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l’accès au travail et enquêterons sur votre demande.
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Abstract : We develop an interior-point method for nonsmooth regularized bound-constrained opti-
mization problems. Our method consists of iteratively solving a sequence of unconstrained nonsmooth
barrier subproblems. We use a variant of the proximal quasi-Newton trust-region algorithm TR of
Aravkin et al. [2] to solve the barrier subproblems, with additional assumptions inspired from well-known
smooth interior-point trust-region methods. We show global convergence of our algorithm with respect
to the criticality measure of Aravkin et al. [2]. Under an additional assumption linked to the convexity
of the nonsmooth term in the objective, we present an alternative interior-point algorithm with a
slightly modified criticality measure, which performs better in practice. Numerical experiments show
that our algorithm performs better than the trust-region method TR, the trust-region method with
diagonal hessian approximations TRDH of Leconte and Orban [17], and the quadratic regularization
method R2 of Aravkin et al. [2] for two out of four tested bound-constrained problems. On the first
two problems, RIPM and RIPMDH obtain smaller objective values than the other solvers using fewer
objective and gradient evaluations. On the two other problems, our algorithm performs similarly to
TR, R2 and TRDH.

Keywords : Regularized optimization, nonsmooth optimization, nonconvex optimization, bound
constraints, proximal gradient method, barrier method

Résumé : Nous développons une méthode de points intérieurs pour l’optimisation non lisse régularisée
avec contraintes de bornes. Notre méthode résout de manière itérative une suite de problèmes barrière
non contraints. Nous utilisons une variante de la méthode proximale de région de confiance avec
approximations quasi-Newton de Aravkin et al. [2] pour résoudre les problèmes barrière, avec des
hypothèses supplémentaires inspirées des méthodes de région de confiance pour les algorithmes de
points intérieurs dans le cas lisse. Nous montrons que notre algorithme converge en utilisant la mesure
de stationnarité de Aravkin et al. [2]. Sous une hypothèse supplémentaire liée à la convexité du terme
non lisse de l’objectif, nous présentons une méthode de points intérieurs alternative utilisant une mesure
de stationnarité légèrement modifiée qui est plus performante sur des cas pratiques. Nos tests montrent
que notre algorithme se comporte mieux que la méthode de région de confiance TR, la méthode de
région de confiance avec approximations quasi-Newton diagonales TRDH de Leconte and Orban [17],
et la méthode de régularisation quadratique R2 de Aravkin et al. [2] pour deux des quatre problèmes
testés. Sur ces deux problèmes, notre algorithme obtient un plus petit objectif final que celui obtenu
par les autres solveurs, en utilisant moins d’évaluations de l’objectif et du gradient. Sur les deux autres
problèmes, il se comporte de manière similaire à TR, R2, et TRDH.

Acknowledgements: Research partially supported by an NSERC Discovery Grant.
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1 Introduction

We consider the problem

minimize
xPR

n
fpxq ` hpxq subject to x ě 0, (1)

where f : Rn Ñ R has Lipschitz-continuous gradient with constant Lf ě 0 and h : Rn Ñ RY t`8u

is proper and lower semi-continuous. Both f and h may be nonconvex. h is often considered as a

regularization function used to favor solutions with desirable properties, such as sparsity.

Problems such as (1) are classically solved with a variant of the proximal gradient method [19].

The proximal quasi-Newton trust-region algorithm of Aravkin et al. [2], referred to as TR, can be

extended to box constraints, provided that the proximal operator of h ` χp¨ | rℓ, usq, where ℓ ă u

componentwise and χ is the indicator of the box rℓ, us, can be computed efficiently. Leconte and Orban
[17] present a variant of TR named TRDH that also supports box constraints, and uses diagonal

quasi-Newton approximations. For specific separable regularizers h, they provide a closed-form solution

of the trust-region subproblems with box constraints, giving rise to what they defined as an indefinite
proximal operator; a scaled generalization of a proximal operator.

At each iteration k, we solve the barrier subproblem

minimize
xPR

n
fpxq ` ϕkpxq ` hpxq, (2)

where ϕk is the logarithmic barrier function

ϕkpxq “

n
ÿ

i“1

ϕk,ipxq, ϕk,ipxq :“ ´µk logpxiq, i “ 1, . . . , n, (3)

and tµku Œ 0. Each subproblem (2) is an unconstrained problem if we consider that ´ logpxq “ `8

when x ď 0. In Section 5.2, we explain that under reasonable assumptions, we can solve solve (2) with

a modified version of Aravkin et al.’s TR algorithm, and we expect that the solutions of (3) converge

to a solution of (1) as µk Ñ 0.

Our approach is sometimes referred to as a trust-region interior-point method, or trust-region

method for barrier functions. We refer the reader to [9, Chapter 13] for more information on the case

where h “ 0. Our algorithm, named RIPM (Regularized Interior Proximal Method), can be seen as a

generalization of those methods to solve (1).

An inconvenient of solving (2), induced by the logarithmic barrier function (3), is that the smooth

part of the subproblem f ` ϕk does not have a Lipschitz gradient, thus compromising the convergence

properties of TR established by Aravkin et al. [2]. Nevertheless, in our analysis, we establish the

convergence of the barrier subproblems using the update rules of Conn et al. [9, Chapter 13.6.3] for our

trust-region model. We also show global convergence of RIPM towards a first-order stationary point

of (1) if the trust-region radii and the step lengths used in proximal operator evaluations are bounded

away from zero, and the iterates generated by the algorithm remain bounded. In Section 5.4, under a
convexity assumption on the nonsmooth term, we provide an alternative implementation of the outer

iterations of RIPM where we change the stopping criteria to improve numerical performance.

In addition, we implement a variant of RIPM named RIPMDH (Regularized Interior Proximal

Method with Diagonal Hessian approximations) that uses TRDH to solve the barrier subproblems.

We compare the performance of RIPM and RIPMDH with TR, TRDH and R2, all available from

RegularizedOptimization.jl [5], on four bound-constrained problems. The first two problems are a

regularized box-constrained quadratic problem, and a sparse nonnegative matrix factorization problem.

These two problems require many TR and R2 iterations to converge. RIPM and RIPMDH obtain

smaller objective values than the other solvers using fewer objective and gradient evaluations, which

suggests that they may be best suited to solve difficult bound-constrained nonsmooth problems. The

https://github.com/JuliaSmoothOptimizers/RegularizedOptimization.jl
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third problem is an inverse problem for finding the parameters of a differential equation. RIPM and

RIPMDH perform more objective and gradient evaluations than TR, but RIPMDH performs the

least amount of proximal operator evaluations. The last problem is a regularized box-constrained

basis-pursuite denoise problem. RIPMDH exhibits similar performance to those of TR, TRDH and R2

using a modification of some of its parameters.

Related research

Attouch and Wets [4] use f “ 0 and the nonsmooth barrier ´µk
řn
i“1 logpminp 1

2 , xiqq ą 0. They use the

theory of epi-convergence to explain some convergence properties of barrier methods, and in particular,

that the objectives of the barrier subproblems epi-converge to the objective of their initial constrained

problem.

Chouzenoux et al. [7] use convex f and h with general inequality constraints cipxq ď 0 for i P t1, ..., pu,

p ą 0 to solve large-scale image processing problems. Their algorithm uses proximal gradient steps to

solve the barrier subproblem.

Bertocchi et al. [6] solve inverse problems y “ DpHx̄q, where y is some observed data, x̄ the signal

to determine, H is a linear observation operator, and D is an operator applying noise perturbation.

They solve the problem minimizexPR
n fpHx, yq ` hpxq with constraints cipxq ě 0, i P t1, ..., pu, where

f is a convex function involving the observations and the signal x, fp¨; yq and h are twice differentiable,

h and ´ci are convex (among other properties). They compute the proximal operator of the barrier

term, and use an interior-point algorithm. They apply their algorithm to develop a neural network

architecture for image restoration.

De Marchi and Themelis [11] use the proximal gradient method to solve nonsmooth regularized

optimization problems such as (1) where f has a locally Lipschitz-continuous gradient, h is continuous
relative to its domain and prox-bounded. In addition, the constraint x ě 0 is replaced by a more

general constraint cpxq ď 0, where c has locally Lipschitz-continuous Jacobian.

Shen et al. [23] present an active set proximal algorithm to solve (1) with hpxq “ λ}x}1 for some

λ ą 0, and where ℓ ď x ď u with ℓ ă 0 ă u instead of x ě 0. They use a hybrid search direction based

upon a proximal gradient step for the active variables (i.e., the variables that are at one the bounds of

the constraints), and a Newton step for the other variables.

Notation

For v P R
n, }v} denotes the Euclidean norm of v. R` and R``, denote, respectively, the sets of positive

and strictly positive real numbers, whereas Rn` and Rn`` denote the sets of vectors having all their

components in R` and R``, respectively.

sR denotes RY t˘8u. The unit closed ball defined with the ℓ8-norm and centered at the origin

is B, and the ball centered at the origin of radius ∆ ą 0 is ∆B. If C Ď R
n, the indicator of C is

χp¨ | Cq : Rn Ñ sR defined by χpx | Cq “ 0 if x P C, and χpx | Cq “ `8 if x R C. For y P R
n, the set

y ` C is composed of all the vectors s P R
n such that s “ y ` x with x P C.

Following the notation of Rockafellar and Wets [22], the set of all subsequences of N is denoted

by N#
8 , and the set composed of the subsequences of N containing all k beyond some k0 is denoted

by N8. For N P N#
8 , txku ÝÑ

N
x̄ indicates that the subsequence txkukPN (which we may also write

txkuN for conciseness) converges to x̄.

X, Z and S (possibly with subscripts k, k,j or k,j,1) denote the square diagonal matrices having x,

z and s as diagonal elements, respectively.
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2 Background

The following are standard variational analysis concepts—see, e.g., [22]. Let ϕ : Rn Ñ sR and x̄ P R
n

where ϕ is finite. The Fréchet subdifferential of ϕ at x̄ is the closed convex set pBϕpx̄q of elements v P R
n

such that

lim inf
xÑx̄
x‰x̄

ϕpxq ´ ϕpx̄q ´ vT px´ x̄q

}x´ x̄}
ě 0.

The limiting subdifferential of ϕ at x̄ is the closed, but not necessarily convex, set Bϕpx̄q of elements

v P R
n for which there exist txku Ñ x̄ and tvku Ñ v such that tϕpxkqu Ñ ϕpx̄q and vk P pBϕpxkq for

all k. The inclusion pBϕpx̄q Ă Bϕpx̄q always holds. Finally, the horizon subdifferential of ϕ at x̄ is the

closed, but not necessarily convex, cone B
8ϕpx̄q of elements v P R

n for which there exist txku Ñ x̄,

tvku and tλku Œ 0 such that tϕpxkqu Ñ ϕpx̄q, vk P pBϕpxkq for all k, and tλkvku Ñ v.

If inf ϕ ą ´8, argmin ϕ is the set of x P R
n such that ϕpxq “ inf ϕ. For ϵ ą 0, ϵ- argmin ϕ is the

set of x P R
n such that ϕpxq ď inf ϕ` ϵ.

If C Ď R
n and x̄ P C, the closed convex cone pNCpx̄q :“ pBχpx̄ | Cq is the regular normal cone to C

at x̄. The closed cone NCpx̄q :“ Bχpx̄ | cq “ B
8χpx̄ | Cq is the normal cone to C at x̄. pNCpx̄q Ď NCpx̄q

always holds, and is an equality if C is convex.

If C is convex, NCpx̄q is the closed convex cone of elements v P R
n such that vT px´ x̄q ď 0 for all

x P C [22, Theorem 6.9].

For a set-valued mapping S : X Ñ U where, for any x P X, Spxq Ă U , the graph of S is the set

gphS :“ tpx, uq | u P Spxqu.

For x̄ P R
n, the limit superior of S at x̄ is lim supxÑx̄ Spxq :“ tu | D txku Ñ x̄, D tuku Ñ u with uk P

Spxkqu, and the limit inferior of S at x̄ is lim infxÑx̄ Spxq :“ tu | @ txku Ñ x̄, D N P N8, tuku Ñ
N

u with uk P Spxkqu. Spx̄q Ď lim supxÑx̄ Spxq and Spx̄q Ě lim infxÑx̄ Spxq always hold.

The set-valued mapping S is outer semicontinuous (osc) at x̄ if lim supxÑx̄ Spxq Ď Spx̄q, or,

equivalently, lim supxÑx̄ Spxq “ Spx̄q. It is inner semicontinuous (isc) at x̄ if lim infxÑx̄ Spxq Ě Spx̄q, or

equivalently lim infxÑx̄ Spxq “ Spx̄q when S is closed-valued. If both conditions hold, S is continuous

at x̄, i.e., Spxq Ñ Spx̄q as x Ñ x̄.

Proposition 1 (22, Proposition 8.7). For ϕ : Rn Ñ sR and x̄ where ϕ is finite, Bϕ is osc at x̄ with
respect to ϕpxq Ñ ϕpx̄q when x Ñ x̄, i.e. for any txku Ñ x̄ with tϕpxkqu Ñ ϕpx̄q, there exists
vk P Bϕpxkq for all k such that tvku Ñ v̄ P Bϕpx̄q.

The graphical outer limit of a sequence of set-valued mappings Sk is defined by pg-lim supk Skqpxq :“

tu | DN P N#
8 , txku Ñ

N
x, tuku Ñ

N
u, uk P Skpxkqu. The graphical inner limit of a sequence of set-valued

mappings Sk is defined by pg-lim infk Skqpxq :“ tu | DN P N8, txku Ñ
N
x, tuku Ñ

N
u, uk P Skpxkqu. If

both limits agree, the graphical limit S “ g-limSk exists, so that we can also write Sk
g

ÝÑ S, and we

have Sk
g

ÝÑ S ðñ gphSk Ñ gphS.

