work

The stochastic gradient (SG) method (Kiefer and Wolfowitz, 1952; Robbins and Monro, 1951), and its

variants (Ruder, 2016; Kingma and Ba, 2015; Nguyen et al., 2017), are a common approach for (1)

when R = 0. At iteration t, SG selects a sample set ξt ⊆ {1, . . . , n}, computes the sampled gradient

gt = 1
|ξt|
∑
i∈ξt ∇fi(xt), and updates

xt+1 ← xt − αtgt, (2)

where αt > 0 is the step size, or learning rate. SG and variants typically accept every step regardless

of whether the objective decreases or not. For this reason, we do not refer to it as SGD, where D

would stand for descent. SG can be shown to converge in expectation under certain assumptions on the

learning rate and on the quality of gt (Bottou et al., 2018).

Proximal gradient descent (PGD) (Fukushima and Mine, 1981) is suited to the structure of (1), i.e.,

when R 6= 0. At iteration t, it computes a step

st ∈ argmin
s

1
2‖s+αtgt‖2 +αtR(xt+s) = argmin

s
gTt s+ 1

2α
−1
t ‖s‖2 +R(xt+s) := prox

αtR(xt+·)
(−αtgt) (3)

for a prescribed αt > 0, followed by the update xt+1 := xt + st.

1https://github.com/DouniaLakhmiri/SR2

https://github.com/DouniaLakhmiri/SR2
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Observe that due to the nonsmoothness and/or nonconvexity of R, the right-hand side of (3) may

contain several elements. The key point is that a closed form solution of (3) is known for a wide range

of choices of R (Beck, 2017; Rockafellar and Wets, 1998). PGD has been substantially studied in the

deterministic case and is provably convergent to first-order stationary points under weak assumptions

(Karimi et al., 2016; Teboulle, 1997). In the case gt = ∇f(xt), st is guaranteed to result in a decrease

in F provided that αt ≤ 1/L (Bolte et al., 2014, Lemma 2), L being the Lipschitz constant of ∇f .

Several variants have been successfully adapted to training deep networks and often provide proof

of convergence towards critical solutions (Davis and Drusvyatskiy, 2019; Pham et al., 2020; Xu et al.,

2019; Yang et al., 2019b; Yun et al., 2021). They differ in the way they solve (3), in whether αt is fixed

or adaptive, in the use of a momentum term, a preconditioner, and other ML techniques that speed up
convergence during training.

1.2 Motivation and proposed approach

One notable and common assumption behind the convergence proof of the variants of SG and PGD is

the initial learning rate α0 ≤ 1/L. In practice, however, especially in deep learning, L is unknown.

In the adaptive quadratic regularization method, to which we will refer as R2, αt is adjusted based on

the objective decrease observed at iteration t. R2 was initially proposed for the case with R = 0 and the

term regularization in its name should not be confused with the nonsmooth term R in (1). About xt, a

step st is computed that minimizes the linear model ϕ(s;xt) := f(xt) +∇f(xt)
T s ≈ f(xt + s) to which

we add the quadratic regularization term 1
2σt‖s‖

2, where σt > 0 is a regularization parameter. The

larger σt, the shorter we may expect st to be. Conversely, small values of σt may allow us to compute
large steps and make fast progress. By completing the square, note that minimizing ϕ(s;xt) + 1

2σt‖s‖
2

amounts to minimizing 1
2σt‖s+ σ−1

t ∇f(xt)‖2, which corresponds to (3) with αt := 1/σt and may be

viewed as gradient descent with adaptive step size.

Lotfi et al. (2020, 2021) propose stochastic variants of R2 along with second-order methods for large

scale machine learning when R = 0. The fact that R2 appears closely relaxed to PGD motivated Aravkin

et al. (2021) to generalize it to nonsmooth regularized problems with especially weak assumptions on

R. In the convergence analysis, the value of L is never explicitly needed.

Organization The rest of the manuscrip is organized as follows. Section 2 gives a brief overview of

ProxSGD and ProxGEN, two proximal methods related to SR2. Section 3 develops SR2 and justifies

the methodology. Section 4 establishes the convergence guarantees towards a first-order stationary point

w.p.1 and an iteration complexity analysis. In Section 5, we present numerical results and experiments.

We conclude with a discussion in Section 6.

