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Before citing this technical report, please visit our website (https:
//www.gerad.ca/en/papers/G-2024-38) to update your reference
data, if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grâce
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3000, chemin de la Côte-Sainte-Catherine
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Abstract : This paper tackles a complex variant of the unit commitment (UC) problem at Hydro-Quebec,
referred to as the transient stability constrained unit commitment (TSCUC) problem. First, the complete
problem is described as a mixed-integer linear program (MILP). Next, an investigation strategy is conducted
to identify complexity sources. Then a matheuristic is proposed, taking advantage of the temporal dimension
of the problem. Finally, the matheuristic is enhanced by tuning the solver’s configuration and by relying on
linearization techniques. The benefits of the matheuristic are highlighted by using real-life instances from
Hydro-Quebec.

Keywords: MILP, large-scale optimization, matheuristic, unit commitment
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Notation
Sets

c ∈ C Spillways
d ∈ D Drop heights (low, hi)
g ∈ G Hydraulic generators
h ∈ H Hydro plants
l ∈ L Links

m ∈M Stability zones
n ∈ N Rivers
r ∈ R Reservoirs
e ∈ E Topology constraints
p ∈ P Time steps

p ∈ P
′

Time steps, excluding the initial time step p0

y ∈ Y Normal generator yields (min, opt, max)

y ∈ Y
′

Generator yields (min, opt, max, stab)
z ∈ Z Zones

Relations
Gh Generators of hydro plant h
Hr Hydro plants supplied by reservoir r
Hn Hydro plants discharging into river n
Hm Hydro plants in stability zone m
Kg Configurations involving generator g
Kh Configurations of hydro plant h
Ks Configurations involving super-generator s

L−
z Incoming links of zone z

L+
z Outgoing links of zone z
Nr Rivers ending in reservoir r
Sp Super-generators active at time step p
Cr Spillways available to reservoir r
Cn Spillways discharging into river n
sp

g Super-generator containing generator g during time step p
ps Time step of super-generator s
rs Reservoir associated with super-generator s
pe Time step at which topology constraint e is active
pf Time step at which first-contingency production

loss (FCPL) f is active
Parameters

αy,d
g,k Power of generator g at yield y and drop height d

when configuration k is active

αy,d
s,k Power of super-generator s at yield y and drop height d

when configuration k is active

αy,d
s,k Available power decrease of super-generator s at yield y

and drop height d when configuration k is active

ᾱy,d
s,k Available power increase of super-generator s at yield y

and drop height d when configuration k is active

υtrans
s,k,y,d Maximum power output margin of super-generator g

at yield y and drop height d when configuration k
is active during transient events

ϕy,d
g,k Flow turbined by generator g at yield y and

drop height d when configuration k is active
δp Duration of time step p

ρp′
n,p Proportion of volume whose transit between

time steps p and p′ in river n is completed

ξsfc Low power range threshold for secondary

frequency control (SFC)

ξ̄sfc High power range threshold for SFC

η̄sfc Total power range threshold for SFC

ξabs
m Minimum stability reserve threshold to

maintain in stability zone m

ξrate
m Rate of stability power to maintain

in stability zone m
νr Initial volume of reservoir r

λd
r Level of reservoir r at drop height d

Variables
xp

k Indicator if configuration k is active during time step p
xp

g Indicator if generator g is active during time step p
up

h Flow passing through hydro plant h during time step p
bs Indicator if super-generator s produces with high yield,

i.e., yield between opt and max
qp

w Worst north first-contingency production
loss at time step p

qp
w Worst FCPL power at time step p

qp
g Power produced by generator g during time step p

q̄p
g Available power increase of generator g during time step p

qp
h Power produced by hydro plant h

in time step p
qp

h Available power decrease of hydro plant h

in time step p
q̄p

h Available power increase of hydro plant h
in time step p

↼
q

p
l Power coming into link l during time step p

⇀
q

p
l Power leaving link l during time step p

qy
s Power produced by super-generator s at yield y

qs Power produced by super-generator s
q̃s Max power that can be produced by super-generator s

during transient events
q̂p Max power that can be produced for time step p

during transient events
qs Available power decrease of super-generator s

q̄s Available power increase of super-generator s

qpfc
s Available reserve power of super-generator s
ap

r Average level of reservoir r during time step p
vp

r Volume in reservoir r at the end of time step p
↼
v

p
n Volume entering river n during time step p
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⇀
v

p
n Volume leaving river n during time step p

vp
c Volume passing through spillway c during time step p

wy,d
s,k Production weight of super-generator s at yield y and

drop height d when configuration k is active
Expressions

Ψe Piecewise linear expression representing
the upper limit of topology constraint e

Λ̄p
m Piecewise linear expression representing the lower

limit of power going into the MTDC grid at time step p

Π̄p
m Piecewise linear expression representing the upper

limit of power going into the MTDC grid at time step p
Λp

m Piecewise linear expression representing the lower
limit of power coming from the MTDC grid at time step p

Πp
m Piecewise linear expression representing the upper

limit of power coming from the MTDC grid at time step p

Λ̄p
l Piecewise linear expression representing the lower

limit of power going into link l at time step p

Π̄p
l Piecewise linear expression representing the upper

limit of power going into link l at time step p
Λp

l Piecewise linear expression representing the lower
limit of power coming from link l at time step p

Πp
l Piecewise linear expression representing the upper

limit of power coming from link l at time step p
Functions
Ξp

m,z,z′ (·) Linear function correcting a power transiting

through the MTDC grid between zones z and z′

at time step p by removing its loss

Υpfc
p (·) Piecewise linear function computing the power

limit at time step p
Ξp

l (·) Linear function correcting a power transiting
through link l at time step p by removing its loss

