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Août 2024

La collection Les Cahiers du GERAD est constituée des travaux de
recherche menés par nos membres. La plupart de ces documents de
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Legal deposit – Bibliothèque et Archives nationales du Québec, 2024
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Abstract : Governments are motivated to subsidize profit-driven firms that manufacture zero-emission
vehicles to ensure they become price-competitive. This paper introduces a dynamic Stackelberg game
to determine the government’s optimal subsidy strategy for zero-emission vehicles, taking into account
the pricing decisions of a profit-maximizing firm. While firms have the flexibility to change prices con-
tinuously, subsidies are adjusted at specific time intervals. This is captured in our game formulation by
using impulse controls for discrete-time interventions. We provide a verification theorem to characterize
the Feedback Stackelberg equilibrium and illustrate our results with numerical experiments.

Keywords : Game theory, pricing, subsidy, learning-by-doing, impulse control, differential game
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1 Introduction

To reduce the greenhouse gas emissions, governments around the world are offering subsidies to en-

courage consumers to buy electric vehicles instead of gasoline cars. In US, the subsidy takes the form

of tax credits that top out at $7,500 in 2024.1 European countries are also offering incentives to

consumers to buy electric vehicles. To illustrate, France gives a subsidy of e5,000, Italy e3,000, The
Netherlands e2,950, and Spain up to e7,000, plus some other benefits to consumers buying a BEV

(Battery Electric Vehicle).2 Subsidy programs are (normally) designed with a target in mind, and

typically have an end date. For instance, the Canadian Zero-Emission Vehicles (ZEV) program target

is 100% new light-weight ZEVs sales by 2035, and it will run until March 31, 2025, or until available

funding is exhausted.3 Another example is the target set by President Obama in 2011 of “one million

electric vehicles on the road by 2015.”

Offering an incentive to consumers to buy new cars is not new. Indeed, before the current wave

of subsidy programs of electric vehicles (EVs), many countries implemented in the wake of the global

recession in 2008 car scrappage programs (CSPs) to stimulate the car market and reduce pollution, as

new cars emit less than older ones.4 As one could expect, a series of assessment studies were conducted

after the end of these programs. Of particular interest to our research is the pricing strategy that

manufacturers implemented during these CSPs. The main question is whether manufacturers are fully

passing over the subsidy to consumers or not. Whereas nominally the manufacturers are applying the

rebate, they can simultaneously raise their list price. Kaul et al. (2016) analyzed how much of the

e2,500 subsidy in German CSP went in fact to consumers and obtained that subsidized buyers paid

a little more than those who were not eligible for the subsidy. Jiménez et al. (2016) showed that car

manufacturers increased vehicle prices by e600 on average after a scrappage program was announced

in Spain.

Subsidizing a new durable product aims at achieving a series of objectives, among them reducing

the unit production cost and increasing consumers’ confidence in the product. Indeed, it is empirically

documented that the unit production cost decreases with experience, which is measured by cumulative

production (Levitt et al. 2013). By boosting demand, subsidies accelerate the drop in the marginal

production cost, which in turn should lead to lower price and higher adoption rate. Further, early

adopters of a new product influence non-adopters purchasing behavior through product reviews and

word-of-mouth communications. By increasing the number of early adopters, subsidies amplify the

social impact that adopters have on non adopters. Seeing other consumers buying an EV increases

awareness of the product and eventually decreases the perceived risk of adopting this new type of

vehicle.

Based on the above discussion, our objective is to answer the following research questions:

1. What are the equilibrium price and subsidy and how do they evolve over time?

2. Does the seller take advantage of the subsidy program to raise its price?

3. What are the cost and benefit of the subsidy program?

4. What is the effect of varying the parameter values on the results?

To answer these questions, we develop a game model with two players, a firm selling EVs and a

government subsidizing consumers when purchasing one. The objective of the government is to reach a

cumulative adoption target with a minimum budget, whereas the firm maximizes its discounted profit

over its planning horizon. By retaining a game model, we account for the strategic interactions between

1https://www.edmunds.com/fuel-economy/the-ins-and-outs-of-electric-vehicle-tax-credits.html
2https://www.fleeteurope.com/en/new-energies/europe/features/ev-incentives-2024-europes-major-fleet-

markets?a=FJA05&t%5B0%5D=Taxation&t%5B1%5D=EVs&curl=1
3https://tc.canada.ca/en/road-transportation/innovative-technologies/zero-emission-vehicles/light-duty-zero-

emission-vehicles
4To be eligible in a CSP, the car to be replaced must be older than a certain age.

https://www.edmunds.com/fuel-economy/the-ins-and-outs-of-electric-vehicle-tax-credits.html
 https://www.fleeteurope.com/en/new-energies/europe/features/ev-incentives-2024-europes-major-fleet-markets?a=FJA05&t%5B0%5D=Taxation&t%5B1%5D=EVs&curl=1
 https://www.fleeteurope.com/en/new-energies/europe/features/ev-incentives-2024-europes-major-fleet-markets?a=FJA05&t%5B0%5D=Taxation&t%5B1%5D=EVs&curl=1
https://tc.canada.ca/en/road-transportation/innovative-technologies/zero-emission-vehicles/light-duty-zero-emission-vehicles
https://tc.canada.ca/en/road-transportation/innovative-technologies/zero-emission-vehicles/light-duty-zero-emission-vehicles
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the pricing policy of the firm and the subsidy policy of the government. Further, as the learning-by-

doing in production and the diffusion effect that adopters exert on non-adopters are inherently dynamic,

so is our model.

