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D. Cariaga, Á. Lorca, M. F. Anjos

G–2024–41

Juillet 2024

La collection Les Cahiers du GERAD est constituée des travaux de
recherche menés par nos membres. La plupart de ces documents de
travail a été soumis à des revues avec comité de révision. Lorsqu’un
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Álvaro Lorca a, b

Miguel F. Anjos c, d

a Department of Industrial and Systems Engineer-
ing, Pontificia Universidad Católica de Chile, San-
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Universidad Católica de Chile, Santiago, Chile

c School of Mathematics, The University of Edin-
burgh, Edinburgh, UK
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Abstract : The water pump scheduling problem is an optimisation model that determines which
water pumps will be turned on or off at each time period over a given time horizon for a given water
supply system. This problem has received considerable attention in mining and desalination due to
the high power consumption of water pumps and desalination plants and the complicated dynamics of
water flows and the power market. Motivated by this, in this paper, we solve the optimal operation of
a desalinated water supply system consisting of interconnected tanks and pumps that transport water
to high-altitude reservoirs. The optimisation of this process encounters several difficulties arising from:
i) the nonlinearities of the equations for the frictional losses along the pipes and pumps, which makes
the problem a nonlinear mixed-integer model, and ii) many possible combinations of pressure head and
flow rates, which quickly leads to high computational costs. These limitations prevent the problem
from being solved in a reasonable computational time in high-altitude water supply systems with more
than six pumps and reservoirs, as in many networks worldwide. Therefore, in this work, we develop
new exact methods for the optimal pump scheduling problem that use a binary expansion approach
to efficiently account for the existing nonlinearities by reducing the computational difficulties of the
original problem while keeping an excellent representation of the physical phenomena involved. We also
extensively tested the proposed approach in different network topologies and a case study for a real-
world copper mine water network, and we conclude that the binary expansion approach significantly
reduces the computational time for solving the problem with high precision, which can be very relevant
for the practical daily operation of real-world water supply systems.

Keywords : Discrete optimisation, water supply systems, water pump scheduling problem, nonlinear
optimisation
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Les Cahiers du GERAD G–2024–41 1

1 Introduction

The optimal operation of water and energy networks is a relevant problem worldwide because it

allows entities to plan better and ensure the reliability of both networks. For the water network,

the operation consists of determining which water pumps will be turned on or off in each period,

depending on the dynamics of electricity tariffs. Therefore, the goal is to minimise the total cost of the

water supply system (WSSs) while meeting the water constraints and water demands at each node.

In areas with severe droughts, desalination has become a solution to supply water to communities and

industries such as mining, with the optimal operation of the WSSs being crucial to provide water to

the region at reasonable prices. This is particularly important if the water demand nodes are located

at high altitudes, such as is the case of many mining companies around the world, and particularly in

Chile (COCHILCO, 2019; Herrera-León et al., 2019), because the pumping process is energy-intensive,

increasing approximately US$ 0.5/m3 every 500 m of altitude. Additionally, at an altitude of 4000 m,

desalinated water costs US$ 4/m3 compared to spring water at US$ 0.4/m3 in some locations (Alvez

et al., 2020).

Furthermore, energy costs are a significant operating expense for water utilities, with approximately

4% of the electricity used in the United States being attributed to the operation of potable water

and wastewater networks (Goldstein and Smith, 2002). In California, 19% of the state’s electricity

consumption is for pumping, treating, collecting, and discharging water and wastewater (Klein and

Krebs, 2005). Therefore, optimising the operation of water networks not only offers economic benefits

but also helps to reduce unnecessary use of resources and minimise the ecological impact of pollution

and greenhouse gas emissions (Ghaddar et al., 2015).

On the other hand, multiple countries have committed to achieving carbon neutrality by 2050 in the

2015 Paris Agreement for Climate Action, which means renewable energies will replace carbon-fuelled

energies in the short term Government of Chile (2021). However, renewable energies compromise the

continuity and resilience of the electrical system due to its weather dependency, so planning has become

a key element in preventing shortages. Furthermore, climate change has produced severe droughts in

regions where it used to rain more frequently, weakening the water supply for hydropower, crops,

industry, and human consumption.

We found inspiration in the pump scheduling problem for high altitudes WSSs, particularly the

case emerging from Chilean mining through its water supply systems that provide desalinated water

to each mining site. Nowadays, this industry faces a severe drought (Garreaud et al., 2020; Vicuña

et al., 2018), and the location of the mining operations accentuates this phenomenon since they are

typically found at high altitudes, between 600 and 4000 meters above sea level (Herrera et al., 2015).

In addition, due to legal and environmental restrictions that protect aquifers and national reserves,

the option of extracting continental water is being increasingly reduced. In 2019, 16% of the water

used in the mining industry came from the sea, and it is expected that by 2030, this will increase to

47%. Thus, according to COCHILCO (2019), the desalinated water pump would be the second most

electricity-intensive process in copper mining, with 10% of the industry’s total. In addition, in the

Escondida mining company’s case, the impulsion system’s energy requirement is four times greater

than that of the desalination plant (COCHILCO, 2019).

The water pump scheduling problem is hard to solve due to its Non-Deterministic Polynomial-

Time Hard (NP-Hard) nature (De la perrière et al., 2011), leading to high computational times. This

is mainly due to i) the nonlinearities of the energy loss equations along pipes and pumps and the power

used by pumps and ii) many possible combinations of head pressure and flow (D’Ambrosio et al., 2015;

Abdallah and Kapelan, 2019). Under this context, a challenge arises from finding a faster way to

optimise the WSSs scheduling while minimising the system’s total costs. Therefore, the main goal

is developing new optimisation models for the operations of water supply systems, finding optimal

strategies to reduce systemic costs, and ensuring the water network’s reliability and resilience.
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Since the 1970s, researchers have addressed various problems in water networks, including reliability

(Sherali et al., 1996), network expansion (Bragalli et al., 2012; Sherali et al., 2001), pipe sizing (Eiger

et al., 1994), and network operations (Ormsbee and Lansey, 1994; Nitivattananon et al., 1996). Optimal

pump scheduling has gained attention in recent years due to the increasingly complex electricity tariff

schemes and because the operating costs of pumps constitute the most significant expenditure for

water organisations globally (van Zyl et al., 2004). Energy utilities are providing incentives by offering

cheaper electricity at low demand periods. This problem has become particularly relevant due to

the use of renewable energy sources, which are often weather-dependent and may not guarantee the

continuity and resilience of the electrical system.

In the past, optimal operation techniques for water distribution systems (WDSs) primarily relied

on deterministic methods such as dynamic programming (DP) (Dreizin, 1970; Sterling and Coulbeck,

1975a; Zessler and Shamir, 1989), hierarchical control methods (Coulbeck et al., 1988a,b; Fallside and

Perry, 1975; Sterling and Coulbeck, 1975b), linear programming (LP) (Alperovits and Shamir, 1977;

Schwarz et al., 1985), and nonlinear programming (NLP) (Ormsbee et al., 1989). However, since

the 1990s, metaheuristic algorithms like genetic algorithms (GAs) and simulated annealing (SA) have

gained popularity due to their ability to solve nonlinear, nonconvex, and discrete problems that are

difficult for deterministic methods (Maier et al., 2014; Nicklow et al., 2010), but they don’t ensure a

global optimum since they are heuristics, i.e., not exact methods. Nevertheless, deterministic methods

are now reemerging because they are more computationally efficient, making them more suitable for

real-time control and other applications (Creaco and Pezzinga, 2015). For example, Derceto Aquadapt

(Derceto, 2003) and EPANET (Rossman, 1993) are commercial software used to optimise water pumps.

D’Ambrosio et al. (2015) and Morsi et al. (2012) summarise the mathematical model for designing

and operating a water network described in the Section 2. The basic model is a nonlinear network

flow problem with complicated hydraulic constraints. The goal is to operate pumps, which affect

the flow and pressure of the water network. This problem is NP-hard due to its nonlinearities and

nonconvexities. First, the nonlinearities are present in the relationship of the pump’s pressure head with

the flow and in the relation between pressure head loss and flow in pipes. Second, the nonconvexities

are present in the changing flow paths in pipes and tanks and in the different discrete choices of pumps

to run at a given time of the day (D’Ambrosio et al., 2015; Verleye and Aghezzaf, 2016).

The water pump scheduling problem is typically planned over a day ahead horizon, divided into 24-

hour periods. This discretisation of time is a practical approach to reduce the computational costs of the

scheduling problem. Additionally, demand forecasts and electricity price tariffs are usually provided in

discrete time rather than continuous time, which further supports this approach (Burgschweiger et al.,

2009).

Solving nonlinear problems to global optimality is an NP-hard task, and one of the ways to do

so is by using the Spatial Branch and bound algorithms. Integrating spatial branching for NLPs and

mixed integer branching techniques for mixed integer linear problems (MILPs) opens the possibility of

developing general-purpose algorithms that can, in principle, solve nonconvex mixed integer nonlinear

problems (MINLPs) to global optimality. The basic idea of such an algorithm remains to divide the

problem into subproblems iteratively and to solve (usually linear) relaxations of these. Subproblems

are divided by branching on integer variables and branching on continuous ones.

In a subproblem of the branching tree, the continuous domain of some nonlinear function is divided

at some breakpoint into two smaller domains, thus creating two new subproblems. Provided the

relaxation of a nonlinear constraint becomes tighter when the domain of the corresponding nonlinear

function is reduced, spatial branching gradually refines the relaxations, see Figure 1. Branching is

continued until finally, the relaxations are tight enough to provide solutions that are ϵ-feasible for the

original problem.

