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auteurs conservent leur droit d’auteur et leurs droits moraux sur leurs
publications et les utilisateurs s’engagent à reconnâıtre et respecter
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Abstract : We extend traditional complexity analyses of trust-region methods for unconstrained,
possibly nonconvex, optimization. Whereas most complexity analyses assume uniform boundedness
of the model Hessians, we work with potentially unbounded model Hessians. Boundedness is not
guaranteed in practical implementations, in particular ones based on quasi-Newton updates such as
PSB, BFGS and SR1. Our analysis is conducted for a family of trust-region methods that includes
most known methods as special cases. We examine two regimes of Hessian growth: one bounded by a
power of the number of successful iterations, and one bounded by a power of the number of iterations.
This allows us to formalize and confirm the profound intuition of Powell [16], who studied convergence
under a special case of our assumptions, but whose proof contained complexity arguments. Specifically,

for 0 ≤ p < 1, we establish sharp O(ϵ−2/(1−p)) evaluation complexity to find an ϵ-stationary point when
model Hessians are O(kp), where k is the iteration counter. For p = 1, which is the case studied by
Powell, we establish a sharp O(exp(cϵ−2)) evaluation complexity for a certain constant c > 0. This
is as Powell suspected and is far worse than other bounds surmised elsewhere in the literature. We
establish similar bounds when model Hessians are O(|Sk|

p), where |Sk| is the number of iterations
where the step was accepted, up to iteration k. To the best of our knowledge, ours is the first work to
provide complexity bounds when model Hessians grow linearly with |Sk| or at most linearly with k,
which covers multiple quasi-Newton approximations.

Keywords : Complexity analysis, quasi-Newton methods, trust-region, unconstrained optimization

Résumé : Nous étendons les analyses de complexité traditionnelles des méthodes de régions de
confiance pour l’optimisation sans contrainte, possiblement non convexe. Alors que la plupart des
analyses de complexité supposent que les hessiennes du modèle sont uniformément bornées, nous
travaillons avec des hessiennes de modèle potentiellement non bornées. La bornitude n’est pas garantie
dans les implémentations pratiques, en particulier celles basées sur des mises à jour quasi-Newton telles
que PSB, BFGS et SR1. Notre analyse est menée pour une famille de méthodes de régions de confiance
qui inclut la plupart des méthodes connues comme cas particuliers. Nous examinons deux régimes de
croissance de la Hessienne : l’un borné par une puissance du nombre d’itérations réussies, et l’autre
borné par une puissance du nombre d’itérations total. Cela nous permet de formaliser et de confirmer la
profonde intuition de Powell (2010), qui a étudié la convergence sous un cas spécial de nos hypothèses,
mais dont la preuve contenait des arguments de complexité. Plus précisément, pour 0 ≤ p < 1, nous

établissons une complexité d’évaluation en O(ϵ−2/(1−p)) pour trouver un point ϵ-stationnaire lorsque les
hessiennes du modèle sont en O(kp), où k est le compteur d’itération. Pour p = 1, qui est le cas étudié
par Powell, nous établissons une complexité d’évaluation en O(exp(cϵ−2)) pour une certaine constante
c > 0. Comme Powell le soupçonnait, cette borne est bien pire que d’autres bornes spéculées ailleurs
dans la littérature. Nous établissons des bornes similaires lorsque les hessiennes du modèle sont en
O(|Sk|

p), où |Sk| est le nombre d’itérations réussies jusqu’à l’itération k. À notre connaissance, ce travail
est le premier à fournir des bornes de complexité lorsque les hessiennes du modèle croissent linéairement
avec |Sk| ou au plus linéairement avec k, ce qui couvre plusieurs approximations quasi-Newton.

Acknowledgements: We express our sincere gratitude to Coralia Cartis for insightful discussions that
improved our arguments, and in particular, for bringing [16] to our attention. Research supported by
an NSERC Discovery grant.
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1 Introduction

We consider the solution of the nonconvex unconstrained problem

minimize
x∈Rn

f(x), (1)

where f : Rn → R is continuously differentiable, by means of trust-region methods [2]. At each iteration

of a trust-region method, a model of the objective is used to compute a step. In most cases, said model

is a quadratic, and is required to match f up to first order at the current iterate. Although there are

variants allowing inexact first-order information [2, §8.4], there is far more freedom in the model Hessian

Bk = BT
k at iteration k. In particular, quasi-Newton approximations are a natural choice as they

are known to yield fast local convergence under certain assumptions [4]. Convergence of trust-region

methods, both local and global, has been studied extensively for the past few decades—see [2] and

references therein—and their worst-case evaluation complexity has attracted much attention in the

past decade and a half—see [1] and references therein. Although convergence of many trust-region

schemes has been established under general assumptions, which allow for unbounded model Hessians,

complexity has focused on cases where the latter remain uniformly bounded [1, 8], except for the work

of Leconte and Orban [9], who study a trust-region method for nonsmooth optimization that does not

reduce to a known classical method in the case of smooth optimization.

In practice, quasi-Newton updates, including PSB, BFGS, and SR1 are not guaranteed to result in

uniformly bounded model Hessians. Our main contributions are to address the complexity of a family

of trust-region methods when the model Hessians may be unbounded, and to expand upon the results

of [9]. The family of methods includes most, if not all, known classical variants, and is parameterized

by two scalars α ≤ 1 and β ≤ 1 that control the presence of the gradient norm and the model Hessian

norm in the trust-region radius.

Several authors show that usual quasi-Newton updates, including PSB, BFGS and SR1, grow at

most linearly with k, e.g., [16] and [2, §8.4.1.2], although at the time of this writing, it is not known

whether that bound is attained. However, in a typical implementation, those approximations are not

updated when a step is rejected, only when a step is accepted. Thus, we also investigate the incidence

on complexity of a weaker assumption; where the model Hessians grow at most linearly with the number

of iterations in which a step is accepted, called successful iterations.

Specifically, we establish that if ∥Bk∥ ≤ µ(1 + |Sk|
p), where 0 ≤ p < 1 and |Sk| is the number

of successful iterations up to iteration k, our family of trust-region methods may require as many

as O(ϵ−2/(1−p)) iterations to identify an ϵ-stationary point. That is the same assumption and the

same conclusion as Leconte and Orban [9], though with a better constant hidden inside the “O” term.
However, we extend the complexity analysis to the case where p = 1, and establish that the complexity

bound becomes O(exp(c1ϵ
−2)) for a certain constant c1 > 0. The leading term in those bounds is

independent of α and β, and therefore the bounds apply to most know trust-region variants. The

bounds are also shown to be sharp. Although it is not known whether quasi-Newton updates may

indeed grow exactly linearly with |Sk|, our analysis applies to them.

Attention then turns to the weaker assumption ∥Bk∥ ≤ µ(1 + kp), where again, 0 ≤ p < 1, which,

among others, takes into account scenarios where Bk is also updated on unsuccessful iterations. We

establish a complexity bound O(ϵ−2/(1−p) + ϵ(α−1)/(1−p)). When p = 1, the complexity bound becomes

O(exp(c2ϵ
−2 + c3ϵ

α−1)), where c2 > 0 and c3 > 0 are constants. A choice −1 ≤ α ≤ 1, which covers

most known trust-region variants, results in bounds with leading terms of the same order of magnitude

as under the previous assumption, and those bounds are shown to be sharp. The bound corresponding

to p = 1 and −1 ≤ α ≤ 1 cements a conjecture of Powell [16] described below. When α < −1, we

suspect that the bounds are not sharp and may be improved.