Ψr (·) Linear function approximating the level of
reservoir r from its volume

Ωp(·) Piecewise linear function computing a stability
threshold at time step p from the worst north
and south FCPL

1 Introduction
Hydro-Quebec (HQ) is a vertically integrated utility responsible for electricity generation, transmission,
and distribution in the province of Quebec. Its large grid comprises over 60 hydroelectric facilities and
more than 260,000 Km transmission and distribution lines, of which over 11,000 Km are covered by 735kV
lines, making it the most extensive network in North America. The long transmission lines and large
hydroelectric dams in the far north give the power grid its unique architecture, enabling the power generation
to reach most destinations located thousands of kilometers in the south of Quebec. Grid stability is a big
concern that the company must consider when planning operations. The stability aspects include multiple,
nonlinear phenomena, such as voltage, frequency, and angular stabilities. However, since the generation and
operations planning tools are mainly based on mixed integer linear programming (MILP), integrating stability
considerations becomes quite challenging. Hence, this paper aims to tackle the transient stability constrained
unit commitment (TSCUC) problem at HQ. Starting from a detailed formulation of the problem (Besner
et al., 2024), an investigation of the complexity sources is carried out, and a decomposition matheuristic is
proposed, which significantly improve the solving of realistic instances provided by HQ.

The UC problem is fundamental in the electric power industry. It aims to determine an optimal schedule
that ensures fulfilling the electricity demand at a minimum cost for the system as a whole, by deciding
which generation unit should be activated and at which intensity. In the literature, there have been many
relevant mathematical optimization models for the UC problem (Anjos et al., 2017). Contingency analysis is
a computer application that uses a simulated model of the power system. This analysis is one of the crucial
components in power system security analysis since it evaluates outage events that affect the power system
performance (Musto, 2020). Compared to other cases like ERCOT (Hui, 2013), HQ has had an everlasting
interest in online real-time security-based monitoring systems. As early as 1982, HQ put the first operational
tool to provide dynamic transfer limits during real-time operations from the control center. Over several
decades, it integrated more sophisticated and complicated tables into their system called LIMSEL (Huang
et al., 2012). Mathematically speaking, contingency adds several non-linear constraints to the optimization
model. This problem, known in the literature as the min-max linear programming (mmLP), involves solving
linear programs having min and max functions added to their constraints. One of the ways to tackle these
constraints is linearization to maintain a MILP formulation (Burks and Sakallah, 1993). More details about
the UC problem and its resolution techniques are in the recent survey of Montero et al. (2022).

https://www.hydroquebec.com/about/
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This paper highlights a generic and practical approach to tackling the TSCUC. The contribution is
fourfold: (1) an exploratory analysis identifying the complexity sources when solving the TSCUC problem
at HQ, (2) an efficient decomposition matheuristic, and multiple variants of the method, that successfully
solve instances of the problem, (3) a computational study on real-world instances to assess the efficiency
of the proposed method compared to an out-of-the-box CPLEX formulation, and (4) a post-computational
analysis that highlights managerial insights.

The remainder of the paper is as follows. The problem formulation is summarized in Section 2. Section 3
and Section 4 present the exploratory analysis and the solution methodology, respectively. The computational
results and managerial insights are detailed in Section 5.

2 Problem description
In this section, the TSCUC is detailed in the MILP framework. The model is essentially an adaptation of

the one given in Besner et al. (2024), with a more compact notation. In Subsection 2.1, the main power
grid components are described for modeling the TSCUC in a hydraulic context. Then, in Subsection 2.2,
the MILP formulation of the problem is detailed.

2.1 Representation of the power grid

Timeline. A time reference is required, because the states of the model’s components are subject to change.
We denote by P the set of all time steps in the horizon. In particular, the initial time step is denoted by p0 .
It marks the beginning of the simulation and has a null duration.
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Figure 1: A theoretical rolling function

Hydraulic network. More than 90% of HQ’s production comes from hydro plants, so the hydraulic network
must be adequately modelized. In that spirit, it is represented as a directed graph whose nodes represent
reservoirs (where water can be accumulated), rivers (where water can travel to another downstream reser-
voir), spillways (which can be used to evacuate water without turbinating it) and hydro plants (where water
flows are converted to power), and whose edges indicate the direction in which water travels. Moreover,
since water does not travel at a constant speed down a river, a rolling function is associated with every river
n. This function is of the form Φn : R+ → [0, 1], where each elapsed time t is mapped onto the proportion
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of water Φn(t), which has reached the end of river n. To guarantee the conservation of water volume, the
rolling function curve should cover an area equal to 1, as visualized in Figure 1. This function is not known,
but it can be approximated by estimating the coefficients ρp′

n,p, whose value equals the proportion of water
that reached the end of river n between time steps p and p′.

Production of hydro units. Once water reaches the hydro plant and the hydro units inside it, its flow can be
converted to power as follows. Let ρ ≈ 997 be the volumic mass of water (in kg/m3), g ≈ 9.81 be the gravity
acceleration (in m/s2), Q be the turbined flow (in m3/s), H be the drop height (in meter), and η(Q) < 1 be
the generator yield when the flow is Q, the power produced by a hydro generator is given by Ginocchio and
Viollet (2012)

P (H, Q) = ρ · g · Q · H · η(Q) (1)

The formula (1) has two disadvantages. First, it is nonlinear. Second, estimating η is complex in practice,
and may depend on the state of the other hydro generators inside the hydro plant. Hence, to maintain a
MILP context, a piecewise linear function can approximate the feasible power surface (Borghetti et al., 2008).
More precisely, the possible drop heights can be linearized by interpolating between the fixed minimum (low)
and maximum (hi) values. Similarly, to take into account the concave shape of hydro unit production, the
possible yields of each generator can be discretized using 3 possible values, based on whether the generator
outputs its maximum power (max), its optimal power (opt), or its lowest power (min). Also, in the event
of a stability event, generators can produce more than max for a brief period of time. This special yield is
denoted by stab.