The epigraph of ϕ is the set epiϕ “ tpx, αq P R
n

ˆR | α ě ϕpxqu.

We denote clpϕq the (lower) closure of ϕ, i.e., the largest function less than ϕ that is lower semi-

continuous. Its epigraph is the closure of epiϕ.

If ϕk : Rn Ñ sR for all k ě 0, the lower and upper pointwise limits of tϕku are the functions
p-lim infk ϕk and p-lim supk ϕk : Rn Ñ sR defined for all x P R

n by

pp-lim inf
k

ϕkqpxq :“ lim inf
k

ϕkpxq,

pp-lim sup
k

ϕkqpxq :“ lim sup
k

ϕkpxq.
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When p-lim infk ϕk and p-lim supk ϕk coincide, their common value is the pointwise limit of tϕku

denoted p-limk ϕk. If p-limk ϕk “ ϕ, we write tϕku
p

ÝÑ ϕ.

For a sequence tEku Ď R
n, we define

lim sup
k

Ek :“ tz P R
n

| DN P N#
8 , DtzjuN Ñ z, zj P Ej for all j P Nu

lim inf
k

Ek :“ tz P R
n

| DN P N8, DtzjuN Ñ z, zj P Ej for all j P Nu.

Consider in particular Ek :“ epiϕk. It is not difficult to see that lim supk Ek and lim infk Ek
are also epigraphs in the sense that if px, tq is in either set, then so is px, sq for any s ě t. The

lower epi-limit of tϕku is the function e-lim infk ϕk whose epigraph is lim supk Ek, and the upper

epi-limit of tϕku is the function e-lim supk ϕk whose epigraph is lim infk Ek. It is always true that

e-lim infk ϕk ď e-lim supk ϕk. When the two coincide, their common value is called the epi-limit of

tϕku denoted e-limk ϕk. If e-limk ϕk “ ϕ, we also write tϕku
e

ÝÑ ϕ.

The following result summarizes important properties of epi-limits used in the sequel.

Proposition 2 (22, Proposition 7.4). Let ϕk : Rn Ñ R for k ě 0.

1. e-lim infk ϕk and e-lim supk ϕk are lsc, and so is e-limk ϕk when it exists;

2. if ϕk ě ϕk`1 for all k, e-limk ϕk exists and equals clpinfk ϕkq;

3. if ϕk ď ϕk`1 for al k, e-limk ϕk exists and equals clpsupk ϕkq.

In addition, if ϕ, ϕ
k
, sϕk : Rn Ñ R with ϕ

k
ď ϕk ď sϕk for all k, and if tϕ

k
u

e
ÝÑ ϕ and tsϕku

e
ÝÑ ϕ,

then tϕku
e

ÝÑ ϕ.

The model that we will use in our algorithm uses an approximation ψp¨;xq of h at x so that

ψps, xq « hpx` sq. For ψ : Rn ˆR
m

Ñ sR, the function-valued mapping x ÞÑ ψp¨;xq is epi-continous

at x̄ if ψp¨, xq
e

ÝÑ ψp¨, x̄q as x Ñ x̄.

ϕ is level-bounded if, for every α P R, the lower level set levďα ϕ :“ tx P R
n

| ϕpxq ď αu is

bounded (possibly empty). The sequence of functions tϕku is eventually level-bounded if, for each

α P R, the sequence of sets tlevďα ϕku is eventually bounded, i.e., there is an index set N P N8 such
that tlevďα ϕkukPN is bounded.

The following theorem establishes properties about the minimization of sequences of epi-convergent

functions.

Theorem 1 (22, Theorem 7.33). Suppose the sequence tϕku is eventually level-bounded, and
ϕk

e
ÝÑ ϕ with ϕk and ϕ lsc and proper. Then,

inf ϕk Ñ inf ϕ (4)

with ´8 ă inf ϕ ă `8, while there exists N P N8 such that argmin ϕk is a bounded sequence of
nonempty sets with

lim sup
k

pargminϕkq Ă argminϕ. (5)

Indeed, for any tϵku Œ 0 and xk P ϵk- argmin ϕk, txku is bounded and all its cluster points belong
to argmin ϕ. If argmin ϕ consists of a unique point x̄, one must actually have txku Ñ x̄.

The proximal operator associated with the proper lsc function h and parameter ν ą 0 is

prox
νh

pxq :“ argmin
w

1
2ν

´1
}w ´ x}

2
` hpwq. (6)
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3 Stationarity

First-order stationarity conditions for (1) may be stated as [22, Theorem 10.1]

0 P ∇fpxq ` Bph` χp¨ | R
n
`qqpxq. (7)

We say that the constraint qualification (CQ) holds at x if B
8

pf ` hqpxq contains no v ‰ 0 such

that ´v P NRn
`

pxq.

Under the constraint qualification, (7) can also be written [22, Theorem 8.15]

0 P ∇fpxq ` Bhpxq `NRn
`

pxq. (8)

Our assumptions that f is continuously differentiable and that h is proper lsc allows us to write [22,

Exercise 8.8 and Theorem 8.9]

B
8

pf ` hqpxq “ B
8hpxq “ tv P R

n
| pv, 0q P Nepihpx, hpxqqu.

Due to the simple form of NRn
`
, the constraint qualification states that the only v P B

8hpxq such that

v ě 0 and satisfying vi “ 0 if xi ą 0 is v “ 0.

A simple example where the constraint qualification is not satisfied is found by setting n “ 1, f “ 0,

and hpxq “ |x|0, i.e., hpxq “ 1 if x ‰ 0 and hp0q “ 0, in (1). The unique solution is x̄ “ 0. Then,
pNepihp0, 0q “ Nepihp0, 0q “ tpv, tq | t ď 0u so that B

8hp0q “ R. The qualification condition requires

that the only v P R such that v ě 0 be v “ 0, which is clearly not the case. Of course, the bound

constraint in the example above is redundant and the constrained and unconstrained solutions coincide.

Using [22, Example 6.10], NRn
`

pxq “ NR`
px1q ˆ ¨ ¨ ¨ ˆ NR`

pxnq, where NR`
p0q “ p´8, 0s and for

all xi ą 0, NR`
pxiq “ t0u. Thus, (8) can also be formulated as

0 P ∇fpxq ` Bhpxq ´ z, Xz “ 0, x ě 0, z ě 0, (9)

where X “ diagpxq and Z “ diagpzq.

For fixed x P R
n
` and z P R

n
`, we define approximations

φL
ps;x, zq :“ fpxq ` p∇fpxq ´ zq

T s, (10a)

ψps;xq « hpx` sq with ψp0;xq “ hpxq and Bψp0;xq “ Bhpxq, (10b)

ψ̂ps;xq :“ ψps;xq ` χpx` s | R
n
`q, (10c)

and the model of f ` h about x

mL
ps;x, z, νq :“ φL

ps;x, zq ` 1
2ν

´1
}s}2 ` ψps;xq, (11)

where ν ą 0. We point out that ∇φL
ps;x, zq “ ∇fpxq ´ z, which is the expression of the Lagrangian in

the smooth case, thus, we use the superscript L to denote objects sharing similarities with the smooth

Lagrangian.

For ∆ ě 0, we further define

pLp∆;x, z, νq :“ min
s

φL
ps;x, zq ` 1

2ν
´1

}s}2 ` ψ̂ps;xq ` χps | ∆Bq, (12a)

PL
p∆;x, z, νq :“ argmin

s
φL

ps;x, zq ` 1
2ν

´1
}s}2 ` ψ̂ps;xq ` χps | ∆Bq. (12b)

Our associated optimality measure is

ξLp∆;x, z, νq :“ fpxq ` hpxq ´ φL
psL;x, zq ´ ψpsL;xq, (13)

where sL P PL
p∆, x, z, νq.
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Lemma 1. Let the CQ hold at x P R
n
`, z ě 0 such thatXz “ 0 and ∆ ą 0. Then, ξLp∆;x, z, νq “ 0

ðñ 0 P PL
p∆;x, z, νq ùñ x is first-order stationary for (1).

Proof. The first equivalence follows directly from (12b)–(13). The first-order necessary conditions

for (12a) then imply

0 P ∇φL
p0;x, zq ` Bpψ̂p¨;xq ` χp¨ | ∆Bqqp0q

“ ∇fpxq ´ z ` Bpψp¨;xq ` χp¨ | p´x`R
n
`qq ` χp¨ | ∆Bqqp0q

“ ∇fpxq ´ z ` Bpψp¨;xq ` χp¨ | p´x`R
n
`q X ∆Bqqp0q.

(14)

As p´x`R
n
`q and ∆B are convex, so is p´x`R

n
`q X ∆B. From this observation, we deduce that,

Np´x`R
n
`qX∆Bp0q “ Bχp0 | p´x`R

n
`q X ∆Bq

“ Bχp0 | p´x`R
n
`qq ` Bχp0 | ∆Bq

“ Bχpx | R
n
`q

“ NRn
`

pxq.

The CQ combined with the above equations indicate that there is no v P B
8hpxq “ B

8ψp0;xq, v ‰ 0

such that ´v P NRn
`

pxq “ Np´x`R
n
`qX∆Bp0q, thus, [22, Corollary 10.9] leads to

Bpψp¨;xq ` χp¨ | p´x`R
n
`q X ∆Bqqp0q Ă Bψp0;xq `Np´x`R

n
`qX∆Bp0q

“ Bhpxq `NRn
`

pxq.
(15)

By injecting (15) into (14), we obtain

0 P ∇fpxq ´ z ` Bhpxq `NRn
`

pxq.

From the observation above (9) and the fact that Xz “ 0, we deduce that for any v P NRn
`

pxq,

v ´ z P NRn
`

pxq. Thus,

0 P ∇fpxq ` Bhpxq `NRn
`

pxq.

If h is convex, the CQ is not required in Lemma 1 [22, Exercise 10.8].

4 Projected-directions methods

Let us briefly recall the proximal gradient method [19] used to solve

minimize
sPR

n
fpsq ` h̃psq, (16)

where f : Rn Ñ R has Lipschitz-continuous gradient and h̃ : Rn Ñ sR is proper and lower semi-

continuous. The method generates iterates sk such that

sk`1 P prox
νh̃

psk ´ ν∇fpskqq “ argmin
s

fpskq ` ∇fpskq
T

ps´ skq ` 1
2ν

´1
}s´ sk}

2
` h̃psq, (17)

where ν ą 0, which leads to the first-order stationarity conditions

0 P sk`1 ´ sk ` ν∇fpskq ` νBh̃psk`1q. (18)

A first approach to solving (1), that we can reformulate as

minimize
xPR

n
fpxq ` hpxq ` χpx | R

n
`q,
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is to use projected-directions methods. A simple example of such methods consists in performing the

identification h̃ “ h` χp¨ | R
n
`q in (16), and using the proximal gradient method as in (17).

Aravkin et al.’s TR and R2 are other examples of algorithms that can solve (1) with a similar

strategy. Replacing h by h̃ and ψp¨;xq by ψ̃p¨;xq “ ψp¨;xq ` χp¨ | ´x`R
n
`q in all models of TR and

R2 is sufficient to generalize these methods to (1), if a solution of

sk P prox
νkψ̃p¨;xkq`χp¨|∆kBq

p´νk∇fpxkqq. (19)

for TR, or

sk P prox
νkψ̃p¨;xkq

p´νk∇fpxkqq (20)

for R2, is available.

Leconte and Orban [17] implement a variant of TR named TRDH that handles bound constraints

for separable regularizers h (assuming that ψ is also separable). TRDH solves at each iteration k and

for all i P t1, . . . , nu the problem

pskqi P argmin
si

∇fpxkqqisi ` 1
2 pdkqis

2
i ` pψps;xkqqi ` χpsi | ∆kBX p´pxkqi `R`q, (21)

with pdkqi P R. The special choice pdkqi “ ν´1
k shows that solving (21) for all i is equivalent to

solving (19).

However, for nonseperable regularizers h, projected-directions methods rely on computing search

directions such as (19), (20) or (21), which may be complicated (impossible for the latter), and therefore

seems to be a limitation of this approach. The following section describes the implementation of a

method that is different from projected directions methods, and is based upon interior-point techniques.

5 Barrier methods

Consider a sequence tµku Œ 0.

Lemma 2. Let ϕk be defined as in (3). Then, e-limϕk “ χp¨ | R
n
`q.

Proof. It is sufficient to show that e-limϕk,i “ χp¨ | R`q for i “ 1, . . . , n. Our goal is to bound each

ϕk by two functions having χp¨ | R
n
`q as epi-limit. We define

ϕą
k,ipxq :“

$

’

&

’

%

`8 if x ď 0

ϕk,ipxq if 0 ă x ă 1

0 if x ě 1,

ϕă
k,ipxq :“

$

’

&

’

%

`8 if x ď 0

0 if 0 ă x ă 1

ϕk,ipxq if x ě 1.

By construction, ϕk,ipxq “ ϕą
k,ipxq ` ϕă

k,ipxq, tϕą
k,ipxqu Œ 0 and tϕă

k,ipxqu Ò 0 as k Ñ 8 for all x ą 0.

In particular, tϕą
k,iu

p
ÝÑ χp¨ | R`q and tϕă

k,iu
p

ÝÑ χp¨ | R`q as k Ñ 8.