Powell [14] first investigated convergence of trust-region methods under the assumption ∥Bk∥ ≤
µ(1 +

∑k−1
j=0 ∥sj∥), where µ > 0 is a constant, and sj is the step at iteration j. Among others, the PSB
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quasi-Newton update [13] satisfies that condition [7]. The last paragraph of his paper mentions another

researcher investigating the weaker condition ∥Bk∥ ≤ µ(1+k), and Powell conjectured that convergence

continues to hold under the weaker assumption. Powell [15] himself extended the convergence results

of [14] under the weaker assumption, and Powell [16] further extended the previous analysis to a wide

family of trust-region methods. In his conclusions, Powell [16] shared profound intuition on the number

of iterations required to reduce the gradient norm, and described that number as “monstrous”, hinting

at potential exponential growth. To the best of our knowledge, the present complexity analysis is the

first to confirm Powell’s intuition.

The remainder of this paper is organized as follows. In Section 2, we introduce our family of

trust-region methods along with key preliminary results. In Section 3, complexity bounds are derived
in the case where the bound on model Hessians depends only on successful iterations. We also establish

that the bounds are sharp. In Section 4, complexity bounds are derived in the case where the bound

on model Hessians depends on the iteration counter. In Section 5, we investigate the performance in

practice of different members of our family of trust-region methods, including classical schemes. Finally,

we provide closing remarks in Section 6.

Notation

For a finite set A, |A| denotes its cardinality. For a vector x and matrix B, ∥x∥ and ∥B∥ denote their

ℓ2 norm. We denote N0 the set of positive integers.

2 A family of trust-region methods

In this section, we describe a parameterized family of trust-region methods for (1), where the main

novelty is the definition of a general trust-region radius in the subproblem.

2.1 Algorithm

At each iteration k, we compute a step sk from current iterate xk as an (inexact) solution of the

subproblem

min
s∈Rn

mk(s) s.t. ∥s∥ ≤ ∥∇f(xk)∥
α

(1 + ∥Bk∥)
β
∆k, mk(s)

..= f(xk) +∇f(xk)
T s+ 1

2s
TBks, (2)

where Bk = BT
k and ∆k > 0 is used to determine the trust-region radius. Specific choices of α ≤ 1

and β ≤ 1 reduce (2) to known formulations. Namely, α = β = 0 leads to the classical method [2],

while α = 1 and β = 0 reduces to the choice of the trust-region radius used by Curtis et al. [3]—note

however, that the update of ∆k differs in [3]. When β = 0, our scaled trust-region radius can be

seen as a particular case of more general nonlinear step-size control mechanisms [8, 19]. Choosing

β ̸= 0 incorporates second-order information into the trust-region radius. We are not aware of other

trust-region methods doing so, except for [9] in nonsmooth optimization. The parameters α and β

are for generalization purposes, but also play a key role in our complexity analysis; a discussion on

the values of these parameters, ensuring that the trust-region method enjoys favorable worst-case

complexity bounds, is provided later.

The rest of the algorithm is standard. Once a trial step sk has been determined, the decrease in f at

xk + sk is compared to the decrease predicted by the model. If both are in sufficient agreement, xk + sk
becomes the new iterate, and ∆k is possibly increased. If the model turns out to predict poorly the

actual decrease, the trial point is rejected and ∆k is reduced. Algorithm 1 states the whole procedure.
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Algorithm 1 A family of trust-region methods

1: Choose constants 0 < η1 ≤ η2 < 1, 0 < γ1 ≤ γ2 < 1 ≤ γ3 ≤ γ4 and 0 < κmdc ≤ 1
2
.

2: Choose x0 ∈ Rn
and ∆0 > 0.

3: Choose (α, β) ∈ (−∞, 1]
2
.

4: for k = 0, 1, . . . do

5: Choose Bk = B
T
k ∈ Rn×n

.
6: Compute sk,cp as in (3) and an approximate minimizer sk of (2) satisfying (4).
7: Compute the ratio

ρk
..=

f(xk)− f(xk + sk)

mk(0)−mk(sk)
.

8: If ρk ≥ η1, set xk+1
..= xk + sk. Otherwise, set xk+1

..= xk.
9: Update ∆k according to

∆k+1 ∈


[γ3∆k, γ4∆k] if ρk ≥ η2, (very successful iteration)

[γ2∆k, ∆k] if η1 ≤ ρk < η2, (successful iteration)

[γ1∆k, γ2∆k] if ρk < η1. (unsuccessful iteration)

Only an approximate solution of (2) is required; a step sk should provide a decrease larger than or

equal to a fraction of the decrease at the Cauchy point within the trust region. The Cauchy point sk,cp
is defined as

sk,cp
..= −tk∇f(xk), where tk

..= argmin
t≥0

mk (−t∇f(xk)) s.t. ∥t∇f(xk)∥ ≤ ∥∇f(xk)∥
α

(1 + ∥Bk∥)
β
∆k. (3)

The decrease required of sk is stated as

mk(0)−mk(sk) ≥ 2κmdc(mk(0)−mk(sk,cp)), (4)

where 0 < κmdc ≤ 1
2 .

In the remainder of this paper, we focus on the formulation (2), but setting the radius to

minj=0,...,k ∥∇f(xj)∥
α

(1 + maxj=0,...,k ∥Bj∥)
β
∆k instead of

∥∇f(xk)∥
α

(1 + ∥Bk∥)
β
∆k,

leads to a similar complexity analysis.

We make the following standard assumption.

Problem Assumption 2.1. The objective function f is continuously differentiable with Lipschitz

continuous gradient, i.e., there exists L > 0 such that for all x, y ∈ Rn, ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥.
Moreover, f is bounded below by a constant flow.

Below, we allow {Bk} to be unbounded. We study the effect of two different bounds on {∥Bk∥} on

the worst-case complexity. The next section provides results useful to both analyses.

2.2 Preliminary results

Our first result clarifies the Cauchy decrease (4). The proof is similar to that of, e.g., [1, Lemma 2.3.2]

with the radius replaced with that of (2).

Lemma 1. Let Problem Assumption 2.1 hold. For all k ∈ N,

mk(0)−mk (sk) ≥ κmdc∥∇f(xk)∥min

{
∥∇f(xk)∥
1 + ∥Bk∥

,
∥∇f(xk)∥

α

(1 + ∥Bk∥)
β
∆k

}
. (5)

The second result follows immediately from [2, Theorem 8.4.2] using Lipschitz continuity of ∇f .
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Lemma 2. Let Problem Assumption 2.1 hold. For all k ∈ N,

|f(xk + sk)−mk(sk)| ≤ κ(1 + ∥Bk∥)
∥∇f(xk)∥

2α

(1 + ∥Bk∥)
2β

∆2
k, (6)

where κ ..= max{L, 1}/2.

The quantity

ak
..=

∆k(1 + maxj=0,...,k ∥Bj∥)
1−β

(minj=0,...,k ∥∇f(xj)∥)
1−α (k ∈ N) (7)

plays a central role in the analysis. We first establish that {ak} is uniformly bounded below. The proof

proceeds by induction in the spirit of [3, Lemma 2.4].

