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activité à but lucratif ou pour un gain commercial;

• Peuvent distribuer gratuitement l’URL identifiant la publica-
tion.

Si vous pensez que ce document enfreint le droit d’auteur, contactez-
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Abstract : Randomized algorithms have proven to perform well on a large class of numerical linear
algebra problems. Their theoretical analysis is critical to provide guarantees on their behaviour, and in
this sense, the stochastic analysis of the randomized low-rank approximation error plays a central role.
Indeed, several randomized methods for the approximation of dominant eigen- or singular modes can
be rewritten as low-rank approximation methods. However, despite the large variety of algorithms,
the existing theoretical frameworks for their analysis rely on a specific structure for the covariance
matrix that is not adapted to all the algorithms. We propose a general framework for the stochastic
analysis of the low-rank approximation error in Frobenius norm for centered and non-standard Gaussian
matrices. Under minimal assumptions on the covariance matrix, we derive accurate bounds both in
expectation and probability. Our bounds have clear interpretations that enable us to derive properties
and motivate practical choices for the covariance matrix resulting in efficient low-rank approximation
algorithms. The most commonly used bounds in the literature have been demonstrated as a specific
instance of the bounds proposed here, with the additional contribution of being tighter. Numerical
experiments related to data assimilation further illustrate that exploiting the problem structure to
select the covariance matrix improves the performance as suggested by our bounds.

Keywords : Low-rank approximation methods, randomized algorithms, Singular Value Decomposi-
tion, non-standard Gaussian error analysis, data assimilation

Acknowledgements: This work was funded by ISAE-SUPAERO, France.
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1 Introduction

Let A ∈ Rm×n be an arbitrary real matrix and consider the following minimization problem,

min
B∈Rm×n

∥A−B∥F subject to rank(B) = k ≤ min {m,n} , (1)

where ∥·∥F denotes the Frobenius norm. This problem, referred to as the low-rank approximation

problem, is a key ingredient in numerous applications in data analysis and scientific computing includ-

ing principal component analysis [23], data compression [19] and approximation algorithms for partial

differential and integral equations [13], to name a few. Its solution [7] is obtained from the order k

truncated singular value decomposition (SVD) of A.

Let U ∈ Rm×m and V ∈ Rn×n be the real orthogonal matrices containing the left and right singular

vectors of A respectively, and Σ = diag(σ1, . . . , σmin{m,n}) ∈ Rm×n the matrix containing the singular

values of A with the convention σ1 ≥ · · · ≥ σmin{m,n}. For a given integer k ≤ min {m,n}, we consider
the following partitioning of the SVD of A,

A =
[
Uk Uk

] [Σk

Σk

] [
Vk Vk

]⊤
, (2)

whereUk ∈ Rm×k,Uk ∈ Rm×(m−k),Vk ∈ Rn×k,Vk ∈ Rn×(n−k),Σk ∈ Rk×k andΣk ∈ R(m−k)×(n−k).

Defining Ak = UkΣkV
⊤
k and Ak = UkΣkV

⊤
k , one can rewrite A = Ak +Ak where the matrix Ak is

precisely the solution of (1). The corresponding optimal value reads ∥A−Ak∥F =
∥∥∥Σk

∥∥∥
F
.

The matrix Ak can be computed with any SVD algorithm enabling a truncation mechanism [8,

Section 9.6]. However, for large-scale problems, the classical approaches become prohibitively expensive

or are even inapplicable if A is not stored explicitly. In these situations, one is rather interested in

computing Âk, a reasonably accurate approximation of Ak, which is typically expected to be optimal

up to a small factor ε > 0, that is, Âk satisfies,∥∥∥A− Âk

∥∥∥
F
≤ (1 + ε) ∥A−Ak∥F .

Over the past decade, randomized algorithms for computing such approximations have been pro-

posed. Following [30], the authors in [14] proposed an efficient algorithm now widely known as the

Randomized SVD (RSVD) algorithm. Noticing that Ak = UkU
⊤
k A = π(Uk)A, the RSVD computes

a low-rank approximation of A using a randomized procedure for estimating R(Uk), where R(·) de-

notes the column space. Several so-called randomized range-finder algorithms have been proposed

and studied in the literature like the randomized subspace iteration method [23] or the randomized

(block) Krylov subspace methods [21, 28, 31]. Regardless of the range-finder method, the RSVD can

be theoretically analyzed by studying the following quantity∥∥[Im − π(Z)]A
∥∥
F
, (3)

where Z ∈ Rm×ℓ is a random matrix satisfying ℓ ≥ k assumed to be ideally such that R(Z) approxi-

mates R(Uk).

In this manuscript, we will focus on the randomized subspace iteration method which is the most

commonly used method to approximate the dominant singular modes (and sometimes the only prac-

ticable one). The theoretical analysis of the RSVD based on the randomized subspace iteration has

first been proposed in [14], where the authors have derived bounds for (3) both in expectation and

in probability. Their analysis in Frobenius norm was limited to the case where Z = AG with G a

matrix whose columns are independently sampled from a n-variate standard Gaussian distribution. In
a subsequent study, the author in [12] extended the analysis to the full randomized subspace iteration
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and provided error bounds when Z = (AA⊤)qAG with q ≥ 0. More recently, the authors in [2] have

proposed a generalization of the RSVD to the infinite-dimensional case, where A is replaced by a linear

differential operator. From their theoretical analysis in the infinite-dimensional setting, they were able

to propose error bounds [1] for (3) in the more general setting where Z = AG′ and the columns of G′

are non-standard Gaussian vectors with covariance matrix C ∈ Rn×n. Their approach showed that a

relevant choice for C could improve the performance.

In its generality, for randomized low-rank approximation, a structure is imposed to Z, namely

Z = f(A)G, where f is a function in A and G a Gaussian matrix whose columns are sampled from

a Gaussian distribution with zero mean and covariance matrix C. Here, the columns zi = f(A)gi of

Z also follow a Gaussian distribution with zero mean and covariance matrix

K = E
[
f(A)gig

⊤
i f(A)⊤

]
= f(A)E

[
gig

⊤
i

]
f(A)⊤ = f(A)C f(A)⊤. (4)

Consequently, the stochastic analysis of (3) is determined by the covariance matrix K of zi, and

existing results all rely on particular structures for K.

Beyond the RSVD, various randomized algorithms were proposed to address more elaborated eigen-

value and singular value problems. In [24, 27], the authors proposed methods to compute dominant

eigenpairs of generalized Hermitian eigenvalue problems, while in [25], algorithms for computing trun-

cated generalized singular value decomposition [29] were derived. Considering the appropriate matrices

A and Z, these algorithms all try, by design, to minimize a quantity of the form (3). However, their

theoretical analysis cannot rely on the existing frameworks because the resulting covariance matrix of

Z has a structure that differs from (4). In this regard, the analysis proposed by the authors was, if

not incomplete, at least not entirely satisfying. This is for instance the case in [26], where no analysis

in expectation are provided and only one algorithm out of three has an analysis in probability. Filling

this gap in the literature is our main motivation.

We propose a stochastic analysis of the low-rank approximation error (3) which holds for any

matrix Z whose columns are independently sampled from a multivariate Gaussian distribution with

zero mean and covariance matrix K. In particular, we do not assume any particular structure for K.

The proposed expectation and probability bounds allow one to obtain key properties of the covariance

matrixK resulting in improved performance. This analysis can then be used to increase the efficiency of

the current algorithms in learning the matrix A. The main advantage of our general framework is that

it allows us to analyze any randomized algorithms that can be rewritten as a low-rank approximation

problem. In addition, all the prior results can be recovered by using our general framework unifying a
large variety of error analyses.

The outline is the following. We first introduce key background material that will be helpful

throughout the manuscript in Section 2. Section 3 details our main result on the general error analysis

stated in Theorem 3.1. Section 3.1 illustrates our proposed analysis in three practical contexts: the

classical power iteration scheme, the generalized RSVD [1] and the case where the covariance matrix

is constructed out of a priori information. For the first two contexts, a comparison of our bounds with

the ones from [12] and [1] is proposed. In Section 4, we propose numerical illustrations on a data

assimilation problem [5, 18] and show that exploiting the particular structure of the problem to define

the covariance matrix K improves the performance of the RSVD.

2 Preliminaries

In this section, we recall well-known key results and definitions from the literature.