Notation ‖x‖ is the Euclidean norm of x ∈ Rn. |S| is the number of elements in the set S. We

introduce a stochastic variable ξ : N → P({1, . . . , N}) \ ∅, whose domain represents an iteration

counter, and which takes values in the set of nonempty samples of the sum in (1). For a realization

ξt := ξ(t) of ξ at iteration t we denote

f(x, ξt) :=
1

|ξt|
∑
j∈ξt

fj(x), gt := ∇f(x, ξt) =
1

|ξt|
∑
j∈ξt

∇fj(x)

the sampled, or stochastic, objective and gradient. We also write F (x, ξt) := f(x, ξt) +R(x). We note

Eξ the expectation over the distribution of ξ, while Eξ̂t represents the expectation over the distribution
of ξ that yields a success knowing xt. The abbreviation w.p.1 means “with probability one”.
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2 Overview of ProxSGD and ProxGEN

ProxSGD (Yang et al., 2019b) and ProxGEN (Yun et al., 2021) are two approaches based on the

adaptation of the proximal gradient method, although neither is a descent method. Both consider a

variant of (3) with a momentum term vt instead of gt, and a preconditioner.

ProxSGD assumes that R is convex, and computes

st ∈ argmin
s

vTt s+ 1
2s
TDts+R(xt + s), (4a)

xt+1 = xt + αtst, (4b)

where Dt is a positive-definite diagonal matrix. Note that ProxSGD does not exactly fit in the
framework (3). Yang et al. (2019b) show convergence to a first-order stationary point w.p.1., but do

not provide a complexity bound.

Although Yun et al. (2021) do not explicitly mention their assumptions on R, they mention that

ProxGEN does not require it to be convex. ProxGEN may be seen as a proximal generalization of

several SG variants like Adam, Adagrad, etc. that matches (3) more closely than (4). It computes

st ∈ argmin
s

vTt s+ 1
2α
−1
t sTDts+R(xt + s), (5a)

xt+1 = xt + st. (5b)

The authors show convergence to a first-order stationary point, and a worst-case complexity of O(ε−2)

in terms of iterations and O(ε−4) overall to achieve Ea[dist(0, ∂̂F (xa))] ≤ ε when the batch size is fixed,

where xa is an iterate drawn uniformly randomly from {x1, . . . , xT }, and T is the maximum number of

iterations.

The method we propose in the next section, SR2, has convergence results similar to ProxGEN but

the version we present includes neither a momentum term nor a preconditioner, and it relies on an

implicit assumption on the batch size—see Assumption 3 below.

3 Stochastic quadratic regularization: SR2

Recall that R : Rn → R ∪ {±∞} is proper if it never takes the value −∞ and R(x) <∞ for at least

one x ∈ Rn, lower semi-continuous at x̄ ∈ Rn if lim infx→x̄R(x) ≥ R(x̄), and prox-bounded if there

exists x ∈ Rn and λx > 0 such that infw{ 1
2λ
−1
x ‖x−w‖2 +R(w)} > −∞. The supremum of all such λx

is the threshold of prox-boundedness of R, which we also refer to as λx. Any function that is bounded

below is prox-bounded with λx = +∞, but certain unbounded regularizers, such as −‖x‖ or −‖x‖2,

are also prox-bounded. Our assumptions on (1) are as follow.

Assumption 1. There exists L > 0 such that f is L-smooth, i.e., ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ for all

x, y ∈ Rn. In addition, R is proper and lower semi-continuous at all x ∈ Rn, and s 7→ R(xt + s) is

prox-bounded for each xt encountered during the iterations.

Under the previous assumption, the appropriate concept of subdifferential is the following.

Definition 1. The Fréchet subdifferential ∂̂φ(x̄) of φ : Rn → R ∪ {±∞} at x̄ where φ is finite is the set
of v ∈ Rn such that

lim inf
x→x̄
x 6=x̄

φ(x)− φ(x̄)− vT (x− x̄)

‖x− x̄‖
≥ 0.