Super-generator. Even if each hydro generator has its unique characteristics, it is possible (and even de-
sirable) to make uniform decisions over groups of similar generators for operational reasons. Following this
idea, the concept of super-generator was introduced in Besner et al. (2024). A super-generator is basically
a collection of generators whose production should be managed in a similar manner at a given time step.
More precisely, two generators g and g′ are considered equivalent if each of the following prerequisites is
satisfied: (1) g and g′ belong to the same hydro plant, (2) neither g nor g′ is subject to some operational
restriction, (3) g and g′ do not belong to different FCPL sets and (4) g and g′ do not belong to different
topology constraints. Hence, a super-generator is simply a class of the equivalence relation described above.

Hydro plant configurations. As mentioned in the previous paragraphs, the production of a hydro generator
depends on its unique features, as well as on the presence or absence of other active generators within the
same hydro plant. To take this reality into account, the notion of (hydro plant) configurations is introduced.
Configurations are simply subsets of the set of generators belonging to the hydro plant. Theoretically, given
that a generator is either active or inactive, there can be up to 2|Gh | possible configurations for each hydro
plant h where Gh is the set of generators of h, which could potentially makes the MILP hard to solve.
Fortunately, in practice, many of those configurations need not be considered. More precisely, by taking
into account the planned unavailabilities of some generators for maintenance, the power and flow restrictions
for operational purposes, and the first-contingency production loss (FCPL) constraints and topology-based
constraints (TC) (detailed in the following paragraphs), it is possible to significantly reduce the number of
interesting hydro plant configurations. An algorithm enumerating those configurations is described in Besner
et al. (2024).

Transmission network. As for the hydraulic network, the transmission network can be represented as a
directed graph, whose nodes are zones and links, and whose directed edges indicate the direction in which
power is transmitted. Although electricity can circulate in both directions, the majority of the network has
a radial structure, i.e. most electricity always travels in the same direction (from the north to the south).
Because of this characteristic, it is possible to neglect the impedance model and use linear approximation
of the losses to describe the flows between the zones. HQ also manages a multi-terminal direct current
(MTDC) grid, requiring more intricate modeling due to its unique operational constraints. In this paper,
for simplicity’s sake, the MTDC is represented as a special link.
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Stability limits. Power circulating through transportation links and the MTDC grid must be monitored
and constrained for various stability and operational reasons. In article Besner et al. (2024), it is described
how transient simulation results are aggregated as min-max functions that are then linearized using binary
variables. Those linearized constraints are used to monitor the flow over the link between the zones. In
Section 3.2.2, the complexity created by this formulation will be discussed and Section 4.3 will propose a
novel linearization that eliminates the need for binary variables.

Frequency curtailment reserves. Finally, in addition to stability limits, it is also important to monitor
adequate reserve levels in case of a loss of generation that leads to frequency events. Two reserves are
monitored in the TSCUC problem: primary frequency control (PFC) and secondary frequency control (SFC).
PFC levels are determined from so-called first-contingency production loss (FCPL) sets of generators, i.e.
PFC guarantees adequate response for the primary controller of each generator. Meanwhile, SFC ensures
adequate margins for the area generation control (AGC) algorithm, which maintains the frequency to the
nominal 60Hz during normal operations.

2.2 Mathematical model

Following the power grid representation described in Subsection 2.1, the underlying mathematical model can
be introduced. For sake of readability, the notation has been adapted from Besner et al. (2024) according
to the following convention. Sets and relations are in calligraphic style, parameters are in lowercase Greek
letters, decision variables are in bold lowercase letters, and expressions and functions are in uppercase Greek
letters (See the alphabetically ordered Notation Section for more details). Physical quantities are measured
with respect to the international system of units, i.e., power is in megawatts (MW), time is in seconds (s),
distance is in meters (m), volume is in m3, and flow is in m3/s.

Objective function. From the point of view of the transmission grid dispatchers, the main objective is the
minimization of the number of maneuvers that need to be performed, which can be expressed as

min
∑
g∈G

∑
p∈P

βp
g |xp

g − xp−1
g | (1)

The absolute values can be linearized by introducing variables ∆p
g = |xp

g − xp−1
g | for each g ∈ G and

p ∈ P, so that the objective can be rewritten as

min
∑
g∈G

∑
p∈P

βp
g ∆p

g (2)

and by adding the following constraints

∆p
g ≥ xp

g − xp−1
g ∀g ∀p ∈ P

′
(3)

∆p
g ≥ xp−1

g − xp
g ∀g ∀p ∈ P

′
(4)

A second important objective is to minimize water spilling:

min
∑
r∈R

∑
p∈P′

∑
c∈Cr

βp
c vp

c (5)

The objective function is a linear combination of the two objectives above (using weights βp
g and βp

c ).