By [22, Proposition 7.4c], because tϕą
k,iu is nonincreasing with k, its epi-limit is well defined and

tϕą
k,iu

e
ÝÑ cl infk ϕ

ą
k,i “ χp¨ | R`q.

Similarly, by [22, Proposition 7.4d], because tϕă
k,iu is nondecreasing with k, its epi-limit is well

defined and ϕă
k,i

e
ÝÑ supk clϕ

ă
k,i “ χp¨ | R`q.

Because ϕă
k,i ď ϕk,i ď ϕą

k,i, [22, Proposition 7.4g] implies that tϕk,iu
e

ÝÑ χp¨ | R`q, and consequently,

we obtain tϕku
e

ÝÑ χp¨ | R
n
`q.
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Theorem 2. e-lim f ` h` ϕk “ f ` h` χp¨ | R
n
`q.

Proof. Lemma 2 and [22, Theorem 7.46a] imply th ` ϕku
e

ÝÑ h ` χp¨ | R
n
`q. Finally, because f is

continuous, [22, Exercise 7.8a] yields tf ` h` ϕku
e

ÝÑ f ` h` χp¨ | R
n
`q.

The following corollary legitimizes the barrier approach for (1).

Corollary 1. Let inftfpxq ` hpxq | x ě 0u be finite. For all ϵ ě 0,

lim sup
k

pϵ- argmin f ` h` ϕkq Ă ϵ- argmin f ` h` χp¨ | R
n
`q.

In particular, if tϵku Œ 0,

lim sup
k

pϵk- argmin f ` h` ϕkq Ă argmin f ` h` χp¨ | R
n
`q.

Proof. Follows directly from [22, Theorem 7.31b].

If inftfpxq ` hpxq | x ě 0u is finite, the definition of the limit superior of a sequence of sets

and the second part of Corollary 1 indicate that for any tϵku Œ 0, there exists N P N#
8 and

x̄k P ϵk- argmin f ` h` ϕk for all k P N such that tx̄kuN converges to a solution of (1).

5.1 Barrier subproblem

The k-th subproblem is

minimize
x

fpxq ` hpxq ` ϕkpxq. (22)

x˚
k P R

n
`` is first-order stationary for (22) if

0 P ∇fpx˚
kq ´ µkpX˚

k q
´1e` Bhpx˚

kq. (23)

We call the process of solving (22) the k-th sequence of inner iterations, and we denote its iterates xk,j
for j ě 0. The definition of (22) along with certain parameter updates will be called an outer iteration.

For x P R
n
`` and δ P p0, 1q, let

R
n
δ pxq :“ ts P R

n
| min

i
px` sqi ě δmin

i
xiu Ă p´x`R

n
``q. (24)

Note that Rnδ pxq is closed, and also convex, as shown in the following lemma.

Lemma 3. Let δ P p0, 1q and x P R
n
``. Then R

n
δ pxq defined in (24) is convex.

Proof. Let s1 and s2 P R
n
δ pxq, and t P r0, 1s. By definition, minips1`xqi ě δmini xi and minips2`xqi ě

δmini xi. Now,

min
i

pts1 ` p1 ´ tqs2 ` xqi ě min
i

ptps1 ` xqqi ` min
i

pp1 ´ tqps2 ` xqqi

“ tmin
i

ps1 ` xqi ` p1 ´ tqmin
i

ps2 ` xqi

ě tδmin
i
xi ` p1 ´ tqδmin

i
xi

“ δmin
i
xi.

Thus, ts1 ` p1 ´ tqs2 P R
n
δ pxq and Rnδ pxq is convex.
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Under the assumptions of Lemma 3 and for ∆ ą 0, ∆BXR
n
δ pxq is convex.

At outer iteration k, we choose δk P p0, 1q, and solve (22) inexactly by approximately solving a

sequence of trust-region subproblems of the form

minimize
s

mps;xk,jq ` χps | ∆k,jBXR
n
δk

pxk,jqq, (25a)

mps;xk,jq :“ φps;xk,jq ` ψps;xk,jq, (25b)

where φps;xk,jq « pf ` ϕkqpxk,j ` sq and ψps;xk,jq « hpxk,j ` sq model the smooth and nonsmooth

parts of (22), respectively, and ∆k,j ą 0 is a trust-region radius. Models are required to satisfy the

following assumption.

Model Assumption 5.1. For any k P N and j P N, φp¨;xk,jq is continuously differentiable on Rn`` with

φp0;xk,jq “ fpxk,jq ` ϕkpxk,jq and ∇sφp0;xk,jq “ ∇fpxk,jq ` ∇ϕkpxk,jq. In addition, ∇sφp¨;xk,jq is

Lipschitz continuous with constant Lk,j ě 0. We require that ψp¨;xk,jq be proper, lsc, and satisfy

ψp0;xk,jq “ hpxk,jq and Bψp0;xk,jq “ Bhpxk,jq.

Proposition 3. Let Model Assumption 5.1 be satisfied. Then s “ 0 is first-order stationary for (25)
if and only if xk,j is first-order stationary for (22).

Proof. If xk,j is first-order stationary, then 0 P ∇fpxk,jq ´ µkX
´1
k,je ` Bhpxk,jq “ ∇sφp0;xk,jq `

Bψp0;xk,jq. Note that xk,j ą 0 so Bχp0 | ∆k,jB X R
n
δk

pxk,jqq “ t0u, and ∆k,j ą 0, so there is an

open set O Ă ∆k,jB X R
n
δk

pxk,jq such that for all s P O, χps | ∆k,jB X R
n
δk

pxk,jqq “ 0. Thus, using

the definition of the subdifferential, Bpψp¨;xk,jq ` χp¨ | ∆k,jB X R
n
δk

pxk,jqqqp0q “ Bψp0;xk,jq. We

conclude that 0 P ∇sφp0;xk,jq ` Bpψp¨;xk,jq ` χp¨ | ∆k,jB X R
n
δk

pxk,jqqqp0q, which is the definition

of s “ 0 being first-order stationary for (25). The reciprocal can also be established from these

observations, because if 0 P ∇sφp0;xk,jq ` Bpψp¨;xk,jq ` χp¨ | ∆k,jBXR
n
δk

pxk,jqqqp0q, we have shown

that 0 P ∇sφp0;xk,jq ` Bψp0;xk,jq “ ∇fpxk,jq ´ µkX
´1
k,je` Bhpxk,jq.

As a special case of Proposition 3, if s “ 0 solves (25), then xk,j is first-order stationary for (22).

Let

φf ps;xk,j , Bk,jq :“ fpxk,jq ` ∇fpxk,jq
T s` 1

2s
TBk,js, (26)

where Bk,j “ BTk,j , be a second order Taylor approximation of f about xk,j . We are particularly

interested in the quadratic model

φps;xk,j , Bk,jq :“ φf ps;xk,j , Bk,jq ` ϕkpxk,jq ´ µke
TX´1

k,js` 1
2s
TX´1

k,jZk,js

“ pf ` ϕkqpxk,jq ` p∇fpxk,jq ´ µkX
´1
k,jeq

T s` 1
2s
T

pBk,j `X´1
k,jZk,jqs,

(27)

where zk,j is an approximation to the vector of multipliers for the bound constraints of (1).

Let sk,j be an approximate solution of (25). If sk,j is accepted as a step for our algorithm

used to solve (22) (the acceptance condition is detailed in Algorithm 2), we perform the update

xk,j`1 “ xk,j ` sk,j .

By analogy with the smooth case, we use zk,j :“ µkX
´1
k,je when xk,j is first-order stationary for (22).

Multiplying through by Xk,j , we obtain Xk,jzk,j “ µke. Linearizing the continuous equality Xz´µe “ 0

with respect to x and z and evaluating all quantities at iteration pk, jq yieldsXk,j∆zk,j`Zk,jsk,j “ µke´

Xk,jzk,j , which suggests that if xk,j`1 “ xk,j`sk,j , then zk,j`1 “ zk,j`∆zk,j “ µkX
´1
k,je´X´1

k,jZk,jsk,j .

However, the latter zk,j`1 may not be positive. We perform the update described by Conn et al.

[9], by defining

ẑk,j`1 “ µkX
´1
k,je´X´1

k,jZk,jsk,j , (28)



Les Cahiers du GERAD G–2024–17 10

and projecting ẑk,j`1 componentwise into the following interval to get zk,j`1

I “ rκzul minpe, zk,j , µkX
´1
k,j`1eq, maxpκzuue, zk,j , κzuuµ

´1
k e, κzuuµkX

´1
k,j`1eqs, (29)

with 0 ă κzul ă 1 ă κzuu. Projecting ẑk,j`1 into (29) always generates a positive zk,j`1. The choice

zk,j`1 “ zk,j is also available. The other bounds of (29) will be useful in Section 5.2 and Section 5.3.

We define the following model, based upon a first-order Taylor approximation

φcpps;xk,jq :“ pf ` ϕkqpxk,jq ` p∇fpxk,jq ´ µkX
´1
k,jeq

T s, (30a)

mcpps;xk,j , νk,jq :“ φcpps;xk,jq ` 1
2ν

´1
k,j}s}2 ` ψps;xk,jq, (30b)

where “cp” stands for “Cauchy point”. Let sk,j,1 be the solution of (25) with model mcpps;xk,j , νk,jq.

As stated in [2, Section 3.2], sk,j,1 is actually the first step of the proximal gradient method (17) from

sk,j,0 “ 0 applied to the minimization of φcp ` ψ with step length νk,j :

sk,j,1 P prox
νk,jψp¨;xk,jq`χp¨|∆k,jBXR

n
δk

pxk,jqq

p´νk,j∇φcpp0;xk,j , νk,jqq. (31)

Let

ξcpp∆;xk,j , νk,jq :“ pf ` ϕk ` hqpxk,jq ´ pφcp ` ψqpsk,j,1;xk,jq, (32)

where ∆ ą 0, and let ν
´1{2
k,j ξcpp∆;xk,j , νk,jq

1{2 be our measure of criticality. Aravkin et al. [2] and

its corrigendum [1] indicate that ν
´1{2
k,j ξcpp∆;xk,j , νk,jq

1{2 is similar to ν´1
k,j}sk,j,1}, which is the norm

of the generalized gradient at xk,j . We can apply [22, Theorems 1.17 and 7.41] to conclude that

ξcpp∆;xk,j , νk,jq is proper lsc in pxk,j , νk,jq P R
n
`` ˆR``. In particular, ν

´1{2
k,j ξcpp∆;xk,j , νk,jq

1{2
“ 0

for any ∆ ą 0 and νk,j ą 0 ùñ s “ 0 solves (25), and xk,j is first-order stationary for (22).

Algorithm 1 summarizes the outer iteration.

Algorithm 1 Nonsmooth interior-point method (outer iteration).

1: Choose ϵ ą 0, sequences tµku Œ 0, tϵd,ku Œ 0, tϵp,ku Œ 0, and tδku Ñ δ̄ P r0, 1q with δk P p0, 1q for all k.

2: Choose x0,0 P R
n
`` where h is finite.

3: for k “ 0, 1, . . . do
4: Compute an approximate solution xk :“ xk,j to (22) and zk :“ zk,j in the sense that

ν
´1{2
k,j ξcpp∆k,j ;xk,j , νk,jq

1{2
ď ϵd,k (33)

and
}Xk,jzk,j ´ µke} ď ϵp,k. (34)

5: Set xk`1,0 :“ xk.
6: end for

For each outer iteration k, the inner iterations generate a sequence txk,ju according to an adaptation

of [2, Algorithm 3.1] in which the subproblems have the form (25) with the smooth part of the model

defined by (27). Each trust-region step is required to satisfy the following assumption.

Step Assumption 5.1. Let k P N. There exists κm,k ą 0 and κmdc,k P p0, 1q such that for all j,

sk,j P ∆k,jBXRδkpxk,jq,

|pf ` ϕk ` hqpxk,j ` sk,jq ´mpsk,j ;xk,j , Bk,jq| ď κm,k}sk,j}
2, (35a)

mp0;xk,j , Bk,jq ´mpsk,j ;xk,j , Bk,jq ě κmdc,kξcpp∆k,j ;xk,j , νk,jq, (35b)

where m is defined in (25b)–(27), and ξcpp∆k,j ;xk,j , νk,jq is defined in (32).

In Step Assumption 5.1, the subscript “m” of κm,k refers to the model adequacy, and the subscript

“mdc” of κmdc,k refers to the model decrease.

Algorithm 2 summarizes the process.
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Algorithm 2 Nonsmooth interior-point method (inner iteration).

1: Choose constants

0 ă η1 ď η2 ă 1, 0 ă γ1 ď γ2 ă 1 ă γ3 ď γ4, ∆max ą ∆k,0 ą 0, α ą 0, β ě 1.

2: Compute fpxk,0q ` ϕkpxk,0q ` hpxk,0q.
3: for j “ 0, 1, . . . do

4: Choose 0 ă νk,j ď 1{pLk,j ` α
´1

∆
´1
k,jq.

5: Define mps;xk,j , Bk,jq as in (25b) satisfying Model Assumption 5.1.
6: Define mcpps;xk,j , νk,jq as in (30b).
7: Compute sk,j,1 as a solution of (31).
8: Compute an approximate solution sk,j of (25) such that }sk,j} ď minp∆k,j , β}sk,j,1}q.
9: Compute the ratio

ρk,j :“
pf ` ϕk ` hqpxk,jq ´ pf ` ϕk ` hqpxk,j ` sk,jq

mp0;xk,j , Bk,jq ´ mpsk,j ;xk,j , Bk,jq
.