Submultiplicativity Let ∥·∥2 and ∥·∥F denote the spectral and the Frobenius norm respectively. The

strong submultiplicativity property [15, Relation (B.7)] reads

∀ M ∈ Rn×p,N ∈ Rp×q, ∥MN∥F ≤∥M∥F ∥N∥2 . (5)
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Partial ordering on the set of symmetric matrices Let M ∈ Rm×m,N ∈ Rm×m be two symmetric

matrices. The notation M ≼ N means that N − M is positive semi-definite. This relation defines

a partial ordering on the set of symmetric matrices [16, Section 7.7]. An important property [16,

Theorem 7.7.2] is that the partial ordering is preserved under the conjugation rule, i.e.,

M ≼ N =⇒ Q⊤MQ ≼ Q⊤NQ, ∀ Q ∈ Rm×n. (6)

We note that as a consequence of [16, Corollary 7.7.4(c)], the trace is monotonic with respect to the

partial ordering, i.e.,

M ≼ N =⇒ tr(M) ≤ tr(N). (7)

Projection matrices Suppose that M ∈ Rm×n has full column rank with column range space denoted

by R(M). We denote by M† the left multiplicative inverse of M, i.e., the Moore-Penrose inverse of

M, see, e.g., [16]. The orthogonal projection on R(M) is then given by π(M) = MM†, in particular,

one has R(π(M)) = R(M).

Sherman-Morrison formula Let M ∈ Rm×n and N ∈ Rn×m such that In + NM is non-singular.

Then, Im +MN is also non-singular and one has [9, Section 2.1.4],

(Im +MN)−1 = Im −M(In +NM)−1N. (8)

Principal angles between subspaces Let M,N ⊂ Rm be two k-dimensional subspaces, and M,N ∈
Rm×k be two associated matrices with orthogonal columns satisfying R(M) = M and R(N) = N
respectively. If σi(·) denotes the i-th largest singular value of a given matrix, then the principal angles

between M and N , denoted by θ1, . . . , θk are defined as follow [17],

θi = arccos(σi(M
⊤N)), 1 ≤ i ≤ k.

Further details on this notion can be found in [22].

Tangent matrix of the principal angles Let [M, M ] ∈ Rn×n be an orthogonal matrix withM ∈ Rn×k,

and N ∈ Rn×k a full column rank matrix. Then the following singular value decomposition [32,

Theorem 3.1] yields

tan (M, N) ≡ M
⊤
N(M⊤N)† = U diag

(
tan(θ1), . . . , tan(θk)

)
V⊤, (9)

where U ∈ R(n−k)×k has orthonormal columns, V ∈ Rk×k is orthogonal and scalars θ1, . . . , θk are the

principal angles between R(M) and R(N).

3 General randomized low-rank approximation error bounds

A generalized RSVD is given in Algorithm 1. In the first stage, one searches for an approximation

of R(A) by sampling A on ℓ independently drawn Gaussian vectors with zero mean and covariance

matrix K. From a practical viewpoint, if a factorization K = L⊤L is available, then drawing the

columns of Z reduces to compute Z = LΩ, where the columns of Ω are standard Gaussian vectors.

The second stage extracts the low-rank approximation of A from the orthonormal basis Q of R(Z).

We provide the general stochastic analysis of Algorithm 1 in Theorem 3.1 This theorem, which

is our main contribution, extends the randomized low-rank approximation error analysis to a general

covariance matrix K, i.e. without assuming any specific structure. As will be shown in Section 3.1,

our result unifies several existing error analysis bounds provided in the literature. For the sake of

readability, we postpone the proof to Appendix A.
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Algorithm 1: A general randomized singular value decomposition framework.

Input: Matrix A ∈ Rm×n, number of samples 1 ≤ ℓ ≤ rank(A), target rank 1 ≤ k ≤ ℓ to provide, covariance
matrix K ∈ Rm×m.

// Stage 1: Randomized range-finder

1 Draw Z ∈ Rm×ℓ whose columns are centered Gaussian with covariance matrix K.
2 Perform the thin QR factorization Z = QR.

// Stage 2: Low-rank approximation

3 Compute Y = Q⊤A.

4 Perform the order k truncated SVD of Y, i.e. Y = UkΣ̂kV̂
⊤
k .

5 Compute Ûk = QUk.

Output: Matrices Ûk ∈ Rm×k, Σ̂k ∈ Rk×k and V̂k ∈ Rn×k such that A ≈ ÛkΣ̂kV̂
⊤
k .

Theorem 3.1. Let A ∈ Rm×n be an arbitrary matrix and Z ∈ Rm×ℓ be a matrix whose columns

are independently sampled from a multivariate Gaussian distribution with covariance matrix K ∈
Rm×m, such that ℓ ≤ min(rank(A), rank(K)). Let us further consider A = UΣV⊤, the singular value

decomposition of A, and the related matrices Uk, Σk and Σk as given by (2).

For any integer k ≤ ℓ− 2, if Kk ≡ U⊤
k KUk is non-singular, then one has

E
[∥∥[In − π(Z)]A

∥∥
F

]
≤
(
1 + τk(K)2 +

ρk(K)2

ℓ− k − 1

) 1
2 ∥∥∥Σk

∥∥∥
F
.

Moreover, if k ≤ ℓ− 4, then for all u, t ≥ 1,

∥∥[In − π(Z)]A
∥∥
F
≤
(
1 + τk(K) +

√
3ut · ρk(K)√

ℓ− k + 1

)∥∥∥Σk

∥∥∥
F
.

holds with probability at least 1− e−u2/2 − t−(ℓ−k) with

τk(K) =

∥∥tan(Uk, KUk)Σk

∥∥
F∥∥∥Σk

∥∥∥
F

,

ρk(K) =
∥∥∥[Im − π(K

1
2Uk)]K

1
2

∥∥∥
F

√
tr(Σ2

kK
−1
k )∥∥∥Σk

∥∥∥
F

.

Theorem 3.1 states that the deviation from the optimal error of the randomized low-rank approxi-

mation is monitored by two coefficients τk(K) and ρk(K), respectively. The error is optimal whenever

they both equal zero. The first one depends on the tangent of the principal angles (9) between R(Uk)

and R(KUk). Consequently, τk(K) will be small when the principal angles are small, that is when

R(Uk) is close to R(KUk). This suggests to choose K so that R(Uk) is an approximate invariant

subspace under the action of K. The second coefficient ρk(K) depends on two quantities. The term∥∥∥[Im − π(K
1
2Uk)]K

1
2

∥∥∥
F
is the low-rank approximation error of K

1
2 induced by R(K

1
2Uk). This quan-

tity is small if R(K
1
2Uk) is close to R(K

1
2 ), and the minimum value is reached whenever R(K

1
2Uk)

is equal to the dominant eigenspace of K.

For the second term, one observes that

tr
(
Σ2

kK
−1
k

)
≤ 1

λmin(Kk)
∥Σk∥F . (10)
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This term can thus be arbitrarily small when the eigenvalues of Kk (or equivalently π(Uk)K) are large.

Altogether, Theorem 3.1 highlights the main property that K must satisfy in order to obtain an

efficient low-rank approximation: R(Uk) should be well aligned with the dominant eigenspace of K.

Consequently, choosing the matrix K such that

K = Uk∆U⊤
k , (11)

with ∆ ∈ Rk×k a symmetric positive definite matrix, leads to optimal values for the first error term

τk(K) and the first coefficient of the second error term ρk(K) for any choice of ∆. Note that, with the

choice of the K matrix (11), the bound (10) depends on the choice of ∆, i.e. λmin(Kk) = λmin(∆).

In practice, since Uk is precisely the quantity that needs to be determined, the choice of the matrix

K expressed by (11) is irrelevant. Instead, one rathers consider K = AA⊤ as in the RSVD algorithm.

Observing that AA⊤ = AkA
⊤
k +AkA

⊤
k and that AkA

⊤
k = UkΣ

2
kU

⊤
k is precisely of the form (11), then

the RSVD is particularly efficient if AA⊤ ≈ AkA
⊤
k , that is whenever AkA

⊤
k is negligible compared to

AkA
⊤
k . We recover here a property well documented in the randomized linear algebra literature, that

is Algorithm 1 is expected to perform well when the tail of the singular value distribution is negligible

compared to the first k singular values. Further discussions on practical choices for K are proposed in

Section 3.1.