A way to obtain relaxations of subproblems is to use reformulation techniques to reform all nonlinear

functions into some “basic” functions. For these basic functions, linear relaxations are then readily
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available. The tightness of the relaxations and, thus, the algorithm’s performance are highly dependent

on the bounds of the domains of the nonlinearities. This fact makes efficient domain propagation

between subproblems essential. Some solvers, like Gurobi, use this approach to solve nonlinear and

nonconvex bilinear or quadratic problems.

Figure 1: Linear relaxation of the potential-flow coupling constraint and its refinement after spatial branching in origin.

Other problems related to the WSS are the design and investment decisions to build (Herrera-

León et al., 2018a) (see Figure 2), analysis of topological attributes of network resilience (Meng et al.,

2018), design of water networks under future demand uncertainty (Basupi and Kapelan, 2015), demand

response using a WSS (Menke et al., 2018; Oikonomou et al., 2018; Mkireb et al., 2019; Stuhlmacher

and Mathieu, 2020) and operational models for the multi-product pump scheduling problem (Zhou

et al., 2019).

Figure 2: WSS proposed by Herrera-León et al. (2018a) to supply six mining sites. Image made using Google Earth.

Considering the literature reviewed above, this research identifies challenges that remain unsolved

in the current state of the art. The following questions summarise these challenges: How can the
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water pump scheduling problem for large and elevated WSS be solved in a reasonable time? How can

we efficiently represent the nonlinear nonconvex hydraulic equations in the water pump scheduling

problem with desalination plants in the context of large and high-altitude water supply systems? How

does a dynamic electricity tariff affect the water pump scheduling problem in high-altitude WSS?

In this work, the main contributions are summarised as follows:

1. We optimised the water pump scheduling problem of high altitude WSS with multiple pumps

and reservoirs using a discretised hourly time horizon and a dynamic electricity tariff. The high

altitude feature is crucial in our model since we are studying the optimal water pump scheduling

for large and high-altitude water supply systems.

2. We propose a novel approach to improve the computational efficiency and allow the solutions of

the water pump scheduling problem for high altitude WSSs: the binary expansion approach. We

applied this technique to the complicating hydraulic constraints of the model by partitioning some

of their variables into 2N pieces. The complicating constraints are nonlinear and nonconvex, thus

making the problem hard to solve. With the binary expansion approach, we reduce computational

times while keeping the optimality gap below 1% for large case studies.

3. We analysed the different models proposed in the literature to solve the water pump scheduling

problem and compared them with the proposed approach in a 24-hour time horizon. We also

studied different WSS topologies and boundary conditions, such as the initial water level in

tanks, the altitude of the nodes, the total pipe length, seasonal electricity prices, and comparison

with the mining company’s energy and water policies, to study the economic and computational

impact of using the binary expansion approach. The WSS utilised have heights of over 3000

meters, and the networks include up to 15 water pumps. Our results show the effectiveness of the

proposed approach in solving the problem and further demonstrate how a specific representation

of the complicating constraints impacts the computational time of the water network operational

model.

The remainder of this paper is organised as follows. Section 2 introduces the WSS operational

model and its nonlinearities. Section 3 presents three proposed models, including the binary expansion

approach. Following this, in Section 4, we evaluate the performance of the models using different WSS

topologies based on the Chilean geography as a case study. Finally, concluding remarks are provided

in Section 5.

2 Operational model for WSSs

This section presents the operational model for the water pump scheduling problem. We introduce the

operational constraints for flow, pressure, pipes, pumps, and tanks. Some of the operational equations

have a nonlinear and nonconvex nature, so in Section 3, we proposed different approaches to handle

the computational challenge produced by these constraints.

The decisions of this problem are binary variables that determine the water pump status and

continuous variables associated with the water flow in the WSS, the water pump power consumption,

and the head pressure in each node. The uncertain nature of this problem is related to the stochastic

hydro inflows. Therefore, the main goal of this problem is to find the optimal water pump scheduling

as the power prices change over time while minimising the total operational cost of the WSSs.

The WSS is formulated as a directed acyclic graph (DAG) G = (N,A) with nodes N and arcs A.

Nodes can be categorised as junctions j ∈ J , reservoirs j ∈ R, tanks j ∈ S, or desalination plants

j ∈ RO, that is, N = J∪R∪S∪RO. Arcs can be pipes a ∈ Pi or pumps a ∈ Pu, that is, A = Pi∪Pu.

This article’s main distinction between tanks and reservoirs is that tanks allow bidirectional flow,

whereas reservoirs model the water supply source (i.e., mine water source). Tanks are normally mod-

elled as nodes, like in this paper, but can also be treated as arcs Morsi et al. (2012). The WTS in
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this paper’s case study works as follows: first, the water is desalinated and then pumped into elevated

tanks to continue its way up to meet the demand at different nodes. Taking into account the speed

and design of these WSSs, the flow reaches a quasi-stationary status, so there is no need to add partial

differential equations to the model, and the following equations model the physical phenomena of the

water pump scheduling model for a WSS.

The operational nature of the problem introduces time to the variables and parameters. In principle,

time is continuous t ∈ [0, T ] ⊂ R, however for the model tractability, it is discretised in t ∈ {1, . . . , T}
periods of length τ ∈ {τ1, . . . , τT }. D’Ambrosio et al. (2015) and Burgschweiger et al. (2009) point out

that the time discretisation has the practical motivation that electricity demand and prices forecast

are usually given in discrete and not continuous time. In this paper, the planning horizon is one day,

divided into 24 hourly periods.

We made the following assumptions for this model: i) pump start/stop can be performed instantly

without any time delay; ii) the fluid is considered incompressible, and changes in volume due to flow

through pumps and pipelines can be disregarded; iii) the fluid’s physical properties remain constant,

and variations in temperature and pressure are not taken into account. Pressure distribution along

the pipeline is calculated assuming a steady-state process, and any effects of fluid transients in the

pipeline are neglected.

2.1 Flow and pressure

Conservation equations

A positive flow qi,j,t on an arc (i, j) means that it goes from i to jin time t ∈ T , while a negative value

of qi,j,t stands for a flow of amount |qi,j,t| from j to i. It is possible to allow only positive flow values

and account for the directions with a binary variable. Since this is a network, the flow conservation

constraint applies: for each node i ∈ N , the difference between the sum of the pipe flows entering and

exiting is equal to the water demand di,t at the node in time t. Assuming that the demand must be

satisfied at every time, the linear conservation constraint for every node i that is not a tank S is:∑
j:(j,i)∈A

qi,j,t −
∑

j:(i,j)∈A

qi,j,t ≥ di,t ∀i ∈ N \ S, ∀t ∈ T. (1)

Note that for this problem, the nodes where desalination plants are, the water flow demand is

negative since it is a water input to the network. On the other hand, for mining site nodes, the

demand is positive since it corresponds to the water output of the network. Finally, all the nodes in

between that are not tanks have either a positive or zero demand.

Flow bounds

The absolute value of the flow is bounded due to the capacity of the arcs. This bound depends on the

pipe’s cross-sectional area and the maximum linear velocity. (Herrera-León et al., 2018a), (D’Ambrosio

et al., 2015), and (Bragalli et al., 2012) emphasise that this parameter must not exceed a specific value

to avoid a number of potential operating problems, for instance, the flow-assisted corrosion problem.

Therefore, taking into account vmax
i,j,t ,the maximum linear velocity that is allowed in a pipe (i, j) in

time t, the maximum flow can be written (Herrera-León et al., 2018a) as

qmax
i,j,t =

π

4
vmax
i,j,t,tD

2
i,j ∀(i, j) ∈ A, ∀t ∈ T. (2)

Then the flow bounds are:

−qmax
i,j,t ≤ qi,j,t ≤ qmax

i,j,t ∀(i, j) ∈ A, ∀t ∈ T, (3)

where Di,j is the diameter of pipe (i, j).
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Note that since we are working with a directed graph, then the lower bound is zero:

0 ≤ qi,j,t ≤ qmax
i,j,t ∀(i, j) ∈ A, ∀t ∈ T. (4)

Pressure

The hydraulic head hi,t, i ∈ N , is the pressure value expressed dimensionally as a length in columns

of water (m). In fluid dynamics, the hydraulic head is the total energy per unit weight of fluid and is

the sum of the elevation head Zi, which is the altitude of the node i, H̄j the pressure in the terminal

node j, and the pressure loss ϕi,j,t in the pipeline or pump due to friction. For the WSSs tested in

this work, the pressure in the terminal node H̄j is 0 m under the assumption that every node receiving

water has a storage tank exposed to the environment (Herrera-León et al., 2018b).

hj,t − hi,t = Zj − Zi + H̄j + ϕi,j,t ∀(i, j) ∈ A, ∀t ∈ T. (5)

The hydraulic head must stay between certain bounds to guarantee the nodes’ minimum and max-

imum pressure levels. Normally, the node potentials are fixed at source nodes, like in the desalination

plants in this work, reflecting the fact that at sources, water is not pressurised, but it exploits a

fixed geographical height (D’Ambrosio et al., 2015). For all the other nodes, the lower bounds for the

hydraulic head are:

hi,t = Zi ∀i ∈ RO, ∀t ∈ T, (6a)

hi,t ≥ Zi ∀i ∈ N \RO, ∀t ∈ T. (6b)

The bounds of the difference of the hydraulic head for pipes, pumps and tanks are explained in the

next sections.

2.2 Pipes

Energy loss in pipes

The arcs in a WSS represent pipes in which water is transported from one node to another. In models

that don’t have stationary status, the flow changes at the beginning and end of a pipe (Morsi et al.,

2012). However, the flow is constant throughout the pipe since we are working with a quasi-stationary

network. The fundamental equation for a pipe (i, j) is the head-loss equation, also denominated

potential-flow coupling constraint in Fugenschuh and Humpola (2013), that is regularly of the form

hj,t − hi,t =∆Zi,j +Φi,j,t (qi,j,t) ∀(i, j) ∈ Pi, ∀t ∈ T, (7)

where Φi,j,t : R → R is a strictly increasing uneven function, concave on the negative half-axis

of its domain and convex on the positive half-axis. The flow is not linear in arcs due to the friction

modelling in the pipes. A positive flow as a function of the potential difference is strictly increasing

but concave: higher flow values mean a higher influence of friction. The other way round, for the same

reason, a positive potential loss as a function of the flow is strictly increasing and convex. Equation (7)

is also referred to as the potential-loss equation because it describes the pressure loss along a pipe.