The paper is organized as follows: Section 2 reviews the related literature on subsidies and

differential games. Section 3 introduces a two-player game between a profit-maximizing firm that solves

linear-quadratic regulator-type problem and a government that aims to reach a desired adoption rate

of ZEVs with minimal budget. In Section 4, we derive the sufficient conditions for characterizing the

Feedback Stackelberg equilibrium (FSE). Numerical results are presented in Section 5 and conclusions

are given in Section 6.

2 Literature Review

Our paper belongs to the literature on new durable product diffusion initiated in the seminal paper

by Bass (1969).5 The early contributions were forecast oriented, that is, they estimated the parameter

values of the diffusion dynamics equation to predict the adoption rate.6 In this stream, the firm is

passive, i.e., it does not make pricing or any other decision. Robinson and Lakhani (1975) extended

the framework to a continuous-time optimal-control problem where the firm decides on the price at

each instant of time. Eliashberg and Jeuland (1986) consider a two-stage model with a monopoly

period followed by a duopoly period, and analyze the pricing strategies of the incumbent. Dockner

and Jørgensen (1988) introduced price competition in a dynamic oligopoly using a differential game

approach. Each of these papers were followed by a large number of studies considering some variations.

We shall refrain from reviewing the huge literature on diffusion models and refer the reader to the

surveys and tutorials in Mahajan et al. (1993, 2000), Jørgensen and Zaccour (2004), and Peres et al.

(2010). Here, we focus on diffusion models with price subsidy.

Kalish and Lilien (1983) were the first to investigate the effect of price subsidy on the rate of

adoption of an innovation in a new product diffusion framework. The decision maker is the government

that chooses the subsidy rate to maximize the total number of units sold by the terminal date of the

subsidy program. The industry is assumed to be competitive and does not behave strategically. Lilien

(1984) applies the theory developed in Kalish and Lilien (1983) to the National Photovoltaic Program

implemented by the Department of Energy in the United States in the 1970s.

Assuming that the new technology is patented, which prevents entry in the industry at least in

the short run, Zaccour (1996) proposed a differential game played by a firm and a government. The
firm chooses the price and government sets the (varying) subsidy rate over time and an open-loop

Nash equilibrium is determined. As in Kalish and Lilien (1983), the objective of the government is to

maximize the cumulative sales by the terminal date of the subsidy, which is assumed to also be the

firm’s planning horizon. Under similar assumptions, Dockner et al. (1996) consider the government

to be leader and the firm follower in a Stackelberg game. The authors characterized and compared

open-loop and feedback Stackelberg pricing and subsidy equilibrium strategies.

Jørgensen and Zaccour (1999) retained the same sequential move structure in Dockner et al. (1996)

and analyzed open-loop Stackelberg equilibrium in a setup where the government subsidizes consumers

and also purchases some quantity of the new technology to equip its institutions. Both instruments

have the same objective of accelerating the decrease in the unit production cost through learning-by-

doing. As an open-loop Stackelberg equilibrium is in general time inconsistent, its implementation

requires that the leader will indeed commit to its announcement. De Cesare and Di Liddo (2001)

introduced advertising in a Stackelberg differential game played by a firm and a government. By doing

5In 2004, Bass (1969) was voted one of the ten most influential papers published in Management Science during the
last fifty years.

6This literature typically assumes that consumer buys at most one unit. Islam and Meade (2000) extend this class
of forecasting models to account for replacement purchase of the durable product.
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so, the sales rate is affected by both costless word-of-mouth communication that emanates from within

the social system, and costly advertising paid for by the firm.

Janssens and Zaccour (2014) criticized the above cited papers on three grounds. First, they state

that there is no empirical support to the assumption that both players have the same planning horizon.

A subsidy program is short-lived, whereas a firm hopes to remain active in the long term. Second,

the assumption that the unit cost decreases linearly in cumulative production is also questionable

empirically. Finally, maximizing the number of units sold by a certain date is not the best objective a

government can choose because it could be very costly and does not necessarily help in bringing down

the price after the subsidy program. Consequently, the authors instead minimize the government’s

budget needed to reach a certain target. One drawback in this paper is the use of open-loop information

structure in a Stackelberg game, which leads in general to time-inconsistent equilibrium strategies.

Should the subsidy be increasing, decreasing, or constant over time? (It is easy to rule out on

economic grounds that the subsidy cannot be non-monotone over time.)7 The answer to this question

depends on the diffusion effect (word of mouth and possibly saturation effects) and cost dynamics

(learning in production). The assumption retained in the literature is that the government can change

continuously the subsidy over time. Such assumption, which is clearly motivated by mathematical

tractability, is very hard to justify (and implement) in practice. Government agencies do not have

the agility to continuously change their decisions and if they do have, it is politically and practically

difficult to implement/justify. Indeed, think of a subsidy that takes the form of a tax credit as in

the US, and the government is changing continuously its level. Further, it is intuitive to assume that

modifying the subsidy level entails a fixed cost that should be normally considered in the design of the

program.