3.1 Particular choices for the covariance matrix

In this section, we particularize Theorem 3.1 for certain covariance matrices. As we will show, sev-

eral prior bounds, that have been independently derived, can be recovered from Theorem 3.1. In

Section 3.1.1, we first address the power iteration scheme, where we can compare our bounds to the

ones proposed in [12]. Secondly, in Section 3.1.2 we propose an analysis of the Generalized RSVD

introduced in [1]. Finally, in Section 3.1.3, we discuss relevant cases where the covariance matrix is

constructed using available a priori information.

3.1.1 The power iteration scheme

The power iteration scheme considers Z = f(A)G with f(A) = A(A⊤A)q, q ≥ 0 and G being a

matrix whose columns are independently sampled from a standard multivariate Gaussian distribution.

Equivalently, one considers a matrix Z with columns sampled from a centered multivariate Gaussian

distribution with covariance matrix K(p) = f(A)f(A)⊤ = A(A⊤A)2qA⊤. Exploiting this structure

in Theorem 3.1 yields the following corollary.

Corollary 3.2. Let A ∈ Rm×n be an arbitrary matrix, G ∈ Rn×ℓ a matrix whose columns are indepen-

dently sampled from a standard multivariate Gaussian distribution with covariance matrix such that

ℓ ≤ rank(A), and Z = A(A⊤A)qG with q ≥ 0. Let us further consider σ1 ≥ · · · ≥ σn the singular

values of A and the matrix Σk as given by (2).

For any integer k ≤ ℓ− 2, one has

E
[∥∥[In − π(Z)]A

∥∥
F

]
≤
(
1 +

(
σk+1

σk

)2q
√

k

ℓ− k − 1

)∥∥∥Σk

∥∥∥
F
.

Moreover, if k ≤ ℓ− 4, then for all u, t ≥ 1,

∥∥[In − π(Z)]A
∥∥
F
≤
(
1 +

√
3ut ·

(
σk+1

σk

)2q
√

k

ℓ− k + 1

)∥∥∥Σk

∥∥∥
F
,

holds with probability at least 1− e−u2/2 − t−(ℓ−k).



Les Cahiers du GERAD G–2024–31 6

Proof. Let us first define the covariance matrix K(p) of the columns of Z:

K(p) = A(A⊤A)2qA⊤

= UΣ(Σ⊤Σ)2qΣ⊤U⊤

= UkΣ
4q+2
k U⊤

k +Uk(ΣkΣ
⊤
k )

2q+1U
⊤
k .

From this, it readily follows that U⊤
k K

(p)Uk = Σ4q+2
k which is non-singular since k ≤ ℓ ≤ rank(A)

by assumption, and Theorem 3.1 can be applied. To compute the two coefficients, let us first observe

that K(p)Uk = UkΣ
4q+2
k , that is R(K(p)Uk) = R(Uk). One thus deduces that

tan(Uk, K
(p)Uk) = 0.

Then, one has∥∥∥[Im − π([K(p)]
1
2Uk)][K

(p)]
1
2

∥∥∥2
F
= tr

(
K(p) −K(p)Uk(U

⊤
k K

(p)Uk)
−1U⊤

k K
(p)
)

= tr
(
K(p) −UkΣ

4q+2
k U⊤

k

)
= tr

(
Uk(ΣkΣ

⊤
k )

2q+1U
⊤
k

)
= tr

(
(ΣkΣ

⊤
k )

2q+1
)

= tr
(
Σk(Σ

⊤
k Σk)

2qΣ
⊤
k

)
=
∥∥∥(Σ⊤

k Σk)
qΣ

⊤
k

∥∥∥2
F

Altogether one obtains

τk

(
K(p)

)
= 0 and ρk

(
K(p)

)
=
∥∥∥Σ−2q

k

∥∥∥
F

∥∥∥(Σ⊤
k Σk)

qΣ
⊤
k

∥∥∥
F∥∥∥Σk

∥∥∥
F

.

Applying the strong submultiplicativity (5) and using norm equivalence yields
∥∥∥(Σ⊤

k Σk)
qΣ

⊤
k

∥∥∥
F

≤

σ2q
k+1

∥∥∥Σk

∥∥∥
F
and

∥∥∥Σ−2q
k

∥∥∥
F
≤

√
kσ−2q

k respectively, from which we finally obtain

ρk

(
K(p)

)
≤

√
k

(
σk+1

σk

)2q

.

If q = 0, we recover the expectation bound proposed in [14, Theorem 10.5]. For easier comparison of

the bounds in probability, we recall [14, Theorem 10.7] which states that under the same assumptions

as Corollary 3.2, then

∥∥[In − π(Z)]A
∥∥
F
≤
(
1 + t ·

√
3k

ℓ− k + 1

)∥∥∥Σk

∥∥∥
F
+ ut

e
√
ℓ√

ℓ− k + 1
σk+1

holds with probability at least 1−e−u2/2−2t−(ℓ−k), where k ≤ ℓ−4 and u, t ≥ 1. Our bound is almost

identical to the first term in
∥∥∥Σk

∥∥∥
F
except for the extra factor u. However, since our bound does not

have the second term in σk+1, then for reasonably small values of u (e.g. 2 or 3) one can expect our

probability bound to have comparable accuracy.

For q ≥ 1, we recover the convergence property of the power iteration scheme, i.e. the error

approaches the optimal value as (σk+1/σk)
2q → 0. For comparison, using the property that

√
1 + x ≤

1 +
√
x for x ≥ 0, Theorem 5.7 in [12] provides the following upper bound for p ≥ 2:
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E
[∥∥[In − π(Z)]A

∥∥
F

]
≤

1 +
√
k

(
σk+1

σk

)2q
4e

√
ℓ

ℓ− k + 1

[√
n− k +

√
ℓ+ 7

] σk+1∥∥∥Σk

∥∥∥
F

∥∥∥Σk

∥∥∥
F
.

This bound is similar to our bound except for the multiplying factor

c = 4e
√
ℓ

√
ℓ− k − 1

ℓ− k + 1

[√
n− k +

√
ℓ+ 7

] σk+1∥∥∥Σk

∥∥∥
F

.

Since
∥∥∥Σk

∥∥∥
F
≤ σk+1

√
n− k from classical norm equivalence, and both ℓ ≥ ℓ− k− 1 and ℓ− k ≥ 2 by

assumption, it yields

c ≥ 4e

3
(ℓ− k − 1).

This suggests that Corollary 3.2 provides tighter bounds than the ones proposed in [12], especially

when the oversampling ℓ − k is large. Nevertheless, the refinement might not be significant and only

illustrates that bounds from [12] are slightly over-pessimistic.

3.1.2 The generalized RSVD

Let us now consider Z = f(A)G′ with f(A) = A and, G′ is a matrix whose columns are independently

sampled from a multivariate Gaussian distribution with covariance matrix C ∈ Rn×n. Again, this can

be alternatively viewed as drawing the columns of Z from a centered multivariate Gaussian distribution

with covariance matrix K(g) = ACA⊤. This configuration has been for instance studied in [1],

to improve the accuracy of low-rank approximations of differential operators. Lemma 3.3 provides

simplified forms for both τk(K
(g)) and ρk(K

(g)).

Lemma 3.3. Let A ∈ Rm×n be an arbitrary matrix, G ∈ Rn×ℓ a matrix whose columns are inde-

pendently sampled from a multivariate Gaussian distribution with covariance matrix C ∈ Rn×n such

that ℓ ≤ rank(A), and Z = AG ∈ Rm×ℓ. Let us further consider A = UΣV⊤, the singular value

decomposition of A, and the related matrices Vk and Σk as given by (2).

For any integer k ≤ ℓ− 2, one has

τk

(
K(g)

)
=

∥∥∥Σk tan(Vk, CVk)
∥∥∥
F∥∥∥Σk

∥∥∥
F

,

and ρk

(
K(g)

)
=
∥∥∥[In − π(C

1
2Vk)]C

1
2A⊤

∥∥∥
F

√
tr((V⊤

k CVk)−1)∥∥∥Σk

∥∥∥
F

,

where K(g) = ACA⊤ is the covariance matrix of the columns of Z. The coefficients τk(·) and ρk(·)
are defined in Theorem 3.1.