Explicit forms of the head-loss equation are the so-called Darcy-Weisbach equation,

ϕi,j,t =
sign (qi,j,t) q

2
i,j,t8Li,jλi,j

π2gD5
i,j

∀(i, j) ∈ Pi, ∀t ∈ T, (8)

or the Hazen-Williams equation,

Φi,j,t =
sign (qi,j,t) |qi,j,t|1.852 10.7Li,j

k1.852i,j D4.87
i,j

∀(i, j) ∈ Pi, ∀t ∈ T. (9)
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Both formulations include constants like the gravitational acceleration g, the pipe length Li,j , and

the pipe material ki,j roughness coefficient. The friction factor λi,j = λi,j (qi,j,t) depends on the

Reynolds number (Re), which in turn depends on the flow in a nonlinear and continuous manner.

The friction coefficient λi,j (vi,j,t) in (8) is determined by the nature of the flow as characterised

by the value of the non-dimensional Reynolds number:

Rei,j,t =
Di,j

ν
|vi,j,t| =

4

πνDi,j
|qi,j,t| ∀(i, j) ∈ Pi, ∀t ∈ T, (10)

where ν denotes the kinematic viscosity of water (ν = 1.32 × 10−6m2

s for 10ºC, and ν = 10−6m2

s for

20ºC), and vi,j,t is the average water velocity.

For laminar flow ( Re < 2320 ), the friction coefficient depends on the Reynolds number only,

according to the law of Hagen-Poiseuille,

1√
λHP

=
Re

√
λHP

64
⇐⇒ λHP =

64

Re
∀(i, j) ∈ Pi, ∀t ∈ T. (11)

Note that the pressure loss, in this case, grows linearly with the flow rate,

∆hi,j,t(qi,j,t) =
64

4|qi,j,t|
πνDi,j

8Li,j

π2gD5
i,j

qi,j,t|qi,j,t| (12)

=
128νLi,j

πgD4
i,j

qi,j,t ∀(i, j) ∈ Pi, ∀t ∈ T. (13)

Since the graph studied in this work is directed, i.e. qi,j,t ≥ 0, the sign (qi,j,t) is set to one:

hj,t − hi,t = ∆Zi,j +
8Li,jf

π2gD5
i,j

q2i,j,t ∀(i, j) ∈ Pi, ∀t ∈ T, (14)

where f is the Darcy friction factor.

Note that if the final node j is a tank, then ∆Zi,j = ∆Zi,j + h̄j includes the tank height.

2.3 Pumps

In pressurised networks, like the one we are working on in this paper, water flows from points of high

to low pressure. Hence, increasing the pressure at certain parts of the network is necessary. For this

purpose, pumps are used to raise the pressure inside a water supply network. To represent the status

of the pumps, we introduce a binary variable xi,j,t ∈ 0, 1 which indicates if pump (i, j) ∈ Pu is active

or shut down in time t ∈ T . Active pumps increase the hydraulic head by some controlled non-negative

amount represented by the characteristic pump curve (Figure 3):

hj,t − hi,t = αi,j − βi,jq
γi,j

i,j,t ∀(i, j) ∈ Pu, ∀t ∈ T, (15)

where αi,j > 0 is the maximum possible pressure increase of the pump (∆Zi,j), βi,j > 0 and γi,j ≥ 1

are pump-specific efficiency parameters (Morsi et al., 2012).
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Figure 3: Characteristic curve for the pump energy loss.

Energy loss in pumps

As pumps behave like pipes in the energy loss and since the graph studied in this work is a DAG, i.e.

qa ≥ 0, and xa ∈ {0, 1} indicates the state of the water pump, then the Darcy-Weisback equation and

the linear equation (15) with γi,j = 1 are:

M(1− xi,j,t) ≤ hj,t − hi,t −

(
∆Zi,j −

8Li,jf

π2gD5
i,j

q2i,j,t

)
≤ M(1− xi,j,t) ∀(i, j) ∈ Pu, ∀t ∈ T, (16a)

M(1− xi,j,t) ≤ hj,t − hi,t − (∆Zi,j − βi,jqi,j,t) ≤ M(1− xi,j,t) ∀(i, j) ∈ Pu, ∀t ∈ T, (16b)

qmin
i,j,t xi,j,t ≤ qi,j,t ≤ qmax

i,j,t xi,j,t + qmin
i,j,t ∀(i, j) ∈ Pu, ∀t ∈ T (17)

where f is the Darcy friction factor, and M = hmin
j −hmax

i and M = hmax
j −hmin

i (Morsi et al., 2012).

Normally, the Equation (16b) is one of the most common approaches used for the pump head

loss. It is derived from (15) with quadratic term γi,j = 2. However, the coefficient in front of the

quadratic term is usually small and negative (Bhave and Gupta, 2006). Therefore, like in (Li et al.,

2019) and (Stuhlmacher and Mathieu, 2020), we neglect the quadratic term since its contribution is

small compared to the linear term, and we approximate the pump hydraulic function with energy loss

as described in (16b).

Note that (17) is the linking constraint between the binary variable xi,j,t and the flow qi,j,t, where

if the water pump is shut down, that is xi,j,t = 0 and qi,j,t = 0, the pressure difference hj − hi is

arbitrary. The value of qmin
i,j,t > 0 is the minimal relevant non-zero flow. Therefore, a flow less tan qmin

i,j,t

implies that the pump is inactive (xi,j,t = 0), and a positive flow of more than qmin
i,j,t makes the pump

active (xi,j,t = 1).

Pump power

For a pump with η combined efficiency of the pump and prime mover, and ρ the water density, its

power consumption (MINLP) is a function of its head gain and water flow rate in MW:

Pi,j,t =
ρ g

η
qi,j,t (hj,t − hi,t) 10

−6 ∀(i, j) ∈ Pu, ∀t ∈ T. (18)

2.4 Tanks

Tanks can make the operation of the network more flexible. In a dynamic setting, where the demand

at consumer nodes can vary in time, water can be stored in a tank during a period of low demand and
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extracted from it to satisfy peak demands.∑
j:(j,i)∈A

qi,j,t −
∑

j:(i,j)∈A

qi,j,t = ei,t ∀i ∈ S ∪R, ∀t ∈ T − 1, (19)

eti =
1

τt
(hi,t+1 − hi,t)Ai ∀i ∈ S ∪R, ∀t ∈ T − 1, (20)

hi,t ≤ Zi + h̄i, ∀i ∈ S ∪R, ∀t ∈ T, (21)

hi,t ≥ Zi + h̄iγ
min
i , ∀i ∈ R, ∀t ∈ T, (22)

hi,1 ≤ hi,T = Zi + h̄iγi ∀i ∈ S (23)

with eni denoting the variable volumetric tank inflow, Ai being the cross-sectional area of the tank,

τt is a time scalar, h̄i is the tank height, γi is the initial and final percentage of the water tank level,

and γmin
i is the minimum water tank level percentage during the operation. Equations (19) and (20)

represent the water flow balance in tanks, which depends on its volume. To bound the maximum

pressure measure in the altitude of the tanks, and since they don’t allow water overflow and they are

open, we need the Equation (21). Usually, (22) is used to set the minimum water level of a tank or

reservoir during the pump scheduling operation, especially if the water operator requires a conservative

volume reserved in the tank or reservoir to supply the industry in case of an energy shortage or any

event that would stop the water supply for a few hours or days. Industries normally require this

constraint because the cost of stopping their operation due to water shortage can cost millions every

hour. Finally, (23) is used to set the initial value equal to the previous day’s final.

2.5 Reservoirs

As we explained before, the main difference between tanks and reservoirs is that tanks allow bidirec-

tional flow, whereas reservoirs model the water supply source. Without loss of generality, we assume

that reservoirs are infinite sources of water and that the pressure head at each reservoir r ∈ R is zero;

in other words, the total head at the reservoir r only represents the elevation head (Fooladivanda and

Taylor, 2018). Normally, reservoirs are fed by natural sources, like rivers or glaciers; therefore, it’s

assumed that they have an infinite supply. In this work, the “reservoirs” are, in fact, big tanks since

they are located next to the mining site and they are only supplied by the desalinated WSS. Hence,

they allow bidirectional flow.

2.6 Objective function

The objective function seeks to minimise the cost of operation and the on/off penalty of the water

pumps. Let X be the space of all the optimisation variables of the problem, and T = 25 hours to

adjust the 24-hour cycle; therefore, the objective function is:

f(X) =
∑

(i,j)∈Pu

T−1∑
t=1

(xi,j,tPi,j,tCt + |xi,j,t+1 − xi,j,t|Cs) , (24)

where Ct is the cost of electricity in having a pump on during time t, and Cs is the penalty for a single

pump switch. The value of Cs is based on recommendations by (van Zyl et al., 2004), which consist

of iterating over different values of Cs and picking one that is reasonable for the electricity prices and

that allows the switching of the pumps. This is in case there is no data for the future pumping station

maintenance costs.

Note that pump switching can negatively affect a system’s maintenance cost due to the changing

loads contributing to fatigue-related failures (Menke et al., 2018). Hence, penalising pump switching

often reduces this negative impact and accounts for maintenance costs (Lansey and Awumah, 1994;

Savic et al., 1997).
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Another way to represent the pump maintenance penalty is using a quadratic term instead of the

absolute value:
∑

(i,j)∈Pu

∑T−1
t=1 (xi,j,t+1−xi,j,t)

2 (Menke et al., 2015). Both approaches are equivalent

and nonlinear; however, the absolute value has fewer added constraints in the exact reformulation,

which we explain in the next section.