In this paper, we depart from the literature and suppose that the government makes subsidy

adjustments at specific dates to reach a desired adoption target with minimum public spending, while

considering the pricing decisions of the profit-maximizing firm. We retain the assumption that the firm

can change continuously its price and that the game is played à la Stackelberg, with the government

acting as leader and the firm as follower. We adopt a feedback-information structure and determine

feedback-Stackelberg equilibrium, which is subgame perfect; see, e.g., Başar and Olsder (1998), Haurie

et al. (2012), Başar and Zaccour (2018) for a discussion of the different information structures in

differential games and resulting equilibria. For applications of Stackelberg equilibrium in the operations

management and supply chain literature, see the surveys in He et al. (2007) and Li and Sethi (2017).

The theory of dynamic games has been developed assuming that all players intervene at all decision

moments in the game, that is, continuously in a differential game and at discrete instants of time in

a multistage game. It is only very recently that some advancements have been made on nonzero-sum

impulse games to study discrete-time interventions in continuous-time systems (Aı̈d et al. 2020, Basei

et al. 2022, Sadana et al. 2021a,b, 2023). However, these papers consider Nash equilibrium where

players decide on their strategies simultaneously without knowing the strategy of each other. In our

subsidy model, the dominant view is that a Stackelberg equilibrium should be sought as quite naturally

the government has the option of announcing its strategy before the firm acts. Consequently, we

introduce here a new framework, to which we shall refer as impulse dynamic Stackelberg game (iDSG),

which incorporates subsidies that are adjusted based on the adoption rate of ZEVs at discrete instants

of time. This approach contrasts with all the papers in this literature that analyzed a continuous-time

dynamic Stackelberg game (DSG) with continuous control for subsidies, and further distinguishes our

work by assuming that subsidies can only take on discrete values. Again, it is hard to believe that

the subsidy is a continuous variable and having a discrete variable is more realistic. Furthermore, we

provide a verification theorem to characterize the FSE strategies of the government and the firm and

illustrate our results using numerical experiments.

7Recently, Langer and Lemoine (2022) addressed this question in a context where the government faces consumers
who can choose optimally the timing of purchasing. Here, the ”game” is between the government and consumers, not a
firm.
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To wrap up, we make two important contributions in this paper. First, by letting the government

intervene at discrete moments in time, assuming discrete values for subsidy adjustments, and having

a fixed cost attached to each adjustment, we believe that our modeling of the strategic interactions

involved in a subsidy program is more realistic than what has been done before in the literature.

Second, to the best of our knowledge, it is the first paper to characterize the equilibrium in an impulse

dynamic Stackelberg game. This is clearly a significant contribution to the theory of differential games

that opens the door to many potential applications.

3 Model

In this section, we introduce the two-player Stackelberg game between the government and the firm.

The two players use different kinds of strategies to influence the cumulative sales of the ZEVs. Whereas

the firm can continuously change the price over time, the government chooses the subsidy levels only

at certain discrete decision dates, τ1, τ2, · · · , τN , where 0 ≤ τi ≤ T, i = {0, 1, · · · , N}.

Denote by p (t) the price of a ZEV and by pa the given price of vehicles using old technology, e.g.,

gasoline motor. For simplicity, we assume that pa remains constant throughout the planning horizon.

(Letting pa be defined by a function of time would cause no conceptual difficulty.) The discrete set

of subsidies that could be offered to the customers is denoted by S = {0, s1, s2, . . . , sm}, where si > 0

and 0 corresponds to the case with no subsidy. We let the sales rate of ZEVs be given by

ẋ(t) = α1 + α2x(t)− β(p(t)− pa)), x(0) = x0, (1)

where x(t) denotes the cumulative sales at time t, and α1, α2, and β are positive parameters. As in

Jørgensen and Zaccour (1999) and Jørgensen and Zaccour (2004), our sales function is linear in the

difference in prices of the two technologies, i.e., ∆(t) = p(t)−pa, and is increasing in pa and decreasing

in p(t). To have non-negative demand, we suppose that ∆(t) ≤ α1+α2x(t)
β . The market size, which is

given by α1 + α2x(t), is not constant, but endogenous and increasing in cumulative sales. In Bass’s

seminal paper Bass (1969), the term α2x(t) is defined as the word-of-mouth effect, i.e., the positive

impact exerted by adopters on not yet adopters of the new product. Alternatively to this information

dissemination (or free advertising) interpretation, one can assume that the larger x(t), the easier is to

find a public place to recharge the battery, which in turn enlarges the market potential and demand.

To decrease the price gap between the two technologies and thereby boost the demand, the gov-

ernment gives a subsidy s(t). Consequently, the demand becomes

ẋ(t) = α1 + α2x(t)− β(p(t)− s(t)− pa)).