Lemma 3. Let Problem Assumption 2.1 hold. For all k ∈ N,

ak ≥ amin
..= min

{
a0, γ1,

γ1κmdc(1− η2)

κ

}
> 0,

where κ is defined in Lemma 2. Equivalently, for all k ∈ N,

∆k ≥
( min
j=0,...,k

∥∇f(xj)∥)
1−α

(1 + maxj=0,...,k ∥Bj∥)
1−β

amin.

Proof. First note that {ak/∆k} is non-decreasing because α ≤ 1 and β ≤ 1.

We proceed by induction. For k = 0, a0 ≥ amin by definition. We assume that ak ≥ amin, and show

that ak+1 ≥ amin as well.

There are two cases. Assume first that ak ≥ min
{
1, κmdc(1−η2)

κ

}
. The non-decreasing nature of

{ak/∆k} and the update of ∆k in Algorithm 1 ensure that

ak+1 =
ak+1

∆k+1

∆k+1 ≥ ak
∆k

γ1∆k = γ1ak ≥ min

{
γ1,

γ1κmdc(1− η2)

κ

}
≥ amin.

Now, assume conversely that ak < min
{
1, κmdc(1−η2)

κ

}
. It follows from the definition of ρk and ∆k,

together with Lemmas 1 and 2 that

|ρk − 1| = |f(xk + sk)−mk(sk)|
mk(0)−mk(sk)

≤ κ(1 + ∥Bk∥)
1−2β∥∇f(xk)∥

2α∆2
k

κmdc∥∇f(xk)∥min
{

∥∇f(xk)∥
1+∥Bk∥

, ∥∇f(xk)∥
α

(1+∥Bk∥)
β ∆k

}
≤ κ(1 + ∥Bk∥)

1−β∥∇f(xk)∥
α−1∆2

k

κmdc
(1+∥Bk∥)

β

∥∇f(xk)∥
α min

{
∥∇f(xk)∥
1+∥Bk∥

, ∥∇f(xk)∥
α

(1+∥Bk∥)
β ∆k

}
=

κ(1 + ∥Bk∥)
1−β∥∇f(xk)∥

α−1∆2
k

κmdc min
{

∥∇f(xk)∥
1−α

(1+∥Bk∥)
1−β , ∆k

} .

Because α− 1 ≤ 0 and 1− β ≥ 0,

|ρk − 1| ≤
κ(1 + maxj=0,...,k ∥Bj∥)

1−β(minj=0,...,k ∥∇f(xj)∥)
α−1∆2

k

κmdc min

{
(minj=0,...,k ∥∇f(xj)∥)

1−α

(1+maxj=0,...,k ∥Bj∥)
1−β ,∆k

}

=
κ
(
(1 + maxj=0,...,k ∥Bj∥)

1−β(minj=0,...,k ∥∇f(xj)∥)
α−1∆k

)2
κmdc min {1, ak}

=
κak
κmdc

≤ 1− η2.
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Therefore, ρk ≥ η2, which implies that iteration k is very successful, and ∆k+1 > ∆k. Thus, since

{ak/∆k} is non-decreasing,

ak+1 =
ak+1

∆k+1

∆k+1 >
ak
∆k

∆k = ak ≥ amin.

Lemmas 1 and 3 allow us to quantify the model decrease in terms of amin.

Lemma 4. Let Problem Assumption 2.1 hold. For all k ∈ N, Algorithm 1 generates sk satisfying

mk(0)−mk (sk) ≥ κmdc

minj=0,...,k ∥∇f(xj)∥
2

1 + maxj=0,...,k ∥Bj∥
amin. (8)

Proof. Lemmas 1 and 3 and the fact that amin ≤ γ1 < 1 combine to give

mk(0)−mk (sk) ≥ κmdc∥∇f(xk)∥min

{
∥∇f(xk)∥
1 + ∥Bk∥

,
∥∇f(xk)∥

α

(1 + ∥Bk∥)
β
∆k

}

≥ κmdc min
j=0,...,k

∥∇f(xj)∥min

{
minj=0,...,k ∥∇f(xj)∥
1 + maxj=0,...,k ∥Bj∥

,
(minj=0,...,k ∥∇f(xj)∥)

α

(1 + maxj=0,...,k ∥Bj∥)
β
∆k

}

≥ κmdc

(minj=0,...,k ∥∇f(xj)∥)
2

1 + maxj=0,...,k ∥Bj∥
min{1, ak}

≥ κmdc

(minj=0,...,k ∥∇f(xj)∥)
2

1 + maxj=0,...,k ∥Bj∥
min{1, amin} = κmdc

minj=0,...,k ∥∇f(xj)∥
2

1 + maxj=0,...,k ∥Bj∥
amin.

We conclude this section with a technical result.

Lemma 5. Let µ > 0 and p > 0. For any k1 ∈ N and k2 ∈ N such that k1 < k2,

k2∑
k=k1

1

1 + µ(1 + (k + 1)p)
≥ (k1 + 1)p

(1 + µ(1 + (k1 + 1)p))

∫ k2+2

k1+1

1

tp
dt.

Proof. Define ϕ : R+ → R, ϕ(x) ..= x/(1 + µ(1 + x)). Because ϕ is non-decreasing and
∫ k+1

k
1
t
pdt ≤∫ k+1

k
1
k
p dt = 1

k
p ,

k2∑
k=k1

1

1 + µ(1 + (k + 1)p)
=

k2∑
k=k1

1

(k + 1)p
ϕ((k + 1)p)

≥ ϕ((k1 + 1)p)

k2+1∑
k=k1+1

1

kp

≥ ϕ((k1 + 1)p)

k2+1∑
k=k1+1

∫ k+1

k

1

tp
dt.

In the next sections, we derive worst-case complexity analyses for Algorithm 1 that allows for

potentially unbounded model Hessians Bk. We will repeatedly use the notation

S ..= {i ∈ N | ρi ≥ η1} (all successful iterations) (9a)

Sk
..= {i ∈ S | i ≤ k} (successful iterations until iteration k) (9b)

Uk
..= {i ∈ N | i ̸∈ S, i ≤ k} (unsuccessful iterations until iteration k). (9c)
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3 Complexity when the bound on ∥Bk∥ depends only on successful
iterations

Our assumption on the growth of the model Hessians is as follows.

Model Assumption 3.1. There exist µ > 0 and 0 ≤ p ≤ 1 such that, for all k ∈ S,

max
j=0,...,k

∥Bj∥ ≤ µ(1 + |Sk|
p). (10)

Several comments on Model Assumption 3.1 are in order. Model Assumption 3.1 was first suggested

and studied by Leconte and Orban [9], who required (10) to hold for all k ∈ N. To the best of our

knowledge, theirs was the first complexity analysis to allow for potentially unbounded model Hessians.

Here, we require instead that (10) hold for all k ∈ S, but note that that the maximum covers all indices
j = 0, . . . , k, which include unsuccessful iterations, if any. That is not particularly restrictive as in

practice one typically updates the model Hessian approximation after a successful iteration only. In

Section 4, we consider a bound that involves k instead of |Sk|, which may be suitable if one updates
the Hessian on unsuccessful iterations, but that leads to a worse complexity bound.