2.7 Water pump scheduling problem

Therefore, the optimisation model for the water pump scheduling problem is the following:

min (24)

s.t. (1), (2), (4), (6), (14), (16b), (17), (18), (19), (20), (21), (22), (23)
(25)

3 Alternative models for the WSS operation

This section presents three methodologies to handle the nonlinearities present in the original problem,

as we explained in Section 2, whose main differences lie in the final nature of the model, linear or

nonlinear. We describe the three proposed models: the fixed flow model, the semi-linear model and

the binary expansion approach model. Additionally, we discuss the theoretical and practical advantages

and disadvantages of each model, and we compare them using computational experiments in Section 4.

3.1 Reformulation techniques to solve the complicating constraints

To handle the complicating nonlinear and nonconvex constraints, we consider the following reformu-

lation techniques:

Fixing flow to its upper bound: Note that the Equations (14) and (16a) can become MILP if the
quadratic element q2a is replaced with its upper bound (qmax

a )2. The reason for fixing this value
is that almost all the optimal solutions return qa with its maximum value. So, the energy loss
constraint for pipes (26) and pumps (27) are:

hj,t − hit = ∆Zi,j +
8Li,jf

π2gD5
i,j

(qmax
i,j,t )

2 ∀(i, j) ∈ Pi, ∀t ∈ T, (26)

M(1− xi,j,t) ≤ hj,t − hi,t −
(
∆Zi,j −

8Li,jf

π2gD5
i,j

(qmax
i,j,t )

2

)
≤ M(1− xi,j,t) ∀(i, j) ∈ Pu, ∀t ∈ T, (27a)

M(1− xi,j,t) ≤ hj,t − hi,t − (∆Zi,j − βi,j qi,j,t) ≤ M(1− xi,j,t) ∀(i, j) ∈ Pu, ∀t ∈ T, (27b)

Reformulating the binary and continuous products: We use an auxiliary variable z to linearise

z = x · y where x is binary and y is a continuous variable such that y ∈ [0, b]. The following

formulation is applied:

z ≤ y, z ≤ x · b, z ≥ y + b · (x− 1). (28)

Applying the reformulation to rewrite the new objective function f ′(X) from the original f(X)

in (33) using auxi,j,t = xi,j,t · Pi,j,t:

f ′(X) =
∑

(i,j)∈Pu

T−1∑
t=1

(auxi,j,tCt + |xi,j,t+1 − xi,j,t|Cs) , (29)

and adding the constraints for the water pumps a ∈ Pu:

auxi,j,t ≤ Pi,j,t ∀(i, j) ∈ Pu, ∀t ∈ T, (30a)

auxi,j,t ≤ xi,j,t · Pmax
i,j,t ∀(i, j) ∈ Pu, ∀t ∈ T, (30b)

auxi,j,t ≥ Pi,j,t + Pmax
i,j,t · (xi,j,t − 1) ∀(i, j) ∈ Pu, ∀t ∈ T. (30c)
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Reformulating the absolute value of binary variables: We use an auxiliary variable w to lin-

earise w = |x − y| where x and y are binary variables. An analogous expression for w is

w = |x− y| = max{x− y, y − x}, therefore, the following formulation is applied:

w ≥ x− y, w ≥ y − x. (31)

Note that the reformulation for the quadratic expression for binary variables w = (x − y)2 =

x− 2xy + y = x− 2z + y, with z = xy is similar to (28) with b = 1:

z ≤ y, z ≤ x, z ≥ y + x− 1, (32)

nevertheless, it adds |Pu| × |T | more constraints than the absolute value reformulation (31) for

the pump maintenance penalty in the objective function (24).

Using the expression (31) for the pump maintenance penalty in the objective function f ′(X)

with Bi,j,t = |xi,j,t+1 − xi,j,t|:

f ′′(X) =
∑

(i,j)∈Pu

T−1∑
t=1

(auxi,j,tCt +Bi,j,tCs) , (33)

and adding the constraints:

Bi,j,t ≥ xi,j,t+1 − xi,j,t ∀(i, j) ∈ Pu, ∀t ∈ {1, . . . , T − 1}, (34a)

Bi,j,t ≥ −(xi,j,t+1 − xi,j,t) ∀(i, j) ∈ Pu, ∀t ∈ {1, . . . , T − 1}, (34b)

Binary expansion approach: We discretise a continuous variable x ∈ [xLB , xUB ] (Gunluk et al.,

2012; Tapia et al., 2021):

x = xLB +
xUB − xLB

2N − 1
·

N∑
i=1

2i−1 · xi, (35)

where xi is the binary variable that determines the values of the binary division of x.

The binary expansion approach for the water flow variable qi,j,t is:

qi,j,t =
qmax
i,j,t

2K − 1

K∑
l=1

2l−1 ql,i,j,t ∀(i, j) ∈ A, ∀t ∈ T. (36)

The same approach can be applied to the product of continuous variables using the binary

expansion approach in one of the variables, and the other variable is left as it is. Then, we have

the product of a binary and continuous variable; therefore, we can apply (28). So, to linearise

the bilinear product x · y, we define the variable zi = xi · y, and use (28) with a Big M :

x · y = xLB · y + xUB − xLB

2N − 1

N∑
i=1

2i−1 zi, (37a)

0 ≤ y − zi ≤ M (1− xi) ∀i ∈ N, (37b)

0 ≤ zi ≤ M xi ∀i ∈ N. (37c)

Applying the reformulation to the energy loss constraint in pipes (14) using zk,i,j,t = qk,i,j,t ·qi,j,t,
with qk,i,j,t the binary variable for the partition of qi,j,t, and qLB = 0, M = qUB = qmax

i,j,t , and (36),

then the energy loss in pipes is:

hj,t − hi,t = ∆Zi,j +
8Li,jf

π2g

qmax
i,j,t

2K − 1

K∑
k=1

2k−1 zk,i,j,t ∀(i, j) ∈ Pi, ∀t ∈ T, (38a)
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0 ≤
qmax
i,j,t

2K − 1

K∑
l=1

2l−1 ql,i,j,t − zk,i,j,t ≤ qmax
i,j,t (1− qk,i,j,t) ∀k ∈ N, ∀(i, j) ∈ Pi, ∀t ∈ T, (38b)

0 ≤ zk,i,j,t ≤ qmax
i,j,t qk,i,j,t ∀k ∈ N, ∀(i, j) ∈ Pi, ∀t ∈ T, (38c)

Similarly, as in (35), we apply the binary expansion approach to the linear energy loss constraint

in pumps (16b), and in all the other constraints that have qi,j,t, using (36):

M(1− xi,j,t) ≤ hj,t − hi,t −

(
∆Zi,j − βi,j

qmax
i,j,t

2K − 1

K∑
l=1

2l−1 ql,i,j,t

)
≤ M(1− xi,j,t)

∀(i, j) ∈ Pu, ∀t ∈ T (39)

We also apply the binary expansion approach (37) to the pump power constraint (18) using

pk,i,j,t = qk,i,j,t (hj,t − hi,t), and qLB = 0, qUB = qmax
i,j,t , and M = max{Zi, Zj}:

Pi,j,t =
ρ g

η

qmax
i,j,t

2N − 1

N∑
k=1

2k−1 pk,i,j,t 10
−6 ∀(i, j) ∈ Pi, ∀t ∈ T, (40a)

0 ≤ hj,t − hi,t − pk,i,j,t ≤ max{Zi, Zj} (1− qk,i,j,t) ∀k ∈ N, ∀(i, j) ∈ Pi, ∀t ∈ T, (40b)

0 ≤ pk,i,j,t ≤ max{Zi, Zj} qk,i,j,t ∀k ∈ N, ∀(i, j) ∈ Pi, ∀t ∈ T. (40c)

3.2 Alternative models

We proposed three alternatives for the original water pump scheduling problem (25) to analyse the

computational effectiveness of the binary expansion approach method compared to other classic ap-

proaches. The first approach is the fixed flow “FF”, which fixes the water flow value in the energy

loss complicated equation. The second approach is the semi-linear “SL”, which linearises the binary

and continuous products in the problem’s constraints. The third alternative is the binary expansion

approach “BEA”; it linearises the binary and continuous products and the complicating variables of

water flow and pump power.

Model 1: FF (MINLP) The fixed flow model (FF) considers a fixed value for qi,j,t = qmax
i,j,t

in (26). The approach is an upper bound for the original problem: the flow passing through the pipes

is the maximum. This approach approximates the nonlinear and nonconvex constraints for the pipes’

energy loss equations. This model is still MINLP because of the bilinear term in the pump power

constraint. The optimisation model is:

min (33)

s.t. (1), (2), (4), (6), (26), (16b), (17), (18), (19), (20), (21), (22), (23), (30), (34)
(41)

Model 2: SL (MINLP) The semi-linear model (SL) only linearises the binary and continuous

products using the (28) technique in (24), but leaves the pump power constraint bilinear and the

energy loss equation in pipes quadratic. This method removes the complexity derived from the binary

product in the problem’s constraints. This model is still MINLP because of the bilinear term in the

pump power constraint and the quadratic water flow in the energy loss equation. The optimisation

model is:

min (33)

s.t. (1), (2), (4), (6), (14), (16b), (17), (18), (19), (20), (21), (22), (23), (30), (34)
(42)

Model 3: BEA (MILP) The binary expansion approach model BEA considers the linearisation

of the binary and continuous products using the (28) technique, and the bilinear products and quadratic
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elements using the binary expansion approach (35) and (37) in all the constraints where qi,j,t and

Pi,j,t are present. It is worth mentioning that the computational efficiency of the binary expansion

approach is highly dependent on the number of partitions N taken. The higher this number is, the

more accurate it should be; however, the longer it takes to solve. This is because 2N equations are

added to the optimisation model for every constraint where this technique is used. The optimisation

model is:

min (33)

s.t. (1), (2), (4), (6), (38), (39), (17), (40), (19), (20), (21), (22), (23), (30), (34), (36)
(43)

4 Computational experiments

The three alternative models defined in Section 3 were tested on three different and realistic high

altitude WSSs using the Gurobi 10 solver (Gurobi Optimization, 2023) via Julia (Julia, 2023): the

experiments were done using long and steep networks that send desalinated water from the sea level

up to the mountains (more than 3000 meters above sea level). For this work, it is assumed that the

water production at the desalination plant and the mine site’s water demand are constant. Table 1

summarises the main characteristics of the WSSs tested.

