
Les Cahiers du GERAD ISSN: 0711–2440

Statistical testing of scaling models for precipitation Intensity-
Duration-Frequency curves

A. Paoli, J. Carreau, and J. Jalbert

G–2024–34

May 2024

La collection Les Cahiers du GERAD est constituée des travaux de
recherche menés par nos membres. La plupart de ces documents de
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entifique.

The series Les Cahiers du GERAD consists of working papers
carried out by our members. Most of these pre-prints have been
submitted to peer-reviewed journals. When accepted and published,
if necessary, the original pdf is removed and a link to the published
article is added.

Suggested citation: A. Paoli, J. Carreau, and J. Jalbert (May
2024). Statistical testing of scaling models for precipitation
Intensity-Duration-Frequency curves, Technical report, Les Cahiers
du GERAD G–2024–34, GERAD, HEC Montréal, Canada.
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– Library and Archives Canada, 2024

GERAD HEC Montréal
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Abstract : Producing accurate precipitation Intensity-Duration-Frequency (IDF) curves necessitates
robust statistical methodologies. Employing a scaling model to combine information across the various
precipitation accumulation durations is desirable for reducing uncertainty and facilitating interpolation
to durations not observed. A variety of such scaling models exist, yet there is currently no formal
goodness-of-fit testing procedure for selecting an appropriate one. In this paper, we develop a goodness-
of-fit procedure to determine if a scaling model is suitable for precipitation IDF data. The proposed
test extends the Anderson-Darling test and involves dividing the database into training and validation
sets. The training set is used to estimate the parameters of the target model, while the validation set
is utilized to compute the test statistic. The asymptotic distribution of the test statistic is established
within a general framework, enabling analytical calculation of the critical region for the test. In our
application to precipitation IDF curves, data corresponding to the shortest accumulation duration are
chosen for the validation set. We validate the performances of the test through a simulation study,
demonstrating that under the null hypothesis, the test maintains the nominal rejection rate even for
small samples ranging from 5 to 20 years. Under an alternative hypothesis, the rejection rate increases
with the discrepancy between the models as well as with the sample size. When applied to historical
data, the test suggests the use of different scaling models for Montréal (QC) and Vancouver (BC).

Keywords: Precipitation, scaling models, intensity-duration-frequency curves, extremes, goodness-
of-fit test, Anderson-Darling test

Résumé : Produire des courbes d’Intensité-Durée-Fréquence (IDF) précises pour les précipitations
nécessite des méthodologies statistiques robustes. Il est souhaitable d’employer un modèle d’échelle
pour combiner les informations des différentes durées d’accumulation des précipitations afin de réduire
l’incertitude et de faciliter l’interpolation pour des durées non observées. Divers modèles d’échelle ex-
istent, mais il n’existe actuellement aucune procédure formelle de test d’adéquation pour sélectionner
le modèle approprié. Dans cet article, nous développons une procédure de test d’adéquation pour
déterminer si un modèle d’échelle est adapté aux données IDF des précipitations. Le test proposé
étend le test d’Anderson-Darling et repose sur la séparation de la base de données en ensembles
d’entrâınement et de validation. L’ensemble d’entrâınement est utilisé pour estimer les paramètres du
modèle cible, tandis que l’ensemble de validation est utilisé pour calculer la statistique de test. La dis-
tribution asymptotique de la statistique de test est établie dans un cadre général, permettant le calcul
analytique de la région critique pour le test. Dans notre application aux courbes IDF des précipitations,
les données correspondant à la plus courte durée d’accumulation sont choisies pour l’ensemble de val-
idation. Nous validons les performances du test par une étude de simulation démontrant que, sous
l’hypothèse nulle, le test maintient le taux de rejet nominal même pour de petits échantillons allant
de 5 à 20 ans. Sous une hypothèse alternative, le taux de rejet augmente avec la divergence entre
les modèles ainsi qu’avec la taille de l’échantillon. Lorsqu’appliqué aux données historiques, le test
suggère l’utilisation de différents modèles d’échelle pour Montréal (QC) et Vancouver (CB).

Mots clés : Precipitations, modèles d’échelle, courbes intensité-durée-fréquence, événements extrêmes,
test d’adéquation, test d’Anderson-Darling

Acknowledgements: This work was supported by Natural Sciences and Engineering Research Council
of Canada and le Fonds de Recherche du Québec – Nature et technologies.
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1 Introduction

Extreme rainfall events can have catastrophic repercussions, as underscored by a recent incident in

Libya. On September 10, 2023, the city of Derna suffered extensive devastation due to the failure of

a dam precipitated by a severe storm Petley (2023). It has been postulated that the precipitation,

measuring 200 mm, may have surpassed the intended capacity of the dam. Having reliable estimates of

the magnitude and frequency of such extreme events is crucial for designing appropriate hydrological

structures, such as dams, reservoirs, and sewer systems.

In hydrology and engineering, estimates of the precipitation intensity i(d, T ) in mm/h during the

duration d > 0 that is expected to be exceeded once every T years are given by Intensity-Duration-

Frequency (IDF) curves (see e.g. Koutsoyiannis et al., 1998, for a review). In Canada, IDF curves are

estimated and provided by Environment and Climate Change Canada (ECCC). Figure 1 displays the

IDF curves for the meteorological station located at the Pierre-Elliott-Trudeau International Airport

in Montréal (QC). For each of the nine durations indicated on the x-axis, six crosses represent the

estimated quantiles of the rain intensity distribution corresponding to return periods of 2, 5, 10, 25,

50, and 100 years, respectively. For example, this chart indicates that for a duration of 30 minutes, a

rainfall intensity of 84 mm/h is expected to occur on average once every 100 years. In other words,

rainfall accumulation during 30 minutes is expected to exceed 42 mm once in a hundred years.

Among existing methodologies, the procedure for estimating the IDF curves provided by ECCC is as

follows. For a given duration d ∈ D, where D corresponds to the set of 5-minute, 10-minute, 15-minute,

30-minute, 1-hour, 2-hour, 6-hour, 12-hour, and 24-hour durations, the return levels are estimated using

the Gumbel distribution fitted to the annual maxima of precipitation intensity, independently for each

duration. As interpolation at intermediate durations is often necessary in practice, Figure 1 displays

six regression lines, each based on the nine return level estimations for a given return period. This

modeling choice assumes that the relation between precipitation intensity and duration follows a power

law (see e.g. Menabde et al., 1999, for a review). This leads to the following assumption:

i(T, d) = a(T )× db(T ); (A1)

where b represents the slope of the line on the log scale, and a measures the intensity of a rain event of

unit duration. The regression parameters a and b are estimated independently for each return period.

Short Duration Rainfall Intensity−Duration−Frequency Data

Données sur I’intensité, la durée et la fréquence des chutes de pluie de courte durée
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Figure 1: IDF curves for the Pierre-Elliott Trudeau International Airport. Source: ECCC.

The IDF curves estimation method used by ECCC has several drawbacks. Firstly, the use of the

Gumbel distribution to model the series of annual maximum intensities is inconsistent with the extreme
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value theory (see Coles, 2001, for a review). This is an important limitation, especially considering

that precipitation maxima typically exhibit heavy-tailed behavior (see e.g. Jalbert et al., 2022, for

precipitation in Canada). Secondly, since the power law exponent parameter b(T ) depends on the

return period and is estimated independently for each, the regression lines for different return periods

across durations may intersect each other, which is physically impossible. Finally, the functional

dependence between the precipitation return levels across durations, as expressed in Assumption A1,

is not taken into account in the estimation procedure. Incorporating this functional dependence in the

estimation procedure enables the sharing of information on precipitation extremes between durations.

It enables reducing parameter uncertainties and interpolating to intermediate durations.

A natural idea consists in transforming Assumption A1 into a so-called “scaling” model between

the distributions of precipitation intensity maxima across durations (see e.g., Gupta & Waymire, 1990).

This links the distributions of precipitation maxima across durations with a single parsimonious model,

pooling information on extreme values across durations and avoiding potential crossover between return

level curves. This scaling property can be expressed as a one-parameter relationship over the set of

marginal distributions. Blanchet et al. (2016) and many others have associated this property with

extreme value theory in order to compute IDF curves with a reduced number of parameters, hence

resulting in narrower confidence intervals. Koutsoyiannis et al. (1998) generalized Assumption A1

into a 2-parameter relationship over the set of marginal distributions. When it comes to IDF curves,

that second parameter allows concavity to appear in log-log scale for smaller durations. Lima et al.

(2018), amongst others, used that flexible scaling property in order to build a regional framework for

computing IDF curves.

Even though those scaling models have strong physical justifications for precipitation across du-

rations, they are not theoretically proven to hold in every situation. In some practical cases, data

shows evidence of diverging from the scaling assumption. Many authors have proposed other empirical

alternatives to simple scaling. Bougadis & Adamowski (2006) highlighted the existence of two scaling

regimes, one for short durations and another for long durations. Courty et al. (2019) proposed applying

modifications directly to the scaling properties of the extreme value parameters. Haruna et al. (2023)

combined those approaches to build a “data-driven” scaling model showing high flexibility.