10: If ρk,j ě η1, set xk,j`1 “ xk,j ` sk,j and update zk,j`1 according to (28) and (29). Otherwise, set xk,j`1 “ xk,j

and zk,j`1 “ zk,j .
11: Update the trust-region radius according to

∆̂k,j`1 P

$

&

%

rγ3∆k,j , γ4∆k,js if ρk,j ě η2, (very successful iteration)
rγ2∆k,j , ∆k,js if η1 ď ρk,j ă η2, (successful iteration)
rγ1∆k,j , γ2∆k,js if ρk,j ă η1 (unsuccessful iteration)

and ∆k,j`1 “ minp∆̂k,j`1, ∆maxq.
12: end for

5.2 Convergence of the inner iterations

Let k and j be fixed positive integers, and xk,j ą 0. We may rewrite our “Cauchy point” subproblem

for the inner iterations as in [2]:

pp∆;xk,j , νk,j , δkq :“ minimize
s

mcpps;xk,j , νk,jq ` χps; ∆BXR
n
δk

pxk,jqq (36a)

P p∆;xk,j , νk,j , δkq :“ argmin
s

mcpps;xk,j , νk,jq ` χps; ∆BXR
n
δk

pxk,jqq. (36b)

First, we present some properties of the subproblem (36a) in the following result.

Proposition 4 (2, Proposition 3.1). Let Model Assumption 5.1 be satisfied, ν ą 0, δ ą 0 and
x P R

n
`. If we define pp0;x, ν, δq :“ φcpp0;xq ` ψp0;xq and P p0;x, ν, δq “ t0u, the domain of

pp¨;x, ν, δq and P p¨;x, ν, δq is t∆ | ∆ ě 0u. In addition,

1. pp¨;x, ν, δq is proper lsc and for each ∆ ě 0, P p∆;x, ν, δq is nonempty and compact;

2. if t∆k,ju Ñ ∆̄k ě 0 in such a way that tpp∆k,j ;x, ν, δqu Ñ pp∆̄k;x, ν, δq, and for each j,
sk,j P P p∆k,j ;x, ν, δq, then tsk,ju is bounded and all its limit points are in P p∆̄k;x, ν, δq;

3. if φcpp¨;xq ` 1
2ν

´1
}s}2 ` ψp¨;xq is strictly convex, P p∆;x, ν, δq is single valued;

4. if ∆̄k ą 0 and there exists s̄ P P p∆̄k;x, ν, δq such that s̄ P intp∆̄kBXR
n
δk

pxqq, then pp¨;x, ν, δq

is continuous at ∆̄k and tpp∆k,j ;x, ν, δqu Ñ pp∆̄k;x, ν, δq holds in part 2.

Proof. Model Assumption 5.1 and the compactness of ∆BXR
n
δk

pxq ensure that the objective of (36a)

is always level-bounded in s locally uniformly in ∆, because for any ∆̄ ą 0, ϵ ą 0, and ∆ P p∆̄´ϵ, ∆̄`ϵq

with ∆ ě 0, its level sets are contained in ∆BXRδkpxk,jq Ď p∆̄`ϵqBXRδkpxk,jq. From this observation,

we can draw similar conclusions to the analysis of [2, Proposition 3.1].

The observation in the proof of Proposition 4 and Model Assumption 5.1 allows us to derive directly

some of the convergence properties of Aravkin et al. [2] for Algorithm 2.



Les Cahiers du GERAD G–2024–17 12

Proposition 5 (2, Theorem 3.4). Let Model Assumption 5.1 and Step Assumption 5.1 be satisfied
and let

∆succ,k :“
κmdc,kp1 ´ η2q

2κm,kαβ
2 ą 0. (37)

If xk,j is not first-order stationary for (22) and ∆k,j ď ∆succ, then iteration j is very successful
and ∆k,j`1 ě ∆k,j .

Proof. If xk,j is not first-order stationary, R
n
δk

pxk,jq ‰ t0u, thus sk,j,1 ‰ 0 and sk,j ‰ 0. The rest of

the proof is identical to that of [2, Theorem 3.4].

Now, let ∆min,k :“ minp∆k,0, γ1∆succ,kq ą 0. Then, ∆k,j ě ∆min,k for all j P N. If we consider φ

defined in (27), for s1 and s2 in Rn`,

}∇φps1q ´ ∇φps2q} “ }Bk,jps1 ´ s2q `X´1
k,jZk,jps1 ´ s2q}. (38)

As Lk,j “ }Bk,j ` X´1
k,jZk,j} ď }Bk,j} ` }X´1

k,j }}Zk,j}, if tBk,juj remains bounded, txk,juj must be

bounded away from zero to guarantee the existence of some Mk ą 0 such that Lk,j ď Mk for all

j P N. To apply the complexity results, and to establish that lim inf ν
´1{2
k,j ξcpp∆k,j ;xk,j , νk,jq

1{2
“ 0 if

f ` h` ϕk is bounded below on Rn`, we need a stronger assumption on the Lipschitz constant of our

model.

Model Assumption 5.2 (2, Model Assumption 3.3). In Model Assumption 5.1, there exists Mk ą 0 such

that 0 ď Lk,j ď Mk for all j P N. In addition, we select νk,j in line 4 of Algorithm 2 in a way that

there exists νmin,k ą 0 such that νk,j ě νmin,k for all j P N.

As in Aravkin et al. [2], we can set νk,j :“ 1{pLk,j ` α´1∆´1
k,jq in Algorithm 2 to ensure νk,j ě

νmin,k :“ 1{pMk ` α´1∆´1
min,kq ą 0 if the first part of Model Assumption 5.2 holds with Mk. The

observations below (38) motivate us to prove that txk,juj is bounded away from zero in the next result.

Proposition 6. Let k P N, Model Assumption 5.1 be satisfied for φ in (27), and pf ` hqpxk,jq ě

pf ` hqlow,k. Then, there exists κmdb,k ą 0 such that, for all j, we have

min
i

pxk,jqi ě κmdb,k. (39)

Proof. We proceed similarly as in Conn et al. [9, Theorem 13.2.1]. Let k be a positive integer

and txk,ju be a sequence generated by Algorithm 2. As tpf ` ϕk ` hqpxk,jquj is decreasing and

pf ` hqpxk,jq ě pf ` hqlow,k, we have lim supj ϕkpxk,jq ă 8, which implies that (39) holds.

The following proposition shows that we can use the convergence results of Aravkin et al. [2] using

the same assumptions they used for φf . It will justify that Model Assumption 5.2 can be used for φ

defined in (27).

Proposition 7. Under the assumptions of Proposition 6, let φf be defined as in (26) so that

∇sφf p¨;xk,j , Bk,jq is Lipschitz continuous with constant L̃k,j ě 0 and there exists M̃k ą 0 such

that 0 ď L̃k,j ď M̃k for all j P N. Then φ satisfies Model Assumption 5.2.

Proof. We can use (29) and (39) to say that X´1
k,jZk,j is bounded for all j, and we deduce from (38)

that φ satisfies Model Assumption 5.2.

Now, we justify that Step Assumption 5.1 holds when hpxk,j ` sk,jq “ ψpsk,j ;xk,jq. As txk,juj
remains bounded away from BR

n
` with Proposition 6, so does txk,j ` sk,juj by definition of Rδkpxk,jq.
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Since ∇f is Lipschitz-continuous,

fpxk,j ` sk,jq ´ fpxk,jq ´ ∇fpxk,jq
T sk,j ď 1

2Lf }sk,j}
2, (40)

and a second-order Taylor approximation of ϕk about xk,j ` sk,j gives

ϕkpxk,j ` sk,jq ´ ϕkpxk,jq ´ µks
T
k,jX

´1
k,je “ 1

2µks
T
k,jX

´2
k,jsk,j ` op}sk,j}

2
q. (41)

Under the assumptions of Proposition 7, Lk,j “ }Bk,j `X´1
k,jZk,j} ď Mk, and

|pf ` ϕk ` hqpxk,j ` sk,jq ´mpsk,j ;xk,j , Bk,jq|

“ |fpxk,j ` sk,jq ´ fpxk,jq ´ ∇fpxk,jq
T sk,j ` ϕkpxk,j ` sk,jq ´ ϕkpxk,jq´

µks
T
k,jX

´1
k,je´ 1

2s
T
k,jpBk,j `X´1

k,jZk,jqsk,j | ` op}sk,j}
2
q.

The above equality combined with (40) and (41) implies that (35a) holds.

To emphasize the similarities between our inner iterations and the trust-region algorithm of Aravkin

et al. [2], and in light of Proposition 7, we use in our next results that φ satisfies Model Assumption 5.2,

instead of writting assumptions on φf . The following proposition gives us a sufficient condition for (35b)

to be satisfied.

Proposition 8 (1, Proposition 1). If Model Assumption 5.2 is satisfied with bounded Hessian
approximations tBk,juj , then there exists κmdc,k P p0, 1q such that (35b) holds for all j.

Proof. The proof is identical to that of [1, Proposition 1] when replacing Bk by Bk,j `X´1
k,jZk,j , and

using the subscripts k,j where j is the iteration number of the algorithm instead of the subscript k.

Proposition 6 allows us to write the following convergence results for algorithm 2. As in Aravkin

et al. [2], we define the smallest iteration number jkpϵq such that

ν
´1{2
k,j ξcpp∆k,j ;xk,j , νk,jq

1{2
ď ϵ p0 ă ϵ ă 1q, k “ 0, 1, . . . , (42)

and we express the set of successful iterations, the set of successful iterations for which (42) has not yet

been attained, and the set of unsuccessful iterations for which (42) has not yet been attained as

Sk :“ tj P N | ρk,j ě η1u (43a)

Skpϵq :“ tj P Sk | j ă jkpϵqu (43b)

Ukpϵq :“ tj P N | j R Sk and j ă jkpϵqu. (43c)

Proposition 9 (2, Theorem 3.5). Let Model Assumption 5.1 and Step Assumption 5.1 be satisfied.
If Algorithm 2 only generates finitely many successful iterations, then xk,j “ x˚

k for all sufficiently
large j and x˚

k is first-order critical for (22).

Proof. The proof is inspired from [2, Theorem 3.5], which itself follows that of Conn et al. [9,

Theorem 6.6.4]. The assumptions indicate that there is j0 P N such that all iterations j ě j0 are

unsuccessful, and xk,j “ xk,j0 “ x˚
k because of the update rules of Algorithm 2. We assume by

contradiction that x˚
k is not first-order critical. x˚

k does not have any of its components equal to `8

because it is attained after a finite number of iterations of Algorithm 2. As h is proper, pf`hqpx˚
kq ą ´8.

Thus, Proposition 6 implies that there exists ∆˚
k such that ∆˚

kB Ă Rδkpx˚
kq. Since all iterations j ě j0

are unsuccessful, there will be some j1 ě j0 such that ∆j1
ď minp∆succ,k, ∆

˚
kq, which implies that

iteration j1 is very successful with Proposition 5, and contradicts the fact that x˚
k is not first-order

critical.

Finally, we have the following result for the inner iterates.
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Proposition 10 (2, Theorem 3.11). Let k P N, Model Assumption 5.1 and Model Assumption 5.2
be verified for φ defined in (27), and Step Assumption 5.1 be satisfied for algorithm 2. If there are
infinitely many successful iterations, then, either

lim
jÑ8

pf ` ϕk ` hqpxk,jq “ ´8 or lim
jÑ8

ν
´1{2
k,j ξcpp∆k,j ;xk,j , νk,jq

1{2
“ 0. (44)

Proof. The proof is identical as that of [2, Theorem 3.11].

Now, the definitions of φcp in (30a) and sk,j,1 as a minimizer of (25) with model mcp indicate that

pf ` ϕk ` hqpxk,jq “ φcpp0;xk,jq ` ψp0;xk,jq “ mcpp0;xk,j , νk,jq ě

mcppsk,j,1;xk,j , νk,jq “ φcppsk,j,1;xk,jq ` 1
2ν

´1
k,j}sk,j,1}

2
` ψpsk,j,1;xk,jq.

By reinjecting this inequality into the definition of ξcp in (32), we obtain

ξcpp∆k,j ;xk,j , νk,jq ě 1
2ν

´1
k,j}sk,j,1}

2,

so that

ν
´1{2
k,j ξcpp∆k,j ;xk,j , νk,jq

1{2
ě 1?

2
ν´1
k,j}sk,j,1}. (45)

From this observation, we deduce that sk,j ÝÑ
jÑ8

0 in the following result.

Lemma 4. If Model Assumption 5.1 holds for φ defined in (27) and

lim
jÑ8

ν
´1{2
k,j ξcpp∆k,j ;xk,j , νk,jq

1{2
Ñ 0,

then limjÑ8 }sk,j,1} “ limjÑ8 }sk,j} “ 0.

Proof. We use β}sk,j,1}
2

ě }sk,j}
2 and (45) to conclude that

ν
´1{2
k,j ξcpp∆k,j ;xk,j , νk,jq

1{2
ě 1?

2
ν´1
k,j}sk,j,1} ě 1?

2
ν´1
k,jβ

´1{2
}sk,j} ě 0.

With Model Assumption 5.1, νk,j ÝÑ
jÑ8

ν̄k ą 0, and we have }sk,j} ÝÑ
jÑ8

0.

Now, we study the asymptotic satisfaction of the inner perturbed complementarity. We show

that (34) is eventually satisfied, similarly to [9, Theorem 13.6.4] in the smooth case.

Proposition 11. Let k P N, Model Assumption 5.1 and Model Assumption 5.2 be verified for
φ defined in (27), Step Assumption 5.1 be satisfied for algorithm 2, and pf ` ϕk ` hqpxk,jq ě

pf ` ϕk ` hqlow,k for all j P N. Then,

lim
jÑ8

}µkX
´1
k,je´ zk,j} “ 0.