Table 1: WSS characteristics. Note that the “Tank” category includes the reservoirs, and the “Pipe Length” is the sum
of all the WSS pipes.

WSS size Pump Tank Reservoir Mine Water Demand Elevation Pipe Length

Small (S) 5 5 1 1 1.50 m3/s 3,100 m 153 km
Medium (M) 6 4 6 6 1.00 m3/s 3,736 m 424 km
Large (L) 14 12 3 3 4.05 m3/s 2,400 m 669 km

In Figure 4, there is an example of a real WSS that pumps up desalinated water to a mine located

at 3100 m.a.s.l. in the Chilean Atacama desert (Herrera-León et al., 2019). This water network

corresponds to the Small WSS tested, and it has one reverse osmosis desalination plant and five

interconnected pumping stations, compounded by a water pump and tank, one reservoir and one

mine, which has a water demand. The data for the nodes and arcs can be seen in the Table 2 and

Table 3.

Figure 4: Conceptual representation of the water supply system topography for Radomiro Tomic (RT) Copper Chilean
mine operation. This WSS corresponds to the Small size water network.
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Table 2: Data of the nodes of the Small WSS.

Node Altitude [m] Type of node Area tank [m2] Height tank [m] Initial/final storage Demand [m3/s]

1 30 RO - - - -2.0
2 30 Tank 800 10 50% -
3 1,100 Junction - - - -
4 1,100 Tank 800 10 50% -
5 1,600 Junction - - - -
6 1,600 Tank 800 10 50% -
7 2,100 Junction - - - -
8 2,100 Tank 800 10 50% -
9 2,600 Junction - - - -
10 2,600 Tank 800 10 50% -
11 3,100 Junction - - - -
12 3,100 Reservoir 1,000 16 90% -
13 3,100 Mine - - - 1.5

Table 3: Data of the arcs of the Small WSS.

Node from Node to Type of Arc Length [m]

1 2 Pipe 1
2 3 Pump 30
3 4 Pipe 6,300
4 5 Pump -
5 6 Pipe 85,000
6 7 Pump -
7 8 Pipe 21,800
8 9 Pump -
9 10 Pipe 22,500
10 11 Pump -
11 12 Pipe 17,400
12 13 Pipe 1

Figure 2 shows a medium size WSS proposed by Herrera-León et al. (2018b) to supply with water

to six mining sites. It has ten pumping stations and six reservoirs. The data for the nodes and arcs

can be seen in the Table 6 and Table 7.

Finally, a bigger water network is considered using Herrera-León et al. (2018b) data, with fourteen

pumping stations, one reservoir, and one mine, as seen in Figure 5. The data for the large WSS can

be found in the Table 4 and Table 5.

Figure 5: Diagram of the large WSS used in this study.
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The values of other parameters for the model were obtained from Herrera-León et al. (2019):

water density ρ = 1000 Kg/m3, pump efficiency ν = 80%, pipe maximum speed vmax = 2.5 m/s,

pipe diameter D = 1 m, Darcy friction factor f = 0.01, pump linear parameter βi,j,t = 1/qmax
i,j,t using

Stuhlmacher and Mathieu (2020) technique, and the minimum water tank level percentage γmin
i = 80%

that depends on the industry, in this case, γmin
i,COD = 95% from CODELCO a copper mining company.

Finally, the electricity prices were obtained from the Chilean national electrical operator.

Table 4: Data of the nodes of Medium WSS.

Node Altitude [m] Type of node Area tank [m2] Height tank [m] Initial/final storage Demand [m3/s]

{1,2} 0 RO, Tank 800 10 50% -1.50
{3,4} 866 Junction, Tank 800 10 50% -

{5,6,22} 1,461 Junction, Reservoir, Mine 1,000 16 90% 0.10
{7,8} 2,126 Junction, Tank 800 10 50% -
{9,10} 3,007 Junction, Tank 800 10 50% -

{11,12,13} 3,730 Junction, Reservoir, Mine 1,000 16 90% 0.15
{14,15} 3,342 Reservoir, Mine 1,000 16 90% 0.20
{16,23} 1,703 Reservoir, Mine 1,000 16 90% 0.15

{17,20,21} 2,424 Junction, Reservoir, Mine 1,000 16 90% 0.30
{18,19} 2,335 Reservoir, Mine 1,000 16 90% 0.10

Table 5: Data of the arcs of the Medium WSS.

Node from Node to Type of Arc Length [m] Node from Node to Type of Arc Length [m]

1 2 Pipe 1 12 13 Pipe 1
2 3 Pump - 11 14 Pipe 31,100
3 4 Pipe 3,410 14 15 Pipe 1
4 5 Pump - 7 16 Pipe 36,400
5 6 Pipe 57,900 16 17 Pump -
6 7 Pump - 17 18 Pipe 66,300
7 8 Pipe 46,900 18 19 Pipe 1
8 9 Pump - 17 20 Pipe 41,500
9 10 Pipe 84,300 20 21 Pipe 1
10 11 Pump - 6 22 Pipe 1
11 12 Pipe 31,100 16 23 Pipe 1

For example, Figure 6 shows the expected normalised results for the water pump scheduling problem

in a WSS with one pump. The operator of WSSs desires to know every hour which water pumps turn

on or off, what the level of the water tanks is, how much energy is being used, and what the operation

cost is. Additionally, if water demands change over time, the operator wants to know if hourly or daily

water demand is being met; otherwise, the model information would have to be updated, and other

policies would have to be taken in the following period. Note that the maximum number of time slots

when the water pumps can be active is 125 for the Small WSS, 150 for the Medium WSS, and 325 for

the Large WSS. It’s 325 instead of 350 because there is one water pump that has never been activated

due to the network design.

The following subsection presents the different computational experiments analysed to understand

the efficiency of the proposed method and the key parameters and variables of the water pump schedul-

ing problem.

4.1 Choosing the appropriate cost of maintenance Cs

As we explained in the section on the objective function, the pump switching can negatively affect the

water system’s maintenance cost Cs due to the changing load contributing to fatigue-related failures

(Menke et al., 2018). Following the recommendations of van Zyl et al. (2004), which consists of trying

different values of Cs for a given vector of electricity prices Ct, when the maintenance cost is unknown.

We analysed the Cs value for the small, medium and large WSS using different electricity prices.

For this purpose, we utilised two prices: the variable price was taken from the Chilean Electricity

Coordinator from a summer day in 2021 in the Radomiro Tomic Electric Bus, and the simple price
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Table 6: Data of the nodes of the Large WSS.

Node Altitude [m]
Type of
node Area tank [m2] Height tank [m] Initial/final storage Demand [m3/s]

{1,2} 0 RO, Tank 800 10 50% -1.50

{3,4} 660
Junction,
Tank 800 10 50% -

{5,6} 1,220
Junction,
Tank 800 10 50% -

{7,8,34} 1,260

Junction,
Reservoir,

Mine 1,000 16 90% 0.90

{9,10} 1,705
Junction,
Tank 800 10 50% -

{11,12,13,24} 2,400

Junction,
Reservoir,

Mine,
Junction 1,000 16 90% 1.35

{14,15} 0 RO, Tank 800 10 50% -2.00

{16,17} 700
Junction,
Tank 800 10 50% -

{18,19} 1,395
Junction,
Tank 800 10 50% -

{20,21} 1,450
Junction,
Tank 800 10 50% -

{22,23,33} 2,045

Junction,
Tank,

Junction 800 10 50% -
{25,26} 0 RO, Tank 800 10 50% -1.00

{27,28} 545
Junction,
Tank 800 10 50% -

{29,30} 1,045
Junction,
Tank 800 10 50% -

{31,32,35} 1,630

Junction,
Reservoir,

Mine 1,000 16 90% 1.80

Figure 6: Example of a WSS with one pump and its expected results for the Water Pump Scheduling Problem. The
volume of the water tanks and reservoirs, the electricity price, and the water pump status values are normalised and
displayed in the same plot to analyse its variation per hour.
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Table 7: Data of the arcs of the Large WSS.

Node from Node to Type of Arc Length [m] Node from Node to Type of Arc Length [m]

1 2 Pipe 1 20 21 Pipe 50,000
2 3 Pump - 21 22 Pump -
3 4 Pipe 8,340 22 23 Pipe 52,600
4 5 Pump - 23 24 Pump -
5 6 Pipe 14,500 25 26 Pipe 1
6 7 Pump - 26 27 Pump -
7 8 Pipe 49,500 27 28 Pipe 11,500
8 9 Pump - 28 29 Pump -
9 10 Pipe 53,400 29 30 Pipe 60,400
10 11 Pump - 30 31 Pump -
11 12 Pipe 44,000 31 32 Pipe 73,200
12 13 Pipe 1 32 33 Pump -
14 15 Pipe 1 8 34 Pipe 1
15 16 Pump - 9 21 Pipe 42,900
16 17 Pipe 30,500 22 32 Pipe 49,700
17 18 Pump - 33 23 Pipe 44,000
18 19 Pipe 37,500 32 35 Pipe 1
19 20 Pump - 24 12 Pipe 43,500

is a simplified representation of the previous cost, with only two values, one for peak and non-peak

hours. We chose the values of the simple price, such that the mean and variance were similar to the

variable price, and it’s a reasonable structure since some markets work in a high/low price scheme. In

Figure 7 are shown the electricity prices for both the simple and the variable price.