The choice of which scaling IDF model to use is often made rather arbitrarily in the literature. In

many cases, the simple scaling model is preferred as a default, as it is the most parsimonious and easy to

implement, and its validity can be verified by graphical methods. Menabde et al. (1999) observed that,

for two locations in Australia and South Africa, simple scaling seemed to hold for any rain duration

larger than 30 minutes. As the climate is very different between those locations, they suggested that
this was a general behavior. However, when Yeo et al. (2021) reproduced their methodology for

data from the Pierre-Elliott-Trudeau International Airport (Canada) and Seoul (South Korea), they

showed that the simple scaling property did not hold for the same duration intervals in both places.

Furthermore, such geographical discrepancies may occur between nearby locations, as observed by

Rodriguez-Sola et al. (2017) for a set of Spanish weather stations.

Thus, the decision of whether or not to use a given scaling property to build IDF curves must be

made on a case-by-case basis. From a practical standpoint, this suggests the necessity of a procedure to

assess the validity of the scaling assumption. Haruna et al. (2023) proposed a cross-validation scheme

to choose the best IDF model at a given location; however, that procedure seems too cumbersome to

be practical for engineering purposes and is not applicable for small samples (i.e., weather stations with

few years of observations). Innocenti et al. (2017) established a testing procedure for simple scaling as

part of a study over the whole set of North American weather stations. Yet, the discriminating power

of the test wasn’t studied, and preliminary analysis suggested that it wouldn’t reject often enough.

There exists no formal goodness-of-fit test to assess the scaling assumption.

The main objective of this paper is to propose a goodness-of-fit test procedure tailored for scaling

models. Specifically, we first adapt the Anderson-Darling test to utilize a training set for estimating

distribution parameters and a validation set for evaluating fit. We then apply this test to precipitation
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IDF data, with the smallest duration data composing the validation set and the remaining durations

forming the training set. The newly proposed Anderson-Darling family of goodness-of-fit tests is highly

versatile and applicable in various scenarios involving data partitioning into a training and validation

sets. In this paper, we demonstrate its application to precipitation scaling models.

The remainder of the paper is as follows: Section 2 describes the different scaling models for

precipitation across durations. Section 3 reviews the existing Anderson-Darling goodness-of-fit tests

for a known target distribution and for a target parametric family. Section 4 introduces the proposed

Anderson-Darling test procedure using training and validation sets, applied in Section 5 for assessing

the adequacy between a target scaling model and precipitation IDF data. The Type I error as well

as the power of the proposed test procedure are studied with a simulation study in Section 6. The

proposed test is applied to real precipitation data for estimating IDF curves in Section 7. Section 8

provides the general discussion and conclusion. The proposed test is provided in the Julia open-source

package IDFCurves.jl, and the code reproducing the paper results and figures is available on this public

repository: https://github.com/jojal5/Publications.

2 Scaling models for IDF curves

The scaling models presented in this section will be applied to the precipitation data recorded at the

Pierre-Elliott-Trudeau International Airport (QC) for illustrative purposes. For this station, annual

precipitation intensity maxima are available for n = 76 years between 1943 and 2021 for the set D
composed of 9 durations: 5-, 10-, 15-, 30-minute and 1-, 2-, 6-, 12- and 24-hour. The IDF curves

provided by ECCC for this station are shown in Figure 1. Let Yd denote the annual maximum of

precipitation intensity for the accumulation duration d ∈ D. The scaling models presented in this

section aim to account for the functional dependence between the distributions accross durations.

2.1 No scaling

The first scaling model involves no scaling at all; it consists of modelling independently each duration.

It does not take into account the functional dependence, and information across durations is not shared.

According to extreme value theory (Coles, 2001), the distribution for the annual maximum Yd can

be approximated by the Generalized Extreme Value distribution:

Yd ∼ GEV (µd, σd, ξd); (A2)

where µd ∈ R, σd > 0, ξd ∈ R correspond respectively to the location, scale and shape parameters for

duration d ∈ D and where the cumulative distribution function (CDF) is as follows:

G(y) =


exp

[
−
{
1 + ξd

(
y − µd

σd

)}−1/ξd
]

if ξd ̸= 0;

exp

{
− exp

(
y − µd

σd

)}
if ξd = 0;

defined on {y : 1 + ξd(y − µd)/σd > 0}.

In Assumption A2, the location µd, the scale σd > 0 and the shape parameters ξd depend on

the duration d. Assuming that the annual maxima for duration d are independent and identically

distributed from the GEV distribution, the parameters (µd, σd, ξd) can be estimated. This estimation

procedure is repeated for each duration independently.

Using this no scaling approach, IDF curves at the Pierre-Elliott-Trudeau International airport

meteorological station are estimated and shown in Figure 2. The crosses are obtained independently for

https://github.com/JuliaExtremes/IDFCurves.jl
https://github.com/jojal5/Publications
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each duration and correspond to the quantiles of the associated estimated GEV (µd, σd, ξd) distribution

using maximum likelihood. The following equation applies for return levels:

i(T, d) =

{
µd +

σd

ξd

[{
− log

(
1− 1

T

)}−ξd − 1
]

if ξd ̸= 0;

µd − σd log
{
log
(
1− 1

T

)}
if ξd = 0.

They differ slightly from the ones represented in Figure 1, which resulted from fitting a Gumbel

distribution (assuming ξ = 0) for each duration. The solid lines are estimated subsequently using

Assumption A1. They result from simple least squares optimization, given the pointwise return levels

(crosses). As one may notice, the line fit near the smaller durations is poor, as the return levels seem

to curve slightly for durations less than a hour.
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Figure 2: IDF curve for Montréal-Trudeau airport, obtained by fitting a GEV distribution for each duration without any
scaling hypothesis.

Due to the uncertainty in GEV parameter estimation when using this model in practice, it is

possible for the estimated return levels for different durations to cross each other, which is physically

impossible as return levels are increasing in the return period. The scaling models presented in the

next sections avoid this behavior.

It is not uncommon in practice to fix the shape parameters at 0 for all durations for precipitation.

It is usually done for simplicity because this parameter is difficult to estimate. However, imposing

a light-tailed distribution to the heavy-tailed precipitation may lead to quantile and return level un-

derestimation. A simplistic scaling model would be to assume that the precipitations have the same

shape parameter across durations:

Yd ∼ GEV (µd, σd, ξ).

Therefore, the information from all durations is pooled to estimate the common unknown shape param-

eter. This simplistic model decreases the chance of return level crossing along durations by reducing

the sampling uncertainty of ξ, but does not eliminate it.

2.2 Simple scaling

Gupta & Waymire (1990) introduced the property of “strict sense simple scaling” for the rainfall

process. When applied to precipitation intensity maxima, Burlando & Rosso (1996) showed that

it generalizes directly the intensity-duration-frequency relation expressed in Assumption A1 into a

relation over the probability distributions of Yd for d ∈ D:



Les Cahiers du GERAD G–2024–34 5

Yd
L
=

(
d

d0

)−α

Yd0 ;

for an arbitrarily chosen reference duration d0 > 0, 0 < α < 1 and where
L
= denotes equality in

distribution. The parameter, α, is referred to as the scaling exponent. Its value does not depend on

the chosen reference duration d0, and it is bounded by physical laws. Assumption A1 can be rewritten

as

i(T, d) =

(
d

d0

)−α

i(T, d0);

for any return period T > 0 and duration d > 0, where a(T ) = dα0 × i(T, d0) and B = −α.

If Assumptions A1 and A2 hold for some α over the set of durations D, then simple computations

yield the following relation between the marginal GEV distributions of all durations d ∈ D and for

any reference duration d0 > 0:

Yd ∼ GEV

{
µd0

(
d

d0

)−α

, σd0

(
d

d0

)−α

, ξd0

}
;

where (µd0
, σd0

, ξd0
) correspond to the marginal GEV parameters for the duration d0.

This model, referred to as “Simple Scaling”, provides the marginal distribution of all precipitation

intensity maxima Yd for any accumulation duration d and year index j using only the four parameters

(µd0
, σd0

, ξd0
, α). It enables the sharing of information across different durations. This model assumes

the invariance of the shape parameter across durations.

The Simple Scaling model has been fitted to the precipitation data recorded at the Pierre-Elliott-

Trudeau International Airport by maximum likelihood assuming that the data are statistically inde-

pendent. The chosen reference duration is d0 = 1h and the parameter estimates are as follows:

µ̂d0
= 18.1 (17.7, 18.6);

σ̂d0
= 5.29 (4.95, 5.63);

ξ̂d0
= 0.049 (−0.009, 0.106);

α̂ = 0.694 (0.682, 0.707).

The values in parenthesis correspond to the Wald 95% confidence intervals. Figure 3 shows the

resulting IDF curves. The lines are obtained with the fitted Simple Scaling model, while the crosses

consist of the return levels estimated independently for each duration as in Figure 2 for illustration

purposes. The IDF curves in Figure 2 and Figure 3 are very similar, as the scaling hypothesis is

the same for both methodologies. The Simple Scaling model is, however, more parsimonious, and

parameter and return level uncertainties are therefore reduced (not shown in the figures). Yet, the

curvature of the crosses along the durations is not captured by the Simple Scaling model.