The special case p = 0, which corresponds to bounded model Hessians, is the only one considered

in the literature for complexity analyses, e.g., [1–3]. Leconte and Orban [9] studied complexity when

0 ≤ p < 1 in the context of a trust-region method for nonsmooth optimization, although their results

also apply to smooth optimization.

We believe that the present work is the first to address the case where p = 1; an important case as
it encompasses known bounds on existing quasi-Newton approximations such as SR1. Indeed, Conn

et al. [2, §8.4.1.2] show that the SR1 Hessian approximation satisfies

∥Bk+1∥ ≤ ∥Bk∥+ µf ,

where µf is a constant related to f and k is the index of a successful iteration for which the SR1 update

is well defined. They provide a similar bound for the BFGS updates when f is convex. Powell [16]

establishes a similar bound for a quasi-Newton update based on the PSB formula, where the bound

on ∥Bk∥ depends linearly on the number of successful iterations |Sk|. Even though it is not currently

known whether those bounds on SR1, BFGS and PSB are tight, Model Assumption 3.1 includes them

when p = 1.

In Model Assumption 3.1, p is not allowed to take a value larger than 1. In fact, when p > 1, global

convergence is no longer guaranteed as the series
∑∞

k=1 1/(1 + |Sk|
p) becomes convergent [18]. Finally,

due to the non-decreasing nature of {|Sk|}k∈N, (10) is equivalent to

∥Bk∥ ≤ µ(1 + |Sk|
p) for all k ∈ N. (11)

If Algorithm 1 generates only a finite number of successful iterations, a first-order critical point is

identified after a finite number of iterations. The following result parallels [2, Theorem 6.4.4].

Theorem 1. Let Problem Assumption 2.1 and Model Assumption 3.1 be satisfied. If Algorithm 1

generates finitely many successful iterations, then xk = x∗ for all sufficiently large k where ∇f(x∗) = 0.

Proof. Assume by contradiction that there exists ν > 0 such that ∥∇f(xk)∥ ≥ ν for all k ∈ N, and let

kf be the last successful iteration. Necessarily, xk = xkf
for all k ≥ kf , and hence, {xk} → x∗ ..= xkf

.

By Lemma 3, for all k ≥ kf ,

∆k ≥
(minj=0,...,k ∥∇f(xj)∥)

1−α

(1 + maxj=0,...,k ∥Bj∥)
1−β

amin ≥ ν1−α

(1 + µ(1 + |Sk|
p))1−β

amin =
ν1−α

(1 + µ(1 + |Skf
|p))1−β

amin > 0,
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where we used the fact that Sk = Skf
. Thus, ∆k is bounded away from zero. However, the mechanism

of Algorithm 1 ensures that ∆k decreases on unsuccessful iterations and converges to 0, which is a

contradiction, and shows that lim infk→∞ ∥∇f(xk)∥ = ∥∇f(x∗)∥ = 0.

Let ϵ > 0 and kϵ be the first iteration of Algorithm 1 such that ∥∇f(xkϵ
)∥ ≤ ϵ. Define

S(ϵ) ..= Skϵ−1 = {k ∈ S | k < kϵ}, (12a)

U(ϵ) ..= Ukϵ−1 = {k ∈ N | k ̸∈ S and k < kϵ}. (12b)

The next theorem states a bound on the cardinality of S(ϵ) when infinitely many successful

iterations are generated. The first part of the theorem generalizes and strenghthens Leconte and Orban

[9, Lemma 2]. The second part is new and provides a rigorous answer to Powell’s intuition [16, §4].
Theorem 2. Let Problem Assumption 2.1 and Model Assumption 3.1 hold. Assume that Algorithm 1

generates infinitely many successful iterations. Let κ1
..= (f(x0)− flow)/(η1κmdcamin) > 0, µ and p be

as in Model Assumption 3.1, and amin be as in Lemma 3. If 0 ≤ p < 1,

|S(ϵ)| ≤
[
(1− p) (1 + 2µ) κ1 ϵ−2 + 1

]1/(1−p)

− 1 = O
(
ϵ−2/(1−p)

)
. (13)

If p = 1,

|S(ϵ)| ≤ exp
(
(1 + 2µ)κ1 ϵ−2

)
− 1. (14)

Proof. Let ℓ ∈ S(ϵ). Lemma 4 and Model Assumption 3.1 imply

f(xℓ)− f(xℓ + sℓ) ≥ η1 (mℓ(0)−mℓ(sℓ))

≥ η1κmdcamin

minj=0,...,ℓ ∥∇f(xj)∥
2

1 + maxj=0,...,ℓ ∥Bj∥

≥ η1κmdcaminϵ
2 1

1 + µ(1 + |Sℓ|
p)
.

We sum the above inequality over all ℓ ∈ S(ϵ), use a telescoping argument, and obtain

f(x0)− flow ≥ η1κmdcaminϵ
2
∑

ℓ∈S(ϵ)

1

1 + µ(1 + |Sℓ|
p)

= η1κmdcaminϵ
2
|S(ϵ)|−1∑

k=0

1

1 + µ(1 + |Sφ(k)|
p)

,

where φ is an increasing map from {0, . . . , |Sϵ| − 1} to Sϵ. Hence, by definition of φ and Sφ(k),∣∣Sφ(k+1)

∣∣ = ∣∣Sφ(k)

∣∣+ 1 and
∣∣Sφ(0)

∣∣ = 1.

In other words,
∣∣Sφ(k)

∣∣ = k + 1, and

f(x0)− flow ≥ η1κmdcaminϵ
2
|S(ϵ)|−1∑

k=0

1

1 + µ(1 + (k + 1)p)
. (15)

Lemma 5 with k1 = 0 and k2 = |S(ϵ)| − 1 gives

|S(ϵ)|−1∑
k=0

1

1 + µ(1 + (k + 1)p)
≥ 1

(1 + 2µ)

∫ |S(ϵ)|+1

1

1

tp
dt. (16)

We combine (15) with (16) and obtain

f(x0)− flow ≥ η1κmdcaminϵ
2

(1 + 2µ)

∫ |S(ϵ)|+1

1

1

tp
dt.

There are two cases:
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• If 0 ≤ p < 1,

f(x0)− flow ≥ η1κmdcaminϵ
2

(1 + 2µ)

(|S(ϵ)|+ 1)
1−p − 1

1− p
,

which provides (13).

• If p = 1,

f(x0)− flow ≥ η1κmdcaminϵ
2

[
1

(1 + 2µ)
log

(
|S(ϵ)|+ 1

1

)]
,

which establishes (14).

When 0 ≤ p < 1 in Model Assumption 3.1, Theorem 2 improves the constant in the complexity

bound of [9, Lemma 2]. In particular, the bound given in [9] diverges as p → 1, whereas (13) suggests

that the complexity becomes exponential, which (14) confirms.

Note that, although the performance of Algorithm 1 might depend on α and β, if the parameter γ1
is selected such that a0 ≥ γ1, then amin ̸= a0 in Lemma 3, and (13)–(14) no longer depend on α and β.

The number of unsuccessful iterations, on the other hand, always depends on α and β.