Figure 7: Hourly electricity prices in our case study. The variable price was taken from a summer day of 2021 in the
Radomiro Tomic electric bar in the northern region of Chile. The simple price is a simplification of the variable, with only
two values: one for the peak and the other for the non-peak hours.

Then, for each electricity price, we studied the impact of the constraint (22) using a 90% minimum

water level of the reservoir in each hour. We chose this value because it provides enough flexibility to

the water pumps to have more time slots to be off, but it is high enough so that the demand node is

secured with a safe level of water. In the following sections, we analysed the study case for the Small

WSS using a 95% minimum water level because the mining company is highly conservative with the

amount of water they need. Otherwise, in a water pump supply failure scenario, the cost of loss for

their mining operation is extremely expensive.
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For example, for the Small WSS, with a simple electricity price, as we can see in the Figure 8 and

Figure 9, from Cs = $30, the maintenance cost makes all the water pumps active, however, the same

scenario occurs for the reservoir constrained case, with Cs = $20. This result makes complete sense

since the reservoir constraint increases the total cost, as it reduces the feasible region, and therefore,

the new global optimum can be excluded. Note that from those Cs values, the optimal value and the

operational costs remain constant even though the maintenance values increase. This is due to no

switching being done; therefore, Bi,j,t = 0, which makes the maintenance costs zero in the optimal

value. This pattern is repeated in any electricity price analysis.

Figure 8: Cs values for the simple electricity price in the Small WSS. The total costs (opt. value), the operational costs,
and the active water pumps are displayed. The model was solved using the SL model with a stop of a maximum of 20
seconds.

Figure 9: Cs values for the simple electricity price with the fixed reservoir constraint of 90% in the Small WSS. The total
costs (opt. value), the operational costs, and the active water pumps are displayed. The model was solved using the SL
model with a stop of a maximum of 20 seconds.

In order to select an appropriate Cs value, we would like to have at least 15% of flexibility in the

number of active pumps, i.e., for the Small WSS, around 15-18 slots of inactive pumps in total in a
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24-hour horizon. This is achieved with Cs = $4 for the unconstrained case and with Cs = $2 for the

constrained case.

A similar study was done with the variable electricity price. Since it has a slightly higher variance

than the simple electricity price, it is expected that the Cs needs to be smaller to compensate for the

total cost, as we can observe in the Figure 10 and Figure 11. For this case, the chosen value is Cs = $3

for the unconstrained case, and Cs = $1.

Figure 10: Cs values for the variable electricity price in the Small WSS. The total costs (opt. value), the operational
costs, and the active water pumps are displayed. The model was solved using the SL model with a stop of a maximum of
20 seconds.

Figure 11: Cs values for the variable electricity with the fixed reservoir constraint of 90% in the Small WSS. The total
costs (opt. value), the operational costs, and the active water pumps are displayed. The model was solved using the SL
model with a stop of a maximum of 20 seconds.
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4.2 Comparison of running times

In Table 8 are the significant results for the Small, Medium, and Large WSS using the variable

electricity price, not activating the reservoir constraint (22) and the MINLP approaches: Fixed Flow

(FF), Semi Linear (SL), and the MILP Binary Expansion Approach (BEA). The optimality gap of

the MINLP methods is 0% in most of the cases. It is worth mentioning that solving the original

model (25) and the FF model for more significant instances takes too long, so we had to set a 10

minutes time stop to the Gurobi solver in order to add those results to the table. Otherwise, it could

have taken more than 7 hours to complete. Also, for this work, we consider that the SL model reaches

the optimal value of this problem because the other approaches are either an upper bound (FF) or a

binary approximation (BEA) of the original problem.

Table 8: Comparison of the three models using different WSS sizes.

Model Size Time Obj. Value Active Pumps Power Gurobi Gap

FF S 4.67 s $51951 125 1388 MW 0.01%
SL S 3.62 s $51931 110 1352 MW 0.01%

BEA (N=3) S 1.54 s $51894 118 1352 MW 0.49%

FF M 10 min $30395 117 853 MW 0.01%
SL M 10 min $30449 117 853 MW 0.01%

BEA (N=4) M 3.83 min $30366 132 885 MW 0.55%
BEA (N=2) M 3.33 min $30380 109 856 MW 0.76%

FF L 10 min $85439 281 2242 MW 0.03%
SL L 10 min $85540 279 2343 MW 0.03%

BEA (N=4) L 88 s $85464 276 2237 MW 0.89%
BEA (N=2) L 20.75 s $85527 280 2240 MW 0.73%

We performed different experiments using the binary expansion approach (N=4 for M and L, and

N=3 for S) with Gurobi MILP, which reduces the computational time of the original MINLP while

keeping the Gurobi Gap within 0.9%. Also, the BEA model slightly reduces the optimal value because

it is an approximation of the original problem.

The main difference is seen in the Medium and Large WSS because they not only have more pumps

and tanks, but the Medium is higher, and the Large has a bigger water demand, which makes them

computationally intensive to solve due to the higher number of possible combinations. In the following

sections, we explain this phenomenon in more detail.

It is worth mentioning that solving this problem with Ipopt, a free non-linear solver, is not possible

due to the mixed integer nature of this problem, which it doesn’t support. Also, it only ensures global

optimality for convex problems, and this is non-convex. Therefore, we decided to use the Gurobi solver

to get global optimum results in a reasonable time.

We included the power required in a day because it is a good indicator of the solution’s quality.

As we can see in the Table 8, the optimal power needed for each WSS tested was similar for the three

models: 1352 MW for the Small, 853 MW for the Medium, and 2343 MW for the Large. Note that

even though the Medium WSS is the highest one, its water demand is 1 m3/s, compared with 1.5

m3/s for the Small and 4.05 m3/s for the Large. Therefore, the power needed was less than for the

other cases.

In all the tested cases, the BEA model runs faster than the other models; furthermore, the goal

of BEA is to get feasible solutions quicker with a reasonable gap because the water operator needs to

make its decisions on a day-ahead basis.

4.3 Computational impact of network altitude and length

As we mentioned before, the model’s most significant parameter is the highest node’s altitude. This

is because, by increasing its maximum altitude, the model takes longer to solve due to the increase in
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total combinations it has to compute. We computed experiments using the medium WSS by dividing

its altitude and total pipe length by ten and compared the results. Table 9 shows the results for a

medium-sized WSS using Model BEA (N=4) and 0.5% Gurobi Gap.

Table 9: Comparison of different altitudes and pipe length using Medium size network.

Experiment High (3736 m) Low (373 m)

Long (424 Km) 3.83 min 0.72 min
Short (42 Km) 4.95 min 0.84 min

When the altitude of a WSS decreases, the model has fewer possible combinations to choose from

because it can send less water to the following nodes in each period of time and still meet the water

demand compared to the high-altitude scenario. This becomes even more computationally intensive

when the pipe length is shorter because since the distances are smaller, there are more possibilities to

send water in each period of time. The same pattern can be seen in the Table 8, since the Medium

WSS is slower to compute because it is the highest of the three WSS tested.

Therefore, the altitude, meaning the maximum height difference between any two nodes in a water

network, is the most relevant characteristic of the WSS operation because it augments the complexity

of the model resolution. Hence, it becomes a relevant problem to be solved, especially in water networks

that supply multimillion-dollar industries, which depend on those inflows.

4.4 Impact of the number of partitions in BEA

It is evident that the higher the number of partitions in the Binary Expansion Approach, the closer

the results will be to their actual value. However, when the N value increases, the computational time

of the model increases (see Table 10). Therefore, choosing a reasonable value for N is crucial to have

a good balance between the computational time and the optimal solution.

To select the right N value, we used two Gaps to analyse and compare its performance: the Gurobi

Gap and the SL Gap. By Gurobi Gap, we mean the MILP gap given by Gurobi, which uses the

objective bounds: the incumbent and the best bound found so far. On the other hand, the SL Gap is

the relative error between the optimal objective value of the BEA method in the n-th value and the

optimal value of the SL model, assuming that that is the global optimum of the problem.

Table 10: Comparison of different N partitions in BEA for the Small size WSS. We used a fixed MIPGap of 0.9%.

N Time Obj. Value Active Pumps Power Gurobi Gap SL Gap

1 0.50 s $51949 115 1352 MW 0.22% 0.03%
2 0.99 s $51915 114 1352 MW 0.39% -0.03%
3 1.54 s $51894 118 1352 MW 0.49% -0.07%
4 3.75 s $51876 117 1351 MW 0.65% -0.11%
5 5.57 s $51867 119 1351 MW 0.70% -0.12%
6 14.06 s $51858 116 1351 MW 0.62% -0.14%
7 20.07 s $51854 112 1350 MW 0.75% -0.15%
8 20.09 s $51852 117 1351 MW 0.82% -0.15%
9 27.83 s $51851 118 1351 MW 0.88% -0.16%
10 33.52 s $51850 111 1350 MW 0.89% -0.16%
20 79.68 s $51853 112 1350 MW 0.94% -0.15%
30 10 min $51853 115 1350 MW 1.20% -0.15%
40 10 min $51847 117 1350 MW 1.07% -0.16%
50 10 min $51851 117 1350 MW 1.16% -0.15%

From these results, for the small-sized WSS, from N=6 partitions, the Gurobi Gap and SL Gap

don’t improve much while the computational time increases rapidly. It is interesting to mention that

when the N value is too high, for example, N=200, the computer cannot process the model, so it stops

after a few seconds with a bad solution (around 30% Gurobi Gap). Note that we set a time stop in
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600 seconds for the bigger N values; otherwise, the problem would take several minutes or hours to

reach the 1% Gurobi Gap. It is relevant to mention that if the Gurobi Gap is too high or the time

limit is too low, most of the time, the number of active pumps will be the maximum value, i.e., for the

Small WSS is 125, essentially, all the pumps are on in all the time periods.