2.3 General scaling model

Koutsoyiannis et al. (1998) generalized the Simple Scaling model by determining the mathematically

feasible shapes for IDF curves to prevent return level crossing across different durations. They stated

that all scaling relationships typically found in contemporary literature could be simplified to the

following relation

i(T, d) =
a(T )

(d+ δ)α
for d ∈ D and T > 0; (A3)

where 0 < α < 1 and δ > 0. This last equation generalizes Assumption A1 by introducing the duration

offset δ. This additional parameter adds concavity in the log-log scale to the return level curve along
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Figure 3: IDF curves at Montréal Pierre-Elliott-Trudeau International Airport estimated with the Simple Scaling model.

the durations and does not depend on the duration. As δ → 0, the return level curves become linear,

simplifying the model to the Simple Scaling, while the curves’ concavity increases with δ.

This assumption on return levels leads to the following relation over the probability distributions

of Yd:

Yd
L
=

(
d+ δ

d0 + δ

)−α

Yd0
;

for an arbitrarily chosen reference duration d0 > 0 and d ∈ D. In combination with Assumption A2,

the marginal distribution of the annual maximum precipitation intensity for duration d ∈ D is given

as follows:

Yd ∼ GEV

{
µd0

(
d+ δ

d0 + δ

)−α

, σd0

(
d+ δ

d0 + δ

)−α

, ξd0

}
;

where (µd0
, σd0

, ξd0
) correspond to the marginal GEV parameters for the duration d0. This model also

assumes the invariance of the shape parameter across durations.

This model, referred to as “General Scaling” and as dGEV distribution by Koutsoyiannis et al.

(1998), provides the marginal distributions of all precipitation intensity Yd for any accumulation du-

ration d using only the five parameters (µd0
, σd0

, ξd0
, α, δ). As the Simple Scaling model, the General

Scaling model enables the sharing of information across different durations, but the latter is more

flexible.

The General Scaling model has been fitted to the precipitation data recorded at the Pierre-Elliott-

Trudeau International Airport. The chosen reference duration is d0 = 1h and the parameter estimates

along with their 95% confidence intervals are as follows:

µ̂d0 = 19.8 (19.1, 20.6);
σ̂d0

= 5.59 (5.20, 5.99);

ξ̂d0
= 0.0405 (−0.0175, 0.085);

α̂ = 0.761 (0.735, 0.787);

δ̂ = 0.068 (0.041, 0.095).

Figure 4 shows the resulting IDF curves. The lines are obtained with the fitted General Scaling

model, while the crosses consist of the return levels estimated independently for each duration as in
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Figure 2 for illustration purposes. The General Scaling model naturally captures the curvature of the

pointwise return levels.
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Figure 4: IDF curves at Montréal Pierre-Elliott-Trudeau International Airport estimated with the General Scaling model.

2.4 Additional scaling models

The General Scaling model is not the only one adding more flexibility to the Simple Scaling. Other

scaling properties have been proposed, motivated by specific behaviors that may be encountered in real

precipitation data. Bougadis & Adamowski (2006) noted that the simple scaling property does not

hold for the entire range of precipitation durations but holds separately for short and long durations.

They hence proposed a hybrid model comprising two Simple Scaling models, one for short durations

and the other for long durations: Yd =
(

d
d0

)−α1

Yd0
if d ≤ d0;

Yd =
(

d
d0

)−α2

Yd0
if d > d0;

where the reference duration d0 ∈ D consists of the duration at which the break in scaling appears.

This duration is used as the reference duration for both sub Simple Scaling models. Each of these

submodels has its own scaling exponent: α1 for durations d ≤ d0 and α2 for d > d0. We refer to this

model as “Hybrid Scaling”.

Assuming that Assumption A2 holds, another alternative proposed by Courty et al. (2019) to

Simple Scaling consists of allowing distinct scaling exponents for the location and shape parameters of

the GEV distribution: 
µd = µd0

(
d
d0

)−αµ

;

σd = σd0

(
d
d0

)−ασ

;

ξd = ξd0
;

for any reference duration d0 > 0 and for 0 < αµ ≤ 1 and 0 < ασ ≤ 1. Unlike the other scaling

models, this model is only defined when the marginal distributions family is the GEV. However, it

is not a restrictive constraint, as the GEV is the natural distribution for modeling annual maxima

according to extreme value theory. Such a model was motivated by an empirical study of the scaling

behavior. Courty et al. (2019) observed that, when fitting a duration-independent GEV model, the
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scaling exponent they observed for the location parameter was different from the one for the scale

parameter. We refer to this model as “Composite Scaling”.

3 Review of Anderson-Darling tests

Let x = (x1, x2, . . . , xn) be a random sample of independent and identically distributed one-

dimensional variables from an unknown common cumulative distribution function FX . The problem

of testing whether these observations may come from a given distribution or family of distributions is

classical and has resulted in the development of many goodness-of-fit tests. The most common one is

the Anderson-Darling test (Anderson & Darling, 1952) where the test statistic measures the deviation

between the target distribution and the empirical CDF defined as follows:

Fn(x) =
1

n

n∑
j=1

⊮xj≤x. (1)

This section summarizes existing results on Anderson-Darling tests.

3.1 Test for a known distribution

When the cumulative distribution function of the target distribution, denoted as F , is fully specified,

the null and alternative hypotheses of the Anderson-Darling test can be written as follows:{
H0 : FX = F ;

H1 : FX ̸= F.

Anderson & Darling (1952) proposed the following statistic for testing the previous hypotheses using

the random sample x:

SΨ
n = n

∫ +∞

−∞
{F (x)− Fn(x)}2 Ψ {F (x)} dF (x); (2)

where Ψ : (0, 1) → R+ is a weight function. SΨ
n is a measure of the mean squared error between the

target and empirical distributions of X.

For the statistic to exist, the weight function Ψ must meet the following conditions (Anderson &

Darling, 1952): { ∫ t

0
u2Ψ(u)du < +∞;∫ 1

t
(1− u)2Ψ(u)du < +∞;

(3)

for t ∈ (0, 1). When Ψ(u) = 1, the tails and the bulk have the same importance and SΨ
n corresponds

to the Cramér-Von Mises statistic. When Ψ(u) = 1
u(1−u) , more weight is given to the tails of the dis-

tribution, and SΨ
n corresponds to the Anderson-Darling statistic. Other options have been considered

in the literature; for instance, Sinclair et al. (1990) proposed Ψ(u) = 1
1−u when the upper tail is of

specific interest. This could be particularly suitable for our use case as we are studying hydrological

extremes.

When H0 is true, Anderson & Darling (1952) showed, under additional conditions on the weight

function Ψ, that SΨ
n is asymptotically distributed as the integral of a squared Gaussian process:

lim
n→∞

P(SΨ
n ≤ s) = P

{∫ 1

0

W 2(u)du ≤ s

}
;

for s ≥ 0 and where W denotes the Gaussian process of mean 0 and covariance function ρ defined as

follows:

ρ(u, v) =
√

Ψ(u)Ψ(v) {min (u, v)− uv} ;
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where u and v take values in (0, 1). This asymptotic distribution for the test statistic does not depend

on the target distribution F . Therefore, the critical values for testing the hypotheses are well-known

and tabulated (for instance by Smirnoff (1937) in the Cramér-Von Mises case).

Equation (2) is generally not used for computing the statistic SΨ
n . Anderson & Darling (1954)

proposed a generic method to obtain an explicit formula for the statistic. Given the ordered sample

x(1) ≤ . . . ≤ x(n), the formulas for the weight functions Ψ(u) = 1, Ψ(u) = 1
u(1−u) and Ψ(u) = 1

1−u are

given respectively by the following equations:

S1
n = C2

n =
1

12n
+

n∑
j=1

{
F (x(j))−

2j − 1

n

}
; (4a)

S
1

u(1−u)
n = A2

n = −n− 1

n

n∑
j=1

(2j − 1)
[
logF (x(j)) + log

{
1− F (x(n−j+1))

}]
; (4b)

S
1

(1−u)
n = AU2

n =
n

2
− 2

n∑
j=1

F (x(j))−
n∑

j=1

(
2− 2j − 1

n

)
log
{
1− F (x(j))

}
. (4c)

3.2 Test for a family of distributions

Anderson-Darling tests can also be used to test for a parametric family of distributions instead of

a specific and fully specified distribution. Let {Fθ : θ ∈ Θ} denote the parametric family of target

distributions, where Fθ represents the distribution with the parameter vector θ taking values in the

parameter space Θ. The Anderson-Darling test can be written as follows:{
H0 : ∃θ ∈ Θ : FX = Fθ;

H1 : ∀θ ∈ Θ, FX ̸= Fθ.

Suppose that θ̂n is the maximum likelihood estimate of the parameter vector θ based on the random

sample x of size n. The Anderson-Darling test statistic can be adapted as follows:

SΨ
n = n

∫ +∞

−∞

{
Fθ̂n

(x)− Fn(x)
}2

Ψ
{
Fθ̂n

(x)
}
dFθ̂n

(x). (5)

The conditions on the weight function Ψ to ensure the existence of the statistic remain the same,

stated in Equation (3). Furthermore, the explicit formulas given in Equation (4) remain valid, with

the only modification being the replacement of the target distribution F with Fθ̂n
, the distribution in

the family Fθ with the estimated parameters θ̂n. However, the asymptotic distribution of SΨ
n when

H0 is true differs from the previous section where the target distribution is fully specified. Obtaining

this asymptotic distribution is more challenging.