If the government changes the subsidy level, at a decision date τ , x(t) has a kink at t = τ . We

assume that the unit production cost is decreasing in cumulative sales, which captures the idea of

learning-by-doing effect, and is given by

c(x(t)) = b1 − b2x(t),

where b1 is the initial unit cost and b2 > 0 measures the learning speed. The assumption that the cost

function is linear in x(t) has also been adopted in, e.g., Raman and Chatterjee (1995) and Xu et al.

(2011). We will insure that the cost remains always positive.

The objective of the firm is to maximize its discounted stream of profit over the planning horizon T ,

that is,

Jf (0, x0, η(·), p(·)) = max
p(t)∈Ωf

∫ T

0

e−ρt(p(t)− c(x(t))ẋ(t)dt, (2)

where ρ is the discount factor, η(·) is the subsidy adjustment at each decision date during the game

and Ωf denotes the set of feasible prices. The government does not give the subsidy to perpetuity but
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aims to reach a target of cumulative sales xs with a minimum expenditure by time τN+1 < T , after

which it discontinues the subsidy program. The change in subsidy levels, denoted by ηi, is done at

certain time periods τi and the magnitude of change ηi depends on the cumulative sales and subsidy

levels such that ηi + s(τ−i ) ∈ S. The subsidy levels are constant between consecutive decision dates τi
and τi+1 and the difference in subsidy levels before and after the intervention time τi is given by

s
(
τ+i

)
= s

(
τ−i

)
+ ηi for i = {1, 2, ....., N}. (3)

The objective of the government is to minimize the expenditure incurred in reaching the target sales:

Jg(0, x0, η(·), p(·)) = min
ηi∈Ωg(s), x(τN+1)≥xs

∫ τN+1

0

e−ρts(t)ẋ(t)dt+

i=N∑
i=1

e−ρτiC1ηi>0, (4)

where Ωg(s) denotes the set of feasible subsidy adjustments, with Ωg(s) := {η : η + s ∈ S} and C is

the fixed cost associated with subsidy adjustments.

To wrap up, we have defined a two-stage differential game model. In the first stage, the firm and

the governments play a noncooperative game, whereas in the second stage, which starts when the

cumulative sales target is reached, only the firm makes decisions. Consequently, we have to solve an

optimal control problem in the second stage and a differential game in the first stage. To determine a

subgame-perfect equilibrium, we solve the problem backward. The model involves one state variable

and one control variable for each player. The firm chooses the price of the ZEV in both stages and

the government the subsidy in the first stage. We reiterate that the firm makes decisions continuously,

while the government intervenes only at some discrete instants of time.

4 Feedback Stackelberg equilibrium

Let γf : [0, T ] × S × R+ → Ωf denote the feedback strategy of the firm, so that the price it charges

at time t is given by p(t) = γf (t, x(t)). The set of all feedback strategies of the firm is given by Γf .

Similarly, we denote the feedback strategy of the government by γg : {τi}Ni=1×S×R+ → Ωg(s), and by

Γg the set of all its feedback strategies. The government announces the subsidy plan for the duration

between consecutive decision dates, and then the firm best responds to the subsidy plan.

Definition 1. We say that γ̂f is the firm’s best response to the strategy γg of the government if

Jf (·, γg(·), γ̂f (·, γg)) ≥ Jf (·, γg, γf (·, γg)) ∀(γg, γf ) ∈ Γg × Γf .

Similarly, γ̂g is the equilibrium strategy of the government if

Jg(·, γ̂g(·), γ̂f (·, γ̂g)) ≤ Jg(·, γg(·), γ̂f (·, γg)) ∀γg ∈ Γg.

The pair (γ̂g, γ̂f ) is called the Feedback Stackelberg equilibrium (FSE) of the game.

Once the the date to meet the target sales is reached, government stops the subsidy program. In

this section, we provide sufficient conditions to characterize the optimal pricing strategy of the firm

from time [τN+1, T ] after the subsidy program ends.

4.1 After the end of the subsidy program

Denote by vf : [0, T ]×S×R+ → R the value function of the firm. After the subsidy program ends, the

firm solves a linear-quadratic control problem, so the value function of the firm satisfies the following

Hamilton-Jacobi-Bellman (HJB) equation:

ρvf (t, x)− vft (x) = max
p(t)

[(p(t)− c(x(t)) + vfx(t, x))(α1 + α2x(t)− β(p(t)− pa))],
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where vfz is the derivative of vf with respect to variable z. We have suppressed the dependence of

vf on the subsidy since it is constant between decision dates of the government. Assuming interior

solutions 0 < p(t) < ∞ for t ∈ [0, T ], the optimal price charged by the firm is given by:

γ̂f (t, 0, x) = p∗(t) =
1

2

(
α1 + α2x(t)

β
+ pa + b1 − b2x− vfx(t, x)

)
for t ∈ [τN+1, T ]. (5)

Given the linear-quadratic structure of the problem, we make the informed guess that the value

function is quadratic in the state, that is, vf (t, x) = 1
2k2(t)x

2 + k1(t)x+ k0(t), where kj(t), j = 0, 1, 2

are the unknown time functions to be determined. Therefore, the optimal price charged by the firm is

given by

p∗(t) =
1

2

((
α2

β
− b2 − k2(t)

)
x(t) +

α1

β
+ pa + b1 − k1(t)

)
for t ∈ [τN+1, T ].