Proof. We proceed similarly as in the proof of [9, Theorem 13.6.4]. With the formula ẑk,j`1 “

µkX
´1
k,je´X´1

k,jZk,jsk,j ,

}ẑk,j`1 ´ µkX
´1
k,j`1e} ď }X´1

k,jZk,jsk,j} ` µk}X´1
k,j`1e´X´1

k,je}

ď }X´1
k,jZk,j}}sk,j} ` µk

?
n}X´1

k,j`1 ´X´1
k,j }.
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Using Proposition 10, we have limjÑ8 ν
´1{2
k,j ξcpp∆k,j ;xk,j , νk,jq

1{2
“ 0. This leads to limjÑ8 }sk,j} “ 0

with Lemma 4, and we have that xk,j is bounded away from 0 using Proposition 6. Therefore, either

iteration j is not successful and Xk,j`1 “ Xk,j , or

}X´1
k,j`1 ´X´1

k,j } “ }X´1
k,j pXk,jX

´1
k,j`1 ´ Iq}

“ }X´1
k,j pXk,jpXk,j ` Sk,jq

´1
´ Iq}

“ }X´1
k,j ppI `X´1

k,jSk,jq
´1

´ Iq} Ñ 0.

Since X´1
k,j`1zk,j is also bounded for all j using Proposition 6 and (29), we have

lim
jÑ8

}ẑk,j`1 ´ µkX
´1
k,j`1e} Ñ 0. (46)

For j large enough, we have

κzulµkX
´1
k,j`1e ď ẑk,j`1 ď κzuuµkX

´1
k,j`1e, (47)

so that ẑk,j`1 “ zk,j`1 if j is large enough.

In Algorithm 1, each subproblem is solved approximately with tolerances ϵd,k Œ 0 and ϵp,k Œ 0.

This gives rise to the analysis in Section 5.3.

5.3 Convergence of the outer iterations

For each k P N, the stopping condition of Algorithm 2 occurs in a finite number of iterations. Let

jk denote the number of iterations performed by Algorithm 2 at outer iteration k. To simplify the

notation, let x̄k :“ xk,jk , z̄k :“ zk,jk , s̄k,1 :“ sk,jk,1, ∆̄k :“ ∆k,jk
and ν̄k :“ νk,jk .

First, we present two assumptions that will be useful for our analysis.

Parameter Assumption 5.1. lim inf ∆min,k “ ∆̄ ą 0

To satisfy the second part of Parameter Assumption 5.1, we need to change φ in (27) to

φps;xk,j , Bk,jq :“ φf ps;xk,j , Bk,jq ` ϕkpxk,jq ´ µke
TX´1

k,js` 1
2s
TΘk,js

“ pf ` ϕkqpxk,jq ` p∇fpxk,jq ´ µkX
´1
k,jeq

T s` 1
2s
T

pBk,j ` Θk,jqs,
(48)

where Θk,j “ minpX´1
k,jZk,j , κbarIq with the min taken componentwise and κbar ą 0.

Since the results of Section 5.2 involving φ defined in (27) are all based upon Step Assumption 5.1,

those results continue to apply if Step Assumption 5.1 holds for φ defined in (48). We now show that
that is the case.

Fist, we observe that

pf ` ϕkqpxk,j ` sk,jq ´ φpsk,j ;xk,j , Bk,jq “ fpxk,j ` sk,jq ´ fpxk,jq ´ ∇fpxk,jq
T sk,j`

ϕkpxk,j ` sk,jq ´ ϕkpxk,jq ´ µks
T
k,jX

´1
k,je´ 1

2s
T
k,jpBk,j ` Θk,jqsk,j .

Assume, as in Proposition 7, that }Bk,j} ď M̃k. Since Θk,j is bounded by definition, we use (40)

and (41) to conclude that fpxk,j ` sk,jq ` ϕkpxk,j ` sk,jq ´ φpsk,j ;xk,j , Bk,jq “ Op}sk,j}
2
q, and, if

ψps;xk,jq “ hpxk,j ` sq, (35a) holds. The proof of Proposition 8 is still valid when considering

Bk,j `Θk,j instead of Bk,j `X´1
k,jZk,j , so that (35b) also holds. As a consequence, Step Assumption 5.1

still holds with φ defined in (48).

Now, our goal is to find a sequence twku Ñ 0 such that wk P ∇fpx̄kq ´ z̄k ` Bψps̄k,1; x̄kq. Under

some additional assumptions on ψ, this will allow us to establish that Algorithm 1 generates iterates

that satisfy asymptotically (9). We begin with preliminary lemmas.
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Lemma 5. Assume that sk,j,1 is not on the boundary of ∆k,jB X R
n
δk

pxk,jq and that Model
Assumption 5.1 holds. Then,

´ν´1
k,jsk,j,1 ` µkX

´1
k,je P ∇fpxk,jq ` Bψpsk,j,1;xk,jq. (49)

Proof. The first step of the proximal gradient method sk,j,1 satisfies (31). According to (18), its

first-order optimality conditions are

0 P sk,j,1 ` νk,j∇φcpp0;xk,jq ` Bpνk,jψp¨;xk,jq ` χp¨ | ∆k,jBXR
n
δk

pxk,jqqqpsk,j,1q. (50)

As sk,j,1 is not on the boundary of ∆k,jB X R
n
δk

pxk,jq, there exists r ą 0 such that for all s in an

open ball of center sk,j,1 and radius r, χps | ∆k,jB X R
n
δk

pxk,jqq “ 0. Thus, the definition of the

subdifferential guarantees that

Bpνk,jψp¨;xk,jq ` χp¨ | ∆k,jBXR
n
δk

pxk,jqqqpsk,j,1q “

νk,jBψpsk,j,1;xk,jq ` Bχpsk,j,1 | ∆k,jBXR
n
δk

pxk,jqq.

We know that Bχpsk,j,1 | ∆k,jB X R
n
δk

pxk,jqq “ N∆k,jBXR
n
δk

pxk,jqpsk,j,1q using Lemma 3, and

N∆k,jBXR
n
δk

pxk,jqpsk,j,1q “ t0u because sk,j,1 is not on the boundary of ∆k,jB X R
n
δk

pxk,jq. There-

fore, (50) simplifies to

0 P ν´1
k,jsk,j,1 ` ∇fpxk,jq ´ µkX

´1
k,je` Bψpsk,j,1;xk,jq

using Model Assumption 5.1 for ∇φcpp0;xk,jq.

Lemma 6. Let Parameter Assumption 5.1 be satisfied. Then, for all k P N,

}s̄k,1} ď
?
2ν̄kϵd,k.

Proof. Since (33) holds, (45) leads to

ϵd,k ě ν̄
´1{2
k ξcpp∆̄k; x̄k, ν̄kq

1{2
ě 1?

2
ν̄´1
k }s̄k,1},

which completes the proof.

The following assumption will be useful to establish that s̄k,1 converges to zero sufficiently fast to

guarantee the convergence of the outer iterations.

Parameter Assumption 5.2. The sequences tϵd,ku used in Algorithm 1 and tκmdb,ku from Proposition 6

satisfy

κ´1
mdb,kϵd,k Ñ 0. (51)

To justify that Parameter Assumption 5.2 is reasonable, assume for simplicity that i is an index

such that px̄kqi “ κmdb,k. We have

´eTi X̄kz̄k ` µk ď }X̄kz̄k ´ µke} ď ϵp,k,

so that

px̄kqipz̄kqi “ eTi X̄kz̄k ě µk ´ ϵp,k,

and, if ϵp,k ă µk,

κ´1
mdb,k “

1

px̄kqi
ď

pz̄kqi

µk ´ ϵp,k
.
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We multiply the above inequality by ϵp,k to obtain

κ´1
mdb,kϵp,k ď

pz̄kqi

µkϵ
´1
p,k ´ 1

.

If
ϵp,k
µk

Ñ 0, e.g., ϵp,k “ µ
1`γk
k with 0 ă γk ă 1, κ´1

mdb,kϵp,k Ñ 0. Then, the choice ϵd,k “ Opϵp,kq

guarantees that Parameter Assumption 5.2 is satisfied.

Lemma 7. Let Model Assumption 5.1, Parameter Assumption 5.1 and Parameter Assumption 5.2
be satisfied, and for all j, pf ` hqpxk,jq ě pf ` hqlow,k. Then, there exists N P N8 such that for
all k P N , s̄k,1 is not on the boundary of ∆̄kBXR

n
δk

px̄kq.

Proof. For all s P R
n, }s}8 ď }s}, thus Lemma 6 leads to }s̄k,1}8 ď }s̄k,1} ď

?
2ν̄kϵd,k. As a

consequence, if
?
2ϵd,kν̄k ă ∆min,k, then s̄k,1 is not on the boundary of ∆̄kB. This is certainly true for

k sufficiently large, because ∆̄ ą 0 in Parameter Assumption 5.1 and ϵd,k Ñ 0.

Now, we show that s̄k,1 is not on the boundary of Rnδkpx̄kq if k is large enough. First, we point out

that ν̄k Û 8, because

νk,j “
1

}Bk,j} ` }Θk,j} ` α´1∆´1
k,j

ď α∆k,j .

Then, we have

0 ď
|minips̄k,1qi|

minipx̄kqi
ď

}s̄k,1}8

minipx̄kqi
ď

}s̄k,1}

minipx̄kqi

ď

?
2ν̄kϵd,k

minipx̄kqi
using Lemma 6

ď

?
2ν̄kϵd,k
κmdb,k

using Proposition 6,

and Parameter Assumption 5.2 indicates that
?
2κ´1

mdb,kν̄kϵd,k Ñ 0. As δk Ñ δ̄ ă 1, the inequality

minips̄k,1qi

minipx̄kqi
` 1 ą δk (52)

is satisfied if k is large enough, and

min
i

ps̄k,1 ` x̄kqi ě min
i

ps̄k,1qi ` min
i

px̄kq by properties of the min

ą δkmin
i

px̄kq with (52).
(53)

Therefore, s̄k,1 is not on the boundary of Rδkpx̄kq if k is large enough. We conclude that there exists
N P N8 such that for all k P N , s̄k,1 is not on the boundary of ∆̄kBXRδkpx̄kq.

Theorem 3. Let Model Assumption 5.1, Parameter Assumption 5.1 and Parameter Assumption 5.2
be satisfied, and for all j, pf ` hqpxk,jq ě pf ` hqlow,k. We define

wk :“ ´ν̄´1
k s̄k,1 ` µkX̄

´1
k e´ z̄k. (54)

Then, there exists a subsequence N P N8 such that for all k P N ,

wk P ∇fpx̄kq ´ z̄k ` Bψps̄k,1; x̄kq, (55)

and
}wk} ď

?
2ϵd,k ` κ´1

mdb,kϵp,k Ñ 0. (56)
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Proof. Lemma 7 indicates that there is a subsequence N P N8 such that, for k P N , s̄k,1 is not on the

boundary of ∆̄kBXR
n
δk

px̄kq. Thus, Lemma 5 holds, and

´ν̄´1
k s̄k,1 ` µkX̄

´1
k e´ z̄k P ∇fpx̄kq ´ z̄k ` Bψps̄k,1; x̄kq. (57)

With wk defined in (54), we have (55). Now, for all i P t1, . . . , nu, we use Proposition 6 to establish

that

pµkX̄
´1
k e´ z̄kqi “ pµk ´ px̄kqipz̄kqiq{px̄kqi ď pµk ´ px̄kqipz̄kqiq{κmdb,k,

and, by summing the square of the above inequality for all i P t1, . . . , nu,

}µkX̄
´1
k e´ z̄k}

2
“

n
ÿ

i“1

pµkX̄
´1
k e´ z̄kq

2
i

ď

n
ÿ

i“1

pµk ´ px̄kqipz̄kqiq
2
{κ2mdb,k

“ }µke´ X̄kz̄k}
2
{κ2mdb,k

ď κ´2
mdb,kϵ

2
p,k because (34) holds,

(58)

so that }µkX̄
´1
k e´ z̄k} ď κ´1

mdb,kϵp,k. As ϵp,k Ñ 0 and Parameter Assumption 5.2 holds, we deduce that

}µkX̄
´1
k e´ z̄k} Ñ 0.

Finally,

}wk} “ } ´ ν̄´1
k s̄k,1 ` µkX̄

´1
k e´ z̄k}

ď ν̄´1
k }s̄k,1} ` }µkX̄

´1
k e´ z̄k}

ď
?
2ϵd,k ` κ´1

mdb,kϵp,k ÝÑ
kÑ`8

0,

where we used Lemma 6 and (58) in the last inequality.

Now, we present two assumptions on ψ. The first will not be necessary for the remaining results of

this subsection, except as one of the justifications for the second assumption. However, it will be used

in Section 5.4.

Model Assumption 5.3. x ÞÑ ψp¨;xq is epi-continuous on Rn`.

Model Assumption 5.3 holds if ψ is continuous on Rn` ˆR
n
`, but this condition is only sufficient,

not necessary [22, Exercise 7.40]. Let us consider the case where ψp¨;xq “ s ÞÑ hpx ` sq. Because h

is lsc, its epigraph is closed, thus the sequence of functions th, h, . . .u satisfies th, h, . . .u
e

ÝÑ h. Let
x̄ P R

n
` and txku Ñ x̄. [22, Exercise 7.8d] indicates that for hk “ s ÞÑ hpxk ` sq and h̄ “ s ÞÑ hpx̄` sq,

hk
e

ÝÑ h̄. Since the latter is true for all x̄ P R
n
`, we conclude that Model Assumption 5.3 is satisfied.