When the maximum likelihood estimator satisfies the usual regularity conditions (given, for in-

stance, by Cramér, 1999), Darling (1955) found the asymptotic distribution when Ψ(u) = 1 and θ = θ

is a scalar. Sukhatme (1972) extended the results to a parameter vector θ. Durbin (1973) consolidated

the results by focusing on the weak convergence of an empirical process, allowing for a simplification of

the necessary hypotheses to ensure convergence. Stephens (1976) studied the asymptotic distribution

for several weight functions, particularly in the case of the two-parameter Gaussian family, without

providing a formal proof. Laio (2004) extended these results without providing a proof for any weight

function Ψ, and applied the test to the GEV family. To the best of our knowledge, a rigorously es-

tablished asymptotic distribution is currently available exclusively for the scenario in which Ψ(u) = 1,

and S1
n corresponds to the Cramér-Von Mises statistic.

Let’s assume that H0 is true so a θ0 ∈ Θ exists such that FX = Fθ0
. Using the transformation

u = Fθ0(xu), let gθ0(u) denotes the following function:

gθ0
(u) = ∇θFθ(xu)|θ=θ0

; (6)
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and I the Fisher information matrix evaluated at θ0:

Iθ0
= −E(X|θ0)

[
∂2 log fθ(X)

∂θ2

∣∣∣∣
θ=θ0

]
; (7)

where fθ is the density function related to Fθ. Darling (1955) and Durbin (1973) showed that

lim
n→∞

P(S1
n ≤ s) = P

{∫ 1

0

W 2(u)du ≤ s

}
;

for s ≥ 0 and where W corresponds to the Gaussian process of mean 0 and covariance function ρ

defined as follows:

ρ(u, v) = min (u, v)− uv − gθ0
(u)⊤I−1

θ0
gθ0

(v); (8)

where u and v take values in (0, 1).

This result extends the one from the fully-specified case by adding the last term −gθ0
(u)⊤Iθ0

gθ0
(v)

to the covariance function of the Gaussian process W . As a result, the asymptotic distribution of

the test statistic depends on the target family Fθ. It also depends on the true parameter value

θ0. Consequently, the Anderson-Darling test must be tailored specifically for the considered family of

distributions, unlike the fully specified distribution where a general asymptotic distribution is available.

In practice, θ0 is unknown and can be replaced by its maximum likelihood estimate θ̂n. The Fisher

information matrix can also be replaced by its empirical counterpart. In general, the closed-form

expression for the asymptotic distribution of S1
n is not available. However, its critical quantiles can be

approximated using the method proposed by Zolotarev (1961) and presented in Appendix B.

4 Anderson-Darling test for a training and a validation sets

In the typical framework for testing a family of distributions, outlined in Section 3.2 for the Anderson-

Darling test, the entire random sample serves two purposes: estimating the parameters of the paramet-

ric target family and assessing the goodness-of-fit of the fitted distribution to the data. An alternative

approach involves splitting the random sample into a training set and a validation set. The data in the

training set are used for parameter estimation, while those in the validation set are used to evaluate

the goodness-of-fit of this fitted distribution to the data. This approach leads to a novel family of

Anderson-Darling tests. The test procedure, statistic, and its asymptotic distribution under the null

hypothesis, which differ from the typical framework, are described in this section. To the best of our

knowledge, the theoretical properties of such a test have not been studied in the literature before.

4.1 Test hypotheses

As previously defined, let us recall that x = (x1, . . . , xn) is an independent and identically distributed

random sample according to the CDF FX . Let {Fθ : θ ∈ Θ} represent the parametric family of target

distributions. The test hypotheses remain the same as those described in Section 3.2 for testing a

family of distributions: {
H0 : ∃θ ∈ Θ : FX = Fθ;

H1 : ∀θ ∈ Θ, FX ̸= Fθ.

4.2 Test statistic

Let T be the subset of indices of x corresponding to the training set, and let V be the subset of indices

corresponding to the validation set, such that T ∪V = {1, . . . , n} and T ∩V = ∅. Let xT = (xi : i ∈ T )

denote the m > 0 data in the training set, and xV = (xi : i ∈ V) denote the ℓ > 0 data in the validation

set.
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The Anderson-Darling test statistic, as described in Section 3.2, can be adapted to the present

framework of using a training and a validation set as follows:

Sℓ,m = ℓ

∫ +∞

−∞

{
Fθ̂m

(x)− Fℓ(x)
}2

dFθ̂m
(x); (9)

where θ̂m represents the maximum likelihood estimate of the parameters of the target family obtained

using the training set, and Fℓ represents the empirical CDF of the data in the validation set. In this

last equation, the weight function corresponds to the identity function. It could be extended to any

weight function Ψ that satisfies the conditions stated in Equation (3).

The explicit formula for the test statistic expressed in Equation (4a) can also be adapted to the

present context as follows:

Sℓ,m =
1

12ℓ
+

ℓ∑
j=1

{
Fθ̂m

(xV
(j))−

2j − 1

ℓ

}
.

The modifications involve replacing the target distribution F with its estimate Fθ̂m
from the family

based on the training set, and using xV(j) to represent the j-th ordered value of the validation set.

4.3 Asymptotic distribution

In terms of the asymptotic distribution under the null hypothesis of the test statistic, the theoretical

results presented in Section 3.2 cannot be directly applied. However, similar asymptotic properties

can still be established in this new framework. Indeed, most of the propositions by Durbin (1973)

regarding the test for a family of distributions can be adapted when parameter estimation is based

on independent observations, namely the training set. While the main arguments remain unchanged,

the resulting asymptotic distribution differs in an interesting way, as summarized in the following

proposition:

Proposition 4.1. Let us assume that the same regularity conditions of the ones described by Durbin

(1973) hold. Let’s additionnally assume that the sample sizes of the training and validation sets are

asympotically proportional, i.e.

lim
ℓ→∞
m→∞

m

ℓ
= a > 0.

If H0 is true, i.e. a θ0 ∈ Θ exists such that FX = Fθ0
, then

lim
ℓ→∞
m→∞

P (Sℓ,m ≤ s) = P
{∫ 1

0

W 2(u) du ≤ s

}
; (10)

where W denotes the Gaussian process with mean 0 and covariance function

ρ(u, v) = min (u, v)− uv + gθ0
(u)⊤ (aIθ0

)
−1

gθ0
(v); (11)

and where gθ0 and Iθ0 are defined in Equation (6) and Equation (7) respectively.

The proof of this proposition is available in Appendix A.

The test statistic asymptotic distribution is similar to the typical case described in Section 3.2,

but the covariance function differs in an interesting way. The last term, involving the Fisher infor-

mation matrix, is added when using both training and validation sets, whereas it is subtracted when

using all the data to estimate θ as expressed in Equation (8). In the fully specified target distribu-

tion in Section 3.1, no such term involving the Fisher information matrix was needed. An intuitive

interpretation of the differences in the correlation function is the following. In the classical test for a

family of distributions, since the data are used to estimate the distribution, the asymptotic distribution
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must compensate for the fact that the estimated distribution fits the data too well. On the contrary,

when using both training and validation sets, the asymptotic distribution must compensate for the

uncertainty in the estimation of θ0 and the imperfect specification of the estimated distribution.

In practice, θ0 is unknown and can be replaced by its maximum likelihood estimate θ̂m based on

the training set. The Fisher information matrix can also be replaced by its empirical counterpart

on the training set. In general, the closed-form expression for the asymptotic distribution of Sl,m

is not available. However, when it comes to computing critical thresholds and p-values for the test,

its quantiles can be approximated using the method proposed by Zolotarev (1961). The details are

available in Appendix B.

5 Anderson-Darling test procedure for scaling models using train-
ing and validation sets

The proposed Anderson-Darling test for a family of distributions using both a training and a validation

set is applied to assess the goodness-of-fit of precipitation IDF scaling models. A slight modification in

the definition of the family of distributions to account for the scaling relationship is described, along

with the selection process for the training and validation sets.

5.1 Selection of training and validation sets

Given a target scaling model and n annual precipitation intensity maxima for the set of durations D,

the null hypothesis now states that “the data are distributed according to the target model”.

As illustrated in Section 2 with an example using precipitation data recorded at the Pierre-Elliott-

Trudeau International Airport, the various scaling models exhibit the greatest divergence for short

durations. This suggests using precipitation corresponding to the smallest duration as the validation

set and precipitation from the remaining durations as the training set. Consequently, the empirical

distribution of the data in the validation set is compared with the target distribution for the smallest

duration, obtained using one of the scaling models fitted on the training set.

The selection of the duration for validation is crucial. It should be a duration at which the discrep-

ancy between the tested models is maximal to ensure maximum test power. In our case, the smallest

(5-min) duration is optimal for precipitation IDF curves, and it has been demonstrated to outperform
any other duration choice in the example of the Pierre-Elliott-Trudeau International Airport. How-

ever, this choice can be easily adapted to different contexts as it does not influence the overall testing

procedure.

5.2 Formal definition

Let d(1) be the smallest duration, e.g. 5 minutes in the current application. Let Fθ denotes the

marginal target CDF for Yd(1)
given the parameter vector θ. Let θ̂n denotes the maximum likelihood

estimation of the target scaling model parameter vector θ based on the n annual maxima for each of

the remaining durations D \ d(1). The test statistic can be written as follows:

Sn = n

∫ +∞

−∞

{
Fθ̂n

(x)− F̂n(x)
}2

dFθ̂n
(x).

It is important to notice that this is a special case of the goodness-of-fit test presented in Section 4.