Substituting the quadratic form of the value function vf (t, x) and optimal price p∗(t) in the HJB

equation yields:

ρ

2
k2(t)x

2 + ρk1(t)x+ ρk0(t)−
1

2
k̇2(t)x

2 − k̇1(t)x− k̇0(t)

=
β

4

(
α1 + α2x(t)

β
+ pa − b1 + b2x+ k2(t)x+ k1(t)

)2

.

On comparing the coefficients, we obtain

ρk2(t)− k̇2(t) =
β

2

(
w2

β
+ k2(t)

)2

, (6a)

ρk1(t)− k̇1(t) =
β

2

(
w1

β
+ k1(t)

)(
w2

β
+ k2(t)

)
, (6b)

ρk0(t)− k̇0(t) =
β

4

(
w1

β
+ k1(t)

)2

, (6c)

where w1 := α1 + β(pa − b1) and w2 := α2 + βb2.

4.2 Before the subsidy ends

Between the two consecutive subsidy updates at decision dates τi and τi+1, i = 1, 2, · · · , N , the value

function of the firm evolves according to the following HJB equation:

ρvf (t, x)− vft (t, x) = min
p(t)≥0

[(p(t)− c(x(t)) + vfx(t, x))(α− β(p(t)− pa − s(τ+i ))]. (7)

Assuming interior solutions for the optimal price p∗(t) and quadratic form of the value function, the

optimal price for t ∈ (τi, τi+1) charged by the firm is obtained using the first-order condition:

γ̂f (t, s(τ+i ), x) = p∗(t) =
1

2

((
α2

β
− b2 − k2(t)

)
x(t) +

α1

β
+ pa + s(τ+i ) + b1 − k1(t)

)
. (8)

Substituting p∗(t) in the state dynamics (3), the state evolution over (τi, τi+1) is given by

ẋ(t) =
1

2

(
w1

β
+ β(s(τ+i )− k1(t)) +

(
w2

β
+ βk2(t)

)
x(t)

)
(9)

Substituting the quadratic form of the value function vf (t, x) and optimal price p∗(t) in the HJB

equation, and comparing the coefficients yields for i ∈ {0, 1, · · · , N}:

ρk2(t)− k̇2(t) =
β

2
(k2(t) +

w2

β
)2 for t ∈ (τi, τi+1), (10a)
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ρk1(t)− k̇1(t) =
β

2

(
w1

β
+ k1(t) + s(τ+i )

)(
w2

β
+ k2

)
for t ∈ (τi, τi+1), (10b)

ρk0(t)− k̇0(t) =
β

4

(
w1

β
+ s(τ+i ) + k1

)2

for t ∈ (τi, τi+1). (10c)

The continuity of the value function at the time instants τi, i = {1, 2, · · · , N + 1} yields the following

relation:

1

2
k2(τ

−
i )x(τ−i )2 + k1(τ

−
i )x(τ−i ) + k0(τ

−
i ) =

1

2
k2(τ

−
i )x(τ+i )2 + k1(τ

+
i )x(τ+i ) + k0(τ

+
i ).

From the continuity of x(·) in t, we obtain:

km(τ−i ) = km(τ+i ), for m = {0, 1, 2}. (11)

Therefore, the value function has a kink at the decision date τi if the subsidy adjustment is made.

Next, we consider the control problem of the government. Let the value function of the government

be denoted by vg : [0, T ] × S × R+ → R. Government would stop the subsidy program at τN+1. Let

us define the continuation set for which there is no subsidy:

C = {(τN+1, x) : x ≥ xs}.

Equivalently, the value function of the government satisfies the following relation condition at time

τN+1 :

vg(τN+1, s, x) =

{
0, if (τN+1, x(τN+1)) ∈ C,
∞, otherwise.

(12)

The minimum cost-to-go that can be achieved by changing the subsidy to reach the target xs by time

τN+1 is denoted by Mvg and defined by

Mvg(τi, s, x(τi)) = min
ηi∈Ωg(s)

( ∫ τ−
i+1

τ+
i

s+ ηi
2

e−ρtẋ(t)dt+ C1ηi>0 + vg(τi, s+ ηi, x(τi+1)
)

= min
ηi∈Ωg(s)

( ∫ τ−
i+1

τ+
i

s+ ηi
2

e−ρt

(
w1

β
+ β(s+ ηi − k1(t)) +

(
w2

β
+ βk2(t)

)
x(t)

)
dt

+ C1ηi>0 + vg(τi, s+ ηi, x(τi+1)
)
, (13)

where M is the intervention operator. Therefore, the value function satisfies the following relation at

the decision dates:

vg(τ−i , s(τ−i ), x(τ−i )) = Mvg(τ−i , s(τ−i ), x(τ−i )). (14)

Theorem 1. Suppose there exist function value function vf = 1
2k2x(t)