Water conservation constraints. The following constraints ensure water conservation throughout all the
hydraulic components, i.e. hydro plants, reservoirs, rivers, and spillways:

vp0
r =νr ∀r (6)
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vp
r =vp−1

r +
∑

n∈Nr

⇀v
p
n −

∑
h∈Hr

δpup
h −

∑
c∈Cr

vp
c ∀r ∀p ∈ P

′
(7)

ap
r =Ψr((vp−1

r + vp
r )/2) ∀r ∀p ∈ P

′
(8)

↼v
p
n =

∑
h∈Hn

δpup
h +

∑
c∈Cn

vp
c ∀n ∀p (9)

⇀v
p
n =

∑
p′≤p

ρp
n,p′

↼v
p′

n ∀n ∀p (10)

Production constraints. The next constraints express the core of the unit commitment problem, taking into
account the production characteristics of generators:

bs ≥
∑

k∈Ks

∑
d∈D

wmax,d
s,k ∀s (11)

1 − bs ≥
∑

k∈Ks

∑
d∈D

wmin,d
s,k ∀s (12)

1 =
∑

k∈Kh

xp
k ∀h ∀p (13)

xps
k =

∑
y∈Y

∑
d∈D

wy,d
s,k ∀k ∀s (14)

xp
g =

∑
k∈Kg

xp
k ∀g ∀p (15)

The power of the hydro plants, hydro plant configurations, generators, and super-generators can be
computed once all units are committed. Furthermore, we can also compute the level variations of the
reservoirs and the flows turbinated by the hydro plants. This is expressed through the following constraints:

qp
h =

∑
g∈Gh

qp
g ∀h ∀p (16)

qp
g =

∑
k∈Kg

∑
y∈Y

∑
d∈D

αy,d
g,k wy,d

sp
g ,k ∀g ∀p (17)

qy
s =

∑
k∈Ks

∑
d∈D

αy,d
s,k wy,d

s,k ∀s ∀y (18)

qs =
∑
y∈Y

qy
s ∀s (19)

up
h =

∑
g∈Gh

∑
k∈Ksp

g

∑
y∈Y

∑
d∈D

ϕy,d
g,k wy,d

sp
g ,k ∀h ∀p (20)

aps
rs =

∑
k∈Ks

∑
y∈Y

∑
d∈D

λd
rs wy,d

s,k ∀s (21)

Transmission constraints. The power circulating through the zones, the transportation links, and the MTDC
grid must balance with the non dispatchable power (transactions at interconnectors, expected zone load,
interrupted powers, non controllable planned generation) in each zone:

αp
z =

∑
h∈Hz

qp
h +

∑
l∈L−

z

⇀q
p
l −

∑
l∈L+

z

↼q
p
l (22)

+ ⇀q
p
m,z − ↼q

p
m,z ∀z ∀p (23)

Moreover, as mentioned earlier, the transit going through each link and the MTDC grid must take into
account the losses, and is also constrained by piecewise linear expressions:

⇀q
p
l =Ξp

l (↼q
p
l ) ∀l ∀p (24)
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Λp
l ≤⇀q

p
l ≤ Πp

l ∀l ∀p (25)

Λ̄p
l ≤↼q

p
l ≤ Π̄p

l ∀l ∀p (26)
⇀q

p
m,z =Ξp

m,z,z′(
↼q

p
m,z′) ∀z ∀z ′ ∀p (27)

Λp
m ≤⇀q

z
m,zp ≤ Πp

m ∀z ∀p (28)

Λ̄p
m ≤↼q

p
m,z ≤ Π̄p

m ∀z ∀p (29)

Stability constraints. The total production of each topology constraint e generated by the LIMSEL tool is
capped by a piecewise linear limit expression Ψe, with a protection margin:∑

g∈Se

(qpe
s + q̄pe

s ) ≤ Ψe ∀e (30)

The following set of constraints is used to ensure sufficient power reserve for secondary frequency control
(SFC):

q̄s =
∑

k∈Ks

∑
y∈Y

∑
d∈D

ᾱy,d
s,k wy,d

s,k ∀s (31)

qs =
∑

k∈Ks

∑
y∈Y

∑
d∈D

αy,d
s,k wy,d

s,k ∀s (32)

q̄p
h =

∑
s∈Sgh,p

q̄s ∀h ∀p (33)

qp
h =

∑
s∈Sgh,p

qs ∀h ∀p (34)

∑
h∈H

qp
h ≥ξsfc ∀p (35)∑

h∈H

q̄p
h ≥ξ̄sfc ∀p (36)

∑
h∈H

(
qp

h + q̄p
h

)
≥η̄sfc ∀p (37)

The next constraints compute the maximum output of all generators during a frequency event. This
output is used to approximate the system inertia and strength. It also allows to determine the maximum
value of the worst FCPL and the required primary frequency control (PFC) margins.

q̃s =
∑

k∈Ks

∑
d∈D

∑
y∈Y

αstab,d
s,k wy,d

s,k ∀s (38)

q̂p =
∑
s∈Sp

q̃s ∀p (39)

Finally, the PFC margins are tied to the worst FCPL and can be constrained as follows:

qpfc
s =

∑
k∈Ks

∑
y∈Y

∑
d∈D

υtrans
s,k,y,d wy,d

s,k ∀s (40)

qp
w ≤Υpfc

p (q̂p) ∀p (41)

qpf
w ≥

∑
g∈Gf

(qs + q̄s) ∀f (42)

∑
s∈Sp

qpfc
s ≥Ωp(qp

w) ∀p (43)

∑
h∈Hm

∑
s∈Sgh,ps

qpfc
s ≥ min(ξabs

m , ξrate
m q̂p) ∀m (44)
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3 Exploratory analysis
This section aims to explore the root causes of the TSCUC complexity. We first outline the problematic,
conduct a thorough model analysis, and highlight the relevant results.

3.1 Problematic

Over several TSCUC instances, HQ’s operators used to rely on simulations followed by manual tuning. While
these solutions are implementable in practice, they do not guarantee quality and they are time-consuming.
Another weakness of the manually-tuned methods lies in their inability to incorporate all the constraints
imposed by the operational rules of the industry. Furthermore, these methods imply the need to solve
instances regularly to incorporate the perturbations that can impact the data. For example, demand is
subject to market fluctuations and is likely to change frequently. Also, the production process is subject to
disruptions due to maintenance requirements or group failures. Thus, recovery in short intervals of time is
a must.

3.2 Model analysis

To detect the TSCUC’s complexity sources, we conducted an exploratory analysis. The latter investigates
each component of the TSCUC model, i.e., the objective function, the decision variables, and the constraints.
We used a representative instance of the TSCUC’s model for the investigation. The default parametrization
of the CPLEX version 20.1.0.0 was used for all experiments.