Proof. The standard properties of Gaussian vectors yield K(g) = ACA⊤, from which we obtain

U⊤K(g)U = ΣV⊤CVΣ⊤.

Straightforward algebraic manipulations then yield

tan(Uk, K
(g)Uk)Σk = U

⊤
k K

(g)Uk(U
⊤
k K

(g)Uk)
−1Σk

= ΣkV
⊤
k CVk(V

⊤
k CVk)

−1
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= Σk tan(Vk, CVk).

Likewise, one gets∥∥∥[Im − π([K(g)]
1
2Uk)][K

(g)]
1
2

∥∥∥2
F
= tr

(
[K(g)]

1
2 [Im − π([K(g)]

1
2Uk)][K

(g)]
1
2

)
= tr

(
K(g)[Im − π([K(g)]

1
2Uk)]

)
= tr

(
K(g)[Im − π([K(g)]

1
2Uk)]

)
= tr

(
AC

1
2

[
In − π(CVk)

]
C

1
2A⊤

)
=
∥∥∥[In − π(C

1
2Vk)]C

1
2A⊤

∥∥∥2
F
,

where we have used the circular invariance of the trace and the properties of projectors. Finally,

observing that Kk = ΣkV
⊤
k CVkΣk concludes the proof.

The structure of τk(K
(g)) and ρk(K

(g)) resembles the general form stated in Theorem 3.1. As a

consequence, one can readily draw similar conclusions: C must be chosen so that Vk approximates

its dominant eigenspace. For instance C = A⊤
k Ak = VkΣ

2
kV

⊤
k , although this is not practical since

matrices Ak, Vk and Σk may not be available.

Let us now use Lemma 3.3 and Theorem 3.1 to provide bounds comparable to [1].

Corollary 3.4. Let A ∈ Rm×n be an arbitrary matrix, G ∈ Rn×ℓ a matrix whose columns are inde-

pendently sampled from a multivariate Gaussian distribution with covariance matrix C ∈ Rn×n such

that ℓ ≤ rank(A), and Z = AG ∈ Rm×ℓ. Let further A = UΣV⊤ be the singular value decomposition

of A, and the related matrices Vk and Σk as given by (2).

For any integer k ≤ ℓ− 2, if V⊤
k CVk is non-singular, then one has

E
[∥∥[In − π(Z)]A

∥∥
F

]
≤

1 +
√
ℓ− k

√
k

ℓ− k − 1

βk(C)

γk(C)

∥∥∥Σk

∥∥∥
F
.

Moreover, if k ≤ ℓ− 4, then for all u, t ≥ 1,

∥∥[In − π(Z)]A
∥∥
F
≤

1 +
√
3
(√

ℓ− k + 1 + 1
) √ k

ℓ− k + 1

βk(C)

γk(C)
· ut

∥∥∥Σk

∥∥∥
F
,

holds with probability at least 1− e−u2/2 − t−(ℓ−k).

Here,

βk(C) =
tr
(
Σ

⊤
k ΣkV

⊤
k CVk

)
λ1(C)

∥∥∥Σk

∥∥∥2
F

and γk(C) =
k

λ1(C) tr
(
(V⊤

k CVk)−1
) .

Proof. Let us denote K(g) = ACA⊤ the covariance matrix of Z. First, one has U⊤
k K

(g)Uk =

ΣkV
⊤
k CVkΣk which is non-singular since both V⊤

k CVk and Σk are non-singular by assumption, so

Theorem 3.1 can be applied. Using the submultiplicativity of the Frobenius norm along with (9), we

have ∥∥∥Σk tan(Vk, CVk)
∥∥∥2
F
=
∥∥∥ΣkV

⊤
k CVk(V

⊤
k CVk)

−1
∥∥∥2
F
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≤
∥∥∥Σ⊤

k Σk V
⊤
k C

1
2

∥∥∥2
F

∥∥∥C 1
2Vk(V

⊤
k CVk)

−1
∥∥∥2
F

= tr
(
Σ

⊤
k ΣkV

⊤
k CVk

)
· tr
(
(V⊤

k CVk)
−1
)

= k
∥∥∥Σk

∥∥∥2
F

βk(C)

γk(C)
.

Thus,

τk

(
K(g)

)
=

∥∥∥Σk tan(Vk, CVk)
∥∥∥
F∥∥∥Σk

∥∥∥
F

≤
√
k

√
βk(C)

γk(C)

Then, let us use the following fact which will be proved in Appendix A, namely∥∥∥[Im − π([K(g)]
1
2Uk)][K

(g)]
1
2

∥∥∥2
F
= tr

(
U

⊤
k K

(g)Uk −U
⊤
k K

(g)UkK
−1
k U⊤

k K
(g)Uk

)
.

Since U
⊤
k K

(g)UkK
−1
k U⊤

k K
(g)Uk is symmetric positive semi-definite, one has,∥∥∥[Im − π([K(g)]

1
2Uk)][K

(g)]
1
2

∥∥∥2
F
≤ tr

(
U

⊤
k K

(g)Uk

)
= tr

(
ΣkV

⊤
k CVkΣ

⊤
k

)
= tr

(
Σ

⊤
k ΣkV

⊤
k CVk

)
.

Altogether, this yields

ρk

(
K(g)

)
≤

√
k

√
βk(C)

γk(C)
.

Plugging these inequalities in Theorem 3.1 and using that
√
1 + x ≤ 1 +

√
x for all x ≥ 0 end the

proof.

Corollary 3.4 provides bounds similar to the ones in [1]. There is nonetheless a difference that is

worth pointing out. The probability and expectation bounds in [1], stated respectively in Theorem

2 and Proposition 6, predict a deviation from the optimal characterized by a form of O(k) where k

represents the target rank. On the contrary, Corollary 3.4 exhibits bounds for the low-rank approxi-
mation error with deviation from the optimal of the form O(

√
k). This shows that the influence of the

target rank k is not as penalizing as the bounds in [1] would suggest.

3.1.3 K as a low-rank matrix update

We focus on exploring the potential benefits of incorporating an available approximate SVD within

the covariance matrix to enhance the achievable bounds.

Let Ûk ∈ Rm×k be an approximation of Uk satisfying Û⊤
k Ûk = Ik, and Σ̂k = diag(σ̂1, . . . , σ̂k) an

approximation of Σk. In this case, Theorem 3.1 suggests to consider a covariance matrix of the form

Kα,β = αÛkΣ̂
2
kÛ

⊤
k + β(In − ÛkÛ

⊤
k ),

with α > 0 and 0 ≤ β ≤ α σ̂2
k. Therefore, the columns of Ûk are eigenvectors of Kα,β associated with

eigenvalues ασ̂2
1 , . . . , ασ̂

2
k, and the orthogonal of R(Ûk) is an eigenspace associated with the eigenvalue

β. Note that the bounds in Theorem 3.1 are invariant under scalar multiplication of the covariance

matrix. Therefore, one can consider either Kα/β,1 or K1,β/α, depending on the most convenient form.
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The parameters α and β play the roles of relative weights, allowing to balance the confidence in

the approximation Ûk. If β = 0, then Kα,0 is a rank k matrix such that R(Kα,0Uk) = R(Ûk), which

trivially yields

τk(Kα,0) =

∥∥∥tan(Uk, Ûk)Σk

∥∥∥
F∥∥∥Σk

∥∥∥
F

and ρk(Kα,0) = 0.

In this configuration, the low-rank approximation error is only governed by how Ûk accurately ap-

proximates Uk. We note that using K = Kα,0 in Algorithm 1 yields a deterministic algorithm since

rank(Kα,0) = k ≤ ℓ so that Z ∈ Rm×ℓ drawn with covariance matrix Kα,0 satisfies R(Z) = R(Kα,0) =

R(Ûk) with probability one.

Considering β > 0, the columns of Z will have components both in R(Ûk) and its orthogonal

complement. Since Uk is approximated by Ûk, it also has non-zero intersection both with R(Ûk)

and its orthogonal. Consequently, if Ûk is a poor approximation, then the orthogonal of R(Ûk) still

contains relevant information regarding Uk, and β should be taken as large as possible to ensure the

random exploration of the remaining space. Conversely, if Ûk is an accurate approximation of Uk,

then one should choose a small (non-zero) value for β so that the columns of Z are mostly aligned with

R(Uk).