2 + k1x(t) + k0 such that km :

[0, T ] → R for m ∈ {0, 1, 2} satisfy (6), (10), and (11) for t ∈ (τi, τi+1), i ∈ {0, 1, 2, · · · , N}, and

τ0 := 0. Furthermore, suppose there exist function vg that satisfies (12), (13), and (14). Then, γ̂f (·)
given in (5) and (8) and the subsidy adjustments γ̂g(·) defined below constitute the FSE strategy of

the firm and government, respectively:

γ̂g(·) = arg min
η∈Ωg(s)

( ∫ τ−
i+1

τ+
i

s(τ−i ) + η

2
e−ρt

(
w1

β
+ β(s(τ−i ) + η − k1(t)) +

(
w2

β
+ βk2(t)

)
x(t)

)
dt

+ C1ηi>0 + vg(τi, s(τ
−
i ) + η, x(τi+1)

)
. (15)

Proof. From Definition 1, we will show that

vf (τj , (s, x)) = Jf (·, γ̂g, γ̂f (·, γ̂g)), vg(τj , (s, x)) = Jf (·, γ̂g, γ̂f (·, γ̂g)),



Les Cahiers du GERAD G–2024–44 8

vf (τj , (s, x)) ≥ Jf (·, γ̂g, γf (·, γ̂g)) ∀(γg, γf ) ∈ Γg × Γf ,

vg(τj , (s, x)) ≤ Jg(·, γg(·), γ̂f (·, γg)) ∀γg ∈ Γg.

Let γf
[τj ,T ] be the feedback strategy of the firm restricted to the interval [τj , T ] so that p(t) =

γf
[τj ,T ](t, s, x). Suppose the feedback strategy of the government is γ̂g

[τj ,T ] so that the subsidy change

at decision dates τi is ηi = γg
[τj ,T ](τi, s(τi), x(τi)). Let the corresponding state trajectory be denoted

by x1(·). Using the total derivative of e−ρtvf (·) between (τi−1, τi), integrating with respect to t from

τi−1 to τi, and taking the summation for all i ≥ j, we obtain

e−ρT vf (T, x1(T ))− e−ρτjvf (τj , x(τj))

=
∑
i≥j

∫ τ−
i+1

τ+
i

e−ρh
(
−ρvf (h, x1(h)) + vfh(h, x1(h)) + vfx(h, x1(h))r(x1(h), p(h), s(τ

+
i ))

)
dh. (16)

From the HJB equation (7), the following inequality holds for (τi, τi+1):

−ρvf (h, x1(h)) + vfh(h, x1(h)) + vfx(h, x1(h))f(x1(h), p(h), s(τ
+
i )) ≤ −(p(h)− c(x1(h))q(h).

Using the above inequality in (16) and substituting vf (T, x1(T )) = 0, we obtain:

−e−ρτjvf (τj , x(τj)) ≤ −
∑
i≥j

∫ τ−
i+1

τ+
i

e−ρh(p(h)− c(x1(h))q(h)dh.

Rearranging the above equation yields:

vf (τj , x(τj)) ≥
∑
i≥j

∫ τ−
i+1

τ+
i

e−ρ(h−τj)(p(h)− c(x1(h))q(h)dh = Jf
(
τj , (s(τj), x(τj)), γ̂

g
[τj ,T ], γ

f
[τj ,T ]

)
The above inequality holds with equality when (8) and (5) hold, that is, γ̂f (t, s(t), x(t)) = p∗(t) is the

best response strategy of the firm to the subsidy adjustment strategy γ̂g of the government

Next, we consider the intervention problem of the government. For an arbitrary feedback strategy

γg of the government and feedback strategy γ̂f of the firm, let x2(·) denote the state corresponding to

the cumulative sales. Since (13) and (14) hold for all j ≥ i, we obtain

vg(τj , s, x(τj))

≤
N+1∑
i=j

s+
∑j

k=i ηk
2

∫ τ−
i+1

τ+
i

e−ρt

w1

β
+ β(s− k1(t) +

i∑
m=j

ηm) +

(
w2

β
+ βk2(t)

)
x2(t)

 dt

+ C1ηi>0 + vg(τN+1, s+

N+1∑
m=j

ηm, x(τj+1) = Jg
(
τj , (s(τj), x(τj)), γ

g
[τj ,T ], γ̂

f
[τj ,T ]

)
.

The above inequality is satisfied with an equality for the equilibrium strategy (15) of the government.