Theorem 3. Let Problem Assumption 2.1 and Model Assumption 3.1 hold. Assume that Algorithm 1

generates infinitely many successful iterations. Then

|U(ϵ)| ≤ | logγ2
(γ4)||S(ϵ)|+ (1− α) logγ2

(ϵ) + (β − 1) logγ2
(1 + µ(1 + |S(ϵ)|p)) + logγ2

(
amin

∆0

)
, (17)

where µ and p are defined in Model Assumption 3.1 and |S(ϵ)| is as in Theorem 2.

Proof. As in [1, Lemma 2.3.1], the mechanism of Algorithm 1 guarantees that for all k ∈ N,

|Uk| ≤ | logγ2
(γ4)| |Sk|+ logγ2

(
∆k

∆0

)
.

Hence, Lemma 3 yields

|U(ϵ)| ≤ | logγ2
(γ4)||S(ϵ)|+ logγ2

 ( min
j=0,...,kϵ−1

∥∇f(xj)∥)
1−α(1 + max

j=0,...,kϵ−1
∥Bj∥)

β−1amin

∆0


≤ | logγ2

(γ4)||S(ϵ)|+ (1− α) logγ2
(ϵ) + (β − 1) logγ2

(1 + µ(1 + |S(ϵ)|p)) + logγ2

(
amin

∆0

)
.

The bound (17) is minimized in (α, β) for α = β = 1, (17) as the logarithmic terms cancel out. The

bound reduces to

|U(ϵ)| ≤ | logγ2
(γ4)||S(ϵ)|+ logγ2

(
amin

∆0

)
. (18)

Thus, the scaling ∥∇f(xk)∥/(1 + ∥Bk∥) of the trust-region radius improves the worst-case complexity

bound. We now compare our most favorable bound with that of [1, Theorem 2.3.7].

Corollary 1. Let α = β = 1 in (2). Under the assumptions of Theorem 2, if 0 ≤ p < 1,

kϵ ≤
(
| logγ2

(γ4)|+ 1
)([

(1− p) (1 + 2µ) κ1 ϵ−2 + 1
]1/(1−p)

− 1

)
+ logγ2

(
amin

∆0

)
(19)

= O
(
ϵ−2/(1−p)

)
If p = 1,

kϵ ≤
(
| logγ2

(γ4)|+ 1
) (

exp
[
(1 + 2µ)κ1 ϵ−2

]
− 1
)
+ logγ2

(
amin

∆0

)
. (20)

= O
(
exp

[
(1 + 2µ)κ1 ϵ−2

])
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When p = 0, i.e., the model Hessians are uniformly bounded, (19) reduces to

kϵ ≤
(
| logγ2

(γ4)|+ 1
) 4(L+ 2µL)

γ1η1(1− η2)
(f(x0)− flow) ϵ

−2 + logγ2

(
γ1(1− η2)

2L∆0

)
, (21)

where, for simplicity, we set κmdc =
1
2 and consider that L ≥ 1.

In the classical trust-region method [2], [1, Theorem 2.3.7] reduces to

kϵ ≤
(
| logγ2

(γ4)|+ 1
) 4(L+ 2µ)

γ1η1(1− η2)
(f(x0)− flow) ϵ

−2 + logγ2
(ϵ) + logγ2

(
γ1(1− η2)

2(L+ 2µ) ∆0

)
, (22)

where we assumed that ∥∇f(x0)∥ ≤ ∆0 to simplify. It is now apparent that, although the logγ2
(ϵ) of (22)

does not appear in (21), the constant in front of the leading term ϵ−2 is worse in (21). Nevertheless,

the added generality of our analysis allows us to treat the case p > 0.

Note that it is allowed to set γ4 = 1, and in this case, (18) implies that the number of unsuccessful

iterations is uniformly bounded independently of ϵ. Note also that in our setting, neither the classical

radius α = β = 0 nor the setting α = 1, β = 0 enjoy the most favorable complexity bound. For a

better analysis on the impact of selecting α and β, a numerical comparison of different choices of such
parameters will be conducted in Section 5.

3.1 Sharpness of the complexity bound

Let ϵ ∈ (0, 1) and c > 0. Our goal is to construct smooth f : R → R that satisfies Problem

Assumption 2.1 and Model Assumption 3.1 and for which Algorithm 1 requires exactly

kϵ =

{
⌊ϵ−2/(1−p)⌋, if 0 ≤ p < 1⌊
exp(cϵ−2)

⌋
, if p = 1

function and gradient evaluations to produce xkϵ
with |f ′(xkϵ

)| ≤ ϵ. The construction follows the

guidelines of Cartis et al. [1] and proceeds as Leconte and Orban [9]. We begin by recalling a key result

on Hermite interpolation.

Proposition 1 (1, Theorem A.9.2; 9, Proposition 6). Let kϵ ∈ N. Consider real sequences {fk}, {gk},
and {xk} for k ∈ {0, . . . , kϵ}. For k = 0, . . . , kϵ, let sk

..= xk+1 − xk, and assume that

|fk+1 − (fk + gksk)| ≤ κfs
2
k,

|gk+1 − gk| ≤ κf |sk|,

for k = 0, . . . , kϵ − 1, where κf ≥ 0. Then, there exists continuously differentiable f : R→ R such that

f(xk) = fk and f ′(xk) = gk,

for k = 0, . . . , kϵ. Furthermore, if

|fk| ≤ κf , |gk| ≤ κf , and |sk| ≤ κf ,

for k = 0, . . . , kϵ, then both |f | and |f ′| are bounded by a constant depending only on κf .

We proceed as Leconte and Orban [9], but consider a scenario where Model Assumption 3.1 holds

for any p ∈ [0, 1]. For k ∈ {0, . . . , kϵ}, we set

ωk
..=

kϵ − k

kϵ
and gk

..= −ϵ(1 + ωk). (23)

By definition, |gk| > ϵ for all k ∈ {0, . . . , kϵ − 1} and |gkϵ
| = ϵ.
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Let p ∈ [0, 1]. Define

B0
..= 1 and Bk

..= kp for all k = 1, . . . , kϵ, (24)

and

x0
..= 0 and xk+1

..= xk + sk for all k = 0, . . . , kϵ − 1, (25)

where

sk
..= −B−1

k gk > 0 for all k = 0, . . . , kϵ − 1. (26)

Finally, set

f0
..=

{
8ϵ2 + 4c, if p = 1

8ϵ2 + 4
1−p , if 0 ≤ p < 1

and fk+1
..= fk + gksk for all k = 0, . . . , kϵ − 1. (27)

The next lemma establishes properties of {fk}.
Lemma 6. The sequence {fk} defined in (27) is decreasing and

fk ∈ [0, f0] for all k = 0, . . . , kϵ. (28)

Proof. Because fk+1 − fk = gksk < 0, {fk} is decreasing.

For k ∈ {0, 1}, f0 − f1 = −g0s0 = 4ϵ2 > 0, so that (28) holds. For k = 2, . . . , kϵ,

f0 − fk = −
k−1∑
i=0

gisi = −g0s0 +

k−1∑
i=1

g2i i
−p = 4ϵ2 +

k−1∑
i=1

ϵ2(1 + ωi)
2
i−p = ϵ2

(
4 +

k−1∑
i=1

(1 + ωi)
2
i−p

)
.