Alternatively, considering V̂k ∈ Rn×k, an approximation of Vk, one can also define the matrix,

Cα,β = αV̂kΣ̂
2
kV̂

⊤
k + β(In − V̂kV̂

⊤
k ),

and consider the covariance matrix Kα,β = ACα,βA
⊤. The same analysis can be performed, replacing

Uk by Vk in the arguments.

4 Numerical experiments

In recent years, randomized SVD has a received considerable attention from the field of data as-

similation (DA) [4, 3, 6]. DA is an intensive field of research, with various applications in Earth

system modelling, for instance, numerical weather forecast, and oceanography, to name a few. DA is

a methodology used to estimate the physical state of a dynamical system by using different sources

of information taking into consideration their uncertainties. For our numerical experiments, we use

a three-dimensional variational data assimilation formulation. In this approach, we solve a weighted
nonlinear least-squares problem for a fixed time:

min
x∈Rn

f(x) =
1

2

∥∥y −H(x)
∥∥2
R−1 +

1

2
∥x− xb∥2B−1 , (12)

where x ∈ Rn is the state of a dynamical system, for instance temperature, y ∈ Rm is a vector

consisting of observations, and xb ∈ Rn is a priori information. The operator H : Rn → Rm is the

nonlinear observation operator mapping the state vector from the model space to the observation

space. B ∈ Rn×n and R ∈ Rm×m represent the error covariance matrices of a priori information and

observations respectively.

A common approach for solving (12) is the truncated Gauss-Newton method [10]. This method

relies on the linearization of the nonlinear observation operator around the current iterate xj , which

results in a weighted linear least-squares sub-problem whose solution can be obtained by solving a

preconditioned linear system:

(In + LH⊤
j R

−1HjL)δvj = −Lbj (13)

where L ∈ Rn×n is a symmetric square-root factorization of B used as a preconditioner, Hj ∈ Rm×n

is the Jacobian matrix of the observation operator at the current iterate, δvj = Lδxj is the increment

(search direction) in the preconditioned space, and bj is the gradient of the nonlinear cost function (12)
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calculated at the current iterate. The linear system (13) consisting of the symmetric positive definite

matrix,

A(j) = In + LH⊤
j R

−1HjL (14)

can then be solved by using an iterative method such as the preconditioned conjugate gradients method

(PCG). While performing PCG for costly matrix-vector products with A like in numerical weather

forecast, it is crucial to use an efficient second-level preconditioner like limited memory precondi-

tioner [11] (LMP) to accelerate the convergence within the Gauss-Newton process. As an alternative

to LMPs which obtain spectral information based on the matrix A(j−1), one can obtain a second-

level preconditioner based on the spectral information of the current matrix A(j) by using randomized

SVD [27].

In our numerical experiments, we then aim to approximate the eigenspectrum of the symmetric

positive definite matrix A(k) by using randomized SVD based on non-standard Gaussian sample ma-

trices for the first Gauss-Newton iteration k = 1. For simplicity, we will use A referring to A(1). The

error covariance matrix B is obtained from the discretization of the diffusion operator on a regular

grid, H is chosen as a selection operator (H is a linear operator), and R = σR Im with σR > 0 being

the standard deviation. The matrix of interest defined in (14) is a rank m update of the identity.

Consequently, the number of observations m has a critical influence on the eigenvalue distribution,

i.e. for n > m there are n − m eigenvalues equal to 1. The eigenvalues of A also have a strongly

decaying spectrum as shown in Figure 1 which is a property in favour of the randomized SVD. We

choose n = 1000, and we consider two different scenarios, with a different number of observations:

LowObs for m = 200, and HighObs for m = 500.

200 400 600 800 1000

Index of eigenvalue.

100

101

102

103

104

105

M
ag

ni
tu

de
.

Spectrum of A.

LowObs

HighObs

Figure 1: Eigenvalue distribution of A in the LowObs and HighObs scenarios.

4.1 Accuracy of the error bounds

In this section, we analyze the accuracy of the bounds in Theorem 3.1 for a particular choice of

the covariance matrix K. Note that the dominant eigenvectors of A correspond to the dominant

eigenvectors of W, expressed as W = LH⊤
j R

−1HjL, with its rank equal to m < n. Using the SVD,

LH⊤
j R

−1/2 = SmΛ
1/2
m FT

m, where Sm ∈ Rn×m, Λm ∈ Rm×m and Fm ∈ Rn×m, the eigenspectrum ofW

is then represented as W = SmΛmS⊤
m. As a result, Sm represents the eigenvectors of A corresponding

to the m largest eigenvalues. Leveraging Theorem 3.1’s results, we can improve the performance of

Algorithm 1 by choosing the covariance matrix K = ASkS
T
kA, with k ≤ m being the target rank.

Since Sk is not readily available and is indeed the quantity of interest, we select K = AL2A = ABA.

Note that W is in the image of the matrix L (this remark is further investigated in Section 4.2). When

H is an identity matrix, i.e. m = n, R(L) = R(Sm). In the numerical experiments, H is chosen as a
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selection operator. In this case, R(Sm) = R(Lm) where Lm ∈ Rm×n is a submatrix of L with its m

columns selected through the matrix H. Therefore, the performance of Algorithm 1 will be improved

with the choice of K = ABA, whenever the subspace spanned by the k-th leading eigenvectors of L

gets closer to the range of Sk.

We apply Algorithm 1 with Z = ALG, G being a matrix whose columns are independently drawn

from a standard multivariate Gaussian distribution. We compare the bounds to the empirical mean of

the randomized low-rank approximation error computed out of 20 independent runs of Algorithm 1.

For the comparison, we plot the quantity∥∥[Im − π(Z)]A
∥∥
F∥∥∥Σk

∥∥∥
F

− 1,

which is as close as zero as the low-rank approximation error is close to the optimal value
∥∥∥Σk

∥∥∥
F
. The

coefficients u and t in Theorem 3.1 are obtained so that the probability of failure is strictly less than

10−3.

Figure 2 shows the low-rank approximation error with respect to the target rank k, for a fixed

oversampling parameter p = ℓ − k = 10. Here, the bounds in expectation follow the empirical mean

error trend, by a multiplicative factor of approximately 10. On Figure 2a however, the bound diverges

after k = 200 (= m). This behaviour illustrates that the use of B in the covariance matrix K

may positively influence the low-rank approximation error as long as the target rank is smaller than

rank(LH⊤
j R

−1HjL) = m. When k > m, the algorithm is expected to produce approximations of

eigenvectors associated with the cluster of eigenvalues at 1, which are no longer in the image of L, thus

explaining why the bound diverges. This problem is not noticeable in Figure 2b since m is equal to

500 in this scenario and k is at most 300. However, it is worth noting that the bounds diverge while

the empirical error still decreases, highlighting that the bounds may overestimate the error in certain

circumstances.

These considerations also apply to the probability bounds whose trends follow the expectation

bounds. Given the small empirical standard deviation observed (grey halo around the empirical error),

it is clear that the probability bounds severely overestimate the error by a factor of at least 102.
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Figure 2: Bounds for the low-rank approximation error versus the target rank k. The empirical data have been computed
with p = 10.

Figure 3 shows the behaviour of the bounds with respect to the oversampling parameter p = ℓ− k

for a fixed value of the target rank k (k = 20). We observe no significant differences between the

LowObs and HighObs scenarios. The bounds in expectation and in probability both predict a decrease

rate of the error as O(1/
√
p), but visibly fail to capture the true decrease rate.
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Figure 3: Bounds for the low-rank approximation error versus the oversampling parameter p = ℓ− k. The empirical data
have been computed with k = 20.

Finally, we propose in Figure 4 a comparison of the bounds from [1] in the HighObs scenario.

This is meant to illustrate the discussion in Section 3.1.2, where we proposed alternative bounds to

analyse the Generalized RSVD algorithm. We observe here that the bounds derived from Theorem 3.1

actually refine the ones from [1]. The impact of the extra
√
k factor can be seen in Figure 4a, where

the refinement brought by Theorem 3.1 is greater for large values of k: e.g. in expectation, the

improvement is approximately equal to a factor of 10 for small values of k, and up to almost 100 for

larger values of k. The decrease rate of the error with respect to the oversampling parameter, shown

in Figure 4b, is also impacted.
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b Versus the oversampling p = ℓ − k.

Figure 4: Comparison of the bounds with [1] in the HighObs scenario.