Model Assumption 5.4. For any sequences tsku Ñ 0 and txku Ñ x̄ ě 0 such that xk ` sk ą 0 for all
k P N,

lim sup
kÑ8

Bψpsk;xkq Ă Bψp0; x̄q “ Bhpx̄q. (59)

We present some cases for which Model Assumption 5.4 holds.

• When g-limkÑ8 Bψp¨;xkq “ Bψp¨; x̄q. Attouch’s theorem [3] (also written in [22, Theorem 12.35])

indicates that this condition is satisfied when ψp¨;xkq and ψp¨; x̄q are proper, lsc, convex functions

with ψp¨;xkq
e

ÝÑ ψp¨; x̄q (i.e., Model Assumption 5.3 holds). An extension to non-convex functions

under some more sophisticated assumptions is established by Poliquin [21].
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• When ψps;xq “ hpx` sq and hpxk ` skq Ñ hpx̄q (e.g., h “ } ¨ }1), using Proposition 1 applied to

txk ` sku Ñ x̄.

• When ψps;xq “ hpx ` sq but h is not continuous, we may still be able to show that Model

Assumption 5.4 holds. For example, with h “ } ¨ }0, [16, Theorem 1] shows that Bhpxq “ tv | vi “

0 if xi ‰ 0u. Thus, Bψpsk;xkq “ Bp} ¨ }0qpxk ` skq “ t0u Ă Bhpx̄q.

Corollary 2. Under the assumptions of Theorem 3 and Model Assumption 5.4, let x̄ and z̄ be limit
points of tx̄ku and tz̄ku, respectively. Then,

0 P ∇fpx̄q ´ z̄ ` Bhpx̄q and X̄Z̄e “ 0. (60)

In this case, when the CQ is satisfied at x̄, x̄ is first-order stationary for (1).

Proof. In Theorem 3, N can be chosen such that x̄k ÝÑ
kPN

x̄ and z̄k ÝÑ
kPN

z̄. We apply Model Assump-

tion 5.4 to (55) and (56) to deduce

´∇fpx̄q ` z̄ P Bψp0; x̄q “ Bhpx̄q, (61)

which indicates that 0 P PL
p∆̄; x̄, z̄, ν̄q. The condition (34) implies that X̄Z̄e “ 0. When the CQ is

satisfied, we can use Lemma 1 to conlude that x̄ is first-order stationary for (1).

In Theorem 3, wk evokes of the concept of pϵp, ϵdq-KKT optimality for interior-point methods

introduced in [11, Definition 2.1]. We slightly modify this concept in the following definition.

Let ϵp, ϵd ě 0, x ě 0, and ∆, ν ą 0. x is said to be pϵp, ϵdq-KKT optimal if there exist z ě 0 and

v P Bhpxq such that

}∇fpxq ´ z ` v} ď ϵd, (62)

and, for all i P t1, . . . , nu,

xizi ď ϵp. (63)

The main modification to the original formulation in [11, Definition 2.1] is that we require xizi ď ϵp
instead of minpxi, ziq ď ϵp for all i, but this is linked to our different choices of stopping condition for

the complementary slackness. The first part of the definition (62) is similar to the ϵ-stationarity [10,

Definition 4.5] for more general problems.

Model Assumption 5.1 does not necessarily guarantee that Bψpsk,j,1;xk,jq “ Bhpxk,j ` sk,j,1q. Thus,

for k P N where N is a subsequence introduced in Theorem 3, we cannot use Theorem 3 to measure

the pϵp, ϵdq-KKT optimality of x̄k. Let

ϵh,k “ distpwk ´ ∇fpx̄kq ` z̄k, Bhpx̄k ` s̄k,1qq. (64)

As Theorem 3 indicates that wk ´ fpx̄kq ` z̄k P Bψps̄k,1; x̄kq, we can obtain a measure of pϵp, ϵdq-KKT

optimality which depends on ϵh,k. When all the elements of Bψps̄k,1; x̄kq are close to an element of

Bhpx̄k`s̄k,1q, we expect ϵh,k to be small. In particular, if Bψps̄k,1; x̄kq Ď Bhpx̄k`s̄k,1q, ϵh,k “ 0.

Theorem 4. Let the assumptions of Theorem 3 be satisfied, and ϵh,k be defined in (64). Then,
there exists N P N8 such that for all k P N , x̄k ` s̄k,1 is pϵ̄p,k, ϵ̄d,kq-KKT optimal with constants

ϵ̄p,k “ ϵp,k `
?
nµk `

?
2ν̄kϵd,k}z̄k}

ϵ̄d,k “ ϵh,k `
?
2ϵd,kp1 ` ν̄kLf q ` κ´1

mdb,kϵp,k.

Proof. Theorem 3 guarantees that, for all k in a subsequence N P N8, (55) holds, i.e.

wk ´ ∇fpx̄kq ` z̄k P Bψps̄k,1; x̄kq,
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where wk is defined in (54). As Bhpx̄k ` s̄k,1q is closed, we can choose vk P Bhpx̄k ` s̄k,1q such that, for

yk :“ vk ´ wk ` ∇fpx̄kq ´ z̄k, we have }yk} “ ϵh,k. Then,

pvk ´ wk ` ∇fpx̄kq ´ z̄kq ` wk P ∇fpx̄kq ´ z̄k ` Bhpx̄k ` s̄k,1q,

which we may rewrite as

yk ` wk ` ∇fpx̄k ` s̄k,1q ´ ∇fpx̄kq P ∇fpx̄k ` s̄k,1q ´ z̄k ` Bhpx̄k ` s̄k,1q,

and

}yk ` wk ` ∇fpx̄k ` s̄k,1q ´ ∇fpx̄kq} ď ϵh,k ` }wk} ` Lf }s̄k,1}.

Lemma 6 implies that Lf }s̄k,1} ď
?
2Lf ν̄kϵd,k. We combine the latter inequality with (56) in Theorem 3

to obtain

}yk ` wk ` ∇fpx̄k ` s̄k,1q ´ ∇fpx̄kq} ď ϵh,k `
?
2ϵd,kp1 ` ν̄kLf q ` κ´1

mdb,kϵp,k. (65)

Now, for all i P t1, . . . , nu,

px̄k ` s̄k,1qipz̄kqi ď }pX̄k ` S̄k,1qz̄k}

ď }X̄kz̄k ´ µke} ` }µke} ` }S̄k,1z̄k}

ď ϵp,k `
?
nµk ` }s̄k,1}}z̄k}

ď ϵp,k `
?
nµk `

?
2ν̄kϵd,k}z̄k}.

(66)

We use (65), (66) and Section 5.3 to conclude.

If z̄k is bounded, ϵ̄p,k ÝÑ
N

0 in Theorem 4. If ϵh,k Ñ 0, we also have ϵ̄d,k ÝÑ
N

0.

5.4 Convergence with a new criticality measure

Now, instead of using ν
´1{2
k,j ξcpp∆k,j ;xk,j , νk,jq

1{2 (involving φcpp¨;xk,jq) for the criticality measure

of Algorithm 2, we would like to use a measure based upon φL
p¨;xk,j , zk,jq defined in (10a). The

reason behind this choice is inspired from the criticality measure }∇fpxk,jq ´ zk,j} used in primal-dual

trust region algorithms in the smooth case, instead of }∇fpxk,jq ´ µkX
´1
k,je} used in primal algorithms,

see for example [9, Algorithm 13.6.2]. We may expect that this choice results in fewer iterations of
Algorithm 2 when xk,j and zk,j are close to a solution of (1), because (we express this idea with

smooth notations for now), if jk is the index for which the stopping criteria of Algorithm 2 are met,

}∇fpx̄kq ´ z̄k} “ }∇fpxk`1,0q ´ zk`1,0}, whereas }∇fpx̄kq ´ µkX̄
´1
k e} ‰ }∇fpxk`1,0q ´ µk`1X

´1
k`1,0e}.

However, to change the stopping criterion, we need the following convexity assumption.

Model Assumption 5.5. For a sequence txk,juj generated by Algorithm 2 at iteration k, ψp¨;xk,jq is

convex for all j.

If ψps;xq “ hpx` sq and h is convex, Model Assumption 5.5 holds.

In this section, we define

sLk,j P argmin
s

mL
ps;xk,j , zk,j , νk,jq ` χps | ∆k,jBXR

n
δk

pxk,jqq, (67)

where mL
ps;xk,j , zk,jνk,jq is defined in (11), and

ξLδkp∆k,j ;xk,j , zk,j , νk,jq “ pf ` ϕk ` hqpxk,jq ´ pφL
psLk,j ;xk,j , zk,jq ´ ψpsLk,j ;xk,jqq, (68)

where φL
p¨;xk,j , zk,jq is defined in (10a). We point out that ξLδk and ξL defined in (13) are almost

identical, the latter being computed by replacing χps | ∆k,jBXR
n
δk

pxk,jqq by χps | ∆k,jBq `χpxk,j `s |
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R
n
`q in (67). Model Assumption 5.5 will be useful in Theorem 5, which is crucial for our analysis of

Algorithm 3 because it establishes the convergence of the inner iterations with ξLδk .

Algorithm 3 resembles Algorithm 1, except for the stopping criterion (33). Our ultimate goal in

this subsection is to show that replacing (33) in Algorithm 1 by (69) in Algorithm 3 maintains similar

convergence properties to those of Section 5.3, but, as illustrated in Section 6, performs better in

practice.

Algorithm 3 Nonsmooth interior-point method (outer iteration) with stopping criteria based upon ξ
L
δk

in (68).

1: Choose ϵ ą 0, sequences tµku Œ 0, tϵd,ku Œ 0, tϵp,ku Œ 0, and tδku Ñ δ̄ P r0, 1q with δk P p0, 1q for all k.

2: Choose x0,0 P R
n
`` where h is finite.

3: for k “ 0, 1, . . . do
4: Compute an approximate solution xk :“ xk,j to (22) and zk :“ zk,j in the sense that

ν
´1{2
k,j ξ

L
δk

p∆k,j ;xk,j , νk,jq
1{2

ď ϵd,k, (69)

and (34) holds, that we recall in the following inequality for conveniency

}µke ´ Xk,jzk,j} ď ϵp,k.

5: Set xk`1,0 :“ xk.
6: end for

The following result shows that the inner iteration terminates finitely.

Theorem 5. Under the assumptions of Proposition 11, Model Assumption 5.3 and Model Assump-
tion 5.5, if txk,juj possesses a limit point x˚

k , then

lim inf
jÑ`8

ξLδkp∆k,j ;xk,j , zk,j , νk,jq “ 0, (70)

and
lim inf
jÑ`8

}sLk,j} “ 0, (71)

where sLk,j is defined in (67).

Proof. As ∆k,j P r∆min,k,∆maxs and νk,j P rνmin,k, 1s, there exists an infinite subsequence N such

that ∆k,j ÝÑ
jPN

∆˚
k , νk,j ÝÑ

jPN
ν˚
k , xk,j ÝÑ

jPN
x˚
k , and with Proposition 11 zk,j ÝÑ

jPN
z˚
k with X˚

kZ
˚
k e “ µke.

By continuity of the min, Rnδkpxk,jq ÝÑ
jPN

R
n
δk

px˚
kq. The sets ∆k,jB and Rnδkpxk,jq are convex (using

Lemma 3 for the latter). Since ∆˚
kB and Rnδkpx˚

kq are convex and cannot be separated, we use [22,

Theorem 4.33] to conclude that

∆k,jBXR
n
δk

pxk,jq ÝÑ
jPN

∆˚
kBXR

n
δk

px˚
kq.

With [22, Theorem 7.4f ], we deduce

e-lim
jPN

χp¨ | ∆k,jBXR
n
δk

pxk,jqq “ χp¨ | ∆˚
kBXR

n
δk

px˚
kqq.

Thanks to Proposition 11 and the smoothness of φcpp¨;xq and φL
p¨;x, zq, we also have

e-lim
jPN

φcpp¨;xk,jq “ e-lim
jPN

φL
p¨;xk,j , zk,jq “ φL

p¨;x˚
k , z

˚
k q. (72)

The functions φcpp¨;xk,jq, φ
L

p¨;xk,j , zk,jq and φL
p¨;x˚

k , z
˚
k q are all convex because they are linear.

Model Assumption 5.3 implies that e-limjPN ψp¨;xk,jq “ ψp¨;x˚
kq. Model Assumption 5.5 and [22,

Theorem 7.46] lead to

e-lim
jPN

ψp¨;xk,jq ` χp¨ | ∆k,jBXR
n
δk

pxk,jqq “ ψp¨;x˚
kq ` χp¨ | ∆˚

kBXR
n
δk

px˚
kqq, (73)
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and the above functions are all convex. We deduce from (72), (73) and [22, Theorem 7.46] that

e-lim
jPN

mcpp¨;xk,j , νk,jq “ e-lim
jPN

mL
p¨;xk,j , zk,j , νk,jq “ mL

p¨;x˚
k , z

˚
k , ν

˚
k q,

wheremL is defined in (11). The sequencesmcpp¨;xk,j , νk,jq`χp¨ | ∆k,jBXR
n
δk

pxk,jqq andmL
p¨;x˚

k , z
˚
k , ν

˚
k q

`χp¨ | ∆k,jBXR
n
δk

pxk,jqq are level-bounded because of the indicators. As in (31), we have

prox
ν

˚
k ψp¨;x

˚
k q`χp¨|∆

˚
kBXR

n
δk

px
˚
k qq

p´ν˚
k∇φcpp0;x˚

k , ν
˚
k qq “

argmin
s
mL

ps;x˚
k , z

˚
k , ν

˚
k q ` χps | ∆˚

kBXR
n
δk

px˚
kqq,

and the above problem is single valued because of [22, Theorem 2.26a]. Let s˚ denote its only solution.