Assumption 2. R is such that ∂̂R 6= ∅, which implies ∂̂F = ∇f + ∂̂R 6= ∅,

Our assumptions on R are satisfied for many sparsity-promoting regularizers of interest, including

‖x‖0, ‖x‖p, ‖x‖pp for 0 < p < 1, and the indicator of {x | ‖x‖0 ≤ k} for fixed k ∈ {0, . . . , n}. Note

that Assumption 2 excludes regularizers such as −‖x‖ or −‖x‖2.
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As in the deterministic version R2 (Aravkin et al., 2021), SR2 uses a linear model of f defined at

each iteration t as ϕ(s;xt) = f(xt, ξt) + gt
T s, such that ϕ(0;xt) = f(xt, ξt) and ∇sϕ(0;xt) = gt. Let

ψ(s;xt) := ϕ(s;xt) +R(xt + s). (6)

Note that the analysis of Aravkin et al. (2021) makes provision for using a model of R about xt. In the

interest of clarity, we use the ideal R(xt + s) in the sequel, but our analysis below could just as easily

accommodate a model.

For a regularization parameter σt > 0, we also define

m(s;xt, σt) = ψ(s;xt) + 1
2σt‖s‖

2. (7)

SR2 starts the iteration with computing a step st that minimizes (7), which is equivalent to computing

a proximal stochastic gradient step with step size σt
−1:

st ∈ argmin
s

m(s;xt, σt) = prox
σt−1R

(σt
−1gt). (8)

Because the Lipschitz constant of ∇ϕ(.;xt) is zero, st is guaranteed to result in a decrease in ψ(·;xt)
(Bolte et al., 2014, Lemma 2). However, the latter does not necessarily correlate with a decrease in F .

Therefore, SR2 compares the ratio ρt of the decrease in F (.) to that in ψ(·;xt) between xt and xt + st
to decide on the acceptance of the step. The value of ρt, which is indicative of the adequacy of the

model ψ(·;xt) along st, also guides the update of σt. The procedure is stated in Algorithm 1.

Algorithm 1: SR2: Stochastic nonsmooth quadratic regularization.

Input: 0 < η1 ≤ η2 < 1, 0 < γ3 ≤ 1 < γ1 ≤ γ2, x0 ∈ Rn where R is finite, σ0 ≥ σmin > 0
for t = 1, . . . do

Draw ξt and define gt ;
Define m(s;xt, σt) as in (7) ;
Compute st ∈ argminsm(s;xt, σt) ;
if ξt does not satisfy Assumption 2 then

set st = 0 ;
else

Compute ∆Ft := F (xt)− F (xt + st) ;
Compute ∆ψt := ψ(0;xt)− ψ(st;xt) ;
Compute ρt := ∆Ft/∆ψt ;
if ρt ≥ η1 then

set xt+1 = xt + st ; accept step
else

set xt+1 = xt ; reject step

Set σt+1 ∈

 [max(σmin, γ3σt), σt] if ρt ≥ η2 (σt ↘)
[σt, γ1σt] if η1 ≤ ρt < η2 (σt ≈)
[γ1σt, γ2σt] if ρt < η1 (σt ↗)

The importance of prox-boundedness in Algorithm 1 resides in the update of σt. If σt < 1/λxt , (7)

is unbounded below, so that ∆mt = +∞. Because R is proper, ∆Ft is either finite or +∞. Either way,

the rules of extended arithmetic in nonsmooth optimization imply ρt = 0, and therefore the step is

rejected and σt is increased. After a finite number of such increases, σt ≥ 1/λxt and a step that yields

finite ∆mt can be assessed. A key result stated as Theorem 1 below is that as soon as σt is sufficiently

large, the step will be accepted.

Section 4 establishes the convergence properties of SR2, for which we require assumptions that

ensure gt behaves somewhat similarly to ∇f(xt). Comparable conditions appear in (Bottou et al., 2018;

Bollapragada et al., 2018).

Assumption 3. There exists κm > 0 such that for all t,

|f(xt + st)− f(xt)− gtT st| ≤ κm‖st‖2.

In addition Eξ[f(xt, ξ)] = f(xt), Eξ[gt] = ∇f(xt)
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Assumption 3 states that the stochastic gradient should behave similarly to a full gradient, which

implicitly involves a condition on the batch size. If the assumption is not respected, the batch-size

should be increased. The process is finite because due to Assumption 1, the inequality of Assumption 3

holds with κm = 1
2L when gt = ∇f(xt). This is similar in spirit to implementing a variance reduction

strategy, a standard condition for the convergence of stochastic gradient methods (Bottou et al., 2018).