Because 1 + ωi ≤ 2,

k−1∑
i=1

(1 + ωi)
2
i−p ≤

k−1∑
i=1

4i−p = 4

(
1 +

k−1∑
i=2

i−p

)
≤ 4

(
1 +

k−1∑
i=2

∫ i

i−1

t−p dt

)
= 4

(
1 +

∫ k−1

1

t−p dt

)
,

so that

f0 − fk ≤ 4ϵ2
(
2 +

∫ k−1

1

t−p dt

)
.

If p = 1,

f0 − fk ≤ 4ϵ2 (2 + log(k − 1)) ≤ 4ϵ2 (2 + log(k)) ≤ 4ϵ2 (2 + log(kϵ)) ≤ 4ϵ2
(
2 + cϵ−2

)
.

Thus, f0 − fk ≤ f0, which implies fk ≥ 0. Similarly, if 0 ≤ p < 1,

f0 − fk ≤ 4ϵ2
(
2 +

(k − 1)1−p − 1

1− p

)
≤ 4ϵ2

(
2 +

k1−p
ϵ

1− p

)
≤ 4ϵ2

(
2 +

ϵ−2

1− p

)
.

Again, f0 − fk ≤ f0, and fk ≥ 0.

The next theorem establishes slow convergence of Algorithm 1.

Theorem 4. Let 0 < ϵ < 1 and c ≥ 0. Algorithm 1 applied to minimize f : Rn → R satisfying Problem

Assumption 2.1 and Model Assumption 3.1 with 0 ≤ p ≤ 1 may require as many as

kϵ
..=

{
⌊ϵ−2/(1−p)⌋ if 0 ≤ p < 1

⌊exp(cϵ−2)⌋ if p = 1

iterations to produce xkϵ
such that ∥∇f(xkϵ

)∥ ≤ ϵ.
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Proof. We check that the iterates (25), the function values (27), the gradient values (23), and the step

sizes (26) satisfy the assumptions of Proposition 1. By construction, for k = 0, . . . , kϵ, |fk+1−fk−gksk| =
0, and

|gk+1 − gk| = ϵ(ωk − ωk+1) = ϵk−1
ϵ ≤ ϵk−1 ≤ |gk|k

−1 = B−1
k |gk| = |sk|.

Lemma 6 yields fk ∈ [0, f0] for k = 0, . . . , kϵ, and (23) implies

|gk| ≤ 2ϵ ≤ 2 and 0 < sk ≤ |gk| ≤ 2, k = 0, . . . , kϵ.

The bounds above pave the way for Proposition 1, with κf
..= max (f0, 2).

The final step is to check coherence with Algorithm 1, and ensure that only successful iterations

occur so that xk+1 is always updated and |sk| ≤
|gk|

α

(1+Bk)
β ∆k. Each iteration k = 0, . . . , kϵ − 1 is

successful because

ρk =
fk − fk+1

fk − fk − gksk − 1
2Bks

2
k

=
−gksk
1
2B

−1
k g2k

=
B−1

k g2k
1
2B

−1
k g2k

= 2.

Thus, xk+1 = xk + sk. There remains to show that each sk is inside the trust region. Consider first

k = 0. Set ∆0
..= 22−α. By construction, (1 +B0)

β = 2β ≤ 2, because β ≤ 1. Moreover, using the fact

that α ≤ 1,

|s0| = |g0| = |g0|
α|g0|

1−α = |g0|
α(2ϵ)1−α ≤ 2(21−α)|g0|

α

(1 +B0)
β

=
|g0|

α

(1 +B0)
β
∆0.

Similarly, for k ≥ 1, the fact that Bk ≥ 1 implies

|sk| = |B−1
k gk| =

|gk|
Bk

≤ 2|gk|
α|gk|

1−α

1 +Bk

≤ 2(2)1−α|gk|
α

(1 +Bk)
β

=
|gk|

α

(1 +Bk)
β
∆0 ≤ |gk|

α

(1 +Bk)
β
∆k.

Thus, each sk is inside the trust-region.

We deduce from Proposition 1 that there exists continuously differentiable f : R→ R with Lipschitz-

continuous gradient such that, for k = 0, . . . , kϵ, f(xk) = fk and f ′(xk) = gk. As the range of f is
within [−κf , κf ], f is bounded below. This concludes the proof.

Figure 1 shows plots of f and f ′ for p = 0, 0.5 and 1.

4 Complexity when the bound on ∥Bk∥ depends only on the current
iteration

We now assume that {Bk} is bounded by a multiple of k. Among other scenarios, this suggests that in

Algorithm 1, one is allowed to update the model Hessian at both successful and unsuccessful iterations.

We replace Model Assumption 3.1 with the following assumption.

Model Assumption 4.1. There exists µ > 0 and 0 ≤ p ≤ 1 such that for all k ≥ 0,

max
j=0,...,k

∥Bj∥ ≤ µ(1 + kp).

As before, we begin with the case where only a finite number of successful iterations is generated.

Theorem 5. Let Problem Assumption 2.1 and Model Assumption 4.1 be satisfied. If Algorithm 1
only generates finitely many successful iterations, then xk = x∗ for all sufficiently large k where

∥∇f(x∗)∥ = 0.
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(a) p = 0. (b) p = 0.5. (c) p = 1 and c = 1.

Figure 1: Form of f (top) and f
′
(bottom) over [x0, xkϵ

] using ϵ = 0.5 for three values of p.

Proof. Assume by contradiction that there exists ν > 0 such that ∥∇f(xk)∥ ≥ ν > 0 for all k ∈ N, and

let kf be the last successful iteration. Necessarily, xk = xkf
for all k ≥ kf , and hence, {xk} → x∗ ..= xkf

.

By Lemma 3, for all k,

∆k ≥
(minj=0,...,k ∥∇f(xj)∥)

1−α

(1 + maxj=0,...,k ∥Bj∥)
1−β

amin ≥ ν1−α

(1 + µ(1 + kp))1−β
amin.

On unsuccessful iterations, Algorithm 1 reduces ∆k by a factor at least γ2. Hence, for all k ≥ kf ,

∆k ≤ γ
k−kf

2 ∆kf
.

We combine the above inequalities, and obtain

ν1−α

(1 + µ(1 + kp))1−β
amin ≤ γ

k−kf

2 ∆kf
,

which may be rewritten

0 <
ν1−αγ

kf

2

∆kf

amin ≤ γk
2 (1 + µ(1 + kp))1−β .

However, the above is a contradiction as the right-hand side goes to zero as k → ∞. Thus, by

contradiction, lim infk→∞ ∥∇f(xk)∥ = ∥∇f(xkf
)∥ = ∥∇f(x∗)∥ = 0.

Let τ ∈ N0 and k0 be the index of the first successful iteration. Define

T τ
k

..=
{
j = k0, . . . , k | j ≤ τ |Sj |

}
, (29a)
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Wτ
k

..=
{
j = k0, . . . , k | j > τ |Sj |

}
. (29b)

Note that the set T τ
k might be empty. The next technical result will allow us to relate the number

of successful iterations to the number of iterations.

Lemma 7. Let {rj}j∈N be a non-decreasing positive real sequence. For any k ≥ k0,

τ
∑
j∈Sk

1

rj
≥
∑
j∈T τ

k

1

rj
=

k∑
j=k0

1

rj
−
∑

j∈Wτ
k

1

rj
,

where T τ
k and Wτ

k are defined in (29).