Theorem 1, and specifically (5), implies that the sequences

sk,j,1 P argmin
s
mcpps;xk,j , νk,jq ` χps | ∆k,jBXR

n
δk

pxk,jqq,

and

sLk,j P argmin
s
mL

ps;xk,j , zk,j , νk,jq ` χps | ∆k,jBXR
n
δk

pxk,jqq

have the same limit s˚. We have shown in Lemma 4 that sk,j,1 ÝÑ
jÑ`8

0. Thus, s˚
“ 0. Finally, we have

ξcpp∆k,j ;xk,j , νk,jq “ pf ` h` ϕkqpxk,jq ´mcppsk,j,1;xk,j , νk,jq ` 1
2ν

´1
k,j}sk,j,1}

2.

As ξcpp∆k,j ;xk,j , νk,jq ÝÑ
jÑ`8

0 by Proposition 10, and }sk,j,1} ÝÑ
jÑ`8

0, we deduce that

mcppsk,j,1;xk,j , νk,jq ÝÑ
jPN

pf ` h` ϕkqpx˚
kq.

Using (4) in Theorem 1, we have

lim
jPN

mcppsk,j,1;xk,j , νk,jq “ lim
jPN

mL
psLk,j ;xk,j , zk,j , νk,jq “ pf ` h` ϕkqpx˚

kq. (74)

The expression of ξLδk in (68) can also be written as

ξLδkp∆k,j ;xk,j , zk,j , νk,jq “ pf ` h` ϕkqpxk,jq ´mL
psLk,j ;xk,j , zk,j , νk,jq ` 1

2ν
´1
k,j}sLk,j}

2.

By injecting the limit of sLk,j and (74) in the above equation, we obtain (70).

From this point on, jk denotes the number of iterations performed by Algorithm 2 at iteration k

with the inner stopping criteria from Algorithm 3, and we use again the notation x̄k “ xk,jk , z̄k “ zk,jk ,

s̄k,1 “ sk,jk,1, ∆̄k “ ∆k,jk
, ν̄k “ νk,jk , with the addition of s̄Lk :“ sLk,jk . The following three lemmas are

analogous to Lemma 5, Lemma 6 and Lemma 7.

Lemma 8. Assume that sLk,j is not on the boundary of ∆k,jB X R
n
δk

pxk,jq and that Model
Assumption 5.1 holds. Then,

´ν´1
k,js

L
k,j P ∇fpxk,jq ´ zk,j ` BψpsLk,j ;xk,jq. (75)

Proof. The first-order stationarity condition of (67) is

´ν´1
k,js

L
k,j P ∇fpxk,jq ´ zk,j ` BψpsLk,j ; x̄kq ` BχpsLk,j | ∆k,jBXR

n
δk

pxk,jqq.

The same analysis as in the proof of Lemma 5 establishes that

BχpsLk,j | ∆k,jBXR
n
δk

pxk,jqq “ t0u,

so that (75) holds.
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Lemma 9. Let Parameter Assumption 5.1 be satisfied. Then, for all k P N,

}s̄Lk } ď
?
2ν̄kϵd,k.

Proof. The bound

ξLδkp∆k,j ;xk,j , zk,j , νk,jq ě 1
2ν

´1
k,j}sLk,j}

2 (76)

holds because

mL
p0;xk,j , zk,j , νk,jq “ pf ` ϕk ` hqpxk,jq

ě mL
psLk,j ;xk,j , zk,j , νk,jq

“ pf ` ϕk ` hqpxk,jq ` p∇fpxk,jq ` zk,jq
T sLk,j ` 1

2ν
´1
k,j}sLk,j}

2.

The stopping criterion (69) and (76) lead to

1?
2
ν̄´1
k }s̄Lk } ď ν̄

´1{2
k ξLδkp∆̄k; x̄k, z̄k, ν̄kq

1{2
ď ϵd,k,

which completes the proof.

Lemma 10. Let Model Assumption 5.1, Parameter Assumption 5.1 and Parameter Assumption 5.2
be satisfied, and for all j, pf ` hqpxk,jq ě pf ` hqlow,k. Then, there exists N P N8 such that for

all k P N , s̄Lk is not on the boundary of ∆̄kBXR
n
δk

px̄kq.

Proof. Since for any s P R
n, }s}8 ď }s}, Lemma 9 leads to }s̄Lk }8 ď }s̄Lk } ď

?
2ν̄kϵd,k. Thus, if

?
2ϵd,kν̄k ă ∆min,k, s̄

L
k is not on the boundary of ∆̄kB. As ∆̄ ą 0 in Parameter Assumption 5.1 and

ϵd,k Ñ 0, this is true if k is sufficiently large. The rest of the proof is identical to that of Lemma 7.

Now, we can establish results similar to Theorem 3, Corollary 2, and Theorem 4 for Algorithm 3.

Theorem 6. Let Model Assumption 5.1, Parameter Assumption 5.1 and Parameter Assumption 5.2
be satisfied, and for all j, pf ` hqpxk,jq ě pf ` hqlow,k. Then, there exists a subsequence N P N8

such that for all k P N ,
´ν̄´1

k s̄Lk P ∇fpx̄kq ´ z̄k ` Bψps̄Lk ; x̄kq, (77)

with
ν´1
k,j}s̄Lk } ď

?
2ϵd,k Ñ 0. (78)

Proof. Lemma 8 and Lemma 10 lead to (77). Lemma 9 shows that ν´1
k,j}sLk,j} ď

?
2ϵd,k, and, as

ϵd,k Ñ 0, (78) is satisfied.

Corollary 3. Under the assumptions of Theorem 6 and Model Assumption 5.4, let x̄ and z̄ be limit
points of tx̄ku and tz̄ku, respectively. Then,

0 P ∇fpx̄q ´ z̄ ` Bhpx̄q and X̄Z̄e “ 0. (79)

In this case, when the CQ is satisfied, x̄ is first-order stationary for (1).

Proof. In Theorem 6, N can be chosen such that x̄k ÝÑ
kPN

x̄ and z̄k ÝÑ
kPN

z̄. We apply Model Assump-

tion 5.4 to (77) and (78) to obtain

´∇fpx̄q ` z̄ P Bψp0; x̄q “ Bhpx̄q,

and we conclude as in the proof of Corollary 2.
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Finally, we show a result similar to Theorem 4 for the pϵp, ϵdq-KKT optimality. We use again a

subsequence N as in theorem 6, vk P Bhpx̄k ` s̄Lk q, and we define

ϵLh,k “ distp´ν̄´1
k s̄Lk ´ ∇fpx̄kq ` z̄k, Bhpx̄k ` s̄k,1qq. (80)

Theorem 7. Let the assumptions of Theorem 6 be satisfied, and ϵLh,k be defined in (80). Then,

there exists a subsequence N P N8 such that for all k P N , x̄k ` s̄Lk is pϵ̄Lp,k, ϵ̄
L
d,kq-KKT optimal

with constants

ϵ̄Lp,k “ ϵp,k `
?
nµk `

?
2ν̄kϵd,k}z̄k}

ϵ̄Ld,k “ ϵLh,k `
?
2ϵd,kp1 ` Lf ν̄kq.

Proof. Theorem 6 guarantees that there exists an infinite subsequence N such that for all k P N ,

´ν̄´1
k s̄Lk ´ ∇fpx̄kq ` z̄k P Bψps̄Lk ; x̄kq,

Since Bhpx̄k ` s̄Lk q is closed and nonempty, we can choose vk P Bhpx̄k ` s̄Lk q such that, for yLk :“

´ν̄´1
k s̄Lk ´ ∇fpx̄kq ` z̄k, we have }yLk } “ ϵLh,k. Now,

pvk ´ p´ν̄´1
k s̄Lk ´ ∇fpx̄kq ` z̄kqq ´ ν̄´1

k s̄Lk P ∇fpx̄kq ´ z̄k ` Bhpx̄k ` s̄Lk q,

which can also be written as

yLk ´ ν̄´1
k s̄Lk ` ∇fpx̄k ` s̄Lk q ´ ∇fpx̄kq P ∇fpx̄k ` s̄Lk q ´ z̄k ` Bhpx̄k ` s̄Lk q.

The triangle inequality combined and the Lipschitz constant Lf of ∇f leads to

}yLk ´ ν̄´1
k s̄Lk ` ∇fpx̄k ` s̄Lk q ´ ∇fpx̄kq} ď ϵLh,k ` ν̄´1

k }s̄Lk } ` Lf }s̄Lk }.

Lemma 9 then implies that

}yLk ´ ν̄´1
k s̄Lk ` ∇fpx̄k ` s̄Lk q ´ ∇fpx̄kq} ď ϵLh,k `

?
2ϵd,kp1 ` Lf ν̄kq.

Finally, the inequalities of (66) still hold when replacing s̄k,1 by s̄Lk : for all i P t1, . . . , nu, px̄kqipz̄kqi ď

ϵp,k `
?
nµk `

?
2ν̄kϵd,k}z̄k}.

When x̄k ÝÑ
kPN

x̄ P R
n
` and z̄k ÝÑ

kPN
z̄ P R

n
`, tz̄kuN is bounded, thus ϵ̄Lp,k ÝÑ

N
0 in Theorem 7. If

ϵLh,k Ñ 0, we also have ϵ̄Ld,k ÝÑ
N

0.

6 Implementation and numerical experiments

All solvers tested are available from RegularizedOptimization.jl. We define

ϵd,k :“ ϵk ` ϵr,iν
´1{2
k,0 ξLδkp∆k,0;xk,0, zk,0, νk,0q

1{2 and ϵp,k :“ ϵk,

where ϵr,i ě 0 is a predefined relative tolerance for the inner iterations. Algorithm 2 terminates when

ν
´1{2
k,j ξLδkp∆k,j ;xk,j , zk,j , νk,jkq

1{2
ă ϵd,k

}Xk,jzk,j ´ µke} ă ϵp,k.

We use the constant κbar “ 106 for Θk,j in (48) and ϵr,i “ 10´1. We set ϵ0 “ µ0 “ 1, µk`1 “ µk{10,

ϵk “ µ1.01
k , and ∆k,0 “ 1000µk, similarly as Conn et al. [8] did in the smooth case for their interior-point

https://github.com/JuliaSmoothOptimizers/RegularizedOptimization.jl


Les Cahiers du GERAD G–2024–17 25

trust-region algorithm. In addition, we go to iteration k ` 1 and set xk`1,0 “ xk,j if Algorithm 2

performs more than j “ 200 iterations. Any iteration k where xk,0 is not first-order stationary for (1)

has ϵd,k ą ϵp,k “ ϵk, thus the remarks below Parameter Assumption 5.2 are not sufficient to prove that

this assumption is always satisfied, however, we observe satisfying performance with these parameters.

Although it is possible to use ϵd,k “ ϵk, it would require more inner iterations.

To declare convergence of Algorithm 3, we use the following criteria

µk ă ϵ (81a)

}X̄kz̄k ´ µke} ă ϵ (81b)

ν̄
´1{2
k ξLδkp∆̄k; x̄k, z̄k, ν̄kq

1{2
ă ϵ, (81c)

where ϵ “ ϵa ` ϵrν
´1{2
1,1 ξLδ1p∆1,1;x1,1, ν1,1q

1{2, for some ϵa ě 0. In our experiments, we chose ϵa “

ϵr “ 10´4. We could not base our criteria upon ξL in (13) because we do not know the ν associated

to this measure (which is different from the νk,j generated by Algorithm 2 associated to the barrier

subproblem).

Once Algorithm 3 terminates, we use a crossover technique to set xi “ 0 or/and zi “ 0, to respect

the complementarity condition. To do so, we check the final value of xi (resp. zi), and if it is smaller

than
?
µ we set it to zero. If both xi and zi are smaller than µ1{4, we set them to zero.

The subproblems in Algorithm 3 are solved with the algorithm R2 [2], and we compare Algorithm 1

to TR [2] with R2 used as a subsolver, and R2 used by itself. Algorithm 3 will be denoted RIPM. Finally,

we introduce a variant of RIPM named RIPMDH (Regularized Interior Proximal Method with Diagonal

Hessian approximations), that uses the same idea as our algorithm TRDH [17]: instead of using LBFGS
or LSR1 quasi-Newton approximations for Bk,j , we use diagonal quasi-Newton approximations so

that (25) with φ defined in (48) can be solved analytically for specific seperable regularizers h. TRDH

and RIPMDH use the Spectral Gradient update in all our results. We choose either hpxq “ λ}x}0 or

hpxq “ λ}x}1, where λ ą 0. When hpxq “ λ}x}0, RIPM and RIPMDH denote Algorithm 1 instead of

Algorithm 3 because h is not convex.

For simplicity, we described how to solve (1) with the constraint x ě 0, but RIPM and RIPMDH

are actually able to handle box constraints ℓ ď x ď u. These more general constraints can be handled

with minor modifications using the barrier function

ϕ̃kpxq :“ ´µk

n
ÿ

i“1

logpxi ´ ℓiq ´ µk

n
ÿ

i“1

logpui ´ xiq (82)

instead of ϕk [9, Section 13.8]. When ℓi “ ´8 (resp. ui “ `8) for some i P t1, . . . , nu, we remove the

term logpxi ´ ℓiq (resp. logpui ´ xiq) from the first (resp. second) sum in (82).