4 Convergence analysis

Under Assumption 1, x∗ is first-order stationary for (1) if 0 ∈ ∂̂F (x∗) = ∇f(x∗) + ∂̂R(x∗) (Rockafellar

and Wets, 1998, Theorem 10.1).

The following result mirrors (Aravkin et al., 2021, Theorem 6.2) and shows that SR2 cannot generate

a infinite number of failed iterations unless the step is zero. We require the following final assumption

stating that s 7→ R(xt + s) are uniformly prox-bounded. The assumption is trivially satisfied for any

R that is bounded below.

Assumption 4. There exists λ > 0 such that λxt ≥ λ for all xt encountered during the iterations.

Theorem 1. Let Assumptions 1, 3 and 4 hold. If st 6= 0 and σt ≥ σsucc := max(2κm/(1 − η2), 1/λ),
then st is accepted and σt ≤ σt.

Proof. As explained above, we assume that σt ≥ 1/λ ≥ 1/λxt to ensure that ∆mt is finite. By

definition of st, mt(st, xt, σt) ≤ mt(0, xt, σt), i.e.,

gt
T st +R(xt + st) + 1

2σt‖st‖
2 ≤ R(xt). (9)

The definition of ρt, Assumption 3 and (9) yield

|ρt − 1| =
∣∣∣∣ f(xt) + gt

T st − f(xt + st)

R(xt)− gtT st −R(xt + st)

∣∣∣∣ ≤ 2κm‖st‖2

σt‖st‖2
=

2κm
σt
≤ 2κm
σsucc

= 1− η2.

Thus, ρt ≥ η2 and σt ≤ σt.

As a consequence of Theorem 1, there is a constant σmax := min{σ0, γ2σsucc} > 0 such that for all

t, σt ≤ σmax.

Next, we analyze the scenario where SR2 only generates a finite number of successes, and show that

the method converges to a first order stationary point w.p.1 in this case.

Theorem 2. Let Assumptions 1, 3 and 4 hold. If Algorithm 1 only generates a finite number of

successes, xt = xt∗ for all sufficiently large t and xt∗ is first-order stationary w.p.1.

Proof. If Algorithm 1 results in a finite number of successful iterations, there exists t1 so that for all

t ≥ t1, iteration t fails. Consequently, ρt < η1 and σt+1 ≥ γ1σt.

Necessarily, there exists a t2 ≥ t1 such that σt ≥ σsucc for all t ≥ t2.

If there existed t ≥ t2 such that st 6= 0, Theorem 1 would ensure that iteration t is successful, which

contradicts our assumption. Therefore, st = 0 and 0 ∈ argminsmt2(s;xt2 , σt2).

Since R is prox-bounded, ∂̂R closed and convex (Rockafellar and Wets, 1998, Propositions 8.6

and 8.46), and therefore, −gt ∈ ∂̂R(xt2), for all t ≥ t2.

We now show that −∇f(xt2) ∈ ∂̂R(xt2). The empirical mean of the next m stochastic gradients

satisfies

−ḡm = − 1

m

t2+m∑
i=t2

gi ∈ ∂̂R(xt2),

because ∂̂R(xt2) is convex.
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According to the law of large numbers and Assumption 3,

lim
m→∞

ḡm = E[g] = ∇f(xt2) w.p.1.

Because ∂̂R(xt2) is closed, −∇f(xt2) ∈ ∂̂R(xt2), i.e.,

0 ∈ ∇f(xt2) + ∂̂R(xt2) = ∂̂F (xt2),

and xt2 is a first order stationary point w.p.1.

We now focus on the case where SR2 generates infinitely many successes. By analogy with the

deterministic and smooth case where st = −σ−1
t ∇f(xt), our criticality measure is Eξ̂t [‖s

ξ‖2] ≤ ε2,

where Eξ̂t denotes the expectation taken over the distribution of the ξ that yields a success knowing xt.

The first iteration that satisfies the latter condition is noted t(ε).

We start by studying the complexity of reaching this termination criteria. To that effect, let us
define

S = {t ∈ N | ρt ≥ η1}, (10)

S(ε) = {t ∈ S | t ≤ t(ε)}, (11)

U(ε) = {t ∈ N | t < t(ε) and ρt < η1}. (12)

Lemma 1. Let Assumptions 1, 3 and 4 hold. If Algorithm 1 generates an infinite number of successes

and if there exists Flow ∈ R such that F (xt) ≥ Flow for all t ≥ 0, then for any ε ∈ (0, 1), |S(ε)| = O(ε−2).