Proof. If T τ
k is empty, the result is trivial, using the convention that the sum over an empty set is zero.

Otherwise, let k ≥ k0 and j ∈ T τ
k , i.e., k0 ≤ j ≤ k and j ≤ τ |Sj |. Define Sτ

j as the set of elements

of Sj , in ascending order, where each element is repeated τ times:

Sτ
j

..=
{
i1, i1, . . . , i1︸ ︷︷ ︸

τ times

, i2, i2, . . . , i2︸ ︷︷ ︸
τ times

, . . . , i|Sj |, i|Sj |, . . . , i|Sj |︸ ︷︷ ︸
τ times

∣∣∣ il ∈ Sj for l ∈ {1, . . . , |Sj |}
}
. (30)

By construction, |Sτ
j | = τ |Sj | ≥ j, hence Sτ

j must contain at least j elements. Let iτj be the j-th

element of Sτ
j . In particular, iτj ∈ Sj , and because each element of Sj is less than j, iτj ≤ j. Because

Sτ
j ⊆ Sτ

k also holds, iτj ∈ Sτ
k . We have just showed that

{iτj | j ∈ T τ
k } ⊆ Sτ

k . (31)

As {rj} is non-decreasing and iτj ≤ j, riτj ≤ rj . We sum over j ∈ T τ
k , and obtain

∑
j∈T τ

k

1

riτj
≥
∑
j∈T τ

k

1

rj
. (32)

Positivity of {rj}j∈N and (31) then yield ∑
j∈Sτ

k

1

rj
≥
∑
j∈T τ

k

1

riτj
. (33)

Thus, we combine (29), (30), (32) and (33) to conclude that

τ
∑
j∈Sk

1

rj
=
∑
j∈Sτ

k

1

rj
≥
∑
j∈T τ

k

1

riτj
≥
∑
j∈T τ

k

1

rj
=

k∑
j=k0

1

rj
−
∑

j∈Wτ
k

1

rj
.

The following lemma also plays a key role in deriving our worst-case complexity bound.

Lemma 8. Let Problem Assumption 2.1 and Model Assumption 4.1 be satisfied. Assume that τ ∈ N0 is

chosen so that γ4γ
τ−1
2 < 1. Let ϵ > 0 and kϵ be the first iteration such that ∥∇f(xkϵ

)∥ ≤ ϵ. Then,

∑
k∈Wτ

kϵ−1

1

(1 + µ(1 + kp))
≤ ∆0ϵ

α−1

amin

ξβ , ξβ
..=
∑
k∈N

(
γ4γ

τ−1
2

)k/τ
(1 + µ(1 + kp))

β
< ∞, (34)

where amin is as in Lemma 3 and Wτ
kϵ−1 is defined in (29b).
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Proof. Let k ∈ Wτ
kϵ−1 and rk

..= 1+ µ(1 + kp). Lemma 3, the update mechanism of ∆k in Algorithm 1

and Model Assumption 3.1 together yield

aminϵ
1−α

rk
=

aminϵ
1−α

rk
1−β rβk

≤
amin minj=0,...,k ∥∇f(xj)∥

1−α

(1 + maxj=0,...,k ∥Bj∥)
1−β

rβk

≤ ∆k

rβk
≤ γ

|Sk|
4 γ

|Uk|
2

rβk
∆0 =

γ
|Sk|
4 γ

k−|Sk|
2

rβk
∆0.

Because k ∈ Wτ
kϵ−1, k > τ |Sk|, which, together with the fact that γ4 > 1 and 0 < γ2 < 1 leads to

γ
|Sk|
4 γ

k−|Sk|
2

rβk
∆0 <

γ
k/τ
4 γ

k−k/τ
2

rβk
∆0 =

(
γ4γ

τ−1
2

)k/τ
rβk

∆0.

We sum over k ∈ Wτ
kϵ−1, and obtain

aminϵ
1−α

∑
k∈Wτ

kϵ−1

1

rk
≤ ∆0

∑
k∈N

(
γ4γ

τ−1
2

)k/τ
rβk

, (35)

which is (34). The series on the right-hand side of (35) is convergent. Indeed, let uk denote its general

term. Because {rk} is non-decreasing,

lim
k→+∞

uk+1

uk

= lim
k→+∞


(
γ4γ

τ−1
2

)(k+1)/τ

rβk+1


 rβk(

γ4γ
τ−1
2

)k/τ
 ≤ (γ4γ

τ−1
2 )1/τ < 1.

Note that it is possible to choose τ as required by Lemma 8, as it suffices to pick τ < logγ2
(γ−1

4 )+ 1,

where the right-hand side is larger than 1.

We are ready to state our main result on the evaluation complexity of Algorithm 1 under Model

Assumption 4.1.

Theorem 6. Let Problem Assumption 2.1 and Model Assumption 4.1 be satisfied. Assume that

Algorithm 1 generates infinitely many successful iterations. Let k0 be the index of the first successful

iteration, µ and p be as in Model Assumption 3.1, and τ and ξβ be as in Lemma 8. Let ϵ > 0, and kϵ
be the first iteration such that ∥∇f(xkϵ

)∥ ≤ ϵ. Define

κ2
..=

τ(f(x0)− flow)

η1κmdcamin

> 0, κ3
..=

∆0ξβ
amin

> 0.

If 0 ≤ p < 1,

kϵ ≤
[
(1− p)

(1 + µ(1 + (1 + k0)
p))

(1 + k0)
p

(
κ2 ϵ−2 + κ3 ϵα−1

)
+ (k0 + 1)

1−p

]1/(1−p)

− 1 (36)

= O
(
ϵ−2/(1−p) + ϵ(1−α)/(1−p)

)
.

If p = 1,

kϵ ≤ (k0 + 1) exp

[
(1 + µ(2 + k0))

1 + k0

(
κ2 ϵ−2 + κ3 ϵα−1

)]
− 1. (37)

Proof. Let k ∈ S(ϵ). Lemma 4 and Model Assumption 4.1 imply

f(xk)− f(xk + sk) ≥ η1(mk(0)−mk(sk))
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≥ η1κmdcamin

minj=0,...,k ∥∇f(xj)∥
2

1 + maxj=0,...,k ∥Bj∥

≥ η1κmdcaminϵ
2 1

1 + µ(1 + kp)
.

We sum the above inequality over all k ∈ S(ϵ), use a telescoping argument, and obtain

f(x0)− flow ≥ η1κmdcaminϵ
2
∑

k∈S(ϵ)

1

1 + µ(1 + kp)
.

Let rk
..= 1 + µ(1 + kp). The sequence {rk} is positive and non-decreasing, so Lemmas 5, 7 and 8 yield

f(x0)− flow ≥ η1κmdcaminϵ
2

τ

kϵ−1∑
k=k0

1

rk
−

∑
k∈Wτ

kϵ−1

1

rk


≥ η1κmdcaminϵ

2

τ

kϵ−1∑
k=k0

1

rk
−

∆0ξβϵ
α−1

amin


≥ η1κmdcaminϵ

2

τ

[
(1 + k0)

p

rk0

∫ kϵ+1

k0+1

1

tp
dt−

∆0ξβϵ
α−1

amin

]
, (38)

where we applied Lemma 5 applied with k1 = k0 and k2 = kϵ − 1. We distinguish two cases.