4.2 Approximate subspace iteration

In this section, we consider Z = AΩ in Algorithm 1 and we denote by C the covariance matrix of

Ω which corresponds to K = ACA. Our objective is to illustrate how Algorithm 1 behaves when A

is replaced by an approximation of Ak in the power iteration. We note here that the power scheme

applied to square matrices has the form of

Z = AqG (15)
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where G is a matrix whose columns are independently sampled from a standard multivariate Gaussian

distribution. For our numerical experiments, we consider the following cases:

C = In : This case corresponds to the exact power iteration with q = 1 in Equation (15).

C = A2 : This case corresponds to the exact power iteration with q = 2 in Equation (15).

C = B : This case can be interpreted as an approximate power iteration with q = 3/2, where AA1/2

is approximated by AL. Note that we assume R(L) ≈ R(A
1/2
k ).

C = B2 : This case can be interpreted as an approximate power iteration with q = 2, where A2 is

approximated by AB.

The first case will serve as a reference, while the second one will serve as an ideal case. For the last

two cases, we rely on the approximation that R(B) is an accurate approximation of R(LH⊤
j R

−1HjL).

Ideally, if B is an accurate enough approximation of Ak, and a fortiori of A, then the resulting low-

rank approximation error should be close to the one obtained with q = 2 in (15). In theory, it may

even yield umproved performance since using A is sub-optimal compared to Ak.

Figure 5 presents the numerical results for different cases. A first important observation is that for

both scenarios, using L or B improves over the reference case C = In, implying that corresponding

covariance matrices are indeed carrying dominant eigeninformation of A. Then, one also observes that

applying Algorithm 1 with C = B2 yields results very similar to C = A2 and improved low-rank

approximation for k ≥ 150. These results suggest to use an approximation to Ak instead of A.
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Figure 5: Empirical low-rank approximation error with respect to the target rank k. The empirical data have been
computed with p = 10 and for different covariance matrices.

This is also what we observe when looking at the two parameters τk(K) and ρk(K) shown in

Figures 6 and 7, respectively. Let us recall that τk(K) measures the stability of R(Ak) under the

action of K and that R(Ak) = R(Sk) for k ≤ m in our case. From this, it is clear that τk(K) is

zero for the first two cases and is thus not shown in Figure 6. For the remaining two cases, we note

that τk(K) is relatively small compared to ρk(K) except in the LowObs scenario when k ≥ m. In this

situation, the equality R(Ak) = R(Sk) no longer holds, so the practical choice of using L or B = L2

instead of SkS
⊤
k becomes less relevant. Nevertheless, this limitation should not have any practical

limitations since in concrete applications, the target rank k will be chosen much smaller than m the

number of observations. On the other side, ρk(K) is related to how the dominant eigenspectrum of K

approximates the one of A. Likewise, for τk(K), we observe a significant increase after k = m in the

LowObs scenario. The explanation is similar, since after this point, the target low-rank approximation

Ak contains m−k eigenmodes associated with the eigenvalue cluster at 1, while the chosen covariance

matrix is only meant to improve the approximation of the first m dominant eigenmodes.
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Figure 6: Parameter τk(ACA) versus the target rank k for the different covariance matrices C under study.
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Figure 7: Parameter ρk(ACA) versus the target rank k for the different covariance matrices C under study.

4.3 Using available approximations

In this section, we study the case where approximations V̂k and Σ̂k of Vk and Σk respectively are

already available. The objective here is to analyze the low-rank approximation error when using a

covariance matrix of the specific form

Cα,β = αV̂kΣ̂kV̂
⊤
k + β(In − V̂kV̂

⊤
k ).

For this numerical experiment, the approximations are obtained by applying Algorithm 1 to A, with

K = AA⊤ (C = In) and for varying values of target rank k together with p = ℓ−k = 10. Information

on the quality of the resulting approximation is shown in Figure 5. We then use the resulting matrices

V̂k and Σ̂k to construct the matrix Cα,β . We study the following cases:

• Different scaling: α = 0.01, 1 and 100 for a fixed value β = 1. The scaling is expected to influence

the performance as it allows to weight differently R(V̂k) and its orthogonal complement.

• For α = β = 1, we also consider the variant CL = LC1,1 L. Regarding the results from the

previous subsection, using L is expected to improve the performance.

• We also consider the case α = 1 and β = 0. As discussed in Section 3.1.3, this yields a deter-

ministic algorithm which simply reduces to perform a standard power iteration step on top of
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V̂k. This choice will serve as a reference, and our objective is to study whether maintaining

randomization (i.e. β > 0) can yield better performance. This can be interpreted as the limit of

Cα,1 when α increases.

• Finally, we consider the caseC = In corresponding to a single step of randomized power iteration.

This base case is here to illustrate how using existing information actually improves performance.

The obtained results for the empirical low-rank approximation error are presented in Figure 8 and

have been obtained from 20 independent applications of Algorithm 1.

Regardless of the scaling, for small values of k (roughly k ≤ 100), the resulting low-rank approxi-

mation error is almost identical and also improves over the reference case. For larger k, it seems that

the larger α is, the better the performance is. This suggests that in this situation, the approximation

V̂k used to construct the covariance matrix is accurate enough to be trusted. Nevertheless, there is a

trade-off to find since taking larger α would asymptotically yield the same results as C!,0 (the refer-

ence case). Finally, the most noticeable case is CL, which outperforms the reference case by almost a

factor of 10 (given the target k remains small enough). As expected, using L allows us to improve the

performance because L also carries information. Of course, this also yields a more expensive algorithm

since it would require an application of L to a n× ℓ matrix, while the other scaled cases only involve

thin matrices.
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Figure 8: Empirical low-rank approximation error with respect to the target rank k. The empirical data have been
computed with p = 10 and for different covariance matrices.

5 Conclusions

We have proposed a general theoretical framework for the analysis of the low-rank approximation

error where we have relaxed the assumptions on the covariance matrix. The obtained bounds, in

expectation and in probability, have clear interpretations. We have illustrated the generality of our

result by applying Theorem 3.1 to two known algorithms, and the obtained bounds have comparable

accuracy as the ones derived on purpose in the literature. Finally, we have illustrated our result on

a data assimilation problem. First, we have studied the accuracy of the bounds. Then, we have

proposed numerical experiments in two different situations, using either an approximation of A or an

available approximation of Vk. In both cases, we have identified covariance matrices that enable us

to improve the overall performance. This highlights that using the structure of the problem to design

the covariance matrix does improve the performance of randomized low-rank approximation methods.
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A Proof of Theorem 3.1

In this appendix, we prove Theorem 3.1. We begin with a lemma which is a generalization of the

analysis in terms of principal angles proposed in [24].

Lemma A.1. Let A ∈ Rm×n be an arbitrary matrix and Z ∈ Rn×ℓ a full column rank matrix such

that ℓ ≤ rank(A). Let us denote Zk = U⊤
k Z ∈ Rk×ℓ and Zk = U

⊤
k Z ∈ R(n−k)×ℓ.

For any integer k ≤ ℓ, if rank(Zk) = k, then one has

U⊤
k [In − π(Z)]Uk ≼ T⊤

k Tk, (16)

where Tk = ZkZ
†
k ∈ R(n−k)×k.

Proof. By assumption, Zk has full row rank and thus has a right multiplicative inverse Z†
k. Hence

Yk = ZZ†
k satisfies the two relations

U⊤
k Yk = Ik and U

⊤
k Yk = Tk.

Moreover, we have R(Yk) ⊂ R(Z) which implies that In − π(Z) ≼ In − π(Yk) according to [14,

Proposition 8.5]. By using the conjugation rule (6) and the identity UkU
⊤
k +UkU

⊤
k = In, we obtain

U⊤
k [In − π(Z)]Uk ≼ U⊤

k [In − π(Yk)]Uk = U⊤
k

(
In −Yk(Y

⊤
k Yk)

−1Y⊤
k

)
Uk,

= Ik −U⊤
k Yk(Y

⊤
k Yk)

−1Y⊤
k Uk,

= Ik − (Y⊤
k Yk)

−1,

= Ik −
(
Y⊤

k (UkU
⊤
k +UkU

⊤
k )Yk

)−1

,

= Ik −
(
Ik +T⊤

k Tk

)−1

,

= T⊤
k

(
In−k +TkT

⊤
k

)−1

Tk,

where the last equality is obtained using the Sherman-Morrison formula (8). To conclude, we observe

that
(
In−k +TkT

⊤
k

)−1
≼ In−k, which implies, using the conjugation rule (6), that

T⊤
k

(
In−k +TkT

⊤
k

)−1
Tk ≼ T⊤

k Tk.