Proof.

When t ∈ S(ε), ρt ≥ η1.

Using (9), the facts that t < t(ε) and σmin ≤ σt ≤ σmax, we have

F (xt)− F (xt + st) ≥ η1∆ψt ≥ 1
2η1σmin||st||2.

This inequality holds for every sξ derived from ξ that yields a success at iteration t. We can therefore

introduce the expectation over the distribution of the ξ that yield a success given xt, denoted Eξ̂t .
Therefore Eξ̂t [F (xt + sξ)] is a relevant quantity, and the previous inequality becomes

F (xt)− Eξ̂t [F (xt + sξ)] ≥ η1∆ψt ≥ 1
2η1σminEξ̂t [||st||

2]. (13)

Because t < t(ε), Eξ̂t [||st||
2] ≥ ε2. Thus, since t ∈ S, (13) becomes

F (xt)− Eξ̂t [F (xt + sξ)] = F (xt)− Eξ̂t [F (xt+1)] ≥ 1
2η1σminε

2. (14)

By analogy with Bottou et al. (2018), we introduce the total expectation E[.] with respect to the joint

distribution of all previous realization of ξ that yield a success, thus E[F (xt)] := Eξ̂1Eξ̂2 . . .Eξ̂t−1
[F (xt)].

Taking the total expectation in (14) yields

E[F (xt)]− E[F (xt+1)] ≥ 1
2η1σminε

2. (15)

Because xt+1 = xt if ξt yields t ∈ U , while xt+1 = xt + st if ξt yields t ∈ S,

F (x1)− F (xlow) ≥ E[F (x1)]− E[F (xt(ε))]
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=

t(ε)∑
t=1

[
E[F (xt)]− E[F (xt+1)]

]
≥
∑
t∈S(ε)

[
E[F (xt)]− E[F (xt+1)]

]
≥ 1

2η1σminε
2|S(ε)|.

Therefore, |S(ε)| = O(ε−2).

Lemma 2. Under the assumptions of Lemma 1, |U(ε)| = O(ε−2).

Proof. Let t ∈ U(ε), so that t < t(ε). Algorithm 1 increases σt by a factor of at least γ1 > 1 if the step

is rejected, and decreases σt by a factor of at most γ3 ∈ (0, 1] if it is accepted.

Thus, at iteration t(ε)− 1, we have successively

σmax ≥ σt(ε)−1 ≥ σ0γ
|U(ε)|
1 γ

|S(ε)|
3

⇒ σmax

σ0
≥ γ|U(ε)|

1 γ
|S(ε)|
3

⇔ log(
σmax

σ0
) ≥ |U(ε)| log(γ1) + |S(ε)| log(γ3)

⇔ |U(ε)| log(γ1) ≤ log(
σmax

σ0
)− |S(ε)| log(γ3).

Because log(γ3) < 0 and |S(ε)| = O(ε−2), we obtain |U(ε)| = O(ε−2).

From t(ε) = |S(ε)|+ |U(ε)|, we deduce t(ε) = O(ε−2), and obtain the two following results.

Theorem 3. Under the assumptions of Lemma 1, either F is unbounded from below or

lim inft→∞ Eξ̂t [||s
ξ||2] = 0

Theorem 4. Let 0 < ε < 1. Then, Eξ̂t(ε) [dist(0, ∂̂F (xt(ε) + sξ))2] ≤ Cε2 + 3Eξ̂t(ε) [||∇f(xt(ε)) − gξ||2],

where C = 3(L2 + σ2
max).

Proof. From the definition of st, we have

0 ∈ gt + σtst + ∂̂R(xt + st)

⇔ −(gt + σtst) ∈ ∂̂R(xt + st)

⇔ ∇f(xt + st)− (gt + σtst) ∈ ∂̂F (xt + st).