Our results report

• the final fpxq;

• the final hpxq{λ, where λ is a parameter relative to our regularization function h;

• the final stationarity measure
a

ξ{ν;

• }x´ x˚
}, where x˚ is the exact solution, if it is available;

• the number of smooth objective evaluations #f ;

• the number of gradient evaluation #∇f ;
• the number of proximal operator evaluations #prox;

• the elapsed time t in seconds.

Our main goal is to reduce the number of objective and gradient evaluation, as they are typically

costly to evaluate. Since we did not fully optimize the allocations in our algorithms, we do not pay

attention to the elapsed time, and we only report it in the tables for information.



Les Cahiers du GERAD G–2024–17 26

Once a problem has been solved by all solvers, we compare their final objective values and we

save the smallest, that we denote pf ` hq
˚. Then, for all solvers, we plot pf ` hqpxkq ´ pf ` hq

˚ for

every iteration k where the gradient ∇f is evaluated. This allows us to represent the evolution of the

objective per gradient evaluation. For the last gradient evaluation of RIPM and RIPMDH, we display

their final objective value after applying the crossover technique.

6.1 Box-constrained quadratic problem

For our first numerical experiment, we solve

minimize
x

cTx` 1
2x

THx` hpxq subject to ℓ ď x ď u, (83)

which is similar to [23, Section 7.1], where h “ λ} ¨ }1, H “ A`AT , A P R
nˆn has nonzero components

with probability p “ 10´4 following a normal law of mean 0 and standard deviation 1, c P R
n has

components generated using a normal distribution of mean 0 and standard deviation 1, ℓ “ ´e ´ tℓ
and u “ e` tu, with tℓ P R

n, tu P R
n are vectors sampled from a uniform distribution between 0 and

1. We chose n “ 105, and use a LSR1 quasi-Newton approximation for TR and RIPM. For λ ě 1.0, the
components xi of the solutions returned by TR, TRDH, R2, RIPM and RIPMDH satisfy xi P tℓi, ui, 0u

for almost all i P t1, . . . , nu. In this case, we observe that TR, TRDH and R2 are more efficient than

RIPM. However, as we decrease λ, we get more components xi R tℓi, ui, 0u. We show results with

λ “ 10´1 in Figure 1 and Table 1. TRDH performs the least amount of objective, gradient and proximal

operators evaluations. RIPMDH finds the smallest final objective value, and performs fewer objective,

gradient and proximal operator evaluations than TR-R2. RIPM terminates with a criticality measure

higher than the other solvers, but we observe that its final objective is smaller than those of TR,

TRDH and R2. For RIPM and RIPMDH, we can clearly see plateaus that delimit the outer iterations.

RIPM-R2 performs many more proximal operator evaluations than RIPMDH, because it uses up to

200 R2 iterations to solve (25). The number of proximal operator evaluations with RIPM-R2 is also

much higher than that of TR-R2, because the subproblems solved with R2 in RIPM-R2 have their

objective based upon (48), which is not well conditioned when some components of xk,j approach 0,

whereas the subproblems in TR-R2 are based upon (26).

Table 1: Statistics of (83). TR and RIPM use an LSR1 Hessian approximation. The maximum number of objective
evaluations is set to 800.

solver fpxq hpxq{λ
a

ξ{ν #f #∇f #prox t (s)

R2 ´2.29e`04 1.5e`04 8.5e´03 679 520 679 6.8e´01
TRDH ´2.28e`04 1.5e`04 5.9e´05 57 47 113 3.6e´01
TR-R2 ´2.28e`04 1.5e`04 9.9e´03 801 596 12639 8.5e`00

RIPM-R2 ´2.30e`04 1.4e`04 3.4e`00 801 628 101019 5.0e`01
RIPMDH ´2.32e`04 1.5e`04 8.7e´03 313 241 628 2.7e`00

6.2 Sparse nonnegative matrix factorization (NNMF)

The second experiment considered is the sparse nonnegative matrix factorization (NNMF) problem

from Kim and Park [15]. Let A P R
mˆn have nonnegative entries. Each column of A represents an

observation, and is generated using a mixture of Gaussians where negative entries are set to zero. We

factorize A « WH by separating A into k ă minpm,nq clusters, where W P R
mˆk, H P R

kˆn both

have nonnegative entries and H is sparse. This problem can be written as

minimize
W,H

1
2}A´WH}

2
F ` hpHq subject to W,H ě 0, (84)

where hpHq “ λ}vecpHq}1 and vecpHq stacks the columns of H to form a vector.

We set m “ 100, n “ 50, k “ 5, λ “ 10´1, and report the statistics in Table 2. For this particular

problem, we use ϵr “ 10´6, which allows for more accurate solves and for a better visualization of the
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Figure 1: Plots of the objective of (83) per gradient evaluation with different solvers.

evolution of the objective values, shown in Figure 2. We observe that RIPM-R2 and RIPMDH are

the only solvers to terminate. They outperform R2 and TR-R2 in terms of number of objective and

gradient evaluations, and their final objective value is also smaller. R2 and TR-R2 reach the maximum

number of iterations. The objective of RIPM-R2 and RIPMDH is higher than that of R2 and TR-R2

only in the early iterations, because the barrier function has more effect when µk is larger. RIPM-R2

performs less objective and gradient evaluations than RIPMDH, but much more proximal operator

evaluations because of the reasons evoked in Section 6.1.

Table 2: Statistics of (84). TR and RIPM use an LSR1 Hessian approximation. The maximum number of objective
evaluations is set to 8000.

solver fpxq hpxq{λ
a

ξ{ν #f #∇f #prox t (s)

TRDH 1.25e`02 3.1e`01 1.6e´01 8001 6156 16000 2.0e`00
TR-R2 1.25e`02 2.8e`01 1.2e´01 8001 5122 150563 6.4e`00

RIPM-R2 1.25e`02 1.9e`01 2.5e´02 4501 3210 470975 1.1e`01
RIPMDH 1.25e`02 2.0e`01 1.4e´02 4602 3759 9205 1.3e`00

6.3 FitzHugh-Nagumo problem (FH)

We sample the functions V pt;xq and W pt;xq satisfying the FitzHugh [13] and Nagumo et al. [20] model

for neuron activation, where x P R
5, as vpxq “ pv1pxq, . . . , vn`1pxqq and wpxq “ pw1pxq, . . . , wn`1pxqq.

dV

dt
“ pV ´ V 3

{3 ´W ` x1qx´1
2 ,

dW

dt
“ x2px3V ´ x4W ` x5q. (85)
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Figure 2: Plots of the objective of (84) per gradient evaluation with different solvers.

The time interval t P r0, 20s is discretized, with the initial conditions pV p0q,W p0qq “ p2, 0q. We solve

minimize
x

1
2}pvpxq ´ v̄px̄q, wpxq ´ w̄px̄qq}

2
2 ` hpxq, subject to x2 ě 0.5, (86)

where hpxq “ λ}x}0 with λ “ 10, n “ 100, and report the statistics in Table 3. Since h is not convex,

we use Algorithm 1 instead of Algorithm 3. We do not show results with R2 because it encounters a

numerical error during the solve of a differential equation to compute the objective. The evolution

of the objective per gradient evaluation is shown in Figure 3. To improve readability, we choose to

show the number of gradient evaluations on a logarithmic scale, and not to plot results with TRDH.

All solvers converge to the value p0.00, 0.50, 0.54, 0.00, 0.00q except for TRDH that has a higher final

objective value than the other solvers. TR-R2 is the fastest, and seems the most suited to solve smaller

problems such as (86). RIPM and RIPMDH still converge, but the latter is much slower. However,

RIPMDH performs the least amount of proximal operator evaluations.

Table 3: Statistics of (86). TR and RIPM use an LBFGS Hessian approximation.

solver fpxq hpxq{λ
a

ξ{ν #f #∇f #prox t (s)

TRDH 6.05e`00 3 2.9e`01 1001 697 2000 4.5e`00
TR-R2 4.40e`00 2 4.8e´03 53 45 4627 3.3e´01

RIPM-R2 4.40e`00 2 1.3e´02 261 112 10139 1.0e`00
RIPMDH 4.40e`00 2 1.5e´02 798 523 1600 3.8e`00
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Figure 3: Plots of the objective of (86) per gradient evaluation with different solvers.

6.4 Constrained basis pursuit denoise (BPDN)

We solve the basis pursuit denoise problem (BPDN) [12, 24] with additional bound constraints. Let

m “ 200, n “ 512, b “ Ax‹ ` ϵ, where ϵ „ N p0, 0.01q, A P R
mˆn has orthonormal rows, and x‹ is a

vector of zeros, except for 5 of its components that are set to 1. The constrained BPDN problems is

written as

minimize
x

1
2}Ax´ b}22 ` hpxq subject to x ě 0, (87)

where hpxq “ λ}x}1. We use λ “ }AT b}8{10.

The statistics are shown in Table 4. R2, TRDH and TR-R2 are much more efficient than RIPM

on this problem. This could come from the fact that there are many active bounds in the solution.

However, this was also the case for the NNMF problem of Section 6.2, for which RIPM seems more

efficient. Further investigations should seek to understand such behaviours on different problems.

RIPM-R2-p and RIPMDH-p use the modifications µ0 “ 10´3 and ϵr,i “ 1.0, which make RIPMDH

on (87) surpass TR-R2 and close to TRDH. Figure 4 shows the evolution of the objective values. RIPM

and RIPMDH are not included to improve readability.
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Table 4: Statistics of (87). TR and RIPM use an LSR1 Hessian approximation.

solver fpxq hpxq{λ
a

ξ{ν }x ´ x
˚

}2 #f #∇f #prox t (s)

R2 3.91e´02 8.7e`00 1.8e´04 4.1e´01 11 11 11 4.0e´03
TRDH 3.91e´02 8.7e`00 6.8e´05 4.1e´01 9 9 17 8.0e´03
TR-R2 3.91e´02 8.7e`00 1.6e´04 4.1e´01 17 17 35 1.1e´02

RIPM-R2 4.12e´02 8.7e`00 7.1e´03 4.2e´01 915 915 12143 3.3e`00
RIPMDH 3.92e´02 8.7e`00 9.9e´04 4.1e´01 361 225 724 2.1e´01

RIPM-R2-p 4.22e´02 8.7e`00 1.0e´02 4.3e´01 56 56 8331 1.5e´01
RIPMDH-p 3.91e´02 8.7e`00 5.6e´04 4.1e´01 15 15 32 9.0e´03

7 Discussion and future work

We have presented RIPM, a trust-region interior-point method to solve nonsmooth regularized problems

with box constraints, and RIPMDH, a variant based upon techniques of Leconte and Orban [17]. These

algorithms solve a sequence of unconstrained barrier subproblems to obtain a sequence of approximate

solutions of (1). We have shown the convergence of the inner barrier subproblems, and we have

characterized the degree of pϵp, ϵdq-KKT optimality for every outer iteration past a certain rank. Under

the assumption that the iterates remain bounded, we have shown that RIPM converges to a first-order

stationary point for (1). We compared RIPM and RIPMDH to projected-direction methods with a

separable regularization function.

RIPM and RIPMDH perform well on the box-constrained quadratic problem of Section 6.1 and on
the NNMF problem of Section 6.2. They are not as efficient on the FH problem of Section 6.3 and the

constrained BPDN problem of Section 6.4, which may suggest that projected-direction methods may

be more efficient to solve problems with fewer variables and constraints. However, as observed with

RIPM-R2-p and RIPMDH-p, the modification of two parameters of RIPM and RIPMDH improves

their efficiency significantly on the constrained BPDN problem. This suggests that our implementation

could benefit from parameter tuning.

Future work may include generalizing the algorithm to constraints of the form cipxq ď 0 with

i P t1, . . . ,mu for some m ą 0, where the ci are continuously differentiable and Lipschitz-gradient

continuous, as in [9, Section 13.9] in the smooth case, or [11] for nonsmooth problems.

Another improvement would be to scale the trust region to allow greater search directions along the

boundary of the feasible domain. This is explained more in detail in [9, Section 13.7] for trust-regions
based upon the ℓ2-norm. However, we could not find an alternative for trust-regions based upon the

ℓ8-norm that led to satisfying numerical results.

In Section 5.4, Model Assumption 5.5 does not allow the use of h “ } ¨ }0 with Algorithm 3. It

would be interesting to see whether it is possible to establish convergence properties similar to those
of Algorithm 1 without this assumption. One way to do this might be to replace ξcp by ξLδk in (35b)

when j is large enough, but we did not manage to justify that this change results in a reasonable Step

Assumption 5.1.

The extension of the convergence results to locally Lipschitz-gradient continuous functions f could

also be studied, based upon the work of [10, 11, 14].

Finally, when tBk,juj grows unbounded, we may still be able to prove the convergence of RIPM

using the analysis of Leconte and Orban [18], provided that the norm of the Hessian approximations do

not grow too fast.



Les Cahiers du GERAD G–2024–17 31

40pt=40pt1

0 10 20 30 40 50 60

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

gradient evaluations

(f
+
h
)(
x
k
)
−

(f
+
h
)∗

R2

TRDH-Spec

TR-R2

RIPM-R2-p

RIPMDH-p

Figure 4: Plots of the objective of (87) per gradient evaluation with different solvers.

References
[1] A. Aravkin, R. Baraldi, G. Leconte, and D. Orban. Corrigendum: A proximal quasi-Newton trust-region

method for nonsmooth regularized optimization. Les Cahiers du GERAD G-2021-12-SM, Groupe d’études
et de recherche en analyse des décisions, GERAD, Montréal QC H3T 2A7, Canada, Aug. 2023.
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