Therefore, depending on the size of the WSS, the recommended number of partitions for the BEA

model is between 3 and 5. This allows the model to be solved rapidly with reasonably small Gurobi

and SL optimality gaps and a more accurate number of active pumps.

4.5 CODELCO Radomiro Tomic WSS case study

The optimal outcome in an optimisation model varies depending on the input data provided, and in

this case, the model should demonstrate sensitivity to the seasons of the year in regions where there

is a clear differentiation in temperature, which consequently affects electricity prices. This section

analyses the impact of the seasons of the year, the minimum reservoir level, the CODELCO energy

policy, and the increase in water demand. We use as a Case Study for this work the Small WSS called

“Aguas Horizonte,” which corresponds to the supply water network for the “Radomiro Tomic Mine”

of the company CODELCO in the northern region of Chile.

The results studied from this section onwards include changes in the water tanks and reservoir

capacities, the initial/final storage for the reservoir, and the water demand at the mine site of the

Small WSS, obtained from the “Aguas Horizonte” environmental analysis report SGA (2013) to ensure

maximum realism for the energy and economic analyses. The new data for the nodes of the CODELCO

Small WSS are displayed in Table 11.

Table 11: Data of the nodes of the Small WSS for the Study Case of Radomiro Tomic Mine WSS.

Node Altitude [m] Type of node Area tank [m2] Height tank [m] Initial/final storage Demand [m3/s]

1 30 RO - - - -2.0
2 30 Tank 1,136 8.82 50% -
3 1,100 Junction - - - -
4 1,100 Tank 314 11.3 50% -
5 1,600 Junction - - - -
6 1,600 Tank 314 11.3 50% -
7 2,100 Junction - - - -
8 2,100 Tank 314 11.3 50% -
9 2,600 Junction - - - -
10 2,600 Tank 314 11.3 50% -
11 3,100 Junction - - - -
12 3,100 Reservoir 15,625 16 95% -
13 3,100 Mine - - - 1.5

4.5.1 Impact of seasonal electricity prices

We selected random days from autumn, winter, spring, and summer for this analysis. The electricity

prices for these days are depicted in Figure 12, corresponding to the following dates: 31/03/2024 for

autumn, 22/07/2023 for winter, 20/10/2023 for spring, and 19/01/2024 for summer.

As anticipated, the warmer months exhibit lower prices compared to the colder months. Moreover,

during wintertime, there are fewer hours with $0 MWh, possibly due to reduced solar generation.

However, because winter experiences higher minimum prices, its dispersion is lower, as illustrated in

Figure 13.

Summertime records the lowest mean and median of the year, averaging around $30 MWh, in

contrast to the $65 MWh observed during winter. Autumn and spring demonstrate similar behaviour,

with a mean of approximately $50 MWh. Additionally, the median for summer is lower than its mean,

indicating that there are more values below the mean, including $0 MWh, while the higher values

contribute to its average.
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Figure 12: Hourly electricity prices per season for the Radomiro Tomic electric bar in the northern region of Chile. Data
taken from the Chilean Electricity Operator. The days per season correspond to the following days: 31/03/2024 for
autumn, 22/07/2023 for winter, 20/10/2023 for spring, and 19/01/2024 for summer.

Figure 13: Electricity prices dispersion per season for the Radomiro Tomic Electric Bar.

Lastly, for each season, it was necessary to select an appropriate value for the maintenance cost

CS to switch the water pumps between periods. Following the same methodology as in the preceding

sections, we determined that for the Small WSS, Cs = $3 for each season.

Using the seasonal electricity prices, we examined their impact on the water pump scheduling

problem. In Figure 14, we can observe that the optimal objective value follows the same pattern as the

mean and median of the electricity prices; namely, winter is the most expensive, followed by autumn,

spring, and finally summer. This trend persists when implementing policies such as incorporating the

minimum water level in the reservoir for each hourly constraint (22) and restricting the number of

active pumps during certain hours of the day, as elaborated in subsequent sections.

Moreover, from Figure 14, it is noteworthy that during spring, the number of active pumps increases,

presumably because the problem aims to activate them during hours when electricity costs are $0 MWh.
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Figure 14: Objective values for the Small WSS with the new water tanks and reservoirs values, using the electricity prices
per season and the model BEA (N=3, Cs=$3, Gurobi Gap = 0.5%) for the Radomiro Tomic Electric Bar.

4.5.2 Security and energy policies

For this case study, we examined two policies concerning the utilisation of reservoirs and water pumps

throughout the day: firstly, the implementation of a minimum water level constraint for reservoirs for

each hour (Res), as described in constraint (22), and secondly, the imposition of a maximum limit on

the number of active pumps within a specified time period (Pol). Detailed explanations of each policy

are provided in the subsequent sections.

1. Impact of minimum water tank and reservoir levels (Res) As previously discussed, the degree of

flexibility concerning the minimum water tank and reservoir parameters may vary depending on the

industry. This variation is determined by the company’s opportunity cost in reducing its minimum

water level to mitigate energy expenses and the potential risk of inadequate water supply should all

systems fail, leading to a multimillion-dollar loss for each minute its operation stops.

Therefore, we use the constraint (22):

hi,t ≥ Zi + h̄iγ
min
i ,∀i ∈ R, ∀t ∈ T,

and we analysed two cases for the γmin
i parameter: 90% and 95%. For the case of CODELCO, they

need a 95%; however, we wanted to study how much they can save if they reduce to 90% the minimum

level of water in their reservoirs.

2. Cost savings relative to current policy (Pol) Some industries manually optimise their processes,

adhering to specific principles or rules based on their experience. However, such policies often lead to

local optima. The energy policy under scrutiny in this section, pertaining to the CODELCO WSS,

involves the cessation of water pump operations between 6 pm and 10 pm. Initially, this may seem

reasonable, considering that electricity demand typically peaks during the evening; nevertheless, the

optimal results show otherwise.

For our analysis, we selected four days from each season of the year, using data from the Radomiro

Tomic electric bus, as explained in the preceding section. We then compared this data with the

company’s energy policy. However, upon running the model with the company’s energy policy, the

problem results proved infeasible. Consequently, we opted to introduce the following constraint to the
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model, limiting the number of active pumps, denoted by r, during the 6 pm to 10 pm timeframe:

22∑
t=18

xi,j,t ≤ r ∀(i, j) ∈ Pu, (44)

First, for the minimum reservoir level γmin
i = 90%, the minimum number of active pumps that

made the problem feasible was r = 3, however when we increase γmin
i to 95%, r becomes 4.

4.5.3 Comparison of policies

Before analysing all the possible policy combinations in detail, Figure 15 shows us an insight into the

most relevant policies for the water scheduling problem for the Radomiro Tomic WSS.

Figure 15: Objective values dispersion for the different policies combinations for the Small WSS using the electricity prices
per season, different reservoirs levels, and the CODELCO energy policy. Solved with BEA (N=3, Cs=$3, Gurobi Gap =
0.5%) for the Radomiro Tomic Electric Bar.

The policy combinations with the highest optimal values are the ones that use the CODELCO

energy policy (Pol), especially in the warmer months, as we can see in Figure 16 compared with

Figure 17 and Figure 14. For the summertime, the cost without (Pol) policy goes from around $33,000
to $47,000 when the policy is applied. The same occurs in spring, going from around $37,000 to $50000.
Winter is the only season that remains almost the same when the policy is applied, and it is because

the electricity prices throughout the day are higher than in other seasons; therefore, the savings are

minor when turning off almost all the water pumps between 6 pm and 10 pm.

Also, we can see a small difference in the objective value when changing the minimum reservoir

level from 90% to 95%, as CODELCO mining company requires: with the 90% level, the optimal

objective value is smaller than with a 95% level. This occurs both when the CODELCO energy policy

(Pol) is applied or not, as we can see in Figure 16 and Figure 17. The water pumps are activated less

in the 90% case compared with the 95%, which gives more space to provide flexibility and ancillary

services to the electrical grid as future work.
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Figure 16: Optimal objective values for the Small WSS using the electricity prices per season, the different minimum levels
in reservoirs and the CODELCO energy policy. Solved with BEA (N=3, Cs=$3, Gurobi Gap = 0.5%) for the Radomiro
Tomic Electric Bar.

Figure 17: Objective values for the Small WSS using the electricity prices per season, different reservoirs levels. Solved
with BEA (N=3, Cs=$3, Gurobi Gap = 0.5%) for the Radomiro Tomic Electric Bar.

4.5.4 Impact of higher water demand

One of the concerns the water consumer may have regarding the water operation and supply is how

much my pumping cost would increase or decrease if the water demand varies. To study this, we solved

the Small WSS of CODELCO (Radomiro Tomic Mine) using BEA (N=3, Cs=3, Gurobi Gap=0.5%)
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with no policies for each season and varied the mine water demand over a discretised range from 0.19

m3/s to 1.96 m3/s, which is the maximum water flow allowed by the water pipes.

The results are shown in Figure 18, confirming the anticipated trend: greater water demand cor-

relates with a higher optimal objective function. Specifically, augmenting the original water demand

of 1.5 m3/s by an additional 0.46 m3/s results in a roughly 70% rise in costs across all seasons.

Additionally, the seasonal patterns persist, with warmer days associated with lower costs.