Thus

dist(0, ∂̂F (xt + st))
2 ≤ ‖∇f(xt + st)− gt − σtst‖2

≤ 3‖∇f(xt + st)−∇f(xt)‖2 + 3‖σtst‖2 + 3‖∇f(xt)− gt‖2

≤ 3L2‖st‖2 + 3‖σtst‖2 + 3‖∇f(xt)− gt‖2

≤ 3(L2 + σ2
max)‖st‖2 + 3‖∇f(xt)− gt‖2,

which is true for every step sξ computed with a realization of ξ, i.e.,

dist(0, ∂̂F (xt + sξ))2 ≤ 3(L2 + σ2
max)‖sξ‖2 + 3‖∇f(xt)− gξ‖2.

Therefore

Eξt(ε) [dist(0, ∂̂F (xt + sξ))2] ≤ 3(L2 + σ2
max)Eξt(ε) [‖s

ξ‖2] + 3Eξt(ε) [‖∇f(xt)− gξ‖2].
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For t = t(ε), we have Eξt(ε) [‖sξ‖2] ≤ ε2. Thus

Eξt(ε) [dist(0, ∂̂F (xt + sξ))2] ≤ 3(L2 + σ2
max)ε2 + 3Eξt(ε) [‖∇f(xt)− gξ‖2].

Finally, we are set to analyze the properties of xt(ε) in terms of stationarity. Shamir (2020) and

Zhang et al. (2020) discuss the impossibility of finding ε-stationary points for nonsmooth and nonconvex
functions with first-order methods in finite time. Instead, Zhang et al. (2020) introduce a relaxation of

the concept of ε-stationarity, namely, (δ, ε)-stationarity which is reported in Definition 2.

Definition 2. A point x is called (δ, ε)-stationary if d(0, ∂F (x + δB)) ≤ ε, where ∂F (x + δB) :=

conv
(
∪y∈x+δB ∂F (y)

)
, and ∂F is the generalized gradient of F (Clarke, 1990).

We propose a variant of Definition 2 that is better adapted to our method. Note that other

adaptations of the (δ, ε)-stationarity notion are discussed in Shamir (2020).

Definition 3. A point x is called (̂δ, ε)-stationary if Eξ̂
[
d(0, ∂̂F (x+ sξ))2

]
≤ ε2, with δ = maxξ̂ ||s

ξ||.

Definition 3 appears in the result of Theorem 4, if a variance reduction strategy is additionally
implemented to ensure the second right term becomes lower than ε2. This remark is expressed in

Corollary 1.

Corollary 1. Let 0 < ε < 1. If a variance reduction strategy ensures Eξ̂t(ε) [||∇f(xt(ε))− gξ||2] ≤ ε2, then

xt(ε) is a ̂(δ, (C + 3)ε) stationary point, with C = 3(L2 + σ2
max) and δ = maxξ̂ ||s

ξ||.

5 Experiments

We compare SR2 against ProxSGD and ProxGEN to train three DNNs on the CIFAR-10 and CIFAR-

100 datasets. The networks considered are DenseNet-121, ResNet-34 and DenseNet-201, with 7.98M,

21.79M and 20M parameters respectively. Each set of tests uses R = λ‖ · ‖1, λ ∈ {10−4, 10−3, 10−2},
while R = λ‖ · ‖0 is not tested with ProxSGD as it is not designed for nonconvex regularization.

We use the proximal SGD variant of ProxGEN. The implementation of ProxGEN was provided

to us by its authors, and we also use their implementation of ProxSGD. Both methods use the

hyperparameters mentioned in their respective papers and implementations. The implementation

of SR2 is available at https://github.com/DouniaLakhmiri/SR2 and its configurationis reported in

Table 1. In our implementation, we compute ρt based on the sampled value of F (., ξt) instead of the

full objective.

Table 1: SR2 hyperparameters.

η1 η2 γ1 γ2 γ3

7.5 · 10−4 0.99 5.56 2.95 0.8

For the sake of a fair comparison, we have disabled the momentum directions and preconditioners

from ProxSGD and ProxGEN as well as the scheduled updates of the learning rate at epochs 150 and

250. These common accelerating strategies are not yet incorporated to SR2 and would give ProxSGD

and ProxGEN an unfair advantage as shown in Figure 1.

Each test trains for 300 epochs after which we proceed to pruning each solution based on the

criterion |wi| ≤ α with α = 10−k, k = 1, . . . , 8, where wi is the i-th weight in the network. We then

compare the sparsity level and retained accuracy of the sparse networks without re-training.