3.2.1 Objective function

The objective function does not show any complexity, since it mainly minimizes the maneuvers number and
water spilling.

3.2.2 Constraints

All model constraints are linear except the stability limits constraints discussed in Section 2. One of the main
challenges is incorporating those transient stabilities while maintaining the TSCUC as a MILP model. The
functions L and U produced by the LIMSEL tool are arbitrarily nested compositions of linear expressions,
together with the n-ary max and min functions.

Currently, these constraints are linearized following the four elementary cases: x ≥ min(y, z), x ≤
min(y, z), x ≥ max(y, z), and x ≤ max(y, z), where x, y, z are some continuous variables. The first and
fourth elementary cases require adding binary and big-M constraints into the model, which makes it more
complex to solve.

Using the classic linearization above, we confirm that, without the transient stability constraints, the
representative TSCUC instance becomes relatively easier to solve. On the contrary, with these constraints,
the model is more difficult and requires huge computational time to find sufficiently good solutions. It
suggests that the MILP with these constraints is significantly less loosely coupled compared to the MILP
without these constraints. For the remaining constraints, the investigation shows that they do not have a
significant impact on the solution time and the gap. Based on these findings, we conclude that the main
source of constraints complexity is the transient stability constraints.

3.2.3 Decision variables

For decision variables, the other difficulty to tackle is the hydro plant configurations. Although the number
of hydro plant configurations can be reduced by exploiting generators symmetries, the number of possible
configurations remains relatively high in the worst case. Under this case, when exploring the space of possible
configurations during the solving, the branching seems hard to optimize.
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To further explore variables, we observed that the solution of the TSCUC’s linear relaxation (LR) is
obtained rapidly and is very fractional. A large time amount is then consumed in the branch and bound
(B&B) process to find a feasible solution before improving it. Based on this observation, it is necessary
to check the impact of the binary decision variables on the solution process. As per Section 2, we have
three classes of binary variables, Bc, c ∈ C where C denotes the set of classes. These classes are namely: the
set of binary variables xp

k related to active configurations, the set of binary variables xp
g related to active

generators, and the set of binary variables bs related to super-generators production yields.

To distinguish which classes of binary variables are at the origin of the slow B&B process, we consider
two measures: the percentage of each class among all the binary variables (% Class) and the percentage
of non-zero variables per class in the solution of the representative instance (% Non-zeros). To be more
realistic, we consider a representative instance of the worst-case scenario. Table 1 shows these measures for
each class of binary variables.

Table 1: Binary classes

Class Index # Variables % Class # Non-zeros % Non-zeros

xp
k 1 17759 88.41 624 3.51

xp
g 2 384 1.91 14 3.65

bs 3 1944 9.68 1011 52.01

We first observe that variables xp
k are dominant in the set of the binary variables with a percentage of

88.41%. Second, only 3.51 % of these variables take non-zero values in the obtained solution. Thus, these
variables are more likely to impact significantly the solution process. To validate this hypothesis, we designed
an investigation strategy, for which the mechanism is as follows. We solve the TSCUC using default CPLEX
for a predefined time limit and collect the best solution found. Using the latter and considering one class
of binary variables at a time, we fix the binary variables worth 1 in the solution and solve the TSCUC
again using the optimal solution found as a warm-start. By doing this, we seek to check if the problem
becomes easier when fixing some binary variables from each class. We describe the investigation strategy in
Algorithm 1.

Algorithm 1: Investigation strategy
Input: x, α

1 x0 = SolveMILP(x, α)
2 for c ∈ {1, 2, 3} do
3 forall xn ∈ Bc do
4 if x0

n = 1 then
5 SetBounds(xn, 1, 1)
6 end
7 end
8 SetWarmStart(x0)
9 x∗ = SolveMILP(x, α)

10 forall xn ∈ Bc do
11 SetBounds(xn, 0, 1)
12 end
13 end

Formally, we first solve the TSCUC for a predefined time limit α using function SolveMILP(x, α), where
x is a vector of variables. The optimal integer solution found is saved in a vector x0. We denote by xn and
x0

n the elements of vectors x and x0, respectively. For each class of binary variables, we fix to 1 the variables
of class c that are worth 1 in x0 using the function SetBounds(xn, 1, 1) where xn ∈ Bc. For a given l, u ∈ R
and a variable x ∈ Rn where n ∈ N, function SetBounds(x, x, x̄) set the variable’s lower bound to x and its
upper bound to x̄. In addition to the fixation, the optimal solution found x0 is given as a warm-start using
the function SetWarmStart(x0). It gives rise to a restricted sub-problem that is solved again in the same
amount of time α. We denote by x∗ the returned solution and x∗

n its elements.
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We conducted three variable fixation scenarios. Table 2 gives the results on the representative instance.
For each scenario, we report the number of binary variables in the model after fixation (# Binaries). We ran
each scenario for one hour, and if no solution was found, the gap was set to 100%. The xp

k variables proved
to be the ones having a significant impact on the computational time. While the original model struggles to
find the first gap, both the first gap (1st Gap) and the optimal Gap (Opt Gap) for the restricted xp

k scenario
problem are found rapidly, within 33s (1st Gap) and 96s (Opt Gap), respectively. For fixation scenarios
related to the other classes of binary variables, the times required to reach the first integer and the optimal
solutions was beyond one hour. In some cases, no integer solution was found.