• If 0 ≤ p < 1, (38) becomes

f(x0)− flow ≥ η1κmdcaminϵ
2

τ

[
(1 + k0)

p

(1 + µ(1 + (1 + k0)
p))

(kϵ + 1)
1−p − (k0 + 1)

1−p

1− p
−

∆0ξβϵ
α−1

amin

]
,

which is (36).

• If p = 1, (38) becomes

f(x0)− flow ≥ η1κmdcaminϵ
2

τ

[
(1 + k0)

(1 + µ(1 + k0))
log

(
kϵ + 1

k0 + 1

)
−

∆0ξβϵ
α−1

amin

]
,

which gives (37).

The complexity bounds of Theorem 6 have the same nature as those of Theorems 2 and 3; a

polynomial bound for 0 ≤ p < 1 and an exponential bound for p = 1. In Theorem 6, we bound the

total number of iterations to reach an ϵ-first order point; we do no have estimates on the number of

successful iterations as we did under Model Assumption 3.1.

In addition, Theorem 6 suggests that when relax Model Assumption 3.1 to Model Assumption 4.1,

the complexity bound deteriorates.

Finally, under Model Assumption 4.1, the value of α appears in the complexity bound. In fact, if α <

−1, the leading term in the complexity bound becomes O(ϵ(α−1)/(1−p)) when 0 < p < 1, which is worse

than O(ϵ−2/(1−p)). Similarly, when p = 1, the leading term deteriorates to O(exp( (1+µ(2+k0))
1+k0

κ3ϵ
1−α)).

The example of Section 3.1 satisfies Model Assumption 4.1 because all iterations are successful by

construction. Neither Lemma 6 nor Theorem 4 depend on the value of α. Thus, whenever −1 ≤ α ≤ 1,

the same example illustrates that the bounds of Theorem 6 are sharp. However, when α < −1, either a

different example is required, or the bound is not sharp. Until we answer this last question, we state

the following corollary of Theorem 6, which applies, to most known variants, including the standard

trust-region radius update (α = β = 0) and choice of radius (α = 1, β = 0) made by Curtis et al. [3].
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Corollary 2. Let −1 ≤ α ≤ 1 in (2). Under the assumptions of Theorem 6.

• if 0 ≤ p < 1, (36) continues to hold, but is O
(
ϵ−2/(1−p)

)
;

• if p = 1, (37) continues to hold, but is O
(
exp(κ4ϵ

−2)
)
with κ4 := (1+µ(2+k0))

1+k0
κ2,

and those bounds are sharp up to a constant factor.

5 Numerical illustration

In order to better understand the connection between worst-case complexity bounds and performance

in practice, we implemented Algorithm 1 in the Julia programming language using the JuliaSmoothOp-

timizers infrastructure [10]. We altered the implementation of the trunk solver [11] to implement the

trust-region radius management of Algorithm 1. By default, trunk is a standard trust-region method

for (1) in which steps are computed using the trucated conjugate-gradient method [17]. No other

algorithmic changes were performed. We extracted all unconstrained problems from the Optimization-
Problems collection [12] with at least two variables, which resulted in 150 problems with dimension

ranging from 2 to 100. Larger instances are available by changing the default number of variables in

many problems, but our intention here is to obtain preliminary results that may confirm or infirm

causality between worst-case complexity and performance. Typical complexity studies in nonconvex

deterministic optimization are, unfortunately, almost never accompanied by numerical experiments.

Figure 2 reports our results in the form of Dolan and Moré [5] performance profiles in terms of
total number of evaluations of f (left), ∇f (center), and CPU time (right). At each iteration, Bk is

the exact Hessian computed via automatic differentiation. The variants tested are α = β = 0, named

trunk 0 0, α = 0 and β = 1, named trunk 0 1, α = 1 and β = 0, named trunk 1 0, and α = β = 1,

named trunk 1 1.

Not all variants are equally efficient or robust. The standard implementation α = β = 0 is both

the fastest and most robust with failures on 7 problems. The method using the radius proposed by

Curtis et al. [3], α = 1 and β = 0, is a close second in terms of efficiency, but fails on 8 problems. The

two other variants are visibly less efficient. The variant trunk 1 1 ranks third in terms of number of

evaluations, but last in terms of CPU time (though the gap with the next method is small), and fails

on 7 problems. Finally, trunk 0 1 ranks last in terms of number of evaluations, and third in terms of

CPU time, and fails on 11 problems. In terms of CPU time, the two variants that use β = 0 are faster
because they do not need to compute ∥Bk∥ at each iteration.

Figure 2: Performance profiles of trunk with exact Hessian in terms of number of objective evaluations (left), gradient
evaluations (center), and CPU time (right). Method trunk a b refers to the variant α = a and β = b.

Because our analysis allows for Hessian approximations and it has long been suspected that quasi-

Newton approximations may diverge as fast as linearly with |Sk|, we ran the same experiment as above

but with model Hessians defined as limited-memory BFGS or SR1 approximations with memory 5.

The results are reported in Figures 3 and 4. The variants are color-coded as in Figure 2, and the trend

is the same.
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Figure 3: Performance profiles of trunk with LBFGS Hessian approximation in terms of number of objective evaluations
(left), gradient evaluations (center), and CPU time (right). Method trunk bfgs a b refers to the variant α = a and β = b.

Figure 4: Performance profiles of trunk with LSR1 Hessian approximation in terms of number of objective evaluations
(left), gradient evaluations (center), and CPU time (right). Method trunk sr1 a b refers to the variant α = a and β = b.

Figures 2 to 4 suggest no clear relationship between worst-case complexity and performance in

practice, at least on this preliminary, and admittedly restricted, test set. To the authors, this situation is

reminiscent of comparisons between the standard trust-region implementation trunk 0 0 and adaptive

cubic regularization (ARC) methods, which became popular due to their favorable O(ϵ−3/2) worst-case

evaluation complexity. ARC methods are also covered by the analysis of Cartis et al. [1], and those
authors are responsible for much of their development. In the experiments conducted by Dussault et al.

[6], however, the performance of ARC methods is not sufficiently compelling to become a method of

choice in practice. Future developments may, of course, have us revise that opinion.

6 Conclusion

We extended the complexity analysis of trust-region methods to handle potentially unbounded model

Hessians in unconstrained optimization. Unlike traditional complexity analyses that assume uniformly

bounded model Hessians, our study covers practical cases, including quasi-Newton updates such as

PSB, BFGS, and SR1. We analyzed two regimes of the model Hessian growth: linear in the number of

successful iterations and in the total number of iterations. When the model Hessians grow as O(kp),

where k is the iteration counter and 0 ≤ p < 1, we derived a sharp O(ϵ−2/(1−p)) worst-case evaluation

complexity bound to reach an ϵ-stationary point. Additionally, for the case where p = 1, we established

a new O(exp(cϵ−2)) worst-case evaluation complexity bound, for some constant c > 0. We derived

similar sharp bounds when the model Hessians grow linearly with the number of successful iterations.

Among others, our results confirmed the profound intuition of Powell [16] on complexity for multiple
quasi-Newton approximations.

Ongoing work will extend the complexity analysis to cover the adaptive regularization with cubics

(ARC) framework [1], and investigate whether quasi-Newton approximation may indeed grow linearly

with the number of successful iterations.
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