5.1 Results on CIFAR-10

Table 2a reports the results with R = λ‖ · ‖1. For both networks, we observe that SR2 combined

with λ = 10−4 achieves the highest accuracy overall, while ProxSGD gets the highest accuracies with

https://github.com/DouniaLakhmiri/SR2
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Figure 1: Accuracy of ProxGEN and ProxSGD with momentum, preconditioner, and learning rate updates at epochs 150
and 250.

λ = 10−3, 10−2. Table 2a also reports information on the magnitudes of the weights in each solution.

Interestingly, SR2 has a consistent tendency to set a large portion of the network’s weights to exactly

0 while ProxSGD does the opposite and ProxGEN falls in between in this regard. This observation

highlights the clear difference between ProxSGD and ProxGEN in the solutions each method finds. In

addition, SR2 identifies a larger proportion of small weights than ProxSGD and ProxGEN.

Table 2: Results of training DenseNet-121 and ResNet-34 on CIFAR-10.

(a) with R = λ‖ · ‖1.

Net. λ Optim. Acc. %|w| = 0 %|w| ≤ 10−3

ProxSGD 72.20% 0.00% 20.22%
10−4 ProxGEN 72.26% 6.50% 22.71%

SR2 84.69% 79.47% 92.15%

ProxSGD 77.43% 0.00% 82.18%
D-121 10−3 ProxGEN 76.81% 44.21% 94.40%

SR2 68.26% 95.43% 98.17%

ProxSGD 78.36% 0.00% 94.16%
10−2 ProxGEN 59.69% 98.03% 99.13%

SR2 76.49% 78.11% 98.59%

ProxSGD 85.12% 0.00% 64.70%
10−4 ProxGEN 85.98% 1.02% 72.94%

SR2 93.94% 56.18% 98.12%

ProxSGD 89.67% 0.00% 94.85%
R-34 10−3 ProxGEN 83.27% 73.34% 99.25%

SR2 88.46% 67.97% 99.50%

ProxSGD 88.12% 0.00% 98.28%
10−2 ProxGEN 35.56% 99.34% 99.92%

SR2 29.33% 62.17% 91.84%

(b) with R = λ‖ · ‖0.

Net. λ Optim. Acc. %|w| = 0 %|w| ≤ 10−3

10−4 ProxGEN 71.09% 2.39% 3.27%
SR2 80.29% 14.67% 14.74%

10−3 ProxGEN 70.44% 4.13% 4.13%
D-121 SR2 79.11% 23.82% 25.85%

10−2 ProxGEN 71.03% 9.63% 10.05%
SR2 79.79% 94.99% 95.06%

10−4 ProxGEN 86.87% 5.48% 7.13%
SR2 90.59% 93.43% 93.43%

10−3 ProxGEN 85.81% 11.04% 11.07%
R-34 SR2 92.20% 94.41% 94.42%

10−2 ProxGEN 86.40% 28.85% 28.86%
SR2 87.82% 99.04% 99.07%

Figure 2 (top) reports accuracy and sparsity results on pruned DenseNet-121 with R = λ‖ · ‖1. The

top plot shows that most configurations retain full accuracy until α = 10−3 or 10−2, except for the one

trained with ProxSGD, which shows a small drop at α = 10−3. The accuracy of all networks drops

to 10% for α = 10−1. The plot at the top right shows the sparsity ratio with each pruning criteria.

Overall, the combination of SR2 with λ = 10−4 and α = 10−2 has the highest accuracy with a high

sparsity level of 97.5%, followed by ProxGEN with λ = 10−3 and α = 10−3 and a sparsity of 94.4%.

Figure 3 (top) shows that ResNet-34 retains full accuracy with α = 10−3 in most cases. The best

combination is obtained with SR2, λ = 10−4 and α = 10−3 that results in an accuracy of 93.32% and

a sparsity ratio of 98.12%, followed by ProxGEN with λ = 10−3 and α = 10−3 with an accuracy of

86.93% and a sparsity of 99.50%.
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Figure 2: Accuracy and sparsity ratio of pruned DenseNet-121 on CIFAR-10 with R = λ‖ · ‖1 (top) and R = λ‖ · ‖0
(bottom).