Table 2: Investigation strategy results

Scenario # Binaries 1st Gap(%) 1st Time (s) Opt Gap(%) Opt Time (s)

Original 20087 100% 3600 100.00 –
xp

k 15095 63 33 0.00 96
xp

g 314 100 3600 100.00 –
bs 1671 100 3600 100.00 –

These findings confirm the hypothesis, i.e., the variables xp
k impact the solution process. We reaffirm

this by the following observation. For each hydro plant, hundreds of possible group configurations could be
active in a given time step. These possibilities give rise to high symmetry within the model, increasing the
CPLEX time to reach satisfactory solutions, thus making the commercial solver impractical. Furthermore,
from all these possible configurations, at most one configuration should be selected, thus making the xp

k
variables highly fractional in the LR.

4 Solution methodology
In this section, we first highlight the actions taken to tackle the different sources of complexity identified
previously. Then, we present the decomposition matheuristic. After that, we implement a practical variant
for which the decomposition criterion considered is time. We also discuss a new linearization for the transient
stabilities. Lastly, we highlight the role of the solver’s tuning.

4.1 Prescriptions against complexity

From the exploratory analysis, we generate the following. For the constraints, the classic linearization of
the power stability constraints adds a lot of binary variables and big-M constraints into the model. For
variables, the xp

k variables permit the identification of another side from which we can tackle the MILP
problem. The relaxed minimization of the maneuvers number provides a good lower bound. Thus, designing
an efficient matheuristic that will rapidly provide good upper bounds and effectively tackle the complexities
above is a suitable strategy in our context. Such a strategy will allow the elimination of unpromising
branches in the B&B tree, making the solving process faster. We tackle the problem from three dimensions:
decomposition of the time horizon, linearization of constraints, and solver’s tuning. We present next the
designed decomposition matheuristic, called hereafter the Relax-Solve-Fix-Correct (RSFC) matheuristic.
Then, we highlight the linearization of transient stability constraints before discussing the importance of
tuning the CPLEX solver’s setting.

4.2 RSFC Matheuristic

We summarize the RFSC matheuristic in Algorithm 2. It is inspired by successful matheuristics in the
literature (Er Raqabi et al., 2023). It consists of decomposing the time horizon into smaller time intervals,
called hereafter, windows. Then, we optimize by rolling through these windows. The number of windows
(Φ) is obtained by dividing the time horizon length by the number of windows. The matheuristic has four
phases: Relax, Solve, Fix, and Correct. In the Relax phase, we pick the first window (ϕ), and we keep all
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corresponding xp
k variables binary. All other binary variables in the MILP model are relaxed (integrality).

A variable xp
k corresponds to window ϕ if its index p belongs to the time interval of this window. In the

Solve phase, we solve the MILP. In the Fix phase, we fix the xp
k corresponding to window ϕ to their solution

values. We move into the second window, and the process continues until rolling through the whole time
horizon. Finally, in the Correct phase, we maintain all the fixed xp

k variables, restore all the other binary
variables of the MILP model to their binary state, and solve the MILP model. If the model is feasible,
we return the solution x∗. Otherwise, we correct by tackling unfeasibilities. This is done using function
CorrectMILP(x, α). In this function, we relax conflicting xp

k and solve again. The process continues
until reaching feasibility. We return solution x∗. It is worth mentioning that instead of partitioning the
time horizon, we keep the overlapping between consecutive windows. Such a strategy transfers information
between windows and consequently ensures better results.

Algorithm 2: RSFC Matheuristic
Input: x, α, Φ, ϕ← 1

1 while ϕ < Φ do
2 Relax xp

k variables out of the current window ϕ

3 Relax all other binary variables
4 x∗ ← SolveMILP(x, α)
5 Fix the xp

k variables in the current window to their values
6 ϕ← ϕ + 1
7 end
8 Restore all other binary variables to Binary
9 x∗ ← SolveMILP(x, α)

10 x∗ ← CorrectMILP(x, α)
11 Return x∗

While we discussed a time-based implementation of the RFSC matheuristic, it is worth mentioning that
there are other decomposition strategies, such as the space-based decomposition. The latter consists of
decomposing xp

k based on their corresponding hydro plant.

4.3 Transient stability constraints

For the transient stability constraints (see Example 1 below), it is not necessary to linearize them exactly.
When linearizing them exactly, we add complicating binary variables and big-M constraints into the model,
as shown in the classic linearization discussed in the previous section (Model1 of Example 1). Furthermore,
the latter does not consider the changing objective function in the model. With a changing objective function,
it is possible to approximate the transient stability constraints by adding real variables into the objective
function (Model2 of Example 1). Such a strategy eliminates all the binary variables and big-M constraints
coming from the classic linearization, thus providing a better model that ensures close, if not similar, results.
We highlight this observation in the example below.
Example 1. Let us consider the following model:

Min cT x (Model)
s.t. : Ax + By + Cz ≥ e

w ≥ min(y, z)
x ∈ X, y ∈ Y, z ∈ Z, w ∈ W

The classic linearization of Model is:

Min cT x (Model1)
s.t. : Ax + By + Cz ≥ e

w ≥ y − M + Mb

w ≥ z − Mb
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z − y ≤ Mb

y − z ≤ M(1 − b)
x ∈ X, y ∈ Y, z ∈ Z, w ∈ W

b ∈ {0, 1}|w|

where M is a sufficiently large scalar and b is the binary vector of size |w| (the size of vector variable w), such
that element bi = 1 if yi ≤ zi, and 0 otherwise (yi and zi being the elements of vectors y and z, respectively).

By introducing a real vector t, we obtain the following model:

Min cT x − ϵT t (Model2)
s.t. : Ax + By + Cz ≥ e

w ≥ t

t ≤ y

t ≤ z

x ∈ X, y ∈ Y, z ∈ Z, w ∈ W

Model2 seems better than Model1 since it does not contain any binary variable and big-M constraint, so
that we can expect to solve it more efficiently.