The set xV contains one-dimensional data corresponding to the smallest duration and xT contains

multi-dimensional data corresponding to the other durations. In this case, l = m. It is not a direct

application, as data in the training and validation sets are not identically distributed. Yet, they are

supposed to be independent, as this is an inherent hypothesis to the IDF construction procedure.
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Hence, Proposition 4.1 applies with gθ and Iθ being computed over the validation set and the training

set respectively. All the details are available in Appendix A.

5.3 Computing the test statistic and its p-value

The explicit formula for the test statistic expressed in Equation (4a) can be adapted to the present

context, using the n ordered observations of the validation set xV
(1) ≤ . . . ≤ xV

(n) as follows:

Sn =
1

12n
+

n∑
j=1

{
Fθ̂n

(xV
(j))−

2j − 1

n

}
. (12)

The asymptotic distribution of the test statistic depends on the target scaling model as well as its true

parameter value θ0, as expressed in Proposition 4.1. The covariance kernel ρ is estimated by employing

gθ̂n
and În from, respectively, Equation (13) and Equation (14) available in Appendix A. Efficient

computation of the test statistic p-value associated with the asymptotic distribution of Equation (10)

can be achieved using the approximation proposed by Zolotarev (1961) as described in Appendix B.

Note that the critical region of the test can also be obtained using the same approximation.

For a more precise description of the testing procedure, an algorithm is provided in Appendix C.

It’s worth noting that this procedure is implemented in the open-source Julia library IDFCurves.jl.

On an Apple M1 Pro processor with 16Go of Random Access Memory (RAM), the computation time

for the whole testing procedure to complete at Montréal-Trudeau airport is ≈ 0.16 seconds when using

Simple Scaling as the null hypothesis, and ≈ 0.25 seconds when using General Scaling as the null

hypothesis.

6 Simulation study to assess the performance of the proposed test
procedure applied to scaling models

The type I error (the rejection rate when the null hypothesis is true) and the power (the rejection rate

of the test when the null hypothesis is false) of the proposed test are assessed through a simulation

study. Let’s consider the 9 durations as in the real precipitation data, namely 5-, 10-, 15-, 30-minute,

and 1-, 2-, 6-, 12-, and 24-hour durations. Without loss of generality, let the reference duration d0 be

24 hours. For each of these durations, we use the same sample size n. The validation set comprises

observations for the 5-minute duration, and the training set corresponds to the remaining observations

for the other durations.

6.1 Simple Scaling

6.1.1 Type I error

To assess the type I error when the target family in the null hypothesis is the Simple Scaling model

(Section 2.2), 500 samples were generated from the Simple Scaling model using µd0 = 2, σd0 = 0.3, and

α = 0.7 for various values of the shape parameter −0.2 ≤ ξ ≤ 0.4 and different sample sizes ranging

from n = 5 to n = 300. Figure 5 depicts the rejection rate of the null hypothesis as a function of

the sample size and the shape parameter at a test significance level of 5%. The 95% confidence bands

are obtained through a non-parametric bootstrap procedure. The empirical rejection rates of the null

hypothesis when true closely align with the nominal level of 5%, even for small sample sizes. The type

I error does not appear to be influenced by the shape parameter.

6.1.2 Test power against the General Scaling model

The power of the test for the Simple Scaling family is assessed against three different alternatives:

General Scaling, Hybrid Scaling, and Composite Scaling. In the case of General Scaling (Section 2.3),

https://github.com/JuliaExtremes/IDFCurves.jl
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Figure 5: Type I error: rejection rate of the test procedure for the Simple Scaling model under the null hypothesis, as a
function of the sample size and the shape parameter.

data have been generated from the model using µd0 = 2, σd0 = 0.3, and α = 0.7 for various values of

the shape parameter −0.2 ≤ ξ ≤ 0.4 and the duration offset 0 ≤ δ ≤ d(1). For a sample size of n = 60,

Figure 6a illustrates the rejection rate of the null hypothesis stating that the data are distributed

according to Simple Scaling, when in reality the true model is the General Scaling model. The test

power rapidly increases with the ratio δ/d(1). As δ approaches 0, the General Scaling model simplifies

to the Simple Scaling model, and the rejection rate aligns with the fixed type I error. The test power is

not influenced by the shape parameter. Finally, as expected, the test power increases with the sample

size n, as shown in Figure 7a for random samples generated with δ/d(1) = 0.2.

In practice, for precipitation IDF curves, d(1) = 5 min, and Koutsoyiannis et al. (1998) estimated

the duration offset at δ̂ ≈ 8 min for precipitation recorded in Athens. In this case, the estimated ratio

δ/d(1) is 1.6, and the power of the proposed test is practically one. Even with a moderate sample size

of n = 60, the test exhibits a good power for a ratio above 0.2, corresponding to a duration offset of

δ = 1 min for precipitation IDF curves.
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(a) General Scaling model
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(b) Hybrid Scaling model
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(c) Composite Scaling model

Figure 6: Test power: rejection rate of the test procedure for the Simple Scaling model when, in fact, the true model is
(a) the General Scaling model, (b) the Hybrid Scaling model, and (c) the Composite Scaling model.
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(a) General Scaling model
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(b) Hybrid Scaling model
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(c) Composite Scaling model

Figure 7: Test power as a function of the sample size when the target model is the Simple Scaling model and the true
model is (a) the General Scaling model, (b) the Hybrid Scaling model, and (c) the Composite Scaling model.
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6.1.3 Test power against the Hybrid Scaling model

In the case of Hybrid Scaling (Section 2.4) where there is a break point in the return levels relation

with the duration, data have been generated from the model using µd0
= 2, σd0

= 0.3, α2 = 0.7 and

the break-point at the 1-hour duration for various values of the shape parameter −0.2 ≤ ξ ≤ 0.4 and

the short-durations scaling exponent α1 > 0. For a sample size of n = 60, Figure 6b illustrates the

rejection rate of the null hypothesis stating that the data are distributed according to Simple Scaling,

when in reality the true model is the Hybrid Scaling model. When α1 = α2, the relative difference

between α1 and α2 is 0 so the model simplifies to the Simple Scaling model and the rejection rate is

equal to the fixed type I error. The test power increases with the relative difference between the two

exponent parameters. The test power is not influenced by the shape parameter. Finally, as expected,

the test power increases with the sample size n, as shown in Figure 7b for random samples generated

with α1−α2

α1
= −0.1.

In their study, Huang et al. (2010) utilized the Hybrid Scaling model to construct precipitation

IDF curves at various meteorological stations in China. They observed values of α1−α2

α1
around −0.2.

The negative nature of this value indicates a flattening of the curve at small durations. In such cases,

the power of the proposed test is nearly one, even with a relatively small sample size of n = 60.

6.1.4 Test power against the Composite Scaling model

In the case of Composite Scaling (Section 2.4) where the scaling exponent is not the same for modeling

µ and σ across durations, data have been generated from the model using µd0
= 2, σd0

= 0.3, αµ = 0.7

for various values of the shape parameter −0.2 ≤ ξ ≤ 0.4 and the σ scaling exponent ασ > 0. For

a sample size of n = 60, Figure 6c illustrates the rejection rate of the null hypothesis stating that

the data are distributed according to Simple Scaling, when in reality the true model is the Composite

Scaling model. When αµ = ασ, the relative difference between αµ and ασ is 0 so the model simplifies

to the Simple Scaling model and the rejection rate is equal to the fixed type I error. The test power

increases with the relative difference between the two exponent parameters. The power increases more

rapidly when ασ < αµ compared to the case ασ > αµ. For this alternative, the shape parameter

influences the test power, especially when ασ > αµ. The power increases with the shape parameter.

Finally, as expected, the test power increases with the sample size n, as shown in Figure 7c for random

samples generated with
ασ−αµ

αµ
= 0.3.

Van de Vyver (2018) applied composite scaling at several rain gauges in Belgium. Model estimations
resulted in

ασ−αµ

αµ
values around 0.2 and a shape value around 0.08. In this situation, the power of the

proposed test is around 0.35 when the sample size is n = 60.

6.2 General Scaling

6.2.1 Type I error

To assess the type I error when the target family in the null hypothesis is the General Scaling model,

500 samples were generated from the General Scaling model using µd0
= 2, σd0

= 0.3, α = 0.7 and

δ = 3 min for various values of the shape parameter −0.2 ≤ ξ ≤ 0.4 and different sample sizes ranging

from n = 5 to n = 300. Figure 8 depicts the rejection rate of the null hypothesis as a function of

the sample size and the shape parameter at a test significance level of 5%. The 95% confidence bands

are obtained through a non-parametric bootstrap procedure. The empirical type I errors align with

the nominal level for sample sizes n ≥ 20. There appears to be a small bias for very small sample

sizes (e.g., n = 5), where the type I error increases to 7.5%. The type I error does not appear to be

influenced by the shape parameter.
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Figure 8: Type I error: rejection rate of the test procedure for the General Scaling model under the null hypothesis, as a
function of the sample size and the shape parameter.