Table 2b and Figure 2 (bottom) report results on the same networks with R = ‖ · ‖0 and compares

SR2 against ProxGEN only, since ProxSGD does not handle nonconvex regularizations. The results

show a clear advantage of SR2 both in terms of final accuracy and sparsity ratios. Compared to

R = ‖ · ‖1, using R = ‖ · ‖0 allows SR2 to reach higher accuracies overall at the expense of higher

weight magnitudes. The results seem to suggest that the value of λ needs a special adjustment for

each regularizer. Figure 3 (bottom) summarizes the retained accuracy after pruning and the equivalent

sparsities for ResNet-34. It is clear that SR2 generates the better solutions with the highest sparsity

levels while retaining most of the full accuracies. A similar figure for DenseNet-121 is reported in the

appendix.

5.2 Results on CIFAR-100

In this section, SR2 is compared against ProxSGD and ProxGEN on a more challenging dataset. We

train DenseNet-201 on CIFAR-100 with R = ‖ · ‖1 and ‖ · ‖0 and compare each solution’s resulting
accuracy and sparsity. Once again, our goal is to extract sparse substructures, and we do not focus our

resources on tuning each method to reach high test accuracies.
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Figure 3: Accuracy and sparsity ratio of ResNet-34 trained on CIFAR-10 with R = λ‖ · ‖1 (top) and R = λ‖ · ‖0 (bottom).

Table 3a summarizes the relevant scores of each solution withR = λ‖·‖1, and Figure 4 (top) illustrates

the retained accuracy and equivalent sparsity ratio after each pruning. SR2 with λ = 10−4, α = 10−2

obtains the highest accuracy of 58.50% after removing 97.57% of the weights from the original network.

Other solvers that obtain a higher sparsity after pruning do so at the expense of the final accuracy of

the network.

Table 3: Results of DenseNet-201 on CIFAR-100.

(a) with R = λ‖ · ‖1.

λ Optim. Acc. %|w| = 0 %|w| ≤ 10−3

ProxSGD 42.38% 0.00% 25.23%
10−4 ProxGEN 41.11% 2.95% 4.01%

SR2 57.63% 59.74% 92.65%

ProxSGD 42.38% 0.00% 72.47%
10−3 ProxGEN 46.70% 48.94% 96.99%

SR2 33.04% 97.21% 98.92%

ProxSGD 42.86% 0.00% 25.21%
10−2 ProxGEN 6.96% 98.83% 99.48%

SR2 7.31% 98.30% 99.60%

(b) with R = λ‖ · ‖0.

λ Optim. Acc. %|w| = 0 %|w| ≤ 10−3

10−4 ProxGEN 40.77% 2.97% 4.02%
SR2 48.91% 22.69% 22.78%

10−3 ProxGEN 40.44% 5.11% 5.60%
SR2 49.28% 39.82% 39.92%

10−2 ProxGEN 39.91% 11.84% 12.33%
SR2 1.00% 98.91% 99.50%
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Similarly Table 3b and Figure 4 (bottom) show that SR2 obtains the best accuracy when the

network is trained with R = λ = 10−3‖ · ‖0 allows to consistently reach higher sparsity ratios while

maintaining at least the accuracy of the full network . The best solution is found with λ = 10−3 and

α = 10−2 as shown in Figure 4 (bottom).

Overall, the results on CIFAR-100 are more contrasted than on CIFAR-10 with examples of ProxGEN

and SR2 converging in some settings towards solutions with low accuracy. This suggests the need for a

better tuning of the methods.
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Figure 4: Accuracy and sparsity ratio of pruned DenseNet-201 on CIFAR-100 with R = λ‖ · ‖1 (top) and R = λ‖ · ‖0
(bottom).

6 Conclusion

SR2 is a new stochastic proximal method for training DNNs with nonsmooth, potentially nonconvex

regularizers. SR2 relies on an adaptive quadratic regularization framework that does not automatically
accept every step during the training to ensure a decrease in the objective. We establish the convergence

of a first-order stationarity measure to zero with a O(ε−2) worst-case iteration complexity. Our

numerical experiments show that SR2 consistently produces solutions that achieve high accuracy

and sparsity levels after an unstructured pruning. Ongoing research is focusing on incorporating a

momentum term, a preconditioner, and second-order information to accelerate the convergence and

attain higher accuracy.
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