To compute the FSE, we can obtain the equilibrium subsidies by dynamic programming using

Algorithm 1. Then, we can use the equilibrium subsidies to compute k2(t), k1(t) and k0(t) using (6),

(10), and (11). In our example in the next section, we will exactly solve the models by enumerating

all combinations of subsidy levels at each date, and solving the optimal-control problem of the firm to

obtain k2(t), k1(t) and k0(t) using (6), (10), and (11). Then, we compute the cost of the government in

each case by substituting the sales in the objective function of the government and choose the optimal

subsidy levels for which the cost over time interval [0, τN+1] is minimum where the cost of not hitting

the target sales by τN+1 is taken to be infinite.
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Algorithm 1 Computing the FSE subsidies

1: Compute k2(t), k1(t), and k0(t) using (6) for t ∈ [τN+1, T ]
2: Discretize the state x over G ∈ [x0, xM ]
3: Set vf (τN+1, s, x) according to (12)
4: for j = N to 0 do
5: for each state x(τj) ∈ G at time τj do
6: for each state s ∈ S at time τj do
7: Compute k2(t), k1(t), and k0(t) using (10), and (11) for t ∈ [τj , τj+1]
8: Use (9) to solve for x(t) in t ∈ [τj , τj+1)
9: Solve (13) to obtainMvg(τj , s, x(τj)) and corresponding η∗j .

10: Set vg(τj , s, x(τj))←Mvg(τj , s, x(τj)) and γg(τj , x(τj), s)← η∗j

11: Approximate vg(τj , x, s) for each x ∈ [x0, xM ] using interpolation.

12: Return vg(0, x0, s0) for the initial state x0 and s0.

5 Numerical example

Even with the simplest possible specifications of the functions involved in the model, one cannot solve

analytically an impulse dynamic Stackelberg game (iDSG). To illustrate the kind of results that can

be obtained with our model, we give an numerical example in which we use the algorithm above.

As a benchmark case, we adopt the following parameter values:8

Demand parameters: α1 = 6, α2 = 0.01, β = 0.1, pa = 1, x0 = 10,

Cost parameters: b1 = 50, b2 = 0.8, C = 10,

Other parameters: T = 18, ρ = 0.1, xs = 40.

Let the feasible subsidy set be given by S = {0, 5, 10, 15} and the subsidy adjustment be made at

instants of time τ1 = 0 and τ2 = 5. The subsidy program stops at τ3 = 10, which is different from

the firm’s planning horizon, set here to T = 18. Based on the results, we answer here our research

questions 1, 2, and 3.

Price and subsidy. Figures 1a and 1b show that the consumer’s price during the subsidy period is

significantly lower than what she would have paid without the subsidy. After the subsidy, the price

difference is, however, only slightly lower in the subsidy scenario than in the case without subsidy. In

both scenarios, the seller’s price is decreasing over time, which is the consequence of learning-by-doing

and word-of-mouth effects.
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(a) Without subsidy
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(c) Subsidy

Figure 1: Cumulative sales, equilibrium producer and consumer price, and equilibrium subsidy for the benchmark case.

The government sets the subsidy level at 15 at τ1 = 0 and at 0 at time 5 (see Figure 1c). Starting

with a high subsidy, slightly more than 25% of the seller’s price, is meant to trigger a snowballing effect

in the adoption process. Indeed, high subsidy leads to high demand, which accelerates the reduction

8We ran a large number of numerical examples and the results are (qualitatively) robust to what we present here.
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in the unit production cost and the positive word-of-mouth effect. In turn, the price goes down and

adoption rate up.

Comparing the results in Figures 1a and 1b shows that the adoption rate is higher when the

government offers a subsidy than when it does not, which is expected. Note that the target would not

been reached without subsidy.

Firm’s strategic behavior. The subsidy period is given by the time interval I = [0, 5] . Denote by

ps (t) the firm’s price when the government offers a subsidy and by p (t) the price when it does not.

Our results show that ps (t) > p (t) for all t ∈ I. Then, the answer to our second research question

is unambiguous: the firm indeed takes advantage of the implementation of the subsidy program to

increase its price during the time interval I. One implication of this strategic behavior is that the

subsidy program is not achieving its full potential in terms of decreasing the price and raising the

adoption rate. The same conclusion was reached in Kaul et al. (2016) and Jiménez et al. (2016) in

their evaluation of the car scrappage program.

Cost and benefits. Whereas the cost of a subsidy program is straightforward to compute, its benefits

are more complex to determine. Here, the subsidy program costs taxpayers 1028.43. The benefits can

be assessed in terms of consumer surplus, firm’s profit, and environmental impact.

Consumers are paying a lower price in the subsidy scenarios and buying more. Consequently,

consumer surplus is higher with the subsidy. The firm is clearly benefiting from the subsidy. Indeed,

its profit is approximately 2560.84 with subsidy, and 1638.11 without a subsidy, which is a 56% increase.

This big difference comes from two sources. One is the higher sales volume, while the other is the

firm’s strategic behavior discussed above. The environmental benefits are more complicated to assess

because they depend on a series of assumptions. A first assessment can be done in terms of the number

of gasoline cars replaced by EVs, and the saving of gasoline consumption over the useful life of an EV,

which depends of the yearly driving distance by a car. From this perspective, independent of how

the computations are done, the conclusion would be the same, i.e., subsidizing EVs reduces pollution

emissions. Ultimately, however, a comprehensive evaluation should consider all steps involved in the

production of the two types of cars from extraction of raw materials to manufacturing and disposing

of them when becoming obsolete. Also, one should consider the sources of electricity used to feed the

EVs. Clearly, if the source is heavily polluting (coal, fuel), than the benefit (if any) is much lower than

when the electricity is produced with renewable technologies.