Remark. Let θ1, . . . , θk denote the principal angles between R(Uk) and R(Z), and θ̃1, . . . , θ̃k the

ones between R(Uk) and R(Yk). The statement of Lemma A.1 can be geometrically rephrased as

sin(θi)
2 ≤ sin(θ̃i)

2 =
tan(θ̃i)

2

1 + tan(θ̃i)2
≤ tan(θ̃i)

2, 1 ≤ i ≤ k.

Less formally, the forthcoming analysis is based on how close R(Uk) and R(Yk) are, while the truly

computed error rather concerns how close R(Z) is from R(Uk). Since the latter is of dimension ℓ,

while R(Yk) is of dimension k, the looseness of the derived bounds will increase with ℓ.

The next result is a deterministic bound for the low-rank approximation error which generalizes [14,

Proposition 9.6].

Proposition A.2 (Deterministic analysis). Let A ∈ Rm×n be an arbitrary matrix and Z ∈ Rn×ℓ a

full column rank matrix such that ℓ ≤ rank(A). Let us further denote Zk = U⊤
k Z ∈ Rk×ℓ and

Zk = U
⊤
k Z ∈ R(n−k)×ℓ.

For any integer k ≤ ℓ, if rank(Zk) = k, then one has∥∥∥[In − π(Z)
]
A
∥∥∥2
F
≤
∥∥∥Σk

∥∥∥2
F
+
∥∥∥ZkZ

†
kΣk

∥∥∥2
F
.
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Proof. By definition of the Frobenius norm, one has∥∥[In − π(Z)]A
∥∥2
F
= tr

(
[In − π(Z)]AA⊤[In − π(Z)]

)
,

= tr
(
[In − π(Z)][AkA

⊤
k +AkA

⊤
k ][In − π(Z)]

)
,

= tr
(
[In − π(Z)]AkA

⊤
k [In − π(Z)]

)
+ tr

(
[In − π(Z)]AkA

⊤
k [In − π(Z)]

)
=
∥∥[In − π(Z)]Ak

∥∥2
F
+
∥∥∥[In − π(Z)]Ak

∥∥∥2
F
.

Using the unitary invariance of the Frobenius norm along with the fact that In − π(Z) ≼ In, one

readily gets
∥∥∥[In − π(Z)]Ak

∥∥∥2
F
≤
∥∥∥Σk

∥∥∥2
F
. For the remaining term, one has

∥∥[In − π(Z)]Ak

∥∥2
F
= tr

(
ΣkU

⊤
k [In − π(Z)]UkΣk

)
.

Applying Lemma A.1 and conjugating by Σk (6) it yields

ΣkU
⊤
k [In − π(Z)]UkΣk ≼ ΣkT

⊤
k TkΣk.

Using the monotonic property of the trace (7) ends the proof.

Remark. In the particular case where Z = AΩ, we observe that Proposition A.2, up to different

notation conventions, generalizes [14, Proposition 9.6].

Proposition A.3 is the final and main result from which Theorem 3.1 can be deduced. It addresses

the stochastic analysis of a particular quantity that plays a central role in our proof.

Proposition A.3. Let A ∈ Rm×n be an arbitrary matrix, and Z ∈ Rm×ℓ a matrix whose columns are

independently sampled from a multivariate Gaussian distribution with covariance matrix K ∈ Rm×m,

such that ℓ ≤ min(rank(A), rank(K)). Let us further denote Zk = U⊤
k Z ∈ Rk×ℓ and Zk = U

⊤
k Z ∈

R(n−k)×ℓ.

For any integer k ≤ ℓ− 2, if Kk ≡ U⊤
k KUk is non-singular, one has

E
[∥∥∥ZkZ

†
kΣk

∥∥∥2
F

]
=
∥∥tan(Uk, KUk)Σk

∥∥2
F
+
∥∥∥[Im − π(K

1
2Uk)]K

1
2

∥∥∥2
F

tr(Σ2
kK

−1
k )

ℓ− k − 1
.

Moreover, if k ≤ ℓ− 4, then for all u, t ≥ 1 one has

∥∥∥ZkZ
†
kΣk

∥∥∥
F
≤
∥∥tan(Uk, KUk)Σk

∥∥
F
+

√
3ut ·

∥∥∥[Im − π(K
1
2Uk)]K

1
2

∥∥∥
F

√
tr(Σ2

kK
−1
k )

ℓ− k − 1
,

holds with probability at least 1− e−u2/2 − t−(ℓ−k).

Proof.

Expectation. Using the theorem of total expectation one has

E
[∥∥∥ZkZ

†
kΣk

∥∥∥2
F

]
= E

[
E
[∥∥∥ZkZ

†
kΣk

∥∥∥2
F
| Zk

]]
.



Les Cahiers du GERAD G–2024–31 19

We consider the following partitioning

U⊤KU =
[
Uk | Uk

]⊤
K
[
Uk | Uk

]
=

[
Kk K⊤

⊥,k

K⊥,k Kk

]
.

In the inner expectation, Z†
k is a fixed matrix, but unlike the standard result in [14], Zk and Zk are

not statistically independent. This implies that conditioned by Zk, the columns of Zk no longer follow

a standard multivariate Gaussian distribution. Instead, if [Zk](i) denotes the i-th column of Zk, then

the i-th column of Zk follows a multivariate Gaussian distribution with mean term

µi ≡ K⊥,kK
−1
k [Zk](i),

and covariance matrix

K/Kk ≡ Kk −K⊥,kK
−1
k K⊤

⊥,k.

Consequently, if one defines µ = [µ1, . . . , µℓ], one can write Zk = µ+(K/Kk)
1
2G where the columns

of G ∈ R(n−k)×ℓ are sampled from a standard Gaussian distribution. Thus, conditioned by Zk one has∥∥∥ZkZ
†
kΣk

∥∥∥2
F
=

∥∥∥∥[µ+ (K/Kk)
1
2G
]
Z†

kΣk

∥∥∥∥2
F

=
∥∥∥µZ†

kΣk + (K/Kk)
1
2GZ†

kΣk

∥∥∥2
F

=
∥∥∥µZ†

kΣk

∥∥∥2
F
+
∥∥∥(K/Kk)

1
2GZ†

kΣk

∥∥∥2
F

+ 2 tr
(
Σk[Z

†
k]

⊤µ⊤(K/Kk)
1
2GZ†

kΣk

)
.

The linearity of the expectation allows us to deal with each term separately. Conditioned by Zk, the

first one is a non-random constant, and the second term can be handled using [14, Proposition 10.1]

since G has a standard multivariate Gaussian distribution. Concerning the third term, the linearity

of the expectation conditioned by Zk yields

E
[
tr
(
Σk[Z

†
k]

⊤µ⊤(K/Kk)
1
2GZ†

kΣk

)
| Zk

]
= tr

(
Σk[Z

†
k]

⊤µ⊤(K/Kk)
1
2E
[
G | Zk

]
Z†

kΣk

)
= 0.

Altogether, one has

E
[∥∥∥ZkZ

†
kΣk

∥∥∥2
F
| Zk

]
=
∥∥∥µZ†

kΣk

∥∥∥2
F
+
∥∥∥(K/Kk)

1
2

∥∥∥2
F

∥∥∥Z†
kΣk

∥∥∥2
F

=
∥∥∥K⊥,kK

−1
k Σk

∥∥∥2
F
+
∥∥∥(K/Kk)

1
2

∥∥∥2
F

∥∥∥Z†
kΣk

∥∥∥2
F
,

where the last equality follows from the simplification of ZkZ
†
k when substituting µ by its expression.

Taking again the expectation yields

E
[∥∥∥ZkZ

†
kΣk

∥∥∥2
F

]
=
∥∥∥K⊥,kK

−1
k Σk

∥∥∥2
F
+
∥∥∥(K/Kk)

1
2

∥∥∥2
F
· E
[∥∥∥Z†

kΣk

∥∥∥2
F

]
.