We can show theoretically that, under certain conditions, there exists ϵ such that Model1 and Model2 are
equivalent, i.e., they have the same solution x even if the objectives are different. In practice, experiments
on the TSCUC confirmed this observation. An approximate value (found by tuning) of weights in vector
ϵ is enough. We conducted a few simulations to tune the value of the vector ϵ. With the same intuition
presented in the example above, we linearized the complex nested min-max bounds of the transient stability
constraints. We refer to the linearizations in Model1 and Model2 forms as the classic and new linearizations,
respectively.

4.4 Solver’s tuning

An important aspect to highlight is the solver’s setting used to solve the MILP problem. The default
CPLEX setting was designed based on artificial instances from the literature, such as the ones from the
MIPLIB library (Gleixner et al., 2021). This default setting does not work well on real-life large-scale
instances, such as the HQ’s case. Thus, we conducted manual troubleshooting by exploring the log files
of these instances, which highlights that few parameters impact the solver’s performance (Himmich et al.,
2023). For the MILP problem tackled in this paper, these parameters are emphasis, heuristic effort, and
CutsFactor (IBM ILOG CPLEX, 2009). Then, manual troubleshooting constructs an initial configuration.
This configuration is provided to the irace tuner (López-Ibáñez et al., 2016) to improve it.

Automatic tuning has practical applications in many real-life large-scale MILP problems, whose solving
requires many hours of configuration testing. For these problems, one should expect several days/weeks of
tuning without interruption when considering multiple instances. Thus, the idea was to consider clustering
available instances from space based on the industrial (demand volume, the season of the year, etc.) and
mathematical (variables, constraints, etc.) structures, select one instance from each cluster, we hereafter call
representative instance, and separately tune on each of these representative instances as a single training
instance. It should result in a time reduction compared to tuning on all instances that are generated or will
be generated in the future, especially considering that MILP solvers are exact algorithms known to have
stable behavior in MILP instances with the same mathematical and industrial structures.

Tuning on a single instance is not appropriate for all cases. It is known, in general, that the better a
metaheuristic performs over the tuning instances, the worse it might do over a different instance of the same
class, and therefore, on average, over the whole class (Birattari and Kacprzyk, 2009). It is also the case when
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instances change significantly from one year to another, as in the forestry context, where we do not cut the
same trees yearly. Still, as initial experiments on the HQ problem have shown, there is a high chance that
the best configuration obtained while tuning on a given instance performs well on same-cluster instances.
We also expect this is the case for large-scale industrial optimization problems with fixed installations,
standard processes, and repetitive trends. For such MILP problems, instances show periodicity, similarity,
and repetitiveness from one year to another.

5 Computational study
We highlight in this section the matheuristic results in the worst-case, i.e. in instances that contain a large
number of possible configurations. We also provide some managerial insights.

5.1 Test plan

We distinguish two classes of instances, I1 and I2. The first class is for the winter season, while the second
class is for the summer season. We present the features of these instances, including the number of time
steps, the number of variables, the number of binary variables, and the number of constraints in Table 3.

Table 3: Instances

Type Instance Horizon Variables Binaries Constraints

I1
1 3 25728 4429 28397

I1
2 8 69401 11879 76078

I1
3 10 86867 14861 95150

I1 I1
4 15 130367 22316 142756

I1
5 21 182699 31262 199942

I1
6 35 267335 12453 448087

Avg 127066 16200 165068

I2
1 3 23664 4636 29409

I2
2 8 67206 12557 80069

I2
3 10 84604 15714 100326

I2 I2
4 15 127986 23573 150922

I2
5 21 179736 32915 211288

I2
6 35 300602 54385 351914

Avg 157997 23963 153988

We compare the following methods:

• MILP1: CPLEX under its default setting for the classic linearization.
• MILP+

1 : CPLEX with a tuned setting for the classic linearization.
• MILP2: CPLEX under its default setting for the new linearization.
• MILP+

2 : CPLEX with a tuned setting for the new linearization.
• RSFC1: RSFC matheurtistic with the default setting for the classic linearization.
• RSFC+

1 : RSFC matheurtistic with a tuned setting for the classic linearization.
• RSFC2: RSFC matheurtistic with the default setting for the new linearization.
• RSFC+

2 : RSFC matheurtistic with a tuned setting for the new linearization.

The coding language is Python, and tests are conducted using version 20.1.0.0 of the IBM ILOG CPLEX
solver. All experiments were carried out on a 3.20GHz IntelR CoreT M i7-8700 processor, with 64GiB System
memory, running on Oracle Linux Server release 7.7. We use real-time to measure runtime.
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5.2 Computational results

We compare various methods by reporting the execution time (Time) in seconds and the optimality gap
(Gap) in percentage. The time limit for each execution is 3 hours. When the method fails to reach a feasible
solution, we report a gap of 100% gap.

We compare in Table 4 the default and tuned CPLEX results using the classic linearization. While the
tuned CPLEX outperforms the default CPLEX on the small (few time steps) instances, the default and
tuned CPLEX cannot reach feasible solutions for large instances.

Table 4: Default and Tuned CPLEX Results using the Classic Linearization

MILP1 MILP+
1

Scenario Instances Time Gap(%) Time Gap(%)

I1

I1
1 324.96 0.00 58.75 0.00

I1
2 10800.00 100.00 77.88 0.00

I1
3 10800.00 100.00 91.42 0.00

I1
4 10800.00 100.00 10800.00 100.00

I1
5 10800.00 100.00 10800.00 100.00

I1
6 10800.00 100.00 10800.00 100.00

Avg 9054.16 83.33 5438.01 50.00

I2

I2
1 117.54 0.00 21.25 0.00

I2
2 10800.00 93.25 28.17 0.00

I2
3 10800.00 93.82 33.07 0.00

I2
4 10800.00 100.00 10800.00 100.00

I2
5 10800.00 100.00 10800.00 100.00

I2
6 10800.00 100.00 10800.00 100.00

Avg 9019.59 81.18 5413.75 50.00

Table 5 shows the default and tuned CPLEX results using the new linearization. The new linearization
outperforms the classic linearization. In particular, MILP+

2 reaches a gap below 5% on several instances.
The results also confirm the role of tuning in reaching better solutions quicker than the default CPLEX
setting.