6.2.2 Test power against the Hybrid Scaling model

In the case of Hybrid Scaling, data have been generated from the model using µd0
= 2, σd0

= 0.3,

α2 = 0.7, and the breakpoint at the 1-hour duration for various values of the shape parameter −0.2 ≤
ξ ≤ 0.4 and the short-durations scaling exponent α1 > 0. For a sample size of n = 60, Figure 9a

illustrates the rejection rate of the null hypothesis stating that the data are distributed according to

General Scaling, when in reality the true model is the Hybrid Scaling model. When α1 = α2, the

model simplifies to the Simple Scaling model, and the rejection rate is equal to the fixed type I error,

as the Simple Scaling model is a particular case of the General Scaling model when δ = 0.

When α1 > α2, the return level curve as a function of the duration becomes convex, and the General

Scaling model cannot capture this behavior. The more α1 increases relatively to α2, the greater the

test power becomes, as the convexity increases. When α1 < α2, the return level curve as a function

of the duration becomes concave, and the General Scaling model can sometimes mimic this behavior

well. Although the General Scaling model may not be exact, it can provide an excellent approximation

of the Hybrid Scaling model in many cases. Finally, as expected, the test power increases with the

sample size n, as shown in Figure 7b for random samples generated with α1−α2

α1
= −0.1.
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(a) Hybrid Scaling model
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(b) Composite Scaling model

Figure 9: Test power: rejection rate of the test procedure for the General Scaling model when, in fact, the true model is
(a) the Hybrid Scaling model and (b) the Composite Scaling model.

6.2.3 Test power against the Composite Scaling model

In the case of Composite Scaling, data have been generated from the model using µd0
= 2, σd0

= 0.3,

αµ = 0.7 for various values of the shape parameter −0.2 ≤ ξ ≤ 0.4 and the σ scaling exponent ασ > 0.

For a sample size of n = 60, Figure 9b illustrates the rejection rate of the null hypothesis stating that

the data are distributed according to General Scaling, when in reality the true model is the Composite

Scaling model. When αµ = ασ, the model simplifies to the Simple Scaling model, and the rejection

rate is equal to the fixed type I error, as the Simple Scaling model is a particular case of the General

Scaling model when δ = 0.



Les Cahiers du GERAD G–2024–34 17

Length of the annual maxima series (n)

5.0 10.0 20.0 30.0 60.0 100.0 200.0 300.0

0.4
0.3
0.2
0.1
0.0
-0.1
-0.2

ξ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
je
c
tio
n
 r
a
te

(a) Hybrid Scaling model
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(b) Composite Scaling model

Figure 10: Test power as a function of the sample size when the target model is the General Scaling model and the true
model is (a) the Hybrid Scaling model and (b) the Composite Scaling model.

When ασ < αµ, the return level curve as a function of the duration becomes convex, and the

General Scaling model cannot capture this behavior. The more ασ increases relatively to αµ, the

greater the test power becomes, as the convexity increases. When ασ > αµ, the return level curve as

a function of the duration becomes concave, and the General Scaling model can sometimes mimic this

behavior well. The shape parameter ξ has an influence for this alternative, as the test power decreases

with ξ when ασ > αµ.

Finally, as expected, the test power increases with the sample size n, as shown in Figure 10b

for random samples generated with
ασ−αµ

αµ
= 0.3. Overall, in the current simulation framework, the

proposed test is less powerful for the General Scaling model than it is for the Simple Scaling model.

This could be due to the fact that the alternatives can be well approximated with the General Scaling

model.

6.3 Conclusions of the simulation study

The proposed test for assessing whether either the Simple Scaling model or the General Scaling model

is appropriate performs well in the simulation study framework. The type I errors of these two tests

conform to the fixed nominal level, and the type II errors increase fairly rapidly as the true model

diverges from either Simple Scaling or General Scaling. Additionally, the test power is fairly large for

practical sample sizes, e.g., n = 60, and increases with the sample size. This is due to the fact that

information from the data in the training set has been pooled together to predict the distribution of

the data in the validation set. In the present framework, the data for the 5-minute duration constitute

a satisfying discriminative validation set for testing a precipitation scaling model .

In the given simulation framework, the General Scaling model can approximate the two alternative

models (Hybrid Scaling and Composite Scaling) very well, which impacts the test power. Indeed, for

several combinations of parameters of the alternative models, the General Scaling model can approxi-

mate the data well, even though it is not the true model. Similarly, the Simple Scaling model can also

approximate several parameter combinations of the Composite Scaling model effectively. However,

these alternative models are retained because they exist in the literature and are physically plausible

extensions of the General Scaling model for precipitation.

7 Applications on precipitation IDF data

The proposed test is applied in this section to determine whether scaling models are suitable for

modeling IDF curves of two Canadian meteorological stations operated by ECCC, namely the stations

located at Montréal-Trudeau International Airport in Montréal (QC) and at the Harbour aerodrome

in Vancouver (BC). These two stations are located in different climatic zones; humid continental

for Montréal and maritime for Vancouver. The data are publicly accessible on the ECCC website:

https://climate.weather.gc.ca/prods_servs/engineering_e.html and are also provided in the

public repository: https://github.com/jojal5/Publications to reproduce all the results presented

https://climate.weather.gc.ca/prods_servs/engineering_e.html
https://github.com/jojal5/Publications
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in this article. The proposed goodness-of-fit test procedure is conducted for both the Simple Scaling

model and the General Scaling model as the null hypothesis. The annual maxima corresponding to

durations larger than 5 minutes form the training set, while those corresponding to the 5-minute

duration comprise the validation set.

7.1 Montréal

The proposed test procedure is applied on the precipitation annual maxima showed in Figure 1. The

test p-value of 1.4× 10−6 suggests rejecting the null hypothesis for the Simple Scaling model, whereas

a p-value greater than 0.1 suggests not rejecting the null hypothesis for the General Scaling model.

Since the Zolotarev approximation (Appendix B) is only valid for estimating small p-values, we know

that it is larger than 0.1, although its exact value is imprecise. Figure 4 shows the estimated IDF

curves using the General Scaling model.

As a visual indication, Figure 11a displays the empirical cumulative distribution function (CDF) of

the 5-minute annual maxima, along with the CDF computed using the Simple Scaling model excluding

the 5-minute data. The Simple Scaling CDF is biased compared to the empirical CDF, supporting the

rejection of the Simple Scaling Model. In contrast, Figure 11b displays the empirical CDF along with

CDF computed using the General Scaling model. The two curves match almost perfectly, supporting

the non-rejection of the General Scaling model.
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(b) General Scaling

Figure 11: Empirical cumulative distribution function of the 5-minute annual maxima Fn, along with the CDF Fθ̂ computed
using (a) the Simple Scaling model and (b) the General Scaling model, excluding the 5-minute data.

7.2 Vancouver

Figure 12 displays the IDF curves at the Vancouver Harbour CS station provided by ECCC. The

marginal return levels, estimated separately for each duration, seem quite scattered around the re-

gression lines; furthermore, those lines are not parallel. Hence, the linear relationship of return levels

across durations does not appear ideal. However, due to the small sample size of only 25, the marginal

return levels have large uncertainties. Pooling information across durations using a scaling model could

be beneficial for improving return level estimates by reducing estimation uncertainty, assuming the

scaling model is reasonable.

Using the Simple Scaling model as the null hypothesis, the proposed testing procedure yields a

p-value of 0.048. Therefore, there is not enough evidence to reject the Simple Scaling model for these

data.

As a visual indication, Figure 13 displays the empirical cumulative distribution function (CDF) of

the 5-minute annual maxima, along with the CDF computed using the Simple Scaling model without
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Figure 12: IDF curves at the Vancouver Harbours CS station in BC provided by ECCC.

utilizing the 5-minute data. These two curves appear consistent and support the conclusion of the

test.
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Figure 13: Empirical cumulative distribution function of the 5-minute annual maxima Fn, along with the CDF Fθ̂ computed
using the Simple Scaling model without including the 5-minute data.

Given that the proposed goodness-of-fit test did not reject the Simple Scaling model, this model

can now be fitted to the data of all durations. This approach allows for information sharing across

durations and provides estimations with less uncertainty. Figure 14a displays the estimated IDF curves

using the Simple Scaling model alongside the estimations of marginal return levels. These curves are

more precise than those obtained by the current approach of linearly fitting the curves to the marginal

quantiles, which are quite uncertain in this case. With the Simple Scaling model, the quantiles are

estimated jointly rather than separately for each duration. As a visual indication, Figure 14b shows

the 2-year and 100-year return levels alongside the marginal estimates and their uncertainties. The

curve obtained with the Simple Scaling model cuts through the marginal uncertainties.
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Figure 14: IDF curves estimated with the Simple Scaling model at the Vancouver Harbour CS station for (a) all return
periods and (b) for the 2-year and 100-year return levels along with the uncertainties of the marginal return levels.

8 Discussion and conclusion

In this paper, a formal goodness-of-fit test has been proposed to verify if a given scaling model is

appropriate to build IDF curves at a location where data is available. The test statistic consists of

the Anderson-Darling test statistic, but with the difference that it is computed on a validation set

containing the data for one chosen duration. The corresponding model distribution is estimated with

the training dataset that contains the other durations. The asymptotic distribution under the null

hypothesis has been provided, along with an efficient method for computing its quantiles.