Since the columns of Zk are independently sampled from a multivariate Gaussian distribution with

zero mean and covariance matrix Kk, the matrix ZkZ
⊤
k follows a Wishart distribution of the form

Wk(ℓ, Kk) [20, Definition 3.1.3]. In addition,
∥∥∥Z†

kΣk

∥∥∥2
F

= tr(Σk[Z
†
k]

⊤Z†
kΣk) = tr(Σk[ZkZ

⊤
k ]

−1Σk),

where the second equality holds with probability one since ℓ > k + 1. In fact, if Kk is non-singular,
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the matrix ZkZ
⊤
k is non-singular almost surely, see [20, Theorem 3.1.4]. In this case, according to [20,

Theorem 3.2.12] for ℓ > k + 1, one has

E
[
Σk[ZkZ

⊤
k ]

−1Σk

]
= ΣkE

[
[ZkZ

⊤
k ]

−1
]
Σk =

ΣkK
−1
k Σk

ℓ− k − 1
.

Hence, by the linearity of the expectation, one gets

E
[∥∥∥Z†

kΣk

∥∥∥2
F

]
= E

[
tr(Σk[ZkZ

⊤
k ]

−1Σk)
]
=

tr(ΣkK
−1
k Σk)

ℓ− k − 1
=

tr(Σ2
kK

−1
k )

ℓ− k − 1
,

which concludes the proof.

Probability. Let φ : R(n−k)×ℓ → R, Y 7→
∥∥∥ [µ+ (K/Kk)

1
2Y]Z†

kΣk

∥∥∥
F
. Using the reverse triangular

inequality, it holds for any Y1,Y2 ∈ R(n−k)×ℓ that∣∣φ(Y1)− φ(Y2)
∣∣ ≤∥∥∥(K/Kk)

1
2 [Y1 −Y2]Z

†
kΣk

∥∥∥
F

≤
∥∥∥(K/Kk)

1
2

∥∥∥
F

∥∥∥Z†
kΣk

∥∥∥
F

∥∥[Y1 −Y2]
∥∥
F
,

where the last inequality follows from the submultiplicativity property. Thus, φ is at worst L-Lipschitz

with L =
∥∥∥(K/Kk)

1
2

∥∥∥
F

∥∥∥Z†
kΣk

∥∥∥
F
. Applying [14, Proposition 10.3] then yields that if G ∈ R(n−k)×ℓ is

a matrix whose columns are sampled from a standard Gaussian distribution, then ∀u ≥ 0 one has

P
{
φ(G) ≤ E

[
φ(G)

]
+ Lu

}
≥ 1− e−u2/2.

Hölder’s inequality yields E
[
φ(G)

]
≤ (E

[
φ(G)2

]
)

1
2 , and combining this fact with the result proved

right above and the properties of multivariate Gaussian distribution one has

E
[
φ(G)

]
≤
(
E
[∥∥∥ZkZ

†
kΣk

∥∥∥2
F
| Zk

]) 1
2

=

(∥∥∥K⊥,kK
−1
k Σk

∥∥∥2
F
+
∥∥∥(K/Kk)

1
2

∥∥∥2
F

∥∥∥Z†
kΣk

∥∥∥2
F

) 1
2

≤
∥∥∥K⊥,kK

−1
k Σk

∥∥∥
F
+
∥∥∥(K/Kk)

1
2

∥∥∥
F

∥∥∥Z†
kΣk

∥∥∥
F
.

Altogether, this implies that

P
{∥∥∥ZkZ

†
kΣk

∥∥∥
F
≤
∥∥∥K⊥,kK

−1
k Σk

∥∥∥
F
+ (1 + u) ·

∥∥∥(K/Kk)
1
2

∥∥∥
F

∥∥∥Z†
kΣk

∥∥∥
F

}
≥ 1− e−u2/2. (17)

Let us now consider, for t ≥ 1, the event

Et =

∥∥∥Z†
kΣk

∥∥∥
F
≤

√
3t ·

√
tr(Σ2

kK
−1
k )

ℓ− k + 1

 .

Applying [1, Lemma 8] yields for all t ≥ 1 that

P
{
EC

t

}
≤ t−(ℓ−k),

where EC
t denotes the complement of the event set Et. Now, by denoting EZk

the event considered

in (17), the law of total probabilities reads

P
{
EZk

}
= P

{
EZk

| Et

}
P {Et}+ P

{
EZk

| EC
t

}
P
{
EC

t

}
,
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Since one trivially has P {Et} ≤ 1 and P
{
EZk

| EC
t

}
≤ 1, one gets

1− e−u2/2 ≤ P
{
EZk

}
≤ P

{
EZk

| Et

}
+ t−(ℓ−k),

or equivalently,

P
{
EZk

| Et

}
≥ 1− e−u2/2 − t−(ℓ−k),

which ends the proof for the bound in probability.

Rearranging the terms. It remains to transform the terms to get more interpretable bounds. Since

by definition
[
Uk | Uk

]
is orthogonal, and Z is full column rank, then using (9), one readily has

K⊥,kK
−1
k = U

⊤
k KUk(U

⊤
k KUk)

−1 = tan(Uk,KUk).

Then, using classical algebraic manipulations, one gets∥∥∥(K/Kk)
1
2

∥∥∥2
F
= tr

(
U

⊤
k KUk −U

⊤
k KUkK

−1
k U⊤

k KUk

)
= tr

(
U

⊤
k

[
K−KUkK

−1
k U⊤

k K
]
Uk

)
= tr

(
UkU

⊤
k

[
K−KUkK

−1
k U⊤

k K
])

= tr

(
[In −UkU

⊤
k ]
[
K−KUkK

−1
k U⊤

k K
])

= tr
(
K−KUkK

−1
k U⊤

k K
)
− tr

(
UkU

⊤
k

[
K−KUkK

−1
k U⊤

k K
])

.

The second term is trivially equal to 0, which finally yields∥∥∥(K/Kk)
1
2

∥∥∥2
F
= tr

(
K−KUkK

−1
k U⊤

k K
)

= tr

(
K

1
2

[
In −K

1
2UkK

−1
k U⊤

k K
1
2

]
K

1
2

)
= tr

(
K

1
2

[
Im − π(K

1
2Uk)

]
K

1
2

)
=
∥∥∥[Im − π(K

1
2Uk)]K

1
2

∥∥∥2
F
.

We are now ready to prove Theorem 3.1. Similarly to the proof of Proposition A.3, we prove the

result in expectation and in probability, separately.

Proof of Theorem 3.1: Bound in expectation If Z ∈ Rn×ℓ is a matrix whose columns are indepen-

dently sampled from a multivariate Gaussian distribution with covariance matrix K ∈ Rm×m, then

U⊤
k Z has full row rank with probability 1. Hence, since the expectation is monotonic and linear, taking

the expectation over Z in Proposition A.2 yields

E
[∥∥∥[In − π(Z)

]
A
∥∥∥2
F

]
≤
∥∥∥Σk

∥∥∥2
F
+ E

[∥∥∥ZkZ
†
kΣk

∥∥∥2
F

]
.

Applying Proposition A.3 yields

E
[∥∥∥ZkZ

†
kΣk

∥∥∥2
F

]
=
∥∥tan(Uk, KUk)Σk

∥∥2
F
+
∥∥∥[Im − π(K

1
2Uk)]K

1
2

∥∥∥2
F

tr(Σ2
kK

−1
k )

ℓ− k − 1

=

(
τk(K)2 +

ρk(K)2

ℓ− k − 1

)∥∥∥Σk

∥∥∥2
F
,
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so that we obtain

E
[∥∥∥[In − π(Z)

]
A
∥∥∥2
F

]
≤
(
1 + τk(K)2 +

ρk(K)2

ℓ− k − 1

)∥∥∥Σk

∥∥∥2
F
.

Using Hölder’s inequality, that is E[ |X|2] ≤ E[|X|]2 for any random variable X, concludes the proof.

Proof of Theorem 3.1: Bound in probability Since
√
a+ b ≤ √

a+
√
b for any a, b ≥ 0, Proposition A.2

implies that ∥∥∥[In − π(Z)
]
A
∥∥∥
F
≤
∥∥∥Σk

∥∥∥
F
+
∥∥∥ZkZ

†
kΣk

∥∥∥
F
.

Applying Lemma A.3 on the second term of the right-hand side concludes the proof.
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