5.1 Sensitivity analysis

In this section, we vary the values of the main model’s parameters and assess the impact on the results.

Impact of the target value. We consider two values to the left of the benchmark target and two to

its right. We can see in Figure 3 that if we make the target values lower than the benchmark case, the

consumer prices increase significantly during the interval [5, 10] as the subsidy offered is reduced from

15 in the benchmark case, shown in Figure 1c, to 5 (Figure 2a) and 10 ( Figure 2b). For target levels

higher than the benchmark, that is, xs = 42, 44, the terminal consumer price decreases as the subsidy

increases in both first and second periods; see Figures 2c and 2d. The cost of the subsidy program

for xs = 36, 38, 42, 44 is 317.08, 656.56, 1460.75, 1914.09, respectively. Note that the higher the target

value, the higher the subsidy and the government’s cost, which is intuitive. What is less intuitive is

the order of magnitude in the changes. To illustrate, the cost of the subsidy program increases by

600%, when the target is up by 22% (from 36 to 44). Finally, the higher the target, the lower the

after-subsidy price.
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(d) Target= 44

Figure 2: Equilibrium subsidy when target is varied from the benchmark case.
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Figure 3: Cumulative sales, producer and consumer price when target is varied from the benchmark case.

Impact of learning speed. As one can expect, a higher value of the learning speed b2 only brings good

news. Indeed, we see in Figures 4 and 5 that increasing b2 leads to lower price and subsidy. Also, the

cost to government is lower; for b2 = 0.72, 0.76, 0.84, 0.88, the subsidy cost is 1783.29, 1414.20, 674.81,

335.56, respectively. Clearly, the impact of the learning speed is huge. Increasing b2 by 22% (from

0.72 to 0.88) cuts the subsidy budget by more than 5 times (335.56 when b2 = 0.88 instead of 1783.29

when b2 = 0.72).

Impact of word of mouth. We study the variation in equilibrium prices and subsidy with the change

in α2 which measures the word-of-mouth effect. We can see in Figure 6 as α2 increases, there

is not much variation in the price while the subsidy adjustments do not change, Figure 7. One
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explanation is that a higher α2 means larger market potential, which reduces the incentive to reduce

the price to boost demand. The subsidy program cost for α2 = 0.009, 0.0095, 0.0105, 0.011 is given by

1021.77, 1025.07, 1031.32, 1035.32, respectively. Here, increasing by 22% the value of α2 (from 0.009

to 0.011), leads to only a 1.3% increase in the budget.
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Figure 4: Equilibrium subsidy plan when b2 is varied from the benchmark case.
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Figure 5: Cumulative sales, producer and consumer price when b2 is varied from the benchmark case.
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Figure 6: Equilibrium subsidy when α2 is varied from the benchmark case.
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Figure 7: Equilibrium subsidy plan when α2 is varied from the benchmark case.

Impact of subsidy adjustments. Finally, we vary the number of subsidy adjustments in the time

interval [0, 10]. As the number of adjustments increase in Figure 8, the terminal price remains almost

the same, while the subsidies are reduced over time (Figure 9). The cost of the government for

N = 1, 3, 4, 5 is given by 1473.42, 801.03, 802.61, 798.06, respectively. There is clearly a decreasing

relationship between the number of changes in the subsidy and the cost. A larger number of changes

give more degrees of freedom in adjusting the subsidy levels to reach the target. Therefore, the ultimate

impact will depend on the target and the fixed cost of each change in the subsidy.
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Figure 8: Equilibrium subsidy when N is varied from the benchmark case.
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Figure 9: Equilibrium subsidy plan when N is varied from the benchmark case.

6 Conclusions

In this paper, we provide a verification theorem to characterize the feedback-Stackelberg equilibrium in

a differential game between a government and a firm. While the firm acts at each instant of time, the

government intervenes only at certain discrete time instants to adjust the subsidy level. To the best of

our knowledge, it is the fist time that a feedback-Stackelberg equilibrium is determined in a differential

game with one player using impulse control. Also, it is the first paper in the diffusion models literature

that implements discrete changes to the subsidy, which is more realistic than assuming a continuous

modification of its level.
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It would be interesting to apply our results to a case study with real-world data on subsidies.

Beside this, the two following methodological extensions to our model are of interest:

1. We assumed that the cost function is affine in cumulative production, which may be a good

approximation in the short run, but not in the long term. Based on empirical work, Levitt et al.

(2013) concludes that “. . . learning is nonlinear: large gains are realized quickly, but the speed

of progress slows over time.” One option is to adopt a hyperbolic cost function that allows to

capture this nonlinearity and insure that the cost remains positive for any level of cumulative

production; see, e.g., (Janssens and Zaccour 2014). However, such modification comes with the

additional difficulty in determining the feedback-Stackelberg equilibrium as the game would not

be anymore linear-quadratic and one would need to numerically solve the HJB partial differential

equation.

2. Another extension is to let the timing of subsidy adjustments be also chosen optimally. This

extension would require challenging methodological developments as we do not dispose yet of a

theorem characterizing the equilibrium in such setup.
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