The test has been applied to assess the goodness-of-fit of the Simple Scaling model and the General

Scaling model on precipitation IDF data. The simulation study showed that the type I errors for

testing both the Simple Scaling and the General Scaling models align with the fixed nominal level,

even for small sample sizes. When the target model is the Simple Scaling model, the test power is

large, even for small sample sizes. When the target model is the General Scaling model, the test

power is moderate when comparing to the Composite Scaling model alternative. This is mostly due

to the fact that the General Scaling model is able to approximate this alternative quite well. Other

alternative models could be used to evaluate the test power more thoroughly, but it is difficult to

develop physically consistent scaling relations between precipitation durations. However, the Hybrid

Scaling and Composite Scaling models were retained as possible alternatives because they have been

used in the literature and are consistent with precipitation behavior. Except for the Composite Scaling

model, the type I and II errors of both tests are not influenced by the shape parameter.

The proposed goodness-of-fit tests were also applied to real precipitation IDF data recorded in

Montréal (QC) and Vancouver (BC). For the Montréal data, the General Scaling model could not

be rejected, and for the Vancouver data, the Simple Scaling model could not be rejected at the 1%

level. Visual indications have been provided to corroborate these results. These conclusions enable the

choice of a suitable scaling model for IDF curves, and then enable the sharing of information between

precipitation durations to estimate more precise IDF curves.

In the application for precipitation IDF models, the 5-minute duration was used as the validation

set as it is the most discriminant duration for distinguishing between precipitation IDF scaling models,

notably the Simple Scaling and the General Scaling models. Another duration could be directly used

as the validation set. A general subset of durations could also compose the validation set, yet the

asymptotic distribution of the test statistic should be adapted accordingly.

The goodness-of-fit test procedure proposed in this paper is general when using a validation set to

compute the test statistic and not only for testing scaling models. In the classical Anderson-Darling

test for a family of distributions described in Section 3, the whole dataset is used to fit the model, and
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the test statistic is computed with the same data. One could also test for a family of distributions after

splitting the data into training and validation sets. The test power could be compared with the classical

one as a function of the distribution family and the sizes of these sets. As a practical application, the

proposed testing procedure could also be developed for testing among spatial interpolation models,

whereas scaling models considered in this paper concern temporal interpolation. These models are

particularly useful when constructing IDF curves over a large geographical area (see e.g., Jalbert

et al., 2022). It would be natural to use a subset of grid cells as the validation set, and the others as

the training set.

The general Anderson-Darling test statistic expressed in Equation (5) could have been adapted

for different weight functions Ψ. For instance, Sinclair et al. (1990) proposed Ψ(u) = 1
1−u to give

more weight to the right tail in the Anderson-Darling test statistic for a known target distribution.

It could have been interesting to use such a weight function in the application to precipitation IDF

models. However, to the best of our knowledge, the asymptotic distribution of the test statistic using

Ψ(u) = 1
1−u has never been formally proved, yet it has been utilized by Stephens (1976) and Laio

(2004). In the training and validation framework, we were unable to derive the asymptotic distribution

of the test statistic when Ψ(u) ̸= 1. It could be interesting for future work to pursue the investigation

of the asymptotic distribution for other weight functions. However, in our preliminary analysis, the

test power was not improved with a function giving more weight to the right tail.

Finally, an interesting avenue for future work could be to study the effect of statistical dependence

in the maxima of a given year across durations. This dependence can arise when several annual maxima

of different durations come from the same storm. The marginal distributions would still be given by

the scaling model due to the functional dependence, but statistical dependence could impact parameter

estimation and change the probability distribution of the test statistic. At this point, it is unknown

whether this phenomenon is common in the data or not.

A Asymptotic distribution of the test statistic when using a training
and a validation sets

In this appendix, a rigorous proof is given for the result of Proposition 4.1, that states the asymptotic

null distribution of the statistic Sl,m defined in Equation (9). The given result is slightly more general

than the one presented in Proposition 4.1, as it allows the respective distributions of the training set

and the validation set to be different.

The proof is mostly adapted from Durbin (1973). In Section A.1, the training / validation frame-

work is defined formally and the necessary notation is introduced. In Section A.2, the precise hypothe-

ses and all the technical details are given in order to prove weak convergence of the sample process

ŷl,m, with emphasis on how the arguments of Durbin (1973) are modified. A continuity result, given

in Section A.3, is necessary to extend convergence to the integral Sl,m. The final result is wrapped up

in Section A.4.

A.1 Theoretical framework

Let x1, x2, . . . , xl be independent and identically distributed 1-dimensional observations, whose com-

mon cumulative distribution function is Fθ0 , where the true parameter value θ0 ∈ Rp is unknown.

Let z1, z2, . . . , zm be independent and identically distributed possibly multi-dimensional observations,

whose common cumulative distribution function is Hθ0 . Let’s suppose that the (Xi)1≤i≤l are indepen-

dent from the (Zi)1≤i≤m, but that their distributions are directly bounded as θ0, the true parameter

value, is the same for both. Let θ̂m be an estimator of θ0 based on z1, z2, . . . , zm.

Let’s introduce the sample process ŷl,m(t) =
√
l
(
F̂l,m(t)− t

)
, 0 ≤ t ≤ 1, where F̂l,m(t) =

1
l

∑l
i=1 ⊮{Fθ̂m

(xi)≤t}. One may notice that Sl,m =
∫ 1

0
ŷl,m(t)2dt, hence the distribution of Sl,m is
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entirely specified by that of the process ŷl,m. We will focus on the weak convergence of the process

ŷl,m, in the space D of the right-continuous functions with left-hand limits on [0, 1], on which we use

the Skorokhod metric. These notions were introduced by Billingsley (1968). All the definitions and

results around weak convergence that are necessary for the present work were summarized by Fleming

& Harrington (2005).

When θ̂m = θ0, the sample process
√
l (Fl(t)− t) converges weakly to a Brownian bridge, hence

the asymptotic result given in Section 3.1. Durbin (1973) treated extensively the case where θ0 is

estimated from the observations x1, x2, . . . , xl, which led to the results given in Section 3.2. We will

try and adapt his hypotheses and arguments to the present framework.

A.2 Weak convergence of ŷl,m: adaptation of the Durbin proof

Let x(t, θ) = inf {x : Fθ(x) ≤ t} (the generalized inverse of Fθ). Let’s also define:

g(t, θ) = ∇θFθ(x)|θ=θ,x=x(t,θ) . (13)

Two separated sets of assumptions are made. (S1) concerns the estimator θ̂m, hence the training set,

while (S2) states necessary regularity conditions on the distribution of the validation set.

(S1)
√
m
(
θ̂m − θ0

)
= 1√

m

∑m
j=1 q(zj , θ0) + ϵm, where:

(i) E(Z|θ0) {q(Z, θ0)} = 0;

(ii) E(Z|θ0) {q(Z, θ0)q(Z, θ0)
t} = Q(θ0), and Q(θ0) is positive semi-definite;

(iii) ϵm
P−→

m→∞
0.

(S2) There is a compact set V ⊂ Rp, containing a neighborhood of θ0, such that:

(i) ∀θ ∈ V, Fθ is continuous;

(ii) The function g of Equation (13) exists and is continuous on [0, 1]× V.

Under those assumptions, one may paraphrase the proof of Theorem 1 in Durbin (1973) and adapt

it to the present framework. This leads to:

Lemma A.1 (adapted from Durbin (1973)). Let’s assume that (S1) and (S2) hold. Let’s additionnally

assume that the sample sizes of the training and validation sets are asympotically proportional, i.e.

lim
l→∞
m→∞

m

l
= a > 0.

Then ŷl,m converges weakly to the normal process (W (t))0≤t≤1 in D, with mean 0 and covariance

function

ρ(u, v) = min (u, v)− uv + a−1g(u, θ0)
tQ(θ0)g(v, θ0); (14)

where g was defined in Equation (13).

Proof. We will only give a sketch of proof and insist on how the arguments given by Durbin (1973)

may be adapted to our case. His proof was divided in five lemmas, that we shall call here “ results ”.

The first two results are about rewriting ŷl,m in terms of the “ real ” sample process yl(t) =√
l (Fl(t)− t) , 0 ≤ t ≤ 1, where Fl(t) =

1
l

∑l
i=1 ⊮{Fθ0

(xi)≤t}, and the scaled error estimation wm =
1√
m

∑m
j=1 q(zj , θ0).

Let’s introduce the function ≈̂m(t) = Fθ0

(
x(t, θ̂m)

)
. As in Durbin (1973), one may obtain from

the fact that θ̂m
P−→

m→∞
θ0 and the mean value theorem applied to the function (x, θ) 7→ Fθ(x) that
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sup0≤t≤1 |≈̂m(t)− t| P−→
m→∞

0. Using the continuity of the mapping (yl, ≈̂m) ∈ D ×D 7→ yl ◦ ≈̂m − yl,

one gets the

Result 1: yl (≈̂m(t)) = yl(t) + ϵ
(2)
l,m(t), where ϵ

(2)
l,m

P−→
l,m→∞

⊬.

A key thing to notice here is that ŷl,m(t) = yl (≈̂m(t)) +
√
l (≈̂m(t)− t). Besides, paraphrasing

Durbin (1973), one may obtain that
√
m (≈̂m(t)− t) = −wt

mg(t, θ0)+ϵ
(3)
m (t), where ϵ

(3)
m

P−→
m→∞

⊬. Hence

from result 1 and the assumption m
l −→

l,m→∞
a:

Result 2: ŷl,m(t) = zl,m(t) + ϵ
(4)
l,m(t), where zl,m(t) = yl(t)− a−

1
2wt

mg(t, θ0) and ϵ
(4)
l,m

P−→
l,m→∞

⊬.