It is noteworthy that achieving a comparable cost to that of winter requires a 0.5 m3/s increase

in water flow during summer. In essence, while transporting approximately 1.6 m3/s at $40,000 in

summer achieves the same cost efficiency as in winter, only 1.1 m3/s can be transported during the

colder months.

Figure 18: Objective values for the Small WSS using the electricity prices per season, varying the water demand from
0.19 m3/s to 1.96 m3/s. Solved with BEA (N=3, Cs=$3, Gurobi Gap = 0.5%) for the Radomiro Tomic Electric Bar.

4.6 Computational performance for checking optimality

An alternative way to compare the computational efficiency of different models is to investigate how

quickly each model proves optimality. There are two ways of doing this: using the optimal solution

and the optimal value to test the model.

The first way of doing this is by evaluating the model’s speed when the optimal solution is given

as the initial point. The first row of the Table 12 in each block represents the model without using

this initial point. The binary expansion approach is set to stop with a 0.5% Gurobi Gap to obtain the

optimal solution. Then, that optimal solution is given as a starting point for the solver, and it always

returns the new optimal solution with 0% Gurobi Gap. In this case, the BEA with N=3 model verifies

the optimal solution in less than 2 seconds, whereas the MINLP problem using the Gurobi MINLP

solver takes almost double. As expected, the higher the N value is, the longer it takes to solve.

The second way to verify if the restrictive approach is reaching optimality is by adding a constraint

that is a lower bound for the optimal value. Like in the first optimality check, the second time the

model is run, the Gurobi Gap is 0%. In this approach, the BEA model is faster in realising that the

optimal value is the same as the given constraint (see Table 13).

These results show us again, in computational terms, that the Binary Expansion Approach is more

efficient than the original formulation because it takes less time to verify that it is the optimal solution.
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Table 12: Setting as initial point the optimal solution with gap 0% to each model in the Small WSS.

Model Initial point Time Obj. Value

SL - 3.63 s 51,931
SL yes 1.66 s 51,931

BEA, N=3 - 1.54 s 51,894
BEA, N=3 yes 1.3 s 51,894

BEA, N=8 - 83.22 s 51,844
BEA, N=8 yes 66.55 s 51,844

Table 13: Setting the optimal value constraint with gap 0% to each model in the Small WSS.

Model Optimal Value Time Obj. value

SL - 3.63 s 51,931
SL yes 11.15 s 51,931

BEA, N=3 - 1.54 s 51,894
BEA, N=3 yes 0.29 s 51,894

In summary, the BEA technique allows us to solve the optimal operation of a water network in a

reasonable computational time with a small gap compared with other solvers. The latter is relevant

because the water network operator needs to have a solution on a day-ahead basis. Also, the BEA

approximation does not need to take a large number of partitions to get a good result. Henceforth,

our recommendation is to use between three and five partitions, depending on the size of the water

network.

5 Conclusion and future research

In this paper, a new application of the binary expansion approach was applied to the pump scheduling

problem to linearise the optimisation model. The problem aims to optimise energy costs in large-scale

multi-tank and high-altitudeWSS. The method was tested with real-life WSS from the Radomiro Tomic

Mine in Chile. The results obtained by using this approach were compared with other approximating

techniques. The critical findings obtained are as follows:

1. In most cases, the binary expansion approach performs better than the MINLP Gurobi solver.

The computational efficiency of the approach gives the chance to use it for hours or for day-ahead

operation, such as many types of electrical demand flexibility models in big WSS.

2. The altitude of a water network is the parameter with the greatest impact on the solution

time; that is, the higher the WSS, the slower the model will run due to the higher number of

combinations the solver needs to verify. Also, the total length of the pipes is only relevant when

the WSS altitude is high.

3. The recommended number of partitions in the binary expansion approach is between three

and five, depending on the WSS characteristics. Using more than ten partitions is not suggested

because the computational times increase rapidly, and the gap almost does not change.

4. The influence of temperature across various months significantly affects the overall expenses

of WSS operations: the warmer the month, the cheaper the electrical tariffs become, leading to

reduced operational costs as well.

5. The operational strategy of turning off the water pumps during a time period from 6 pm to 10

pm (Pol) amplifies expenses during warmer days by inhibiting pump usage during hours of lower

electricity rates.

6. The operational strategy of having a minimum level of water in reservoirs of 90% or 95% yields

minimal changes in costs; however, maintaining a lower level decreases the number of active
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pumps throughout the day, which allows a space to provide flexibility to the electrical grid in

future endeavours.

Finally, the Binary Expansion Approach can be used to further extensions of the problem, such as

the WSS design problem, WSS capacity expansion planning problem, and demand response problem

applied to WSS. In particular, we are analysing the use of WSS as flexible sources for the power

network by modifying the water pump scheduling problem to provide ancillary services to the power

network while optimising the costs and revenues of the water network operator.
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Government of Chile. Ministro de Enerǵıa anuncia que “para el 2025 habremos retirado el 50% de las centrales a
carbón”., 2021. URL https://www.gob.cl/noticias/ministro-de-energia-anuncia-que-para-el-2025-

habremos-retirado-el-50-de-las-centrales-a-carbon/.

O. Gunluk, J. Lee, and J. Leung. A Polytope for a Product of Real Linear Functions in 0/1 Variables. Mixed
Integer Nonlinear Programming. The IMA Volumes in Mathematics and its Applications, 154(Springer, New
York):513–529, 2012. doi: 10.1007/978-1-4614-1927-3.

LLC Gurobi Optimization. Gurobi Optimizer Reference Manual, 2023. URL https://www.gurobi.com.

S. Herrera, L. A. Cisternas, and E. D. Gálvez. Simultaneous Design of Desalination Plants and Distribution
Water Network. In Computer Aided Chemical Engineering, volume 37. 2015. doi: 10.1016/B978-0-444-
63577-8.50044-9.

S. Herrera-León, A. Kraslawski, and L. A. Cisternas. A MINLP model to design desalinated water supply
systems including solar energy as an energy source. In Computer Aided Chemical Engineering, volume 44.
2018a. doi: 10.1016/B978-0-444-64241-7.50276-7.

S. Herrera-León, F. Lucay, A. Kraslawski, L. A. Cisternas, and E. D. Gálvez. Optimization Approach to
Designing Water Supply Systems in Non-Coastal Areas Suffering from Water Scarcity. Water Resources
Management, 32(7), 2018b. doi: 10.1007/s11269-018-1939-z.

S. Herrera-León, F. A. Lucay, L. A. Cisternas, and A. Kraslawski. Applying a multi-objective optimization
approach in designing water supply systems for mining industries. The case of Chile. Journal of Cleaner
Production, 210, 2019. doi: 10.1016/j.jclepro.2018.11.081.

Julia. The Julia Programming Language, 2023. URL https://julialang.org/.

G. Klein and M. Krebs. California’s Water – Energy Relationship. Technical Report November, California
Energy Commission, 2005.

K. E. Lansey and K. Awumah. Optimal Pump Operations Considering Pump Switches. Journal of Water
Resources Planning and Management, 120(1):17–35, 1994. doi: 10.1061/(ASCE)0733-9496(1994)120:1(17).

Q. Li, S. Yu, A. S. Al-Sumaiti, and K. Turitsyn. Micro water-energy nexus: Optimal demand-side management
and quasi-convex hull relaxation. IEEE Transactions on Control of Network Systems, 6(4):1313–1322, 2019.
doi: 10.1109/TCNS.2018.2889001.

H. R. Maier, Z. Kapelan, J. Kasprzyk, J. Kollat, L. S. Matott, M. C. Cunha, G. C. Dandy, M. S. Gibbs,
E. Keedwell, A. Marchi, A. Ostfeld, D. Savic, D. P. Solomatine, J. A. Vrugt, A. C. Zecchin, B. S. Minsker,
E. J. Barbour, G. Kuczera, F. Pasha, A. Castelletti, M. Giuliani, and P. M. Reed. Evolutionary algorithms
and other metaheuristics in water resources: Current status, research challenges and future directions.
Environmental Modelling and Software, 62:271–299, 2014. doi: 10.1016/j.envsoft.2014.09.013.

F. Meng, G. Fu, R. Farmani, C. Sweetapple, and D. Butler. Topological attributes of network resilience: A
study in water distribution systems. Water Research, 143:376–386, 2018. doi: 10.1016/j.watres.2018.06.048.

R. Menke, E. Abraham, P. Parpas, and I. Stoianov. Approximation of system components for pump scheduling
optimisation. In Procedia Engineering, volume 119, 2015. doi: 10.1016/j.proeng.2015.08.935.

https://www.circleofblue.org/wp-content/uploads/2010/08/EPRI-Volume-4.pdf
https://www.gob.cl/noticias/ministro-de-energia-anuncia-que-para-el-2025-habremos-retirado-el-50-de-las-centrales-a-carbon/
https://www.gob.cl/noticias/ministro-de-energia-anuncia-que-para-el-2025-habremos-retirado-el-50-de-las-centrales-a-carbon/
https://www.gurobi.com
https://julialang.org/


Les Cahiers du GERAD G–2024–41 31

R. Menke, E. Abraham, P. Parpas, and I. Stoianov. Demonstrating demand response from water distribution
system through pump scheduling. Applied Energy, 170, 2018. doi: 10.1016/j.apenergy.2016.02.136.

C. Mkireb, A. Dembele, T. Denoeux, and A. Jouglet. Flexibility of drinking water systems: An opportunity to
reduce CO2 emissions. International Journal of Energy Production and Management, 4(2):134–144, 2019.
doi: 10.2495/EQ-V4-N2-134-144.

A. Morsi, B. Geißler, and A. Martin. Mixed Integer Optimization of Water Supply Networks. In Mathematical
Optimization of Water Networks. International Series of Numerical Mathematics, vol 162. Birkhäuser, Basel,
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