Table 5: Default and Tuned CPLEX Results using the New Linearization

MILP2 MILP+
2

Scenario Instances Time Gap(%) Time Gap(%)

I1

I1
1 3.33 0.00 2.21 0.00

I1
2 23.71 0.00 15.74 0.00

I1
3 80.31 0.00 53.30 0.00

I1
4 606.52 0.00 81.59 0.00

I1
5 10800.00 0.03 453.05 0.58

I1
6 10800.00 100.00 5336.01 4.43

Avg 3718.98 16.67 990.32 0.84

I2

I2
1 6.17 0.00 3.89 0.00

I2
2 10.76 0.00 6.78 0.00

I2
3 59.50 0.00 37.51 0.00

I2
4 682.44 0.00 67.69 0.00

I2
5 3327.04 0.00 261.53 0.00

I2
6 10800.00 100.00 2234.76 1.44

Avg 2480.99 16.67 435.36 0.24

Table 6 presents the matheuristic results using the classic linearization. Both the default and tuned
settings do not significantly outperform the default and tuned CPLEX using the new linearization. Still,
some instances are solved to optimality using the matheuristic.
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Table 6: Default and Tuned Matheuristic Results using the Classic Linearization

RSFC1 RSFC+
1

Scenario Instances Time Gap(%) Time Gap(%)

I1

I1
1 6.70 0.00 3.15 0.00

I1
2 18.02 0.00 12.33 0.00

I1
3 76.34 0.00 53.35 0.00

I1
4 430.10 0.00 117.45 0.00

I1
5 2292.22 0.00 625.95 0.00

I1
6 18531.57 0.00 5367.77 0.00

Avg 3559.16 0.00 1030.00 0.00

I2

I2
1 4.89 0.00 3.22 0.00

I2
2 13.15 0.00 12.60 0.00

I2
3 55.72 0.00 54.54 0.00

I2
4 608.34 0.00 112.34 0.00

I2
5 2101.06 0.00 378.72 0.00

I2
6 13449.10 0.00 2649.54 0.00

Avg 2705.38 0.00 535.16 0.00

Table 7 shows the default and tuned matheuristic results using the new linearization. The results are
significantly better, especially for large instances. Several instances are solved to optimality within less than
10 minutes.

Table 7: Default and Tuned Matheuristic Results using the New Linearization

RSFC2 RSFC+
2

Scenario Instances Time Gap(%) Time Gap(%)

I1

I1
1 5.39 0.00 2.68 0.00

I1
2 33.45 0.00 13.71 0.00

I1
3 49.36 0.00 35.88 0.00

I1
4 538.60 0.00 79.77 0.00

I1
5 844.85 0.00 366.48 0.00

I1
6 1299.71 0.00 177.05 0.00

Avg 461.89 0.00 177.05 0.00

I2

I2
1 6.61 0.00 6.55 0.00

I2
2 41.02 0.00 15.96 0.00

I2
3 60.53 0.00 41.77 0.00

I2
4 450.02 0.00 55.02 0.00

I2
5 705.90 0.00 322.07 0.00

I2
6 1085.95 0.00 495.47 0.00

Avg 391.67 0.00 155.57 0.00

The results confirm the following. First, for real problems that are more customized than instances
from the literature, the CPLEX parameter tuning plays a significant role in reducing execution time and
finding better solutions. Second, the linearization of the power stability constraints significantly impacts
the solving process. While the classic linearization increases the number of binary variables and big-M
constraints, making the problem quite complex, the new linearization does not add any binary variable
or big-M constraints. Thus, it makes the solving significantly quicker. Third, the matheuristic partially
and smartly decomposes the problem, thus allowing another gain in the execution time. All these features
combined allow tackling almost all instances optimally in less than 10 minutes.

5.3 Managerial insights

From a system standpoint, the quick optimization (gained from the shift to less than 10 minutes) boosts
HQ planning capabilities and supports decision-making by stakeholders. In particular, the short execution
time allows for running several what-if scenarios and recovering quickly after perturbations and disruptions.
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As a result, the optimizer becomes an efficient decision-making tool to check, control, simulate, and re-
optimize electricity production. The mathematical optimization solution initiated the establishment of new
management rules in the company, thus enhancing operations planning. To sum up, quickly solving the
TSCUC supports HQ in handling the future more resiliently, allowing it to manage its water resources more
efficiently.

The designed approach is generic and scalable to real world large-scale optimization problems. This
approach consists of mathematically formulating the problem (modeling), conducting an exploratory analysis
(diagnostic) of complexity sources, and then developing a solution methodology (prescriptions) that tackles
the problem effectively.

6 Conclusion
While addressing HQ’s complex UC problem efficiently, this work offers general insights that apply to other
large-scale challenges. Following the presentation of the TSCUC model, the exploratory analysis reveals
that the binary variables governing the groups’ activities and the transient stability constraints are the
primary sources of the problem’s complexity. We design the RSFC matheuristic and put into practice a
workable version, for which time serves as the decomposition criterion. Compared to the default CPLEX,
the latter is highly beneficial in enhancing the caliber and speed of the problem-resolution procedure. From
an industrial standpoint, it is possible to obtain good (gap ≤ 2%) practical solutions within less than 10
minutes. Moreover, the solution provided enhances HQ’s planning capabilities and supports decision-making
within the company.
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