Hence, it boils down to proving the weak convergence of zl,m.

Like Durbin (1973), we begin by considering the finite-dimensional distributions. As yl(t) =
1√
l

∑l
i=1

(
⊮{Fθ0

(xi)≤t} − t
)

and a−
1
2wt

mg(t, θ0) = 1√
m

∑m
j=1 a

− 1
2 q(zj , θ0)g(t, θ0), one may use the

multi-dimensional central limit theorem twice and use the fact that yl and wm are independent to

get the

Result 3: ∀0 < t1 < . . . tk < 1, [zl,m(t1), . . . , zl,m(tk)]
L−→

l,m→∞
[W (t1), . . . ,W (tk)] where W is the

normal process in D with mean 0 and covariance function given in Equation (14).

Strict paraphrase of Durbin (1973) leads to the

Result 4: The sequence zl,m is tight.

Using a theorem from Billingsley (1968) (see also corollary B.1.1 of Fleming & Harrington (2005)),

it comes from results 3 and 4:

Result 5: zl,m
L−→

l,m→∞
W .

From result 2, d(ŷl,m, zl,m)
P−→

l,m→∞
0. Hence the desired conclusion.

A.3 Continuity lemma

In order to extend that convergence result to the integral Sl,m, one needs the

Lemma A.2. The functional

{
D → R+

f 7→
∫ 1

0
f2(t)dt

is continuous with respect to the Skorokhod topol-

ogy.

Proof. Let be a sequence (fk)k≤0 ∈ DN that converges to f ∈ D with respect to the Skorokhod metric.

Then:

(i) f has a countable number of discontinuity points, and at every point t ∈ [0, 1] where f is

continuous, fk(t) −→
k→∞

f(t). Hence, fk −→
k→∞

f almost everywhere.

(ii) As (fk)k≤0 is a convergent sequence, it is bounded. Hence, there is a constant M ≥ 0 such that

∀k ≥ 0, d(fk,⊬) ≤ M , which leads to ∀k ≥ 0, ∥fk∥∞ ≤ M .

From (i), (ii) and the Lebesgue’s dominated convergence theorem, we get that fk −→
k→∞

f in L2 ([0, 1]).

Hence
∫ 1

0
f2
k (t)dt −→

k→∞

∫ 1

0
f2(t)dt, which proves continuity.

A.4 Final result

From Lemma A.1, Lemma A.2 and the Continuous Mapping Theorem (see e.g Fleming & Harrington,

2005), it comes:
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Proposition A.1. Let’s assume that (S1) and (S2) hold. Let’s additionnally assume that the sample

sizes of the training and validation sets are asympotically proportional, i.e.

lim
l→∞
m→∞

m

l
= a > 0.

Then Sl,m (defined in Equation (9)) converges in probability:

lim
l→∞
m→∞

P (Sl,m ≤ s) = P
{∫ 1

0

W 2(t) du ≤ s

}
;

where W denotes the Gaussian process in D with mean 0 and covariance function ρ defined in Equa-

tion (14).

Finally, Durbin (1973) treated the special case when θ̂m is the Maximum Likelihood Estimator.

He showed that, when θ̂m satisfies the usual regularity conditions stated by Cramér (1999), then

assumptions (S1) hold, with

Q(θ0)
−1 = Iθ0 = −E(Z|θ0)

[
∂2 log hθ(Z)

∂θ2

∣∣∣∣
θ=θ0

]
.

In conclusion, the result of Proposition 4.1 holds if θ̂m satisfies the usual regularity conditions stated

by Cramér (1999) and if the assumptions (S2) hold.

B Zolotarev approximation for the proposed tests

The results given in Section 3 and Section 4, concerning the asymptotic distribution of the test statistic,

all involve the distribution of
∫ 1

0
W 2(t)du, where W (t) is a Gaussian process with mean 0 and some

covariance function ρ. Yet, quantiles from such a distribution cannot be computed explicitly, hence

one needs further results in order to compute asymptotic critical thresholds or p-values for our test.

The first result is due to Kac & Siegert (1947). They proved that the gaussian integral
∫ 1

0
W 2(t)dt

corresponds, in terms of distribution, to a discrete weighted sum of χ2(1) variables:

Proposition B.1 (Kac & Siegert (1947)). Let λ1 ≥ λ2 ≥ . . . ≥ 0 be the eigenvalues of the kernel ρ, ie.

the characteristic values associated with the functional equation:

∀x ∈ [0, 1], λf(x) =

∫ 1

0

ρ(x, y)f(y)dy. (15)

Then

∀s ≥ 0, P
(∫ 1

0

W 2(t)dt ≤ s

)
= P

(
+∞∑
k=1

λkG
2
k ≤ s

)
;

where G1, G2, . . . are independent and identically distributed (i.i.d.) according to a N (0, 1).

The cumulative distribution function (CDF) of such a weighted sum of χ2(1) variables can still not

be computed explicitly. Yet, Zolotarev (1961) provided a useful approximation:

Proposition B.2 (Zolotarev (1961)). Let Q be the cumulative distribution function of
∑+∞

k=1 λkG
2
k

where G1, G2, . . . are i.i.d. N (0, 1) and λ1 ≥ λ2 ≥ . . . ≥ 0 are such that
∑+∞

k=1 λk < +∞.

Let’s account for multiplicity by defining γ1 > γ2 > . . . ≥ 0 and positive integers l1, l2, . . . such that

γ1 = λ1 = . . . = λl1 , γ2 = λl1 = . . . = λl1+l2 , . . . . . ..

Then:

1−Q(x) =
x→+∞

∏+∞
r=2

(
1− γr

γ1

)− lr
2

Γ
(
l1
2

) (
x

2γ1

) l1
2 −1

exp

(
− x

2γ1

)
(1 + o(1)) . (16)
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Proposition B.2 may be used to approximate high-order quantiles from the distribution of
∫ 1

0
W 2(t)dt,

hence explicit theoretical critical values for our test. Yet, this requires knowing the eigenvalues of the

kernel ρ (see Equation (15)), which can not be computed analytically. Hence, one needs a further

simplification. Schlesinger (1957) provided a method to approximate the q biggest eigenvalues of ρ,

with q sufficiently large, by using the Riemann integration rule:
∫ 1

0
h(u)du = limq→∞

∑q
i=1

1
qh
(

2i−1
2q

)
.

This leads to replace Equation (15) by

∀1 ≤ i ≤ q, λf

(
2i− 1

2q

)
=

q∑
j=1

Ki,jf

(
2j − 1

2q

)
; (17)

where ∀1 ≤ i, j ≤ q,Ki,j = ρ
(

2i−1
2q , 2j−1

2q

)
. Hence, this boils down to the problem of computing the

eigenvalues of the q × q matrix K, which is numerically easy. Finally, given λ1 ≥ λ2 ≥ . . . λq ≥ 0 and

q sufficiently large, Proposition B.2 may be used to compute the high-order quantiles of
∑q

k=1 λkG
2
k,

hence those of
∫ 1

0
W 2(t)dt by replacing

∏+∞
r=2

(
1− γr

γ1

)− lr
2

by its finite counterpart.

C The testing procedure as an algorithm

The testing procedure can be written as a formal sequence of computations listed in the Algorithm 1.

The inputs of the algorithm are the target scaling model and precipitation IDF data (ydj)d∈D,1≤j≤n.

It returns the p-value of the test.

Algorithm 1: The testing procedure.

Input: A target modelM, data
(
ydj

)
d∈D,1≤j≤n

.

Output: The p-value of the test p.
Parameters: The validation duration d(1), the number q of eigenvalues to compute.

/* Splitting the data into validation and training sets: */

1 yV ← (yd(1)j : 1 ≤ j ≤ n) ;

2 yT ← (ydj : d ∈ D \ {d(1)}, 1 ≤ j ≤ n) ;

/* Estimation using the training set: */

3 ℓM(θ|yT )← the log-likelihood function of modelM over the training data ;

4 θ̂n ← argmin ℓM(−|yT ) ;

5 În ← −
{

∂2

∂θ2 ℓM(θ|yT )|θ=θ̂n

}
/ n ;

/* Computation of the test statistic: */

6 sn ← the test statistic from Equation (12) using θ̂n and yV ;
/* Computation of the p-value */

7 g(t,θ)← the function g of Equation (13) ;

8 ρ(u, v)← the covariance function of Equation (14) using g(−, θ̂n) and În ;
9 λ1, . . . , λq ← the eigenvalues of ρ(−,−) computed using Equation (17) ;

10 Q(x)← the approximated CDF for the theoretical distribution of the test statistic, given by Equation (16)
using λ1, . . . , λq ;

11 p← 1−Q(sn) ;

12 return p ;

The training set is used to compute θ̂n and În (lines 3, 4 and 5 of the Algorithm 1). The test

statistic is computed using the validation set and θ̂n (line 6). The covariance kernel ρ is estimated

by employing gθ̂n
and În (lines 7 and 8). Computing the p-value of the test requires a numerical

approach, as detailed in Appendix B. It involves computing the q biggest eigenvalues of ρ (line 9) and

subsequently approximating the distribution of the test statistic (line 10). The approximated CDF is

employed to determine the p-value of the test (line 11). When a significance threshold is provided by

the user, the p-value leads to decide whether or not the null hypothesis should be rejected.
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